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The recently proposed space-frequency-coded MIMO-OFDM systems have promised considerable performance improvement
over single-antenna systems. However, in order to make multiantenna OFDM systems an attractive choice for practical applica-
tions, implementation issues such as decoding complexity must be addressed successfully. In this paper, we propose a computation-
ally efficient decoding algorithm for space-frequency block codes. The central part of the algorithm is a modulation-independent
sphere decoding framework formulated in the complex domain. We develop three decoding approaches: a modulation-
independent approach applicable to any memoryless modulation method, a QAM-specific and a PSK-specific fast decoding al-
gorithm performing nearest-neighbor signal point search. The computational complexity of the algorithms is investigated via
both analysis and simulation. The simulation results demonstrate that the proposed algorithm can significantly reduce the de-
coding complexity. We observe up to 75% reduction in the required FLOP count per code block compared to previously existing

methods without noticeable performance degradation.
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1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems employing
multiple transmit and receive antennas have the potential to
play a significant role in the development of future wireless
communication systems. By exploiting the larger number of
propagation paths between the transmitter and the receiver,
the adverse effects of the channel fading can be significantly
reduced. To take advantage of both the MIMO systems and
the OFDM modulation, MIMO-OFDM systems have been
proposed recently [1-6], where space-frequency (SF) coding
is applied as the channel code. However, before such a sys-
tem becomes an attractive choice for practical applications,
implementation issues such as decoding complexity must be
addressed successfully.

Computationally efficient decoding algorithms have only
been proposed for decoding space-time (ST) block codes in
quasistatic, flat (frequency nonselective) fading environment
[7, 8]. For ST block codes transmitted over temporally evolv-
ing channels and for SF block-coded MIMO-OFDM systems,
where the channel changes along the frequency axis, low-
complexity decoding algorithms still do not exist in the lit-
erature.

The sphere decoding algorithm was introduced in [9] as-
suming a single-antenna, real-valued fading channel model.
Later results [10-13] (and the references therein) general-
ized the algorithm to complex-valued MIMO channels. A re-
duced complexity algorithm was proposed in [10], where the
signal coordinates were sorted according to their partial met-
rics and explored in this order. The authors of [11] achieved
complexity reduction by exploring the signal coordinates in
a zig-zag order. This approach was further refined and im-
proved in [12]. In [13], the sphere decoding algorithm was
applied to equalize frequency-selective MIMO channels. All
of these works considered uncoded MIMO systems and as-
sumed quasistatic, flat fading channels. Moreover, they for-
mulated the sphere decoding problem in the real domain, so
the resulting algorithms can only be used with modulation
methods that can be decomposed into the product of two
real constellations (e.g., square QAM).

A complex-domain sphere decoding algorithm was de-
scribed in [14]. This work considered iterative (turbo) de-
coding in a MIMO system where linear ST mapping was
combined with an outer channel code, and a sphere detec-
tor was used to approximate the log-likelihood ratio in a
computationally efficient way. This approach was specific to
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modulation methods that can be decomposed into PSK con-
stellations, and its objective was to identify a set of candidate
solutions, as opposed to finding the best candidate solution
with the maximum possible efficiency.

Most previous works considered frequency-flat qua-
sistatic MIMO channels, where the channel stays constant
over many code blocks. As a consequence, they assumed that
most of the decoding complexity comes from the searching
stage of the sphere decoding algorithm, and the complexity
of the preprocessing stage, which calculates the Cholesky or
QR decomposition of the squared channel matrix, is negligi-
ble. However, in case of MIMO-OFDM systems transmitting
over frequency-selective channels, the channel changes in the
frequency domain, so the Cholesky or QR decomposition of
the squared channel matrix has to be calculated for each code
block. Therefore, when optimizing the decoder performance,
the decoding complexity of both the preprocessing stage and
the searching stage has to be taken into account.

