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Orthogonal-Like Space–Time-Coded CPM Systems
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Abstract—The Alamouti orthogonal space–time block code for
two transmit antennas was designed primarily for QAM and
PSK modulations, and we have previously generalized it for the
continuous phase modulation (CPM), denoted as OST-CPM, by
maintaining the orthogonality (for the fast ML decoding/demodu-
lation) and the phase continuity of two signals from two transmit
antennas. In this paper, we design orthogonal-like space–time
coded CPM systems for three and four transmit antennas based
on orthogonal and quasi-orthogonal space–time codes. Although
the signals from transmit antennas in the proposed orthog-
onal-like space–time coded CPM systems are not orthogonal, the
fast decoding/demodulation is maintained like the two transmit
antenna case. Simulation results show that the performance of
the proposed orthogonal-like space–time coded CPM systems for
four transmit antennas is much better than that of the OST-CPM
systems for two transmit antennas.

Index Terms—Continuous phase modulation (CPM), orthogonal
space–time block codes, quasi-orthogonal space–time block codes,
space–time coding.

I. INTRODUCTION

C ONTINUOUS phase modulation (CPM) systems with
single transmit antenna have been widely used in wire-

less systems due to its spectral efficiency and resistance to
wireless channel fading [1]. In recent years, space–time coding
for multiple transmit antennas has attracted much attention
due to its capability of combating severe channel fading and
increasing system capacity in wireless communications, see,
for example, [2]–[29], and the references therein. A natural and
interesting idea is to consider space–time coded CPM systems
to take advantages of both spectral efficiency and system
performance improvement. In [14], Zhang and Fitz proposed
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trellis space–time coding for CPM systems. A similar scheme
was also proposed in [15]. Due to the computational complexity
issue, in this paper, we consider block space–time coded CPM
systems that have fast decoding/demodulation algorithms.

Based on the Alamouti’s scheme [5], we have previously pro-
posed a CPM system with orthogonal space–time (OST) coding
for two transmit antennas [18], [28], [29] where the orthog-
onality and the continuity of the two signal phases from two
transmit antennas at any time are maintained. The orthogo-
nality provides us a fast maximum-likelihood (ML) decoding
which is similar to the Alamouti’s scheme with QAM modula-
tions. The difficulty of the design comes from the maintaining
of both the phase continuity and the orthogonality of the signals
from two transmit antennas.

As it is already a challenge task to design high rate orthogonal
space–time codes for more than two transmit antennas for QAM
modulations [6], [10]–[13], it is even more challenging to keep
the continuity of the signal phases if we apply the codes for CPM
systems. Although there exist orthogonal space–time codes of
rate 3/4 for three and four transmit antennas, unfortunately, they
cannot be directly used in the OST-CPM systems. For example,
for four transmit antennas, the following well-known orthogonal
space–time code [7]–[10]

(1)

does not suit for CPM systems, since there are some zero values
in the code matrix which affects the continuity of the signal
phases in each antenna transmissions. Notice that for 4 transmit
antennas, there are other orthogonal space–time codes with
linear processing of symbols, for example in [6], but it is also
hard to use them in the OST-CPM systems because it is hard
to guarantee the phase continuity of the transmission signals if
each signal is a linear combination of several symbols.

In this paper, for 4 transmit antennas, we modify the orthog-
onal space–time code (1) to have the following format

(2)

where and are some real constants which will be
specified later. Clearly, it has the same full diversity as the code
in (1) with symbols , and . Notice that, the modified
code (2) does not satisfy the orthogonality condition as the code
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(1), but its behavior in ML decoding is similar to that of the
code (1) and the fast ML decoding is maintained as we shall see
in Section III-B. In this paper, we design a CPM system based
on the modified code in (2), which guarantees a fast decoding
algorithm. Specifically, if we let be the signal transmitted
at the th antenna, they are designed such that their phases are
continuous and the signal matrix in (3) at the bottom of this
page follows the form of the code in (2) for any and
any integer . Similar to the OST-CPM for two transmit antennas
in [18], [28], and [29], the main difficulty is to maintain the
phase continuity for the signals at each transmit antenna
while preserving certain orthogonality for fast ML decoding.

