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Abstract

Space-time block codes from orthogonal designs recently proposed by Alamouti, and Tarokh-
Jafarkhani-Calderbank have attracted considerable attention due to the fast maximum-likelihood
(ML) decoding and the full diversity. There are two classes of space-time block codes from
orthogonal designs. One class consists of those from real orthogonal designs for real signal
constellations which have been well developed in the mathematics literature. The other class
consists of those from complex orthogonal designs for complex constellations for high data rates,
which are not well developed as the real orthogonal designs. Since orthogonal designs can be
traced back to decades, if not centuries, ago and have recently invoked considerable interests in
multi-antenna wireless communications, one of the goals of this paper is to provide a tutorial
on both historical and most recent results on complex orthogonal designs.

For space-time block codes from both real and (generalized) complex orthogonal designs
(GCODs) with or without linear processing, Tarokh, Jafarkhani and Calderbank showed that
their rates cannot be greater than 1. While the maximum rate 1 can be reached for real
orthogonal designs for any number of transmit antennas from the Hurwitz-Radon constructive
theory, Liang and Xia recently showed that rate 1 for the GCODs (square or non-square size)
with linear processing is not reachable for more than two transmit antennas.

For GCODs of square size, the designs with the maximum rates have been known, which are
related to the Hurwitz theorem. In this paper, We briefly review these results and give a simple
and intuitive interpretation of the realization. For GCODs without linear processing (square or
non-square size), we prove that the rates cannot be greater than 3/4 for more than two transmit
antennas.

Keywords: Diversity, (generalized) complex orthogonal designs, Hurwitz theorem, space-
time block codes, wireless communications.

1 Introduction

In a high data rate wireless communication system, bandwidth limitation and channel fading are
two major obstacles to achieve the reliable communication. Teletar [1] and Foschini and Gans
[2] have recently shown that there is a huge potential capacity gain of multiple antenna systems

compared to single antenna systems. They showed that the capacity of a multiple antenna system
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grows at least linearly with the number of transmit antennas, provided that the number of receive
antennas is greater than or equal to the number of transmit antennas. To approach the potential
huge capacity of multiple antenna systems, new coding and modulation, which is called space-time
coding, has attracted considerable attention lately, see for example, [3] — [17].

The fundamental performance criteria of space-time codes were derived by Guey, Fitz, Bell and
Kuo [3], Tarokh, Seshadri and Calderbank [4], and later extended by Hammons and El Gamal
[8] for PSK modulations. In [4], Tarokh, Seshadri and Calderbank also presented a few space-
time trellis codes for 2—4 transmit antennas which perform well in slow-fading channels and come
close to the outage capacity promised by Teletar [1] and Foschini and Gans [2]. However, the
maximum-likelihood (ML) decoding complexity of the space-time trellis codes is high.

Later, Alamouti in [5] introduced a simple transmit scheme for two transmit antennas which
achieves full diversity and has a fast ML decoding at the receiver. Motivated by the Alamouti’s
scheme, Tarokh, Jafarkhani and Calderbank in [6] proposed a general scheme, space-time block
codes, from orthogonal designs for any number of transmit antennas, which has the full diversity
and a fast ML decoding of space-time block codes. In particular, the transmitted symbols can be
decoded separately, not jointly. Thus, the decoding complexity increases linearly, not exponentially,
with the code size.

There are two classes of space-time block codes from orthogonal designs. One class consists
of those from real orthogonal designs for real constellations such as PAM. These codes have been
well developed. There are systematic constructions with optimal symbol transmission rate 1 for
any number of transmit antennas [6], which are based on the Hurwitz-Radon constructive theory
[20, 24]. Ganesan and Stoica later revisited this scheme from a maximum SNR approach [9]. Real
orthogonal designs have been motivated for the compositions of quadratic forms started in the
1700’s [24, 25]. The other class consists of those from complex orthogonal designs for complex
constellations such as QAM and PSK. Unlike space-time block codes from real orthogonal designs,
these codes or complex orthogonal designs or Hermitian compositions of quadratic forms [25] are
not well understood. In this paper, we focus on the discussion of space-time block codes from
complex orthogonal designs, while they are important to achieve high data rates using QAM signal
constellations in broadband wireless communications.

A complezx orthogonal design (COD) in variables 1,2, -, Zy is an n X n matrix O such that:
i) the entries of O are 0, +z1, £x2,- - -, +x,, or their conjugates £z}, +x3, - -, £z}, or multiples of
them by i where i = v/—1; and ii) O"O = (|z1|2 + |22|? + - - - + |74|?) L., where the superscript
H stands for the complex conjugate and transpose of a matrix, and I, is the n x n identity
matrix. Tarokh, Jafarkhani and Calderbank showed in [6] that space-time block codes constructed
in this way exist only for two transmit antennas. Then they tried to relax the definition of complex

orthogonal designs to allow linear processing at the transmitter, i.e., the entries of O may be complex



linear combinations of z1, 7, x2, 23, - -, Tn, x,,. However, they also proved that this extension fails
to provide new designs. Later, Ganesan and Stoica [9] revisited this result by connecting this
problem to the amicable design theory [22, 24].

Tarokh, Jafarkhani and Calderbank [6] observed that it is not necessary for the complex or-
thogonal designs (with or without linear processing) to be square matrices in order to construct
space-time block codes. Space-time block codes allow non-square designs. Subsequently, they in-
troduced the definition of generalized complex orthogonal designs (GCODs). Furthermore, they
proposed generalized complex orthogonal designs with linear processing (GCODs with linear pro-
cessing for short). The detailed definitions are reviewed later. With these new definitions, there
are space-time block codes from GCODs that can be used for any number of transmit antennas.
However, for more than six transmit antennas, the known space-time block codes from GCODs
with linear processing have symbol transmission rate only 1/2, far from the maximum symbol
transmission rate 1 of those codes from real orthogonal designs for real constellations. The exist-
ing space-time block codes from (generalized) complex orthogonal designs with or without linear

processing can be summarized as follows:

e For 2 transmit antennas, space-time block code exists with the maximum symbol transmission

rate 1 from COD (Alamouti’s scheme [5));

e For 3 and 4 transmit antennas, space-time block codes exist with symbol transmission rate 3/4

from GCODs with linear processing [6] or from GCODs without linear processing [9, 10, 11];

e For 5 and 6 transmit antennas, space-time block codes exist with symbol transmission rates

7/11 and 3/5, respectively, from GCODs with linear processing [15];

e For any number of transmit antennas, space-time block codes exist with symbol transmission

rate 1/2 from GCODs with linear processing (Tarokh, Jafarkhani and Calderbank [6]).

For two transmit antennas, the Alamouti’s scheme achieves the maximum symbol transmission
rate 1. However, for more than two transmit antennas, it is not clear what is the maximum symbol
transmission rate of space-time block codes from generalized complex orthogonal designs with or
without linear processing.

Tarokh, Jafarkhani and Calderbank first mentioned in [6] that the symbol transmission rate of
space-time block codes from GCODs with or without linear processing cannot be greater than 1 for
any number of transmit antennas. Surprisingly, Liang and Xia later proved in [16] that this symbol
transmission rate cannot be 1 for more than two transmit antennas, contrast to the space-time block
codes from real orthogonal designs for real constellations in which the symbol transmission rate can
achieve the maximum rate 1 for any number of transmit antennas. More precisely, for more than

two transmit antennas they proved that k£ < p — 1, where k is the number of information symbols



in each codeword, and p is the time delay. The symbol transmission rate is defined as R = k/p,
which means that each codeword of time delay p carries k information symbols. Therefore, the
symbol transmission rate R < (p —1)/p < 1.