In this paper, we propose a fast algorithm for decod-
ing SF block codes constructed from orthogonal and quasi-
orthogonal designs based on the idea of sphere decoding.
We formulate the decoding problem in the complex do-
main, which allows us to fully exploit the distance structure
of complex signal constellations. We propose a modulation-
independent sphere decoding framework by interpreting the
sphere decoding algorithm as a greedy, constrained depth-
first search algorithm. Due to the modular structure of the
framework, it can be used to construct a decoding algorithm
that can be used with any memoryless modulation, and it can
also be tailored to a particular modulation method. The latter
possibility will be explored by developing QAM-specific and
PSK-specific decoding algorithms that take advantage of the
special structure of the constellations by performing nearest-
neighbor signal point search.

When comparing the computational complexity of dif-
ferent approaches, we will only consider algorithmic com-
plexity. That is, we will not take advantage of any specific
implementation-dependent or architecture-dependent opti-
mization. The motivation behind this is that we would like to
preserve the generality of our results. Given a specific archi-
tecture or optimization technique, the analysis can be easily
modified based on the results provided in this paper. This is
in contrast, for example, with the results reported in [15—
18], where different parallel VLSI architectures have been
proposed for the implementation of the sphere decoding al-
gorithm. Exploiting parallelism in case of a specific signal
processing architecture such as pipelining or a systolic ar-
ray can further decrease the decoding delay, but it would
make the results applicable only to that particular architec-
ture.

The paper is organized as follows. Section 2 will intro-
duce the system model and the notation. Section 3 will de-
scribe the equivalent representation of the received signal
used in this paper. The proposed decoding framework will
be explained in Section 4, and the proposed fast signal search
method will be described in Section 5. Section 6 will provide
the simulation results, and some conclusions will be drawn
in the last section.

2. SYSTEM MODEL AND NOTATION

Consider an SF-coded MIMO-OFDM system having K
transmit antennas, L receive antennas, and S subcarriers,
with S being a multiple of the code block length G. Sup-
pose that the frequency-selective fading channels between
each pair of transmit and receive antennas have P indepen-
dent delay paths and the same power delay profile. We con-
sider a medium-mobility scenario, where the MIMO chan-
nel changes from OFDM block to OFDM block, but it can be
assumed to be constant over one OFDM block period. Dur-
ing each OFDM block period, the channel impulse response
from transmit antenna k to receive antenna [ at time delay 7
is modeled as

P-1
(7)) = > Bra(p)d(r — 1), (1)

p=0

where 7, is the delay and S ;(p) is the complex amplitude
of the pth path between transmit antenna k and receive an-
tenna [. The Si,(p)’s are zero-mean, complex Gaussian ran-
dom variables with variances E[|fx,(p)I?] = 8}2,. The powers

of the P paths are normalized such that Zi;(l) 812, = 1. The
frequency response of the channel is given by

P-1
Hii(f) = > Pralp)e 2w, )

p=0

We assume that the MIMO channel is spatially uncorrelated,
that is, the Bi;(p)’s are independent for different indices
(k, D).

The input bit stream is divided into b bit long segments,
creating B-ary (B = 2?) source symbols. The encoder forms
§/G source symbol blocks, each containing N source sym-
bols. Source symbol s; € {0,1,...,B-1},i=0,1,...,N -1,
is mapped onto a complex channel symbol (or constellation
point) x; according to x; = Q(s;), where the function Q(-)
represents the modulation operation. The average energy of
the constellation will be denoted by E.,. Then, the SF en-
coder forms two-dimensional codewords from the channel
symbols. The SF codeword corresponding to the tth (¢t =
0,1,...,8G — 1) source symbol block can be expressed as
a G by K matrix C:

C
co[Gt] a[Gt] cx-1[Gt]
co[Gt + 1] 1[Gt +1] ck_1[Gt+1]
Co[Gt+G—1] C][Gt‘f'G—l] . CKfl[Gt‘f'G—l]

3)

where ci[i] denotes the channel symbol transmitted over the
ith subcarrier by transmit antenna k. The symbol rate of the
code is N/G.

At the receiver side, after matched filtering, remov-
ing the cyclic prefix, and applying FFT, the received signal
corresponding to the tth source symbol block at subcarrier



Zoltan Safar et al.

