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Abstract—Most space–time codes in the literature were proposed based
on two ideal channel conditions: either quasi-static or rapid fading. How-
ever, these codes may suffer performance degradation due to temporal cor-
relation caused by the movement of the mobile terminal or imperfect in-
terleaving. In this correspondence, we provide a novel analytical frame-
work for the diversity analysis of space–timemodulation in time-correlated
fading environment. We show that the space–time signals of square size
achieving full diversity in quasi-static fading channels also achieve full di-
versity in time-correlated fading channels, independently of the time corre-
lation matrix. Consequently, various classes of space–time signals designed
for quasi-static fading channels can also be used for full-diversity trans-
mission over time-correlated fading channels. Moreover, we show that if
the time correlation matrix is of full rank, the design criteria for time-cor-
related fading channels are the same as those for rapid fading channels.
To illustrate the theoretical results, some simulations were also performed
under various temporal fading conditions.

Index Terms—Diversity, interleaving, multiple antennas, space–time
modulation, time-correlated fading.

I. INTRODUCTION

The challenges imposed by the wireless propagation environment
and the need for high data rate communication links have started a quest
for methods to exploit a new resource: the spatial dimension. The idea
of equipping the transmitter and the receiver with multiple antennas
and developing coding and modulation schemes to improve the perfor-
mance of communication systems have gained increasing popularity,
which is demonstrated by the abundant literature that has been pub-
lished on this topic recently.

However, most results on space–time coding have been proposed
based on two ideal channel conditions: either spatially independent
quasi-static or rapid fading [1]–[16]. These codes may suffer perfor-
mance degradation if there is spatial or temporal correlation existing
in wireless channel. In addition, different mobile stations or a mobile
moving through different geographical locations may experience dif-
ferent channel correlations. This motivates the development of robust
coding and modulation methods that can guarantee good performance
over various channel conditions.

For the quasi-static channel model, the authors of [17] investigated
the achievable diversity order as a function of spatial correlation, taking
into account some physical propagation parameters. The problem of
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code design for correlated fading channels was addressed in [18], [19],
and general performance criteria were derived for space–time-corre-
lated Rayleigh-fading channels. In [20], it was assumed that the channel
stays constant for a number of channel symbol periods equal to the
number of transmit antennas. The performance criteria were obtained
for this channel model, and hand-crafted trellis codes were proposed
combining multiple trellis coded modulation with Alamouti’s scheme
[4]. The general performance criteria of [18], [19] were further simpli-
fied in [21], assuming that the space–time correlation matrix is of full
rank. In this case, the design criteria were simplified to those for rapid
fading channels.
In [22], characterizing the performance of space–time codes over

space–time-correlated Rayleigh-fading channels was also considered.
The minimum diversity order achieved over all space–time correlation
matrices of a given rank was defined as the measure of robustness.
The relationship between the robustness (diversity) and the rank of the
space–time correlation matrix was also established, and space–time
codes designed for the independent fading channel model were
proposed for communication over space–time-correlated fading
channels.
In this correspondence, we analyze the performance of space–time

modulation in time-correlated fading environment. We assume that the
wireless channel exhibits temporal correlation, but there is no spatial
correlation between the transmit and the receive antennas. This as-
sumption is true if the transmit and receive antennas are placed far
enough from each other. However, temporal correlation may be caused
by the movement of the mobile terminal, or imperfect time interleaving
due to the constraint of allowable decoding delay [23], [24]. Thus, it is
of interest to design robust space–time signals that can provide good
performance over all time-correlated fading conditions.
First, we derive the performance criteria for the time-correlated