In this paper we show that for GCODs without linear processing, the symbol transmission rate
cannot be greater than 3/4 for more than two transmit antennas.

The paper is organized as follows. In Section 2, we will briefly review the theory of space-
time block codes and design criteria. In Section 3, we focus on the discussion of GCODs without
linear processing. For GCODs of square size, the maximum symbol transmission rate has been
characterized completely, which is related to the Hurwitz theorem [18, 19, 23, 25, 10] or the amicable
design theory [22, 24, 9]. For GCODs of non-square size, we show that the symbol transmission
rate cannot be greater than 3/4 for more than two transmit antennas. In Section 4, we discuss
GCODs with linear processing. Finally, we conclude this paper with some comments and open

problems in Section 5.

2 Space-Time Block Codes and Design Criteria

In this section, we briefly review the theory of space-time block codes and diversity criterion. More
details can be seen in [6].

We consider a wireless communication system with n transmit antennas and m receive antennas.
The channel is assumed to be a quasi-static and flat Rayleigh fading channel. A space-time block
code is a collection of some matrices. Each matrix is of size p x nasc = {c} : t = 1,2,---,p; i =
1,2,---,n}. Here, p represents the number of time slots, or time delay, for transmitting one
codeword. For some information symbols x1, 9, - -, xx which are selected from an arbitrary con-
stellation, the entries of the matrix ¢ are complex linear combinations of x1,x2, -,z or their
conjugates =7, 3, -, x). At time slot ¢,¢t=1,2,---,p, the tth row of the matrix c is transmitted,
ie., ct,c2,---,c are transmitted simultaneously from the n transmit antennas. The symbol trans-
mission rate is defined as R = k/p, which means that there are k information symbols transmitted
in one block with time delay p.

The whole system can be modeled as
Y =cA+ N, (2.1)

where Y = {y{ :t=1,2,---,p; 7 =1,2,---,m} is the received symbol matrix of size p x m whose
entry yZ is the signal received at antenna j at time ¢; A = {¢; ;} is the channel coefficient matrix of
size n X m whose entry c; ; is the channel coefficient from transmit antenna ¢ to receive antenna j;
and N = {n{ } is the noise matrix of size p x m whose entry 77{ is the AWGN noise sample at receive
antenna j at time t. The noise samples are independent samples of a zero-mean complex Gaussian

random variable with variance 1/(2SN R) per dimension. The fading channel is quasi-static in the



sense that the channel coefficients do not change during one codeword transmission, and change
independently from one codeword transmission to the next.
Assume that perfect channel state information is available at the receiver, then the ML decoding

at the receiver is

mine||Y — cAll} = mingtr [(V — cA)(Y — cA)]
= min, [tr(YHY) —tr(Y"cA + AMcMy) + tr(chAAH)} , (2.2)

where tr(V) is the trace of matrix V, and ||V||r is the Frobenius norm! of matrix V. Notice
that tr(Y?cA + AMc™Y) is the linear combination of the first order of x,xa,-- -,y or their
conjugates 3}, x5, -, z}, and tr(c*cAA™) is the linear combination of the second order of them.
Thus, if there are no terms of z;z;, z;z} and z}x} with i # j in tr(c?*cAA™), for example c*c =
(|z1|2+ |z2|? + - - - + |21|?) I, then the decision metric in (2.2) can be written as the sum of several

functions whose variables depend on each z;, i.e.,

k
Y —cAllF = fi(z:)

i=1
Therefore, the minimization can be done separately on each x;, not jointly. This leads to the fast
ML decoding of the space-time block codes from orthogonal designs.
Suppose that codeword ¢ be transmitted and the receiver erroneously in favor of codeword e.

Then the pairwise error probability is given by

=l
1 SNR
< e {1 e -l 23)

P(c—eld) = Q( SNR (c—e)A||F)

For the quasi-static and flat Rayleigh fading channel, (2.3) can be further written as [3, 4]

1 [ SNR ™"
1 (L " (SNR\™™
< 1 A I T 2.4
<a(I) () o
where r = rank(c — e), and A1, A2, - - -, A, are the nonzero eigenvalues of (¢ — e)(c — e)*. For high

SNR, the upper bound in (2.4) is dominated by the term (SNR/4) ™. Thus the rank r should

be as large as possible. This leads to the rank criterion or diversity criterion: in order to achieve

! The Frobenius norm of V satisfies

IVI[E = te(VH*V) = tr(VV*) =3 Joi .

2%



the maximum diversity, the difference matrix ¢ — e has to be of full rank for any pair of distinct
codewords ¢ and e [3, 4].

Therefore, a “good” space-time block code should possess two properties: i) the difference ma-
trix between two distinct codewords should be of full rank, i.e., this code achieves the maximum
diversity; and ii) there is a fast ML decoding algorithm. The space-time block codes from or-
thogonal designs do have these two properties. The special structure of orthogonal designs not
only guarantees the maximum diversity, but also provides a fast ML decoding. The transmitted
symbols can be decoded separately, not jointly. Thus the decoding complexity increases linearly,
not exponentially, with the code size.

Note that, the special structure of orthogonal designs is sufficient, but not necessary, to construct
space-time block codes having fast ML decoding and achieving maximum diversity. In fact, if there

exist some n X n positive definite matrices D1, D, - - -, Dy, such that
c™e = |21/°D1 + |w2* D2 + - + |ax|* Dy, (2.5)

then the space-time block codes from (2.5) possess the two properties. We observe that the differ-

ence matrix ¢ — e satisfies
(c—e)"(c—e) = |z1 — #1|*D1 + |22 — Z2/>D2 + - - - + |21 — k|’ Dy

Thus, the positive definiteness of the matrices D1, D3, - - -, D}, guarantees that the difference matrix
of two distinct codewords is of full rank, and the fact of no terms of z;z;,z;zj and z;z} with
i # j in (2.5) implies that the ML decision metric in (2.2) can be minimized separately on each
;. Space-time block codes from orthogonal designs can be considered as some special cases of
those from (2.5) when Dy, Dy, - - -, Dy, are some diagonal matrices. Even for these special cases, the

problem of the maximum symbol transmission rate has not been well understood yet.

3 Generalized Complex Orthogonal Designs (GCODs)

In this section, we focus on the discussion of GCODs without linear processing. We will discuss
GCODs with linear processing in next section. For GCODs of square size, the problem of the
maximum symbol transmission rate has been solved completely, which is related to the Hurwitz
theorem [18, 19, 23, 25, 10] or the amicable design theory [22, 24, 9]. We briefly review the results
and give a simple and intuitive interpretation of the realization. For GCODs of non-square size, we
prove that the maximum symbol transmission rate cannot be greater than 3/4 for more than two

transmit antennas.

Definition 3.1 A generalized complex orthogonal design (GCOD for short) in variables x1,x2,- - -, g

is a p X n matriz G such that:



(i) The entries of G are 0,%x1, £x9,- - -, £xy, or their conjugates £, x5, - -, xx}, or multiples
of them by i where i=+/—1; 1

(ii) G*G = (|z12 + |22 + - - - + |zk|?) In, where GM is the complex conjugate and transpose of G.

We will use this notation in the rest of this paper.

The rate of G is defined as R=k/p. If p=n =k, then G is a classical complex orthogonal design
(COD for short).

In Definition 3.1, n is related to the number of transmit antennas, p is related to the time
delay in each codeword, and the variables x1,x2,---,2; can be arbitrary constellation symbols.
The relationship of n,k and p will be discussed later. In particular, for a fixed n, there is an
upper bound on the rate k/p. It is worth noting that for a space-time block code from a GCOD,
the difference matrix AG between two distinct codewords is also a GCOD of the same structure,
ie., (AG)"(AG) = (|Az1|? + - - - + |Azg|?) I, which implies that AG has full rank unless Az; =
-+ = Az = 0. Thus, from Definition 3.1 (ii), space-time block codes from GCOD achieve the full
diversity.