One of the most important advantages of orthogonal
space–time block codes (from orthogonal designs) is that they
have the fast ML decoding and all information symbols can be
decoded individually. However, the shortcoming of complex
orthogonal space–time codes is its rate limitation. In [20], it
was shown that the rates are upper bounded by 3/4 for three or
more transmit antennas with or without linear processing in the
code design, and this bound was first shown in [10] for codes
without linear processing. In other words, the rate of the code
in (1) is already optimal no mater how large a block size or time
delay is. To increase the code rate, quasi-orthogonal space–time
codes have been proposed by Jafarkhani [16], and Tirkkonen,
Boariu and Hottinen [17] by relaxing the orthogonality. They
constructed quasi-orthogonal space–time block codes for four
transmit antennas with rate 1 from quasi-orthogonal designs.
With the relaxed orthogonality, the ML decoding of 4 infor-
mation symbols becomes the decoding of two independent
information symbol pairs. The decoding complexity is higher
than that of the orthogonal spca-time block code for four
transmit antennas.

The quasi-orthogonal space–time codes for 4 transmit an-
tennas and 4 information symbols proposed by Jafarkhani, and
Tirkkonen, Boariu and Hottinen have rank 2, i.e., they do not
have full diversity. In [21], rate-1 quasi-orthogonal space–time
codes with full diversity were designed and optimized for any
QAM constellation and constellations on square lattice or equi-
lateral triangular lattice.

In this paper, we also design CPM systems based on the quasi-
orthogonal space–time coding for three and four transmit an-
tennas. The resulting CPM systems have better performance
than the CPM system using the modified orthogonal space–time
code of rate 3/4 in (2). The CPM systems with quasi-orthog-
onal space–time coding still have a fast decoding algorithm, but
the decoding complexity is higher than that of the CPM system
based on the code in (2) and the difference is similar to that
between the orthogonal and the quasi-orthogonal space–time
codes as mentioned above.

Fig. 1. Space-Time CPM Diagram.

In the following, we discuss the design of space–time coded
CPM systems primarily for four transmit antennas and the
design for three transmit antennas can be obtained by simply
deleting one of the four columns in each code. The paper is
organized as follows. In Section II, we describe the system
model with a general block space–time coding. In Section III,
we design a full response CPM system with the modified or-
thogonal space–time code for four transmit antennas, and also
present a fast decoding algorithm. In Section IV, we design a
quasi-orthogonal space–time coded CPM system and present
a fast decoding algorithm accordingly. We present simulation
and comparison results in Section V, and finally, conclude in
Section VI.

Notations: We denote and as phase smoothing re-
sponse functions in the CPM systems; denote as the mod-
ulation index of the CPM system; and as the symbol time
duration.

II. SYSTEM MODEL

In this paper, we consider a CPM communication system
with four transmit antennas and one receive antenna as
shown in Fig. 1. It can be straightforwardly extended to
a system with more than one receive antennas. We adopt
some notations from [14]. For an information sequence

, each information
block of length is mapped to an information
symbol matrix such as

(4)

(3)
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where all entries are modulation symbols coming from
a signal constellation, for example from the following pulse-am-
plitude-modulated (PAM) signal constellation with a constella-
tion size :

(5)

During the th time period with symbol time
duration , the information symbol matrix is used to gen-
erate the following signal matrix (6) at the bottom of the page.
The th row of the signal matrix is transmitted by the th
transmit antenna. In time period ,
all signals in the th column of the matrix are transmitted si-
multaneously, and we denote this time period as the th
time slot for .

For any , the received signal at time slot
can be written as [1], [14]:

(7)

where is the additive noise, is the channel gain from
the th transmit antenna to the receive antenna, and is
the transmitted signal from the th transmit antenna at time slot

which is given by

(8)

The phase term in (8) contains the modulation symbols
and is specified as follows:

(9)

where for any , and
is the modulation index of the CPM system. For simplicity,

the phase smoothing response functions and in (9) are
selected as the follows

(10)

In (9), for any is generated by the
following matrix

(11)

which depends on the information symbol matrix and will be
specified later. The choice of matrix plays a critical role and
it is used to ensure that the rows of the transmitted signal matrix

in (6) have some orthogonality, and therefore a fast decoding
algorithm can be developed. Notice that, the transmitted signal
here can be viewed as a nontrivial extension1 of that in [18],
[28], [29] from two transmit antennas to four transmit antennas.