Rayleigh-fading channel model. Then, we show that the space–time
signals of square size achieving full diversity in quasi-static fading
channels can also achieve full diversity in time-correlated fading
channels, irrespectively of the time correlation matrix. We find that
in this case, the maximum achievable diversity is only a function of
the number of the transmit and receive antennas, and is not limited
by the rank of the correlation matrix, in contrast to the results of
[22] obtained for spatially nonwhite channels. As a consequence,
various classes of space–time signals designed for quasi-static fading
channels, for example, cyclic codes [10], codes from orthogonal
designs [4]–[7], parametric codes [13], Cayley codes [12], and so
on, can be used for full-diversity transmission over time-correlated
fading channels, providing robust performance over a wide range of
channel conditions. We also show that if the time correlation matrix
is of full rank, the design criteria for time-correlated fading channels
are the same as those for rapid fading channels, in agreement with
the results of [21].
The correspondence is organized as follows. Section II will introduce

the channel model and briefly summarize the relevant results from pre-
vious work. The design criteria for the time-correlated fading channel
model will be derived in Section III. Section IV will provide some sim-
ulation results under various temporal fading conditions. The conclu-
sion will be given in Section V.

II. CHANNEL MODEL AND BACKGROUND

We consider a wireless communication system withM transmit an-
tennas and N receive antennas. The space–time modulator divides the
input bit stream into b bit long blocks, and for each block, it selects
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one space–time signal from the signal set of size L = 2b. The selected
signal is then transmitted through the channel over theM transmit an-
tennas and T time slots. Each space–time signal can be expressed as a
T �M matrix

C =

c11 c21 . . . cM1

c12 c22 . . . cM2
...

...
. . .

...
c1T c2T . . . cMT T�M

(1)

where cit denotes the channel symbol transmitted by transmit antenna
i, i = 1; 2; . . . ;M , at discrete time t, t = 1; 2; . . . ; T . The space–time
signals are assumed to satisfy the energy constraint

EkCk2F = MT (2)

where kCkF is the Frobenius norm 1 of C , and E stands for expecta-
tion.

The received signal yjt at receive antenna j at time t is given by

y
j
t =

�

M

M

i=1

c
i
thi;j(t) + z

j
t ; t = 1; 2; . . . ; T (3)

where zjt is the complex additive white Gaussian noise (AWGN) at re-
ceive antenna j at time t with zero mean and unit variance, and hi;j(t)
is the channel coefficient from transmit antenna i to receive antenna j
at time t. If the system has an interleaver, the hi;j(t)’s are the equiv-
alent channel coefficients after interleaving. The channel coefficients
are modeled as zero-mean complex Gaussian random variables with
unit variance. These coefficients are assumed to be known at the re-
ceiver, but unknown at the transmitter. Moreover, we assume that the
channel fading has only temporal correlation, i.e., the channel coeffi-
cients hi;j(t) are independent for different indexes (i; j) and depen-
dent only in the temporal domain. The factor � in (3) is the average
signal-to-noise ratio (SNR) per space–time signal at each receive an-
tenna, and it is independent of the number of transmit antennas.

The received signal (3) can be rewritten in vector form as [18], [19]

YYY =
�

M
DDDHHH +ZZZ (4)

whereDDD is an NT �MNT matrix constructed from the space–time
signal matrix C as shown in (5) at the bottom of the page, in which

Di = diag c
i
1; c

i
2; . . . ; c

i
T ; i = 1; 2; . . . ;M: (6)

1The Frobenius norm of C is defined as

kCk2F = tr(CHC) = tr(CCH) =

T

t=1

M

i=1

jcitj2:

Each Di in (6) is related to the ith column of the space–time signal
matrix C . The channel vectorHHH of sizeMNT � 1 is formatted as (7)
at the bottom of the page, where

hhhi;j = [ hi;j(1) hi;j(2) . . . hi;j(T ) ]
T
:

The received signal vector YYY of size NT � 1 is given by

YYY = [ y11 . . . y1T y21 . . . y2T . . . yN1 . . . yNT ]T (8)

and the noise vector ZZZ has the form

ZZZ = [ z11 . . . z1T z21 . . . z2T . . . zN1 . . . zNT ]T : (9)

Suppose thatDDD and ~D~D~D are two different matrices related to two dif-
ferent space–time signals C and ~C , respectively. Then, the pairwise
error probability betweenDDD and ~D~D~D can be upper-bounded as [18], [19]