Gt+g(g=0,1,...,G — 1) and receive antenna [ is given by

K-1
y[Gt+g] = Z Hy (Gt + glek[Gt + gl + m[Gt+g], (4)
k=0

where Hy[i] = Hy,;(iAf) is the channel frequency response
at the ith subcarrier between transmit antenna k and receive
antenna [, Af = 1/T is the subcarrier separation in the fre-
quency domain, and T is the OFDM symbol period. We as-
sume that the channel state information Hg [i] is known at
the receiver, but not at the transmitter. In (4), »n;[i] denotes
the complex, zero-mean, additive white Gaussian noise com-
ponent at the ith subcarrier at receive antenna [. The variance
of the noise samples is assumed to be 1/(py), where the scal-
ing factor y is defined as y = b/(KGEyy), so p is the signal
to noise ratio per bit at each subcarrier at each receive an-
tenna. In the sequel, we will focus our attention on decoding
a single code block, so a simplified notation will be used by
dropping the block index #:

K-1

yilgl = > Hiilglelg] +mlgl, (5)
k=0

forg=0,1,...,G - L.

3. EQUIVALENT REPRESENTATION

In general, SF coding introduces spatial and frequency-
domain dependence among the code symbols ¢,[i] within a
code block C. For example, in case of the 2 X 2 orthogonal
design [7]:

_ X0 X1
C - |:_X;k x(>)k:| > (6)

the channel symbols transmitted from different transmit an-
tennas and through different subcarriers are clearly related.
Note that in this case, the channel is not quasistatic, so the
efficient decoding methods described in [7, 8] cannot be ap-
plied. To be able to use a sphere decoder (to be able to make
sequential decisions on the sent signal coordinates), it is nec-
essary to transform the received signal to an equivalent signal
representation, where the coordinates of the sent signal vec-
tor are independent. We have constructed the SF block codes
from orthogonal and quasi-orthogonal designs, as the signal
transformation can be carried out easily in this case. We con-
sider both full-rate SF codes and full-diversity SF codes for 2,
3, and 4 transmit antennas.

3.1. Full-rate SF codes: two transmit antennas

For 2 transmit antennas (K = 2), the 2 X 2 orthogonal design
(6) with symbol rate 1 (N = 2, G = 2) is used to construct SF
codes. From (5), the received signal at receive antenna ! can
be expressed as

y110] = Ho,[0]xo + H1[0]x1 + m[0],

(7)
yi[1] = =Ho[11x + Hy[1]xg + m[1].

By taking the complex conjugate of the second line of (7),
the transformed equivalent received signal vector y; = [ 0],
¥ [1]]T for receive antenna [ can be rewritten in matrix-
vector form as

yi = Hix +ny, (8)

where x = [x,x1]" is the N X 1 transmitted channel symbol
vector, n; = [m[0],n[1]]7 is the equivalent noise compo-
nent, and H; is defined as

Ho,[0]  Hy,[0]
H; = . 9)

(1] —Hg[1]

By collecting the received signal and noise components cor-
responding to different receive antennas in KL X 1 vectors as
y = [vd,....yI]Tand n = [n{,...,n]_,]7, the equivalent
received signal can be expressed as

y = Hx +n, (10)

where the KL X N matrix H is the equivalent channel matrix
defined as

Hy
H=| @ |. (11)
H;

Note that the above described equivalent representation has
the following properties that are important from the view-
point of the sphere decoding algorithm. First, the coordinates
of the noise vector n are independent, zero mean, complex
Gaussian random variables with variance 1/(py). Second, the
coordinates of the x vector are independent. Third, the ma-
trix H has at least as many rows as columns, independently
of the number of receive antennas. Fourth, since the entries
in the matrix H are complex, zero mean, Gaussian random
variables and we have assumed that the MIMO channel is
spatially uncorrelated, the matrix H has full rank with very
high probability.