The first space-time block code from GCOD was proposed by Alamouti [5] for two transmit
antennas. It is, in fact, a 2 x 2 COD in two variables x1, T2:

Ga(z1,22) = l _z% i; ] .
Clearly, the rate of G2 is 1. From later discussion, we know that for space-time block codes from
GCODs, the rate 1 is achievable only for two transmit antennas.
For three and four transmit antennas, space-time block codes from GCODs with rate R = 3/4

are given by [9, 10, 11]:

I T2 I3 X1 2 I3 0
—z5 x7 O —x5; 27 0 z3
G3(r1,22,23) = i 0 o | Gy(z1,2,23) = i N (3.1)
43 1 3 1
0 —x3 x5 0 —x3 x5 x1

In fact, G5 is obtained by taking the first three columns of G4. As a remark, based on the amicable
designs [22, 24], Tarokh, Jafarkhani and Calderbank [6] had earlier presented two designs with rate
R = 3/4 from GCODs with linear processing which are equivalent to the above two designs by
applying some unitary operations and changing variables.

For a fixed n, it is desired to have the rate of GCODs as large as possible. It was shown in
[6] that this rate cannot exceed 1, i.e., R < 1. Later, Liang and Xia in [16] proved that this rate
cannot be 1, i.e., R < 1, for more than two transmit antennas, which is surprisingly different from
the real orthogonal designs. However, what is the maximum rate of GCODs for n > 2 transmit

antennas remains open.

!The results in this section remain true if each entry of G is multiplied by an arbitrary phase offset e!®.



3.1 GCODs of Square Size

For GCODs of square size, i.e., GCODs in Definition 3.1 with p = n, the problem of what is
the maximum achievable rate has been solved completely. Tarokh, Jafarkhani and Calderbank
[6] first proved that the GCOD of square size with the maximum rate 1 exists only for n = 2
transmit antennas. Later, Ganesan and Stoica [9] connected this problem to the amicable design
theory [22, 24] which is essentially a generalization of the Hurwitz theorem [21, 23, 25]. Recently,
Tirkkonen and Hottinen [10] revisited the Hurwitz theorem and provided a realization of GCODs
with the maximum achievable rates directly. In this subsection, we review the Hurwitz theorem at
first, then clarify the relationships between the Hurwitz theorem and the problem of the maximum

achievable rate of GCODs, and finally give a simple and intuitive interpretation of the realization.

A set of n x n complex matrices {C1,Cs,---,C;} is said to be Hurwitz family' of order n [23], if
C? = I, 1<i<l (3.2)
CiCj = —CjC,', 1<i#£j5<L (3.3)

Denote H(n) — 1 be the maximum number of complex matrices in a Hurwitz family of order n,

then the Hurwitz theorem can be stated as follows? ([23], [21], [25] p.86).
Theorem 3.1 (Hurwitz) If n =2%-b, b odd, then
H(n) =2a+ 2.

Observing that, when n is odd, the maximum number of complex matrices in a Hurwitz family
of order n is 1. Josefiak in [21] presented a general realization of Hurwitz families as follows: if

{C4,Cs,---,C;} is a Hurwitz family of [ matrices of order n, then the set
{MQL,iPRL}U{QKRXC;:i=1,2,---,1}, (3.4)

is a Hurwitz family of [ + 2 matrices of order 2n, where the symbol U stands for a union of two

'Hurwitz family here is different from the Hurwitz-Radon family (see [20, 6, 24]). The matrices in a Hurwitz
family are complex, while those in a Hurwitz-Radon family are real.

2Tt is well known that the maximum number of real matrices in a Hurwitz-Radon family of order n is denoted as
p(n) — 1. A similar result is the Hurwitz-Radon theorem [20, 6, 24]: if n = 2%-b, b odd, a = 4c+ d with ¢ > 0 and
0 <d<3, then

p(n) = 8¢ + 2%
The relationship between p(n) and H(n) is:
p(n) +1, ifa = 0 (mod4);
H(n) =

p(n) +2, ifa=1lor2(mod4);
p(n), ifa = 3 (mod4).



sets, the symbol ® denotes the tensor product® , and

0 1 01 1 0
Notice that C; = iI; when n = 1. Then by induction, one can obtain a Hurwitz family of any even

order recursively.

Now we go back to the problem of the maximum achievable rate of GCODs. Assume that G

be a GCOD of square size n X n in variables x1, o, -, x,. We rewrite it as
k
G = Z [Re(wi)Ai =+ Im(mi)Bi] , (3.5)
i=1

where A; and B; are n X n complex matrices, Re(z;) and Im(z;) are the real and imaginary parts

of z;, respectively. From Definition 3.1 (ii), we have

k
GG = Z(|Re(wi)|2 + [Im(z;) | D) I,. (3.6)
i=1

Expressions (3.5) and (3.6) imply that
AMA, =1, BIB;=I, 1<i<k
Al A; = —A"A;, BI'Bj=-BI'B;, 1<i#j<k;
A'Bj=-BI'A;, 1<i,j<k.
Let Ag+; = B;, 1 =1,2,---,k, then we have

ARA, = I, 1<i<2k;

)

ATA; = —ATA;, 1<i+#j<2k

Furthermore, let C; = A}t A;, i =1,2,---,2k, then C; = I, and

C? = —I, 2<i<2k
cC; = =-C;C;, 2<1 #j < 2k.
Therefore, {C2,Cs3,---,Ca} is a Hurwitz family of 2k — 1 complex matrices of order n. According

to the Hurwitz theorem, the number of complex matrices, 2k — 1, cannot be greater than H(n) —1,

i.e., 2k < H(n). Thus we have the following corollary.

3Let A = {c ;} be a s x t matrix and B be an arbitrary matrix, the tensor product A ® B is given by

anB e altB

A®B = : o :
aaB -+ auB

The rth tensor power of matrix B is defined as " B= BQ BQ ---Q B.

~—_——————

T times



Corollary 3.1 If n=2%-b, b odd, then the rate of any GCOD of square size

kSH(n) _a+l1

R=—
p 2n 20 .9’

and the bound can be achieved.

We observe that, when n =2, R < 1; when n =4, R < 3/4; when n = 8, R < 1/2; ---; when
n=2", R < (r+1)/2". The GCODs achieving the bound can be constructed from the Josefiak’s

realization in (3.4). For example, when n = 2,

{ERIRERIR I}

is a Hurwitz family of order 2. Then, by the notations in (3.5), the realization of a 2 x 2 GCOD

can be expressed as

10 0 1 i 0 0 i

in which besides the Hurwitz family, the 2 X 2 identity matrix is also used.

Ganesan and Stoica [9] obtained the result in Corollary 3.1 via the amicable design theory
[22, 24] which is essentially a generalization of the Hurwitz theorem [23, 21, 25]. There are also
realizations of GCODs from the amicable designs [22, 24, 9] which are similar to the Josefiak’s
realization in (3.4). Recently, Tirkkonen and Hottinen [10] revisited the Hurwitz theorem and

provided a realization of GCODs with the maximum achievable rate directly for n = 2", r > 1 as

follows:

Gzr(xl,xg, .. -,a:r+1) = I (In + ®r(5) /2 + x’{ (In — ®r5) /2

r+1
. 0 .
r+1—1 g i—2
+§(® I2)®l_x: : ]@(@ 5),

1 0

where § = 0 —1

In the following, we present a simple and intuitive interpretation of the realization of GCODs

with the maximum achievable rate for n = 2", r > 0. Let G1(z1) = z111, and

Gor-1(z1,22,- -, Tp) Tpg1lyr
G2r($1’$2’...,w,r+1): *7 I7 ’ GH 5 T:1,2,3,-.-.
—Zpyq1lor-1 gr—1 (xla X2y 71"1')

We can check that (in Appendix A)
(Gor (w1, 22, , Tr11)) *Gar (1,32, -+, Trg1) = (|2a® + |w2® + -+ + |2pi1 ) Ior,

and the rate R = (r +1)/2", r > 0.