If the modulation index is chosen as for
two relatively prime integers and , then the phase
at time period can be expressed as [1]:

(12)

where is the modulation memory size and

(13)

belongs (after modulo 1) to the set defined as:

(14)

When , the system is called a full response CPM system.
When , the system is called a partial response CPM
system. In this paper, we focus on the full response CPM sys-
tems. The discuss of a partial response STC-CPM design is sim-
ilar but much more complicated, see for example [19] for two
transmit antennas.

In a full response CPM system, the phase at time
period is given by

(15)

Thus, has a trellis structure with states in the
set , and for the above space–time coded CPM system,

has a trellis structure
with states in the product set . One can see
that, in general, the number of states increases exponentially
with the number of transmit antennas which is 4 in this case.
The current symbol tuple drives a state
transfer and generates a branch from current state to next state.

1Note that the orthogonal space–time code (2) for 4 transmit antennas is not
a trivial extension of the one for two transmit antennas.

(6)
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The ML demodulation of the information sequence over
time period is [1], [14]

(16)

When a Viterbi algorithm is considered to solve the above ML
demodulation, each state in the trellis structure has
coming branches and leaving branches, where is
the number of independent symbols in the symbol tuple

. The decoding complexity is thus pro-
hibitive if there is no fast searching algorithm for the trellis
branches in the ML decoding. In the following sections, we pro-
pose two different designs for the information symbol matrix
for two space–time coded CPM schemes, respectively. In our
designs, the branches at each state can be decomposed into sev-
eral independent sets, and thus the branch searching (therefore
the ML demodulation complexity) can be greatly reduced as we
shall see in more details in next sections.

III. FULL RESPONSE CPM SYSTEM WITH MODIFIED

ORTHOGONAL SPACE–TIME CODING

In this section, we design a CPM system based on the modi-
fied orthogonal space–time code (2) for four transmit antennas
and propose a fast decoding/demodulation algorithm.

A. Design CPM Signals

A binary information sequence is
mapped to a symbol sequence , where

and symbols are chosen from the signal
constellation specified in (5). The information symbol matrix

in (4) is constructed as follows:

(17)

In this case, the information symbol tuple
and

, are three independent symbols from the
constellation .

To generate the CPM signal waveforms in (8), we
also need the matrix in (11), which is related to the informa-
tion symbol matrix and is specified as follows: [see (18) at
the bottom of the page], where

(19)

where is the modulo operation of with base and
is the modulation index of the CPM system. The

reason of taking modulo 2 rather modulo 1 in the phase com-
ponent is due to the fact that the smoothing response function
is in (10) and appears in the phase
modulation in (13). We can see that the matrix depends only
on and , and all of have at most possible
values for all possible values of in , where

if is odd
if is even

(20)

since all of and are odd numbers, and and are
relatively prime integers.

We now specify the transmission signals. At the time pe-
riod between and , the following signals are sent
through the th transmit antenna

(21)

in which

(22)

and

(23)

where for any and
come from the matrices and in (17) and (18),

respectively.
One can check that the transmitted signals have continuous

phases at each transmit antenna. In the following, we want to
check that during time period , the trans-
mitted signal matrix in (6) has a special structure like (2),
and, therefore, a fast decoding algorithm can be developed as
we shall see later. In fact, the 4 4 transmitted signal matrix

(18)
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can be further specified in (24) at the bottom of this page, where
. For simplicity, let

(25)

then the above signal matrix can be written as the form in (26)
at the bottom of the page, where

(27)

and

(28)

Let

(29)

Then, according to (23), it is easy to check that

(30)

where

(31)

Notice that in (29) has the same structure as the
code in (2) and the matrices and in are diagonal and
unitary.

Fig. 2. Trellis structure of STC-CPM without fast-demodulation algorithm.