3.2. Full-rate SF codes: four transmit antennas

In case of 4 transmit antennas (K = 4), we have adopted the
quasi-orthogonal design [19]

X0 X X6/ x3el?
—xf x§  —xfe i xfe it
C-= ' , , (12)
X6/t xzel? X0 X1
—x¥e it xFfe it —xf xg

which provides a symbol rate 1 (N = 4,G = 4). In (12),
the channel symbols x; are taken from the same constella-
tion, and the rotation angle ¢ is chosen in such a way that it
can ensure the full rank of the code difference matrix for any
two distinct code matrices. For example, if the x;’s are taken
from a square QAM constellation, the best rotation angle is
¢ = /4. Proceeding similarly to Section 3.1, the equivalent
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received signal vector for receive antenna I can be obtained
asyr = [y[0], y[11], »i[2], i [3]]7, and the equivalent noise
vector becomes n; = [n;[0], n/ [1],m[2],n;[3]]T. The result
is the matrix equation y; = Hjx+n;, with x = [xg, X1, X2, x3] T
and the matrix H; defined as

Hoi[0] Hy[0] H,l0]e/® Hsy[0]e/?

H H (1] —Hy[1] Hfj[1]e/® —Hjj[1]e/? (13)
H,j[2] Hs[2] Hogl2]e/® Hyj[2]ei?
5131 —Hy (3] Hf[3]e’ —Hg[3]e/?

The y and n vectors are formed similarly to the two trans-
mit antenna case, and the equivalent received signal is given
by (10), with the KL X N equivalent channel matrix H for-
matted according to (11). All the properties of H described
in Section 3.1 also hold. Note that to make the decoding pro-
cess easier, the effect of the constellation rotation has been
included in the equivalent channel matrix. The full-rate SF
code for three transmit antennas (K = 3) can be easily ob-
tained from the 4 x4 quasi-orthogonal design by deleting one
column from the code matrix C.

3.3. Full-diversity SF codes

The SF codes described in Sections 3.1 and 3.2 can achieve
full spatial diversity (a diversity order of KL), but not full spa-
tial and frequency diversity (a diversity order of KLP). In [6],
a method was proposed to construct full-diversity SF codes
from full-rank ST codes via a repetition mapping, trading
off data rate for performance. It was shown that by repeat-
ing each row of the ST code matrix p times (1 < p < P),
a diversity order of KLp can be achieved. For instance, for
MIMO channels with at least two delay paths (P > 2), the SF
code (6) achieves a diversity order of 2L, while the SF code
obtained by repeating each row of (6) two times as

X0 X1

X0 X1
c=| , . (14)

-X{ X

can achieve a diversity order of 4L. Now we demonstrate that
this construction can also be transformed into an equiva-
lent representation that is convenient for sphere decoding
through the simple K = 2, L = 1 example with repetition
2. In this case, the equivalent received signal vector becomes

= [0[0], yol[1], 5 [2], & [3]17, and the equivalent noise
component is n = [1y[0],n[1], ng [2],n&[3]]7. Then, the
equivalent received signal vector y can be expressed as in
(10), with the channel symbol vector x = [xg,x;]” and the
equivalent channel matrix

Hop[0]
Hoo[1] Hiol[1]
H{[2] —Hg)[2]
H{[3] —Hg)[3]

Hi (0]

(15)

The generalization of this approach to three and four trans-
mit antennas, more receive antennas, and more repetitions is
straightforward.

4. THE PROPOSED DECODING FRAMEWORK

For communication systems where the received signal vec-
tor can be expressed as in (10), to decode the sent signal
vector x with the maximum-likelihood (ML) algorithm, the
task is to find a valid signal vector x that minimizes the met-
ric |ly — Hx||?. Unfortunately, in some cases this can only
be performed by exhaustive search over all valid signal vec-
tors, which may result in prohibitively high computational
complexity. To alleviate this computational burden, sphere
decoding was proposed [9], where the decoder searches over
only a subset of x vectors that lie within a hypersphere of
radius r centered around the received signal vector, that is,
lly — Hx||? < r2.

Despite the recent advances in sphere decoding [10-14],
the existing methods have some disadvantages. Most decod-
ing approaches were formulated in the real domain, lim-
iting their use for cases where the complex constellation
can be decomposed into the product of two real constella-
tions. Moreover, all of these methods are tied to a particular
constellation structure: square QAM or PSK. Motivated by
the above observations, we have devised a general decoding
framework for SF codes constructed from orthogonal and
quasi-orthogonal designs. The framework is formulated in
the complex domain and can be used with any memoryless
modulation method. Moreover, its flexible modular struc-
ture allows for extra implementation freedom. We have di-
vided the description of the framework in two parts: the pre-
processing stage and the searching stage.