P (DDD! ~D~D~D) � 2K � 1

K

K

i=1


i

�1

�

M

�K

(10)

whereK is the rank of (DDD� ~D~D~D)RRR(DDD� ~D~D~D)H, 
1; 
2; . . . ; 
K are the
nonzero eigenvalues of (DDD� ~D~D~D)RRR(DDD� ~D~D~D)H, andRRR = EfHHHHHH

Hg is
the correlation matrix ofHHH . The superscriptH stands for the complex
conjugate and transpose of a matrix.
Based on the upper bound on the pairwise error probability (10), a

general code design criterion has been proposed in [18], [19]: the min-
imum rank of (DDD� ~D~D~D)RRR(DDD� ~D~D~D)H should be as large as possible, and
the minimum value of the product K

i=1

i should also be maximized.

This criterion is consistent with the well-known criteria [1], [2] for two
ideal cases: the quasi-static and the rapid-fading channel models which
can be summarized as follows.

• For quasi-static fading channels: The minimum rank of

� (C � ~C)(C � ~C)H (11)

over all pairs of distinct signals C and ~C should be as large as
possible. If� is of full rank for any pair of distinct signalsC and
~C , then the diversity product [10], [11] is given by

�static =
1

2
p
M

min
C 6=~C

jdet(�)j (12)

which is related to the coding advantage and should also be max-
imized.

• For rapid-fading channels: The minimum number of nonzero
rows of C � ~C should be as large as possible for any pair of
distinct signals C and ~C . If for any pair of distinct signals C and
~C , there is no zero row in C � ~C , then the diversity product,
given by

�rapid =
1

2
p
M

minC 6=~C

T

t=1

kccct � ~c~c~ctk2F (13)

should be maximized. In (13), ccct and ~c~c~ct are the t-th rows of C
and ~C, respectively.

DDD =

D1 D2 . . . DM 0 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0 D1 D2 . . . DM . . . 0 0 . . . 0
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0 . . . D1 D2 . . . DM NT�MNT

(5)

HHH = [hhhT1;1 . . . hhhTM;1 hhhT1;2 . . . hhhTM;2 . . . hhhT1;N . . . hhhTM;N ]T (7)
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III. DESIGN CRITERIA FOR TIME-CORRELATED FADING CHANNELS

In this section, we derive the design criteria and investigate the
achievable performance limits of space–time coded communication
systems assuming only time-domain correlation. In this case, the
channel correlation matrixRRR of sizeMNT �MNT becomes

RRR = EfHHHHHHHg

= diag R1;1; . . . ; RM;1; R1;2; . . . ; RM;2;

. . . . . . ; R1;N ; . . . ; RM;N

where

Ri;j = E hhhi;jhhh
H

i;j

is the time correlation matrix of the channel coefficients from transmit
antenna i to receive antenna j. Assuming that all of the time correlation
matrices Ri;j are the same, which is true for the Jakes fading model
[26], the correlation matrix can be expressed as

RRR = IMN 
R (14)

where
 denotes the tensor product, IMN is the identity matrix of size
MN �MN , and R is the time-correlation matrix, defined as

R Ri;j =

r1;1 . . . r1;T

. . . . . . . . .

rT;1 . . . rT;T T�T

:

Using (5), (6), and (14), we obtain (15) at the bottom of the page, where
� denotes the Hadamard product,2 and � is defined in (11). Substi-
tuting (15) into (10), the pairwise error probability between C and ~C
can be upper-bounded as

P (C ! ~C) �
2rN � 1

rN

r

i=1

�i

�N

�

M

�rN

(16)

where r is the rank of��R, and �1; �2; . . . ; �r are the nonzero eigen-
values of��R. As a consequence, we can formulate the design criteria
for time-correlated fading channels as follows.

a) Design for diversity advantage: The minimum rank of � � R
over all pairs of distinct signals C and ~C should be as large as
possible.