B. Fast Demodulation Algorithm

By the trellis structure of the CPM transmission signals,
the sequence detection in (16) can be implemented using the
Viterbi algorithm. The trellis structure of the STC-CPM de-
modulation is illustrated in Fig. 2. For each state of the trellis,
there are coming branches and leaving branches
since in this case. In order to search the survivor
paths, the input symbol block and the branch
metric from one state to the next state
needs to be calculated and compared, where the input symbol
block drives the state transfer from to

. Thus, we need to search all the branch metrics
at the stage as follows:

(32)

(24)

(26)
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Fig. 3. Trellis structure of STC-CPM with fast demodulation algorithm.

We can see that the complexity of the branch searching in this
case is .

In the following, we simplify the above branch searching by
taking advantage of the special trellis structure of the proposed
STC-CPM system, as illustrated in Fig. 3. The basic idea is to di-
vide the total paths into several groups and fast searching
can be implemented in each group. The idea is further elaborated
as follows.

Assume that the channel state information does not
change in each space–time block duration . Let

, and
, then the branch metric (32) can be

rewritten as

(33)

where is the Frobenius norm2 of matrix . Notice that

(34)

where stands for the complex conjugate and transpose of
a matrix. From (30), we know that ,
where and depend only on and as we can
see from (27)(29)–(30). We observe that for any fixed
and is a linear combination of
the first order of or their conjugates , and

2The Frobenius norm of � is given by

�� � � ���� � � � ���� � � � �� � �

is a linear combination of the second order of
them. Furthermore, there are no terms of and
with in (see Appendix for the proof). Thus,
the branch metric in (33) can be written as the following sum of
three functions that depend only on each of the three variables

and , respectively,

(35)

From (25), we know that
, are independent each other if the information

symbols and are independent each other.
Therefore, for any fixed , the three functions

are independent each other.
Recall that all of , have only possible

values, where is specified in (20). More precisely, since
, every belongs to the fol-

lowing set :

(36)
Again, since , for a fixed , symbol

has to be in the following set :

(37)

where is specified in (5). The number of elements in
is at most . Thus, the branch metric minimization in
(33) can be simplified as

(38)

The first equation is due to the definition of
, and the definition of in

(3.19). The last equation hold because
depends only on depends only on

, and depends only on .
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Therefore, the branch searching in (32), or equivalently in
(33), can be simplified as

(39)

We can see that the complexity of the above searching algorithm
is at most , while the complexity
of the original branch searching in (32) is . We note that,

depends only on the CPM modulation index , not on the
signal constellation size , and is usually much smaller
than . Therefore, the complexity of the new search algorithm
is, in general, much less than that of the original algorithm. For
example, when is considered in a CPM system, .
In this case, the complexity of the new branch searching is at
most while the original one is .

IV. FULL RESPONSE CPM SYSTEM WITH QUASI-ORTHOGONAL

SPACE–TIME CODING

Since the rate of the space–time block codes from orthogonal
designs cannot be greater than 3/4 for more than two transmit
antennas [10], [20], the following quasi-orthogonal space–time
codes were proposed by relaxing the orthogonality constraint
[16], [17]

(40)

with rate 1 for four transmit antennas. The code (40) also has
a fast decoding, but does not have full diversity and the diver-
sity is only 2 if all 4 information symbols , are
independently from the same constellation. Later, a quasi-or-
thogonal space–time code with full diversity based on (40) was
proposed in [21], where the basic idea is that the information
symbols and are chosen independently from a signal con-
stellation while the information symbols and are chosen
independently from a rotated version of the constellation . The
optimal rotation angles, in the sense of achieving the maximal
diversity product or coding gain, of QAM and equilateral trian-
gular constellations were also obtained in [21]. Similar to the

idea used in [21], by using the quasi-orthogonal design (40) we
try to design a quasi-orthogonal space–time coded CPM system
with full diversity for 4 transmit antennas.