4.1. Preprocessing stage

The purpose of this stage is to transform the expression |y —
Hx||? in such a form that the decisions on the coordinates of
x can be made sequentially. In the sequel, we assume that the
equivalent channel matrix H is M X N. In case of the full-rate
SF codes, we have M = KL, and in case of the full-diversity
SF codes, M can be calculated as M = KLp.

First, the complex Cholesky factorization of the matrix
H*H is calculated, obtaining an N X N complex, upper tri-
angular matrix R = {R;} with positive and real diagonal ele-
ments. We used a simple extension of the “Gaxpy” version of
the real Cholesky decomposition algorithm [20]. Then, the
zero forcing solution z = H'y is determined, where H* de-
notes the pseudoinverse of H, defined as H* = (H*H)~'H*.
This can be done most efficiently by solving the lower tri-
angular system R*w = H*y for w and solving the upper
triangular system Rz = w for z. By taking advantage of the
equalities |ly — Hx||> = [|[H(z — x)|1? + |lylI*> — |[Hz||? and
IH(z — x)|I> = |IR(z — x)||?, the sphere decoding problem
can be expressed in the following way [13]: find only those x
signal vectors that satisfy ||[R(z — x)[|* < %, where 7’ is the
modified radius given by r'? = r? — |lyl|* + ||Hz||?. Finally,
the elements of the N X N matrix Q = {Qy,} are calculated
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TaBLE 1: Number of real operations for the complex implementation.

Algorithm component Number of Number of Number of Number of

additions multiplications divisions square roots
Calculating the H*H matrix (2M — 1)N?+ (2M — 1)N 2MN? + 2MN 0 0
Calculating the Cholesky fact. (1/3)(2N?* +3N? + N) (1/3)(2N? + 6N? + 4N) N N
Calculating H*y 4MN - 2N 4MN 0 0
Solving two N X N triang. systems 4N? — 4N 4N? — 4N 4N 0
Calculating the radius 2 4MN +2M 4MN +4M 0 0
Calculating the Q matrix 0 N N2-N 0

TasLE 2: Number of real operations for the real implementation.
. Number of Number of Number of Number of
Algorithm component o T o
additions multiplications divisions square roots

Calculating the H'H matrix 22M - 1)N?>+ (2M - 1)N 4MN? + 2MN 0 0
Calculating the Cholesky fact. (4/3)(N? = N) (1/3)(4N? + 6N? + 2N) 2N 2N
Calculating HTy 4MN - 2N 4MN 0 0
Solving two 2N x 2N triang. systems 4N? - 2N 4N? - 2N 4N 0
Calculating the radius r2 4MN +2M 4MN +4M 0 0
Calculating the Q matrix 0 2N 2N? - N 0

as Qxx = Ri’k and Qk; = Rk /Ry for k < I. The matrix Q is
an auxiliary quantity [10] used by the sphere decoding algo-
rithm instead of R.

We now provide a detailed complexity analysis for the
preprocessing stages using Cholesky decomposition. Tables 1
and 2 compare the computational complexities of the com-
plex and real implementations of the preprocessing stage in
terms of the number of real additions (and subtractions),
multiplications, divisions, and square root operations per
code block. Table 1 summarizes the complexity of the com-
plex implementation. One complex addition was counted
as two real additions, and one complex multiplication was
counted as four real multiplications and two real additions.
Since in the preprocessing stage, complex quantities are di-
vided only by real quantities, one complex division was
counted as two real divisions. The square root operation was
applied only to real quantities. One squared magnitude op-
eration was counted as two real multiplications and one real
addition.

The computational complexity of the real implementa-
tion was determined similarly. In this case, all operations are
real, including the Cholesky decomposition, but the H ma-
trix has 2M rows and 2N columns. The number of real oper-
ations for the real implementation is given in Table 2.