10



To be explicit, here are some examples:

Go(z1,73) = l G1(z1) T2 ] _ l 331 xi ] :

—z5  Gil(z1)

_$2 $1
1 T2 | T3 0
Ga(z1, 22) z31p —e5 21| 0 @
G T1,T2,T = *’ = * * )
a(@1,22,3) l —a3ly  GH@er) | | ey 0@ —a
0 —z3|23 =
[ Gy(z1, 9, 73) 2414
G ’ ’ ’ — ’* b
_ - 9 T3 0 T4 0 0 0 b
—-ry 0 z3| 0 =4 0 0
—x3 0 a7 —z2| O 0 @ 0
_ 0 —zf 2§ x| 0 0 0
- —x} 0 0 0|27 —z2 —u3 0
0 —z3 0 0|z @1 0 —x3
0 0 _wz 0 CL‘§ 0 1 T2
0 0 0 —zj| 0 af -3 i |

3.2 GCODs of Non-Square Size

Tarokh, Jafarkhani and Calderbank mentioned in [6] that it is not necessary for the GCODs to be
of square size in order to construct space-time block codes. Actually, space-time block codes can
be constructed from GCODs of non-square size as shown in [6]. In this subsection, we prove that

the maximum rate of GCODs of non-square size cannot be greater than 3/4 for n > 3.

Let G be a GCOD in variables x1,z2, - - -,z of size p x n. We rewrite it as
G=Eix+ F1X Eyxx+ FoXx --- E.x+ F.X|, (3.7)
where E; and F; are p X k complex matrices, x = (z1,Z2, -, 7%)’ and X = (z},z3,---,2})’. Here,

the superscript T' stands for the transpose of a matrix or a vector, and X is the complex conjugate
of x. Clearly, (K)T = x". We use these notations throughout the paper. From Definition 3.1 (ii),

we obtain the constraints on E; and F;, i = 1,2,---,n, as follows [16].

Property 3.1 GG = (|z1|> + |z2|> + - - - + |zx|?) I, is true, where G is represented in (3.7), if

and only if
EM’E;+ F'F; = I, 1<i<n; (3.8)
E'E;+ F/'F; = Opqp, 1<i#j<m (3.9)
E'Fj+ F'E; = Oper, 1<4,j<n. (3.10)

11



For convenience, we specify some definitions at first. A column (row) of a matrix is said to
be zero, if all elements of this column (row) are zeros. A matrix is said to be monomial, if there
is at most one non-zero element per row and column. Clearly, the rank of a monomial matrix is
equal to the number of non-zero elements in this matrix. Two matrices A and B of same sizes are
said to be disjoint, if a column (row) in A is non-zero, then the same column (row) in B must be
zero; and conversely if a column (row) in B is non-zero, then the same column (row) in A must
be zero. From Definition 3.1 (i), we know that the entries of G cannot be linear combination of
Z1,%2,: -+, Tk or their conjugates i, x5, -+, x;. Together with (3.8) in Property 3.1, we have the

following property.

Property 3.2 Foranyi, 1 <i<mn,
(i) both E; and F; are monomial, so is E; + Fj;
(i) the pair of E; and F; is disjoint;
(iii) EJ*F; = Ogxr, EiF]t = Opyp;
(iv) rank(E; + F;) = rank(E;) + rank(F;).

Proof: See Appendix B. 0O

Notice that G allows row and column permutations. Without loss of generality, we may assume

that the first column of G be [z1 3 --- x5 0 --- 0], ie., By = l Ty and Fy = Opyp. If
0(p—k)xk
there are some z} in the first column of G, we can always obtain the form of [y; y2 -+ yx 0 --- 0]T

by changing variables. Let

| B _ | B _
EZ_[EZ ‘|? E_[E ]7 7’_2?3’ 7n7

where E;; and F;; are k X k complex matrices, E;o and Fjy are (p — k) X k complex matrices. From
(3.9), we have
EZ{E’i‘f‘FiTFl:Okaa 7:22,3,"',77/-

It implies that Ej; = Ogxj for any ¢ = 2,3,---,n. From (3.10), we have
E'F;+ F/'E1 = Ok, 1=2,3,---,n.

It implies that F;; + Fzr"f = Ogxy for any ¢ = 2,3,---,n. From the above arguments, we have the

following property.

I
Property 3.3 IfE; = l 0 ];) . ] and Fy = Opxy, then
p—k)x

Ei1 = Opxr, Fi + F5 =Opyp, i=2,3,---,n.
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For any i, ¢ = 2,3,---,n, denote B; 2, 7;,1 and <; 2 as the ranks of E;>, F;1 and Fj, respectively.
Since E;+ F;, E; and F; are monomial, and the pair of E; and F; is disjoint, so we have the following
property.

Property 3.4 For anyi,i =2,3,---,n,

Bi2 +vi1+ 2=k,

and
p>k+ Bi2+ v
The following rank equalities and inequalities are useful in the rest of this paper [26]:
e For any complex matrix A,
rank(AM A) = rank(AM) = rank(A);
e For two complex matrices A and B of same sizes,

rank(A + B) < rank(A) + rank(B);

e For two complex matrices A of size s X t and B of size t x [,

rank(A) + rank(B) — t < rank(AB) < min {rank(A), rank(B)}.
Now we can prove our main result.

Theorem 3.2 For n > 3, the rate of GCODs cannot be greater than 3/4. More precisely,
(i) Whenk=3l,1=1,2,3,---, R < 3/4;
(ii) When k=31—1,1=1,2,3,---, R< (3l —1)/(4l);
(ili) When k=31—-2,1=1,2,3,---, R< (3l —2)/(4l — 1);

and the above upper bounds can be reached for n = 3 and 4.

Proof: For any n > 3, from (3.9) in Property 3.1, we have EJE3 + Fi Fa = Ogx. Replacing
E,, E3, F5 and F3 by their partitions, we obtain

E}E3y + Fii1 Fo1 + FipFag = Oy (3.11)

13



On one hand, we have an upper bound on the rank of E§E3s + Fggfgg,

rank(E}Esy + FhFg) < rank(E}Esy) + rank(FiFas)

1 1
< S(B22+Bs2) + 5 (132 + 722)- (3.12)

N

On the other hand, we have a lower bound on the rank of F3T1721,
Tank(F:;‘Flfgl) > 3,1+ 72,1 — k. (3.13)
Combining (3.11), (3.12) and (3.13), we have

1
Y21+ 731 —k < 5(,5’2,2 + B32 + 72,2 +73,2)

It follows that
2921 — k < P22 + 72,2,
or

2931 —k < B32+ 732,
ie., 27,1 — k < Biy,2 + Vig,2 is true for 79 = 2 or 3. From Property 3.4, we know that B;, 2 + viy,1 +
Yio,2 = k. Thus, we have

Yio,1 < 2(Big,2 + Vio,2)- (3.14)
Therefore, the rate of GCODs
k < k Yol + (Bio,2 + Yio,2) <3

P~ k+Big2+ Yoz Yol +2(Bio2 + Vo) ~ 4
in which the first inequality follows by Property 3.4 that p > k + 3,2 + 7i,2, and the second

inequality follows by (3.14).
The proof of (i) is covered in the above arguments. For (ii) and (iii), we need to investigate the
property of ;, 1 more precisely. When k =3l—1,1=1,2,3,-- -, we want to prove R < (3/—1)/(4l).