A. Design CPM Signals

A binary information sequence is
mapped to a symbol sequence ,
where and are chosen from the following signal con-
stellation

(41)

while and are chosen from another signal constellation
as follows:

(42)

and , where and may be
the same. From (41) and (42), one can see that, if ,
then, the constellation is a shift of in the phase domain, i.e.,

, which is corresponding to a rotation in the signal do-
main. This part is different from that for the modified orthogonal
space–time block coding proposed in Section III, where all in-
formation symbols are taken from the same constellation .
The reason of choosing the above two different constellations
and is that we want to produce a quasi-orthogonal block code
for the transmitted signal matrix such that symbols and
are chosen from a constellation while symbols and are
chosen from a rotated version of the constellation for the pur-
pose of achieving the full diversity [21]. With the information
symbols , the matrix in (4) can be constructed as
follows:

(43)

Similar to Section III, to generate the CPM signal waveforms
in (8), we also need matrix in (11), which is related

to the symbol matrix and can be specified as in (44) at the
bottom of the page, where

(45)

where is the modulation index. Similar to (18)–(19),
matrix depends only on and , and all of
have at most possible values, where

if is odd
if is even

(46)

(44)
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For simplicity, let

(47)

and

(48)

then, the transmitted signal matrix at time period between
and can be written as

(49)

where

(50)

and

(51)

One can see that the space–time code in
(48) has the same form as the quasi-orthogonal design in (40).
Notice that and are chosen from while and
are chosen from , the resulting signal constellation for and

is a rotated version of the constellation for and . It is
not difficult to check that the quasi-orthogonal space–time code

in (48) achieves the full diversity [21]. If all
information symbols , are from the same con-
stellation , then it is easy to see that the space–time
code or has only rank 2 at any time , which would re-
sult in degraded performance as we will see in the simulations
in Section V. A remark here is that although the minimum rank
of for a nonzero information symbol vector and the diver-
sity order of code , i.e., the minimum rank of the difference
matrix of two distinct matrices , are both 2 at any time ,
the diversity order of may not be 2 at any time , since the
CPM is a nonlinear modulation and different from linear mod-
ulations. In other words, the diversity order of the quasi-orthog-
onal ST-CPM (nonrotated) may be higher than 2.

B. Fast Demodulation Algorithm

Similar to the fast demodulation algorithm developed
in Section III, we assume that the channel state informa-
tion is constant during a space–time coding block

. Let , and

, then
the branch metric at stage can be calculated as

(52)

We can see that the decoding complexity of the above branch
searching is . Next, we would like
to simplify the branch searching. Notice that

(53)

Because of the quasi-orthogonal structure of the signal matrix
in (49), for any fixed , the branch metric in

(52) can be written as a sum of two functions whose variables
depend on pairs and , respectively, i.e.,

(54)

For more details about the decomposition of a quasi-orthogonal
code, we refer the reader to [16], [17], [21]. From (47), we have

. Clearly, for any
fixed , the above two functions and
are independent since information symbol pairs

and are independent.
Recall that all of , have at most possible

values, where is specified in (46). More precisely, and
belong to the following set

if is odd

if is even

(55)
and and belong to the following set

(56)

which is different from the set in (55) because constella-
tion in (42) is different from constellation in (41). Since

, if and are fixed,
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then and belong to the following sets ,
respectively

(57)

where is specified in (41). The number of elements in
is at most . If and are fixed, then and
belong to the following sets , respectively

(58)

where is specified in (42). The number of elements in
is at most .

From (54), the minimization of the branch metric in (52) can
be rewritten as

(59)

Therefore, the branch searching (52) can be simplified as

(60)

The decoding complexity of the above branch searching is
, while the orig-

inal one is . Notice that, depends only on the
CPM modulation index , not on the signal constellation size

or , and is usually much smaller than and
. For example, when is considered in a CPM

system, . In this case, the complexity of the new branch

searching is at most while the original one is
always .

V. SIMULATION RESULTS

In this section, we compare the performances of the mod-
ified orthogonal ST-CPM system for four transmit antennas,
the quasi-orthogonal ST-CPM system also for four transmit
antennas, and the OST-CPM system [18], [28], [29] for two
transmit antennas. One receive antenna is used in all the
simulations. The channel coefficients are zero mean com-
plex Gaussian random variables with variance 1. We assume
the channel is quasi-static, i.e., the channel coefficients are
constant during one block transmission, and change inde-
pendently from one block to another. In all simulations,
we set the full response CPM systems with the modula-
tion index and the smoothing phase functions

if
if ; and if .