Comparing the operation counts in Tables 1 and 2, it
is apparent that the complex implementation of the pre-
processing stage has lower computational complexity. Tak-
ing into account only the dominant terms MN? and N?,
the complex version requires about half of the number of
real additions and multiplications. The complex implemen-
tation needs N2 + 4N real divisions per code block, while the
real implementation needs 2N? + 5N, approximately twice as
many. Finally, the number of square root operations for the

complex version is exactly the half of that for the real ver-
sion. In summary, by implementing the preprocessing stage
in the complex domain, for each operation, the operation
count can be approximately halved compared to the real im-
plementation.

4.2. Searching stage

The searching stage generates the signal vectors x satisfying
the sphere constraint and selects the decoded signal vector.
Using the quantities produced by the preprocessing stage, the
sphere equation can be expressed as

N-1 N-1 2
IRz - %)|* = > Quilzk —xk+ D Quilz—x1)|
k=0 I=k+1
(16)

where x; and z; denote the kth (k = 0,1,...,N — 1) coordi-
nates of the vectors x and z, respectively.

To be able to make decisions on the signal vector x co-
ordinate by coordinate, the sphere constraint is expressed in
a recursive manner by defining the quantities ay and Ty as
follows:

N-1 N-1
w=zct+ > Qulzi—x) =z+ > QA (17)
I=k+1 I=k+1
fork =N —-1,N —2,...,0,and Ax = zr — xi is defined for
computational convenience: Ty—; = r'?, and
2
Tk = Tt — Qe oert | Okr1 — Xiea1 | (18)

fork = N —2,N —3,...,0. The quantity Ty can be thought
of as the remaining squared distance between the partial so-
lution xnN_1,%N-2,-..,Xk+1 and the surface of the sphere, and
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k=N-1

d = DOWN
Tn-1 =12
ne =

fori=0,1,....N -1 f"rT":_I\;’l’TN’Z""’O e = o +1
k< 0? Y shest _ g, ! pm i el lk=k+1 [
end’ \Pi n; = UPDATE(n;, d;, Ti/Qi ;) d=UP
end
ar =z + D QA pr=m- 10>
1=k+1
(sk>dg, nk) = SYMLIST (o, Tr/Qp ) Y
k=0
l Pk = pr+1
xk = Qsk,p; )
_ _ _ 2
> N Ti-1 = Tk — Qrklok — x|
Xk = Qsk,p;.) y
Ap =z — X k=N-1
Ti-1 = Tk — Qulog — x¢? N
k=k-1 k=k+1 k=k+1 k=k-1
d =UP d = DOWN

F1GURE 1: The flowchart of the decoding algorithm.

ax can be interpreted as the kth received signal component
given XN_1,XN-2,. .. » Xk+1. The sphere decoding problem can
be solved by going over the coordinates of x starting from
k = N — 1 and continuing down to k = 0. For each k value,
we need to calculate ax and Ty and determine those valid xi
values that satisfy

|ock—xk|2_—. (19)

Qkk

Then, for each valid xx value, we decrease the value of k by
one, and repeat the procedure. If the k = 0 level is completed,
we have found an x vector inside the sphere.

The original sphere decoding algorithm [9] was based on
an algorithm developed for finding the shortest vector in a
lattice. Our objective is to devise a decoding framework for
any memoryless modulation method, so the signal coordi-
nates x; may take on any complex value, and the set of vec-
tors {Hx} does not form a lattice. To extend the sphere de-
coding to arbitrary constellations, we provide an alternative
interpretation. We abandon the lattice concept and look at
the sphere decoding problem from a different angle. For each

k value, all x; values satisfying the partial constraint (19) are
enumerated and explored, so the search space can be rep-
resented by a tree. The sphere constraint limits the num-
ber of branches emanating from the tree nodes, constrain-
ing the search space. Furthermore, finding a valid candidate
x (reaching one of the leaf nodes) may also result in search
space reduction, as the radius of the sphere can be decreased
at this point [9]. This suggests that the search tree should
be explored in a depth-first manner. Finally, as suggested in
[10], the valid xx values are sorted according to the metric
drx = lax — xk|? in increasing order, and they are explored
in this order, which corresponds to a “greedy” strategy. As a
consequence, the proposed sphere decoding framework can
be interpreted as a greedy, constrained depth-first tree search
algorithm.