2Suppose that A = fa g and B = fb g are two matrices of sizem� n.
The Hadamard product of A and B is defined as

A �B =

a1;1b1;1 . . . a1;nb1;n

. . . . . . . . .

am;1bm;1 . . . am;nbm;n

:

b) Design for coding advantage: The minimum value of the product
r

i=1
�i over all pairs of distinct signals C and ~C should be

maximized.

In the sequel, we will discuss the ultimate limits on the maximum
achievable diversity imposed by the time-correlated channel model.
First, we will provide the general performance limits, and then we
will describe some results obtained for two special cases: square
space–time signals with an arbitrary time correlation matrix, and
nonsquare space–time signals with a full rank time correlation matrix.
If the minimum rank of� �R is � for any pair of distinct signals C

and ~C , we say that the set of space–time signals achieves a diversity of
�N . For fixed time durationT , the number of transmit antennasM , and
time correlation matrix R, the maximum achievable diversity or full
diversity is defined as the maximum diversity level that can be achieved
by space–time signals of size T � M . For example, for quasi-static
fading channels

R =

1 1 . . . 1

1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

T�T

:

In this case, the maximum achievable diversity is min(M;T )N . For
rapid-fading channels, R = IT , so the maximum achievable diversity
is TN .
Assume that the time correlation matrix R is of rank �(1 � � �

T ). Since the matrix � � R is of size T � T , its rank is at most T .
Furthermore, according to a rank inequality onHadamard products ([27
p. 307]), the rank of matrix � �R can be upper-bounded as

rank(� �R) � rank(�)rank(R):

The rank of � cannot be greater than min(M;T ). Therefore, for
space–time signals of size T �M operating in time-correlated fading
environment, the maximum achievable diversity is upper-bounded by
min(M�; T )N , where � is the rank of the time-correlation matrix R.
For space–time signals of square size, i.e., T = M , the maximum

achievable diversity cannot be greater than MN . Now we will show
that this upper bound can be achieved for any time-correlated fading
channel. Note that both � and R are nonnegative definite, and all of
the diagonal entries ofR are nonzero. Therefore, we can apply Schur’s
theorem on Hadamard products ([27, p. 309]): if� is positive definite
(i.e., of full rank), then��R is also positive definite (i.e., of full rank).
As a consequence, we arrive at the following theorem.

Theorem 1: If a set of space–time signals of sizeM �M achieves
full diversity (MN) for quasi-static fading channels, then it also
achieves full diversity (MN) for any time-correlated fading channel,
independently of the time correlation matrix R.

(DDD � ~D~D~D)RRR(DDD � ~D~D~D)H = IN 


M

i=1

(Di � ~Di)R(Di � ~Di)
H

= IN 


M

i=1

jci1 � ~ci1j
2r1;1

M

i=1

(ci1 � ~ci1)(c
i
2 � ~ci2)

�r1;2 . . .
M

i=1

(ci1 � ~ci1)(c
i
T � ~ciT )

�r1;T

M

i=1

(ci2 � ~ci2)(c
i
1 � ~ci1)

�r2;1
M

i=1

jci2 � ~ci2j
2r2;2 . . .

M

i=1

(ci2 � ~ci2)(c
i
T � ~ciT )

�r2;T

...
...

. . .
...

M

i=1

(ciT � ~ciT )(c
i
1 � ~ci1)

�rT;1
M

i=1

(ciT � ~ciT )(c
i
2 � ~ci2)

�rT;2 . . .
M

i=1

jciT � ~ciT j
2rT;T

= IN 
 (C � ~C)(C � ~C)H �R

= IN 
 f� �Rg (15)
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The result in Theorem 1 is very interesting. It is well known that
if a set of space–time signals of square size achieves full diversity for
quasi-static fading channels, then it also achieves full diversity for rapid
fading channels [3]. However, it is not obvious that it can also achieve
full diversity for any time-correlated fading channels. It follows from
Theorem 1 that all of the space–time signals of square size designed for
quasi-static fading channels can also be used to achieve full diversity
in any time-correlated fading environment.