The initial phases for all 4 transmit antennas are set to 0.
The signal constellation

is used in the conventional one transmitter CPM system, the
OST-CPM system for two transmit antennas in [18], [28], and
[29] the modified orthogonal ST-CPM system for four transmit
antennas, and the quasi-orthogonal ST-CPM system without full
diversity for four transmit antennas. For the quasi-orthogonal
ST-CPM system with full diversity for four transmit antennas,
signal constellation is
used for and , and signal constellation

with is used for and
.

We plot symbol error rate verses the SNR at the receiver in
Fig. 4(a) and (b) for signal constellations with size 4 (i.e.,

) and size 8 (i.e., ), respectively. From the simulation
results, we can see that the performance of the modified orthog-
onal ST-CPM system for four transmit antennas is much better
than that of the OST-CPM system for two transmit antennas,
and it shows a higher diversity order in the performance curves.
Moreover, the quasi-orthogonal ST-CPM system further outper-
forms the modified orthogonal ST-CPM system. This may be
due to the fact that in the modified orthogonal space–time code
in (2), there is 1/4 of power being used for the noninformation
symbol transmission along the skew-diagonal of the code ma-
trix. Another reason is that the diversity order of the quasi-or-
thogonal SP-CPM (nonrotated) may not be as lower as 2 as we
explained at the end of Section IV-A. Also, one can also see that
the quasi-orthogonal ST-CPM system with full diversity out-
performs the quasi-orthogonal ST-CPM system without full di-
versity. Finally, we would like to point out that both with their
own fast decoding algorithms, the decoding complexity of the
quasi-orthogonal ST-CPM system is higher
than that of the modified orthogonal ST-CPM system .
In the simulated examples ( and ), the de-
coding complexity of the quasi-orthogonal ST-CPM system is

while the decoding complexity of the modified orthogonal
ST-CPM system is .
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Fig. 4. Performances of the conventional CPM with 1 Tx antenna (line with �), the OST-CPM with 2 Tx antennas (line with �), the modified OST-CPM with
4 Tx antennas (line with �), and the quasi-orthogonal ST-CPM with 4 Tx antennas (line with � for that without full diversity, and line with � for that with full
diversity). (a) Constellation size 4 (i.e., � � �). (b) Constellation size 8 (i.e., � � �).
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VI. CONCLUSION

In this paper, we proposed a modified orthogonal ST-CPM
system and a quasi-orthogonal ST-CPM system for three and
four transmit antennas, and derived fast ML demodulation al-
gorithms for the proposed two systems accordingly. Simulation
results showed that the performances of the proposed ST-CPM
schemes for four transmit antennas are much better than that of
the OST-CPM system for two transmit antennas. We also ob-
served that the quasi-orthogonal ST-CPM system outperforms
the modified orthogonal ST-CPM system, which is due to the
noninformation symbol transmission in the modified orthogonal
space–time code. However, both with their own fast decoding
algorithms, the decoding complexity of the quasi-orthogonal
ST-CPM system is higher than that of the modified orthogonal
ST-CPM system. The proposed two ST-CPM systems provide
a good tradeoff between decoding complexity and performance
improvement in practical system implementation.

We would like to comment that there are some other quasi-or-
thogonal type space–time codes proposed recently in for ex-
ample [22]–[26] with some good properties, but most of these
codes cannot be applied directly to the ST-CPM systems since
they may have some zero entries in the code matrix. However, it
may be possible to modify these codes like the one in (2) for ap-
plying them to the ST-CPM systems, which would be interesting
to consider. Regarding to the rotations and linear transforms
for QOSTBC with minimum decoding complexity (MDC) pro-
posed in [22]–[26], it would be interesting to consider their cor-
responding CPM schemes as well.

APPENDIX

Claim: There are no terms of and with
in the term in (34).

Proof: From (30) we have

Notice that
. Clearly,

. Thus, we have

Therefore, to prove the claim, it is sufficient to prove that there
are no terms of and with in the entries of

.
We denote as , where

It is easy to check that and
. Therefore, we have

We can see that the entries of are some linear
combinations of the first order of or their conjugates

. So there are no terms of and with
in the entries of . This concludes the proof.
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