Sufficiently, we will prove
k < -1

k + /Bio,Q + Yio,2 o 41 ’
which is equivalent to v;,,1 < 2/ — 2. From (3.14), we have 7;,1 < %k = 2] — % According to

Property 3.3, Fi, 1+ F%,l = Ogxx. Since Fj 1 is monomial, so v;,,1, the rank of Fj, 1, is even. Thus
Yio,1 < 20 — 2, which is what we need.
When k£ =31 —-2,1=1,2,3,---, we want to prove R < (3l —2)/(4l — 1). Sufficiently, we will

prove

k < 3l —2
k+ Big2 + Yig2 ~ A —1’
which is equivalent to ;1 < 2l — 3. From (3.14), we have 7,1 < %k =2l — %. It implies that
Yio,1 < 21 —2. When ;1 # 21 — 2, then v;,,1 < 2l — 3, which is what we need. When v;, 1 = 21 -2,
we prove R < (3l — 2)/(4l — 1) directly in Appendix C.
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For n = 3 and 4, it is easy to obtain GCODs with the upper bounds. We illustrate only for
n=4. When k=3[,1=1,2,3,---,

Ga(z1, 2, T3)

Gy(z4, x5, z6)
G(x17$27"'7x31) = ,. ’

Ga(Ts1-2,T31-1, T31) | 4,4
When k=3l—-1,1=1,2,3,---,

Ga(z1, 22, 3)
Ga(z4, 5, T6)
G(z1,22,---,T3-1) = :
Ga(T31-5, T31-4, T31-3)
Ga(z31-2,731-1,0) |4
When k=31-2,1=1,2,3,---,
Ga(z1, 22, 23)
Ga(z4, 5, 6)
G(z1,22, ", T3 2) =
Ga(T31-5,T31-4,T31-3)
31213 (41-1)x4
O
The result presented in Theorem 3.2 implies that the two GCOD designs in (3.1) presented in

[9, 10, 11] have already achieved the maximum achievable rate for three and four transmit antennas.

4 Generalized Complex Orthogonal Designs with Linear Process-
ing (GCODs with Linear Processing)

In this section, we discuss GCODs with linear processing.

Definition 4.1 A generalized complex orthogonal design with linear processing (GCOD with

linear processing for short) in variables x1,x2,--+,Zk is a p X n matriz G such that:

(i) The entries of G are complex linear combinations of x1,x7,x2, 25, -+, Tk, Ty,
(ii) GG = D, where D is an n x n diagonal matriz with the (i,i)th diagonal element of the form
Lalzi? + Liglzal® + - + liglzkl,
where all the coefficients 1;1,1;2,- -+, l; i are strictly positive numbers.
The rate of G is defined as R = k/p.
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It is not difficult to see that, for a GCOD G without linear processing in Definition 3.1, each
variable x; appears and only appears once in each column of G, which is, however, different from
that for a GCOD with linear processing G, in which each variable x; can appear multiple times in
a column of G.

It has been proved in [6, 7] that if there exists a p x n GCOD with linear processing in variables
T1,T3, -+, Tk such that

lin=lig="--=lig (4.1)

for each ¢, then there exists a GCOD © with linear processing in the same variables and of the
same size such that
0™0 = (le1|* + |2al® + - + [k [*) .

Clearly, space-time block codes do not need the constraint of l; 1 = l;2 = --- = l; ;, for each i. Any
GCOD with linear processing from Definition 4.1 can also provide the advantages of the fast ML
decoding and full diversity. The diagonal form of D guarantees the fast ML decoding, since the
orthogonal columns of G can separate the transmitted symbols x1, 2, - -, x; from each other at
the decoder. And the strictly positive coefficients l;1,l;2,---,l;  imply the full rank of G as we
explained at the end of Section 2. This guarantees the full diversity advantage of coding. For more
details about the coding scheme, we refer the reader to [6].

For a fixed n, it is desired to have the rate of GCODs with linear processing as large as possible.
Tarokh, Jafarkhani and Calderbank mentioned in [6] that this rate cannot exceed 1. From Liang
and Xia’s result in [16], we know that the rate of GCODs with linear processing must be strictly
less than 1 for n > 3.

4.1 GCODs with Linear Processing of Square Size

Assume that G be a GCOD with linear processing of square size n X n in variables x1,xs, -, g,
and denote D; = diag(l15, laj, ---, lnj) for each j(1 < j < k), then from Definition 4.1 (ii) we
have

G"G = D1|z1|* + Dalxo| + - - - + Dy|zy|*. (4.2)

We rewrite G as

k
G =) [Re(zi)Ai + Im(z:)Bi], (4.3)
=t

1
where A; and B; are n x n complex matrices, Re(z;) and Im(z;) are the real and imaginary parts
of z; respectively. Substituting (4.3) into (4.2) and comparing two sides of the resulting equation,
we have

AMA;=D;, BI'B;=D;, 1<i<k;

AT A; = —A"4A;, BlI'Bj=-BI'B;, 1<i#j<k;
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A'Bj=-BIA;, 1<i,j<k.

Let Ak+i = Bz and Dk+i = Di, 1= 1, 2, ey k), then we have

ATA; = D;, 1<i<2k;

7

ATA; = —ATA;, 1<i+#j<2k

Furthermore, let C; = D; /2A¥A;D;"/? i =1,2,--, 2k, then Cy = I,,, and

C? = —Di'D;, 2<i<2k;
CiCj = —CjCi, 2<i#j <2k
Therefore, if Dy = Dy = -+ = Dy, then {C3,Cs,---,Co} is a Hurwitz family of 2k — 1 complex

matrices of order n. According to the Hurwitz theorem, we know that the number of complex
matrices 2k — 1 cannot be greater than H(n) — 1, i.e.,, 2k < H(n). Similar to Corollary 3.1,
we have the following result. Notice that the condition D; = Dy = --- = Dy is equivalent to

lin=Uliga="--=1yforeachi(l <i<mn) 4,

Corollary 4.1 Ifn=2%-b, b odd, and G be a GCOD with linear processing of square size n X n
satisfying l;n = lip = --- =i, for each i (1 <i < n), then the rate of G

R<(a+1)/(2%-b),

and the bound can be achieved, which is the same as the one for GCODs without linear processing

of square size in Definition 3.1.

Clearly, the maximum rate can be achieved by the GCODs of square size in Section 3.1. Thus, for
this situation, relaxing the definition of GCODs to the definition of GCODs with linear processing
fails to provide a higher rate. However, it is unclear whether this conclusion is true or not if there

are no positive constants dy, da, - - -, dg such that diD; = doDy = - -- = dp Dy

4.2 GCODs with Linear Processing of Non-Square Size

GCODs with linear processing of non-square size have not been well understood by now. In this
subsection, we review some existing designs to illustrate the difficulty of this problem.