Theorem 1 does not hold for nonsquare signals (i.e., T 6= M ). How-
ever, if the time correlation matrix is of full rank, we can establish an-
other result. We observe that the diagonal entries of� are kccct� ~c~c~ctk2F ,
t = 1; 2; . . . ; T , where ccct and ~c~c~ct are the tth rows of C and ~C , respec-
tively. Thus, we can apply Schur’s theorem again: if all of kccct�~c~c~ctk2F ’s
are nonzero for any pair of distinct signals C and ~C , then � �R is of
full rank whenever the time correlation matrix R is of full rank. This
implies that the maximum achievable diversity is TN for any full-rank
time correlation matrix R. This result is summarized in the following
theorem.

Theorem 2: If a set of space–time signals of size T �M achieves
full diversity (TN) for rapid fading channels, then it also achieves full
diversity (TN) for any time-correlated fading channel, provided that
the time correlation matrix R is of full rank.

From Theorem 1, we observe that the space–time signals of square
size achieving full diversity in quasi-static fading channels can also
achieve full diversity in time-correlated fading channels, irrespective
of the time correlation matrix. Thus, an efficient way to design ro-
bust space–time signals for time-correlated fading channels is to con-
sider the construction of space–time signals of square size. In this case,
the problem of designing robust space–time signals for time-correlated
fading channels is reduced to that of designing space–time signals for
quasi-static fading channels. It follows that the abundant classes of
space–time signals of square size designed for quasi-static fading chan-
nels, for example, cyclic codes [10], codes from orthogonal designs
[4]–[7], parametric codes [13], Cayley codes [12], and so on, may also
be used for time-correlated fading channels.

From Theorem 2, we can also see that for channels exhibiting low
temporal correlation, i.e., the time correlation matrix R is of full rank,
the problem of designing space–time signals is equivalent to that of
designing space–time signals for rapid fading channels. In this case,
one may consider the construction of space–time signals of nonsquare
size to achieve higher diversity order.

IV. SIMULATION RESULTS

To illustrate the above analytical results, we performed some com-
puter simulations. We considered downlink transmission from a base
station with multiple transmit antennas to a mobile station. Assuming
that the mobile station is moving at 55mi/h, the carrier frequency is 900
MHz, and the bandwidth is 30 kHz, the normalized Doppler frequency
is approximately fD = 0:0025. The fading channels were modeled by
the Jakes fading model [26], in which the temporal correlation is deter-
mined by the normalized Doppler frequency fD .

The above channel model results in a very slowly time-varying
channel. For space–time signals of small size, the channel will be ap-
proximately constant, so we used this channel model when simulating
the quasi-static scenario. The time-correlated case was simulated
by assuming that the temporal correlation was caused by imperfect
interleaving. We used the slowly time-varying channel model with the
Takeshita–Constello interleaver [25] given by

�(i) = mod
i(i+ 1)

2
; I ; i = 0; 1; 2; . . . ; I � 1 (17)

and the length of interleaving, I , was set to 128. In this case, we also
calculated the entries of 2 � 2 and 4 � 4 temporal correlation matrices
numerically. Averaging over 100 000 realizations of the fading channel
with fD = 0:0025 and using the Takeshita–Constello interleaver, the
magnitudes of the entries of the 2 � 2 correlation matrix were obtained
as

0:9967 0:8384

0:8384 0:9967
(18)

and the magnitudes of the values in the 4 � 4 correlation matrix were
obtained as

0:9967 0:8384 0:8437 0:8310

0:8384 0:9967 0:8384 0:8437

0:8437 0:8384 0:9967 0:8384

0:8310 0:8437 0:8384 0:9967

: (19)

The fast fading channel model was simulated by generating indepen-
dent channel coefficients for each discrete-time instant. We compared
the performance of each space–time modulation scheme over quasi-
static channels, shown as solid lines with stars (“�”), time-correlated
channels, shown as dotted lines with dots (“�”), and rapid fading chan-
nels, shown as dashed lines with circles (“�”).
In case of two transmit antennas, the following space–time signals

with L = 4 elements are optimal from the viewpoint of maximizing
diversity product in quasi-static fading channels [12], [13]