Tarokh, Jafarkhani and Calderbank in [6] presented a general design with rate 1/2 for any

number of transmit antennas as follows. Assume Ly (a1, a2,---,ax) be a generalized real orthogonal
design [6] in variables a1, ag, - -, ax with rate 1 and of size k x n. Let
Ly(z1, %2, -, T)
w x .- e w p— 4-4
gn( 1,42, ) k) Ln(wiaxaaaxZ) ) ( )
4Corollary 4.1 still holds if the condition l; 1 = l;2 = -+ = l; 1 for each i (1 < i < n) is relaxed as diD; = d2D2 =
.-« = di Dy, for some positive constants di, da, - -, dk.
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where Ly, (z1,%2,---,2;) and L,(z},23,---,2;) are k x n matrices constructed by replacing the
symbols a1, ag, - -, ar everywhere in Ly,(a1,a2,---,ar) by x1, 2, ---, zx and z7, x3, -- -, =, re-
spectively. Clearly, the size of G,, in (4.4) is 2k x n, and the rate of G, is 1/2. For example, for four

transmit antennas, the design is given by the following 8 x 4 matrix

[ @z wy w3 @ |
—Z2 1 —I4 Z3
—Z3 L4 1 —I2

Gu(wr, 2, 03,20) = | o o T2

x]  xy oz x)
-5  x] —x; T3
—r3 x; @ x] —T

| —zy —r3  z3 ]

18x4

Later in [15], two designs of GCODs with linear processing of rates higher than 1/2 were
presented for five and six transmit antennas. For five transmit antennas, the design is an 11 X 5

matrix given by

T T9 T3 0 T4
—z5 ] 0 =23 x5
x3 0 —x7 x2 w6

0 z3 —23 —x1 7

x) 0 0 —z7 —x

Gs(z1, 29, -, 27) = 0 a3 0 x5 —x3 |- (4.5)

0 0 =z x5 —=x3

0 —z5 x5 0 x

x5 0 a3 0
—xg —x7 0 0 a3

i 7 —Tg —Tj T4 0 i

Actually, G5 is constructed from G4(z1,z2,x3) in (3.1) as follows. At first, G4(x1, z2, x3) is consid-
ered as a 4 X 4 sub-matrix of Gs, and then symbols x4, x5, zg, z7 are added into the fifth column
of Gs. Finally, the entries of G5 from the fifth row to the end are arranged such that all of the
5 columns are orthogonal to each other and the number of the total rows should be as small as
possible. From the resulting matrix in (4.5), we can check that gg{gs = D, where Disa b x5

diagonal matrix with the (7,7)th diagonal element D(¢,%) of the form
7
D(1,1) = D(2,2) = D(3,3) = D(4,4) = > _ |zm|®
m=1

and
3 7
D(575) =2 Z |$m|2 + Z |xm|2-
m=1 m=4

The rate of G5 in (4.5) is R = 7/11 = 0.6364. Note that the diagonal matrix D here does not satisfy
the condition in (4.1).
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For six transmit antennas, the design is a 30 x 6 matrix given by

T o T3 0 T4 8
-5 ] 0 T3 T5  T9
x3 0 —z] T Te T10
0 T3 —T5; —X 7 T11
xy 0 0 —z7 -—2] =212
0 T} 0 Tg —T3 T13
0 0 x5 Ty —T3 Ty
0 TE  —xg 0 —z1 =15
x5 0 7 0 T2 T16
zg 7 0 0 —z3 x17
Ty  —Tg —I5 T4 0 =z
g 0 0 —zf; —25 —21
0 @ 0 oy wig —a3
0 0 xg Ty —Tp —x3
* * *

Golanaz o) = | o e s w T (46)
0 —zig 0 0 zj, —=z5
g 0 0 0 a7, —z7
0 —z5 i 0 =zi, m
x4 0 =z 0 =zj3 =
—xlp —o 0 0 23y =3
—Ty —Ti3 —Tiy 0 0 24
—Tig —Tis 0 —xjy 0 x5
—i7 0 «i5 —zi3 0 6
0 —zi; —zig o1 U
0 214 —713 —T15 Tn 0
T14 0 —z12 —T16 10 0
—Ir13  Z12 0 7 Tg9 0
T15 —T16  T17 0 T8 0

| —z11 T10 T9 —xg  T18 0 |

Similarly, Gg is constructed form Gs in (4.5) as follows. At first, G5 is considered as an 11 X 5
sub-matrix of Gg, and then symbols zg, xg, - - -, x18 are added into the sixth column of Gg. Finally,
the entries of Gg from the twelfth row to the end are arranged such that all of the 6 columns of Gg
are orthogonal to each other and the number of the total rows should be as small as possible. The
resulting matrix in (4.6) is of size 30 x 6. By a tedious check, we have G{!Gs = D, where D is a

6 x 6 diagonal matrix with the (¢,7)th diagonal element D(%,%) of the form

D(1,1) = D(2,2) = D(3,3) = D(4,4) = 58: |21 |2

and
18 3 11
D(5’5) = Z |5Cm|2 + Z |$m|2 + Z |wm|2’
m=1 m=1 m=8

7 18
D(6,6) = 2 Z |33m|2 + Z |-73m|2
m=1 m=8
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Clearly, the rate of Gg in (4.6) is R = 18/30 = 0.6.

The same procedure may be used to construct GCODs for other numbers of transmit antennas.
However, it is hard to obtain other designs with rate greater than 1/2. For example, Gg in (4.6)
may be used to construct G; for seven transmit antennas as follow. Similarly, we may keep Gg
as a 30 x 6 sub-matrix of G7 and add symbols 19, z2, -, Z48 into the seventh column of G7.
However, it is hard to arrange the entries of G7 from the thirty-first row to the end such that all
of the seven columns are orthogonal to each other and the number of the total rows should be as
small as possible. Notice that in this case, the symbols 1, z2, - - -, £18 and their complex conjugates
x], x5, -+, x]g should appear in the seventh column of G7. Therefore, the number of rows in G will
be at least 30 4 18 + 18 = 66.

To our best knowledge, there are no other known designs with rate higher than 1/2 for more
than four transmit antennas by now except for the two designs in (4.5) and (4.6) of rates 7/11 and
3/5, respectively. It is interesting to note that there are no known GCOD designs without linear
processing of rates more than 1/2 for five or more transmit antennas. The rate 3/4 GCOD designs
in (3.1) presented in [9, 10, 11] are the only known GCOD designs without linear processing of
rates above 1/2 for more than 2 transmit antennas. As we mentioned earlier, the result presented
in Theorem 3.2 in this paper tells us that these two GCOD designs have already achieved the

maximum rate in all GCODs without linear processing for more than 2 transmit antennas.

5 Conclusion and Some Comments

Orthogonal designs have a long history in mathematics literature, which have been mainly moti-
vated from the compositions of quadratic forms [24, 25]. Recently, orthogonal designs have attracted
considerable attention in space-time coding due to their special structure. Real and complex or-
thogonal designs are used to construct space-time block codes for PAM and PSK/QAM signals,
respectively. As the real orthogonal designs are well understood, the complex orthogonal designs
are more difficult to deal with but can provide high transmission rates since they permit com-
plex signal constellations. In this paper, at first we provided a tutorial review of space-time block
codes from complex orthogonal designs, in particular, the Hurwitz theorem on complex orthogonal
designs [18, 19, 23, 25] and its realizations [21, 10]. We then presented a simple and intuitive in-
terpretation of the realization. For GCODs of square size, the designs of the maximum rates have
been known from the Hurwitz theorem [18, 19, 23, 25, 10] or amicable design theory [22, 24, 9]. For
GCODs without linear processing of non-square size, we proved that the maximum rate cannot be
greater than 3/4 for more than two transmit antennas. Recently, Wang and Xia in [17] showed that
this upper bound, i.e., 3/4, still holds for some GCODs with linear processing and also provided
an upper bound (4/5) on the rates of GCODs with linear processing for more than two transmit

antennas.
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What we have known about GCODs with or without linear processing is only a tip of the iceberg
as pointed out in [6]. There are many interesting and important problems unsolved. We list a few
of them below.

The first open problem is: what is the maximum rate of a GCOD with or without linear
processing for a given number (> 2) of transmit antennas, and if it is known, then how to achieve
it, i.e., how to construct a GCOD with or without linear processing with the maximum rate?