V0 =
2

3

jjj 1� jjj

�1� jjj �jjj ; V1 =
2

3

�jjj �1� jjj

1� jjj jjj

V2 =
2

3

�jjj 1 + jjj

�1 + jjj jjj
; V3 =

2

3

jjj �1 + jjj

1 + jjj �jjj
where jjj =

p�1. The spectral efficiency of this scheme is 1 bit/s/Hz.
Fig. 1 depicts the performance of this scheme with one receive antenna
under the three channel conditions.We can see that all three curves have
the same diversity order, consistent with the results of Theorem 1. The
performance over the time-correlated channel (with the time correla-
tion matrix in (18)) is close to the performance over the quasi-static
fading channel.
Fig. 2 provides the simulation results for the Alamouti scheme [4]

with quaternary phase-shift keying (QPSK) for two transmit and one re-
ceive antennas, giving a spectral efficiency of 2 bits/s/Hz. We observe
that all the bit-error rate curves have approximately the same asymp-
totic slope under the three channel conditions. Moreover, the perfor-
mance of the code over the quasi-static channel is the best, and the per-
formance over the rapid fading channel is the worst. Fig. 3 shows the
performance of the parametric code [13] with L = 16 for two transmit
and one receive antennas. The spectral efficiency of this scheme is also
2 bits/s/Hz. We observe that the performance of this code is almost the
same for the three different channel conditions.
We also simulated a signal set designed for four transmit antennas.

We chose the full-diversity quasi-orthogonal space–time block code [9]
given by

x1 x2 x3 x4

�x�2 x�1 �x�4 x�3

x3 x4 x1 x2

�x�4 x�3 �x�2 x�1

(20)

where x1 and x2 were chosen from QPSK constellation A =
f�1;�jjjg, and x3 and x4 were chosen from the rotated QPSK
constellation ejjj A=f�ejjj ;�ejjj g. The spectral efficiency of this
scheme is 2 bits/s/Hz. Fig. 4 depicts the performance of this design
with one receive antenna. The figure shows that all the bit-error rate
curves have approximately the same asymptotic slope under the three
channel conditions.
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Fig. 1. Bit-error rate performance of the optimal space–time signals with L = 4 elements.

Fig. 2. Bit-error rate performance of the Alamouti scheme with QPSK.
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Fig. 3. Bit-error rate performance of the parametric code with L = 16.

Fig. 4. Bit-error rate performance of the full-diversity quasi-orthogonal design with QPSK.
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Fig. 5. Bit-error rate performance of the repetition of the Alamouti scheme with QPSK.

The simulations in Figs. 1–4 confirm the theoretical results of The-
orem 1. The additional observation is that in Figs. 1–4, the perfor-
mance of the simulated schemes over quasi-static fading channels is
better than that over rapid-fading channels. It seems that for these mod-
ulation schemes, the worst channel is the rapid-fading channel, not
the quasi-static fading channel, in contrast to the observations from
space–time trellis codes [2], [20], [21].

From Theorem 2, we also know that in case of rapid-fading chan-
nels (low temporal correlation), one may consider the construction of
nonsquare space–time signals to achieve higher diversity order. For ex-
ample, we constructed a design for two transmit antennas by repeating
the Alamouti scheme two times as follows:

x1 �x
�

2 x1 �x
�

2

x2 x
�

1 x2 x
�

1

T

(21)

where x1 and x2 are chosen from QPSK constellation. The spectral
efficiency of this scheme is 1 bit/s/Hz. Fig. 5 depicts the performance
of this design with one receive antenna. We can see that the bit-error
rate curve of this design over the time-correlated fading channel (with
the time correlation matrix in (19)) has a better diversity order than
that over the quasi-static fading channel. We observe a 2-dB gain at a
bit-error rate of 10�4. Compared to the bit-error rate curve over the
rapid-fading channel, there is an additional 2-dB gain that can be fur-
ther obtained if we increase the interleaving size.