From Corollaries 3.1 and 4.1, for some cases of designs with square size, relaxing the definition
of GCODs to the definition of GCODs with linear processing fails to provide higher rate. Thus,
the second open problem is: is there any difference of the maximum rates for GCODs with or
without linear processing? In other words, is there any GCOD with linear processing that has a
rate higher than the maximum rate of GCODs without linear processing for the same number of
transmit antennas?

Another open problem is to construct GCODs with or without linear processing of rates higher

than 1/2 for more than six transmit antennas.

Appendix A

Claim 1 G¥(z1,22, -, Zr41)Gor (21,22, -, Try1) = (|1]* + |22 + - + 211 )) Tor, 7> 0.
Proof: For simplicity, we omit the variables. Since for any r > 1,

[ GH_ Gors + |z 1|2 0
GHTG . — or—1312 r+
2 2 | 0 G2T—1G’2’L£-_1 "I‘ |CBT+1|2 i ’
[ Gy GIE_, + |z 1] 0 ]
GGy = | ¥ T T
2 2 i 0 G§_1G2r—1 + |$7-+1|2 | ’

and G}'Gy = |z1|*I; = G1G¥, so by induction on 7, we have
GYGor = GGl = (|11 + |22 + - + |21 r, 720,

which is Claim 1. O

Appendix B

Proof of Property 3.2: (i) Since the entries of G are 0, +x1, +z2, - -, £k, or their conjugates
+x7, £x3,- - -, £z}, or multiples of them by i, so there is at most one non-zero element per row of
E;, F; and E; + F;, and the modulus of non-zero elements is 1. If there are at least two non-zero
elements in kgth column of E;, then the (ko,ko)th element of EM*E; is greater than 1. It follows
that the (ko, ko)th element of EME; + (F/'F;)T is greater than 1, which is contradictory to (3.8)
that EZ{EZ + FZTF, = Ii. Thus, there is at most one non-zero element per column of F;. According
to the definition, E; is monomial. Similarly, we can prove that F; is monomial.

To prove E; + F; is monomial, sufficiently we need only to prove (ii) that the pair of E; and F;
is disjoint. Suppose that both the koth columns of E; and F; are non-zero, then both the (kq, ko)th
elements of EM*E; and F/'F; are greater than or equal to 1. It follows that the (ko, ko)th element

of BIE; + (FJF;)" is greater than 1, which is contradictory to (3.8) that E}‘E; + FTF; = I
Tt E; JLF; greater than 1, which is contradictory to (3.8) that E/*E; + F;' F; = I.
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Thus, the columns in E; and F; cannot be non-zero at the same time. On the other hand, we know
that there is at most one non-zero element per row of F; + F;. So the rows in E; and F; can not
be non-zero at the same time. According to the definition, the pair of E; and F; is disjoint.

(iii) Assume that the kith column of E; is [e1x, €ar, - €pk;)”, and the koth column of F; is

[fiky foks = foks)T, then the (K1, k2)th element of E'F; is Z?:l €55y fike- From (ii), the pair of
E; and F; is disjoint, so if ek, is non-zero then f;;, must be zero. Thus Z§:1 e;kl fik, = 0 for

arbitrary k1 and ko. It follows that EZ{Fz = Opxg- Similarly, we can prove that EiFiH = 0pxp.
Since E; + F;, E; and F; are monomial, and the pair of E; and F; is disjoint, so we have (iv)
immediately. O

Appendix C
Claim 2 Ifk=31-2,1=1,2,3,---, and ;y,1 =2l — 2, then R < (31 —2)/(4l —1).

Proof: Without loss of generality, we assume i9 = 2, i.e., 72,1 = 2/ — 2. We further assume
that v3,1 > 21 — 2. Otherwise, if 31 < 2] — 3, then we have
k < k _ k < 3l — 27
P~ k+PBs2+732 2k—73n1 " 4l-1

R =

which is the result in Claim 2.

The proof is divided into six steps. For convenience of description, let’s say the jth row (column)
is a common zero row (column) of Fy1 and F3; if the jth row (column) of Fy; is zero while the jth
row (column) of F3; is also zero. Similarly, we say the jth row (column) is a common non-zero row
(column) of Fa; and F3; if the jth row (column) of Fb; is non-zero while the jth row (column) of
F3; is also non-zero. The ith and jth rows of a monomial matrix are said to be a pair of relative
rows if both the (¢, 7)th and (j,47)th elements of the matrix are non-zero. Since F» is monomial, so
is F51. From Property 3.3, F2T1 = —F51. We know that there are totally [ — 1 pairs of relative rows
in Fy1 since 72,1, the rank of Fyy, is 21 — 2.

Step 1: At first, we prove that there are at most [ — 1 common non-zero rows (columns) in Fa;
and F31.

Suppose that there exist s(s > ) common non-zero rows in Fy; and F3;. Since all 21 — 2
non-zero rows in Fby consist in [ — 1 pairs of relative rows, so there is a pair of relative rows in
these s rows in F51. Denote that this pair of relative rows is located at the kith and koth rows,
then both the (k1, k2)th and (k2, k1)th elements of Fy; are non-zero. From the assumption, both
the kith and koth rows of F3; are non-zero. Denote further that the (k1, k3)th element in the kjth
row of F3; is non-zero. Since both the (k1, k3)th element of F3; and the (k1, k2)th element of Fy;
are non-zero, and both F3; and F»; are monomial, so the (k3, k2)th element of Fngfgl is non-zero.

On the other hand, since F§; = —F3; from Property 3.3, and the koth row of F3; is non-zero, so
the koth column of F3; is non-zero. Then the koth column of Fgs is zero since E3+ F3 is monomial.
It follows that the (ks, k2)th element of E3§Ess is zero. Similarly, since the (ki, k2)th element of
F5 is non-zero, we know that the koth column of Fj is zero because F» is monomial. It implies
that the (ks3, k2)th element of Fi,Fag is zero.

From the above discussion, we know that both the (ks3, k2)th elements of EZ5E3y and Fi, Fao are
zero while the (ks, k2)th element of F§j Fa; is non-zero. Thus, the (k3, ka)th element of E35E3s +
ngiFQl +F3,€F22 is non-zero, which is contradictory to (311) that E%Egg -I-F:;Tlfgl —]—F?gFQQ = Opxk-

Thus we conclude that there are at most [ — 1 common non-zero rows in F»; and F3;. Similarly,
we can prove that there are at most [ — 1 common non-zero columns in F5; and F3;.

Step 2: Denote Ny be the number of common zero columns in Fy; and F3;. In this step, we
will prove that No <1 and 37 =21 — 2.

Let Ny be the number of common non-zero columns in Fy; and Fii. From Step 1, we know
that the number of common non-zero columns in F5; and F31 cannot be greater than [ — 1, i.e.,
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]\70 <[ — 1. Since both F3; and F3; are k X k monomial matrices, so the number of common zero
columns in F5; and F3; satisfies

No=k— (y2,1 + 731 — No) <1,
in which £ =3l — 2, v9.1 =2l — 2 and 73,1 < 2/ — 2 from the assumption. Moreover,

Y21 + 731 — No < k,

so we obtain another constraint on 731, i.e.,
v31 < k4 Np—y21 <20 —1.

Therefore, we have 2/ —2 < 31 < 2l — 1. Since 3,1 must be even, so y3,1 = 2 — 2.

Step 3: We prove rank(Fj; F21) <1— 1 in this step.

From Step 1, we know that there exist at most [ — 1 common non-zero rows in Fy; and Fj.
Since there are totally 2] — 2 non-zero rows in Fbj, so there exist at least [ — 1 non-zero rows in
F5; such that the same rows in F3; are zero. Without loss of generality, we can assume that the
first t(t > | — 1) rows of Fy are non-zero while the first ¢t rows of F3; are zero, since there exist

elementary row permutation operation U such that Fij Fo; = (UF31)TUF5; and the first ¢ rows of
U F5; are non-zero while the first ¢ rows of U F31 are zero. We denote F5; and F3; as

W1 Ot><k:
F — txk , F — ,
2 l W2(k—t)><k ] 3 l W3(k—t)><k

where each row of Wi is non-zero. So
Wi

FLFo = [o,m Wg’] : l W ] = WIW,.

Thus we have . o
rank(F:,,TlFQl) <rank(Wsz) =1 —-t<l-1

Step 4: In this step, we show that E%Fgg = 0« and E§{2F22 = Ok k-
T
Let E3$Fs = {wi;}xk- According to (3.10) in Property 3.1, we have E3§Fyy = — (B Fy) .
So w;; =0forany ¢(1 <¢<k), and w;j = —wj,; forany 1 <i# j <k. If E}iF35 # Opyxp, then
there exist ig and jo (40 # jo) such that w;, j, # 0 and wj, ;, # 0. It follows that the ipth and joth
columns of Fyy are non-zero, while the igth and joth columns of F35 are also non-zero. Since both
E5+ F5 and F3 are monomial, so the igth and joth columns of F»; are zero, while the igth and joth
columns of F3; are also zero. Thus there are at least two common zero columns in Fy; and Fji.
This is contradictory to the fact that the number of common zero columns in F5; and F3; can not
be greater than 1, which is proved in Step 2. So we have E};Fzs = 0px. For the same reason, we
have E§{2F22 = 0k><k~ . .
Step 5: From (3.11) we have E}iF3o + Fii Fo1 + Fi5Fo2 = Opx. Thus, we have
rank(Fi Fa1) = Tank(EgéEm + FLFa).
If the following equation is true, (we will show it in next step.)
rank(E Esy + FibFa) = rank(E}s Esp) + rank(FiyFas), (C.1)
then we have
rcmk(Fg;FQl) = rank(E}Es) + rank(Fg;FgQ)
Tank(Eg'éEgg) + rank(Fg'éFgg)
rank(EgéEgz + F%F;;Z)

rank [(E22 + Fgg)H(Egz + ng)} , (C.2)

AVAR|
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in which the last equality follows by E%Fg,g = 0« and F%Egg = Oy from the result of Step 4.
From Step 3, we know that Tank(ngFgl) <l-1. So

-1 rank [(E22 + Fao) (B30 + F32)]

>
> rank(Ea2 + Fy2) + rank(Esy + F32) — (p — k)
= (B22+722)+ (B32+732) — (p— k), (C.3)

in which the last equality follows by rank(E; + F;) = rank(E;) + rank(F;), and E; + F;, E; and F;
are monomial from Property 3.2. Since 721 =2l —2 and k =31 — 2,50 B22+ Y22 =k — 72,1 =[.
From the result in Step 2, we know 31 = 2/ — 2. Thus, 32 + 732 = k — 73,1 = [. Substituting
B2,2 + 72,2 =1 and fB32 + 73,2 = into (C.3), we have

p>k—(1—1)+ (B22 +72,2) + (B32 +73,2) =4l — 1.

Therefore, the rate R = k/p < (3l —2)/(4l — 1). By now we know that if (C.1) is true, then we get
the claim. We will prove (C.1) in next step.
Step 6: Finally, we want to show that

rank(E%{gEgz + F??;Ez) = rank(EgéEgz) + rank(FgQFgg). (C.4)

We observe that (C.4) is equivalent to
rank [(EQQU)TEP,QU + (F32U)TF22U] = rank [(EQQU)TE?,QU] + rank I:(F?,zU)TFQQU:I ,

for any k x k elementary column permutation matrix U which is of full rank. Thus, applying column
permutation operations on Ea, E3, F» and F3 at the same time does not effect the result of (C.4).
Without loss of generality, we may assume that the first 2/ — 2 columns of F5; are non-zero. Since
Ey + F5 is monomial, so the first 2/ — 2 columns of E9yo are zeros, and the first 2/ — 2 columns of
F59 are also zeros.

From Step 2, we know that the number of common zero columns in F%; and F3; cannot be
greater than 1. If there is no common zero column in Fb; and F3q, then the last [ columns of F3;
must be non-zero since the last | columns of F5; are zeros from the assumption. Because E3 + F3
is monomial, we know that both the last [ columns of F35 and F3o are zeros. Thus, we have

(I _ 0 — 0 *
ENXEay = @=2)x@-2) F@-2xt | - pTE — (21-2)x (21—2)
. * 0rx: 822 Oix(21-2)  Oix

which implies (C.4). Therefore, (C.4) is true if there is no common zero column in Fb; and Fj;.

If there is one common zero column in Fy; and F3;. We assume that the (2/ — 1)th column is
the common zero column in F5; and F3;. Otherwise, we can obtain it by column permutations.
Then the last [ — 1 columns of F3; are non-zero since the last [ — 1 columns of Fy; are zeros. It
follows that both the last I — 1 columns of E3o and F3y are zero since E3 + F3 is monomial. We
prove (C.4) in the following four cases:

Case I: If both the (2] — 1)th columns of E32 and Es3y are non-zero, then both the (2 — 1)th
columns of Fby and F3o are zeros since both Fo + Fy and E3 + F3 are monomial. Thus, we have

0 0 = 0 *
El By = | J@-2x@-1) D@@-2x@-1) | - prE, | D@-2)x@) 7
B l * 01x(-1) s 01 (21-1) 0rx(1-1)

which implies (C.4).
Case II: If both the (20 — 1)th columns of Es» and Ej3a are zeros, then both the (21 — 1)th
columns of Fby and F3o are non-zero. In this case, we have

E}lEsy = l 0(21—1):(21—2) (:)(21—1)xz ] , FLFa = l (:)(21—1)><(21—2) . * ] 7
(=1)x1 (-1x@2-2) Ya-1)xt
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Thus (C.4) is true.
Case III: If the (20 — 1)th column of Ey is non-zero and the (2/ — 1)th column of Ej3 is zero,
then the (2] — 1)th column of Fy is zero and the (2! — 1)th column of F3a is non-zero. Now we have

0 0 — 0 *
EXE. = @=2)x@-2) F@-29)xt | - pTE, (21-1)x(20—1) -
s * 0ixi 522 Ou-nx@-1 Ou-1)x@a-1)

We observe that if the (21 — 1)th row of E}5E3s + Fi5Fag is zero, then (C.4) is true. From the
assumption that the (20 — 1)th column of F3; is zero, we know that the (21 — 1)th row of Fij Fay is
zero. Since EJ5E3p + FiyFag = —Fi; Fa1 from (3.11), so the (21 — 1)th row of E34E3y + FiFoo is
Z€ro.

Case IV: If the (21 — 1)th column of Eyg is zero and the (2! — 1)th column of Es3y is non-zero,
then the (2] — 1)th column of Fyp is non-zero and the (2! — 1)th column of F3y is zero. With this
situation, we have

0o ~1y O _ — 0o _
ElEs=| @& 1)*><(21 1) 0(21 1)x(I—1) ], FL Ty — l (gé 2)x(21-2) 0*
(=1)x(-1) Ix(20-2) Ix1

We can see that if the (20 — 1)th column of EJ§E3y + Fi,Fas is zero, then (C.4) is true. From the
assumption that the (21 — 1)th column of Fy; is zero, we know that the (20 — 1)th column of F§; Fay
is zero. According to (3.11) again, E};F3o+ Fih Fag = —FJ Fa1, we know that the (2/—1)th column
of E27'§E32 + F;;TQFQQ is actually zero.

Therefore, (C.4) is also true if there is one common zero column in Fy; and F3;. From the
above six steps, we have proved Claim 2 completely. O
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