V. CONCLUSION

In this correspondence, we provided a new approach to the per-
formance analysis of space–time modulation for time-correlated
Rayleigh-fading channels. We showed that the space–time signals of
square size achieving full diversity in quasi-static fading environment

can also achieve full diversity in any time-correlated fading environ-
ment, independently of the time correlation matrix. This result implies
that various classes of space–time signals of square size designed
for quasi-static fading channels may also be used for time-correlated
fading channels. The simulations confirmed our theoretical results. In
addition, we observed that in case of transmitting space–time signals
of square size over spatially independent channels, the quasi-static
fading channel model seems to be the best scenario, so the use of
interleavers does not seem beneficial in this case.
We also showed that if the time correlation matrix is of full rank, the

design criterion for time-correlated fading channels is the same as that
for rapid-fading channels. In this case, one may consider the construc-
tion of space–time signals of nonsquare size to achieve higher diver-
sity order. The simulation results showed that the performance of the
nonsquare design over the rapid fading channel had a better diversity
order than that over the quasi-static fading situation. The interleaved
nonsquare design also outperformed the noninterleaved (quasi-static)
scenario, suggesting that the use of interleavers can improve the per-
formance of nonsquare space–time signals.
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New Family of -ary Sequences With Optimal Correlation
Property and Large Linear Span

Ji-Woong Jang, Young-Sik Kim, Jong-Seon No, Member, IEEE, and
Tor Helleseth, Fellow, IEEE

Abstract—For an odd prime and integers and such that =
(2 + 1) , a new family of -ary sequences of period 1 with op-
timal correlation property is constructed using the -ary Helleseth–Gong
sequences with ideal autocorrelation, where the size of the sequence family
is . That is, the maximum nontrivial correlation value of all pairs
of distinct sequences in the family does not exceed + 1, which means
the family has optimal correlation in terms of Welch’s lower bound. The
symbol distribution of the sequences in the family is enumerated. It is also
shown that the linear span of the sequences in the family is ( + 2)
except for the -sequence in the family.

Index Terms—Family of sequences, optimal correlation, -ary se-
quences.

I. INTRODUCTION

In the wireless communication systems employing code-division
multiple-access (CDMA) scheme, a signature sequence is assigned
to each user, which makes it possible to distinguish his signal from
those of the other users. In design of sequences for CDMA system, the
most important properties of the sequences are low periodic correlation
between all pairs of distinct sequences and large family size. For an odd
prime p, families of p-ary sequences of period pn � 1with optimal cor-
relation property have been found, where the optimality of correlation
valuesmeans thatmaximummagnitude of out-of-phase autocorrelation
and cross-correlation values of any pairs of sequences of period pn � 1
in the family is upper-bounded by Rmax = p + 1. Sidelnikov
constructed a family of p-ary sequences with optimal correlation prop-
erty and a family of prime-phase sequences with optimal correlation
property was introduced by Kumar and Moreno [3]. By extending the
alphabet size, Liu and Komo [7] constructed p-ary Kasami sequences.
The family of p-ary bent sequences also has the optimal correlation
property. Using the p-ary bent functions given by Kumar and Moreno,
a family of balanced p-ary sequences with optimal correlation property
was constructed by Moriuchi and Imamura [9]. The known families of
p-ary sequences of period pn � 1with optimal correlation property are
listed in Table I. The family size of the sequences due to Sidelnikov and
to Kumar and Moreno are larger than that of the others in Table I. But
the linear span of the sequences due to Sidelnikov and to Kumar and
Moreno are much smaller than those of the others.
In this correspondence, for an odd prime p and integers n;m; and k

such that n = (2m+ 1)k, a new family of p-ary sequences of period
pn�1 with optimal correlation property is constructed using the p-ary
Helleseth–Gong sequences with ideal autocorrelation, where the size
of the sequence family is pn. That is, the maximum nontrivial corre-
lation value Rmax of all pairs of distinct sequences in the family does
not exceed p + 1, which means the family has optimal correlation
with respect to Welch’s lower bound. The symbol distribution of the
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