The flowchart of the proposed algorithm can be observed
in Figure 1. The main differences between this algorithm and
the one described in [10] are that (a) we formulated the de-
coding problem in the complex domain and not in the real
domain, (b) our algorithm can be used with any constella-
tion, not only with square QAM, and (c) we provide a flexible
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and modular structure, as opposed to the fixed structure of
the algorithm in [10].

The algorithm starts at the root of the tree and initial-
izes the necessary variables. The variable d indicates whether
a node is reached from above (“DOWN”); that is, it is vis-
ited for the first time, or from below (“UP”), that is, it has
been visited before. The variable n. counts the number of
valid candidate solutions that have been found. At the begin-
ning of the main loop (point (#1) in Figure 1), the index k is
checked, and if it is nonnegative, the bottom level of the tree
has not been reached yet. At point (#2), the algorithm checks
whether the current node is visited for the first time. If so
(d = “DOWN?”), the current value of &y is calculated and
the function SYMLIST generates the list of possible source
symbols si;, whose corresponding channel symbols xi; =
Q(sk,;) satisfy the normalized partial constraint |ay — x;|? <
T%/Qx k- The SYMLIST function takes ax and the normalized
partial constraint Ti/Qy as inputs and produces 3 outputs.
The first output, #nx (0 < nx < B), is the number of symbols
satisfying the current partial constraint, so there will be 7
branches emanating from the current node. The second out-
put is the symbol list sy = [s,0,5k,1. - >Skn—1] " and the vec-
tor dx = [dxo,dk1>...>dkn-1]" whose coordinates are the
metrics di; = |ax — xx,;|>. The symbols in sy are ordered ac-
cording to increasing dy; values. The symbol pointer py is
initialized to point to the first element of si. At point (#3), the
algorithm checks whether there are any symbols on the list.
If there is at least one, we take the first source symbol from
the list, calculate the corresponding channel symbol, calcu-
late the current Ay value, determine the partial constraint
for the next tree level, and move one level down on the tree.
If there are no symbols on the list, we reach to point (#4),
where we check the current tree level. If it is the top level
(k = N — 1), the algorithm terminates without solution. If it
is not the top level, we change directions and move back up
to the parent node of the current node to continue the search
of the tree.

If the current node has been visited before (point (#5)),
we check whether there are symbols left on the list. If so, we
increment the symbol pointer py to point to the next symbol,
take the next source symbol from the list, calculate the cor-
responding channel symbol, calculate the current Ax value,
determine the partial constraint for the next level, and move
one level down on the tree. If there are no source symbols
left on the list, we get to point (#6) to check whether we are
at the top level (k = N — 1). If so, the algorithm terminates.
If the value of . is zero, no solution was found; otherwise
the algorithm was able to find at least one x vector satisfy-
ing the sphere constraint. If the algorithm has not reached
the top level yet, it moves one level up to the parent node to
continue the search.

If the value of k becomes negative (point (#1)), we have
reached the bottom level, so a valid candidate solution x has
been found. This x vector is the best solution found so far,
so the corresponding source symbols are saved in the {s**'}
variables by overwriting the previous solution. Then, the ra-
dius of the sphere is reduced to further decrease the decoding
complexity by adjusting all partial constraint values such that

the last solution satisfies the constraints with equality (the
“surplus” partial constraint T_; is subtracted from each par-
tial constraint). The source symbol lists are also modified by
the UPDATE function, which keeps only those source sym-
bols on the list whose corresponding dj metric values satisfy
the new partial constraints. Because the symbols are ordered
according to the corresponding dj values, this can be done
simply by changing the value of nj for each k. Finally, we
move back up to the parent node to continue the search.
Since the algorithm makes decisions based on variables
that are functions of random quantities and previous deci-
sions, it is very hard to calculate its computational complex-
ity accurately. Other researchers could only determine ap-
proximate asymptotic results [21] on the order of the num-
ber of operations or provide formulas for the approximate
complexity that can only be evaluated numerically [22]. Both
works assumed lattice structure, that is, the coordinates of
x were integers, which is not true in our case. Moreover,
asymptotic results on the order of the operations are not ap-
propriate for the comparison of two sphere decoding algo-
rithms, as they hide any constant factors, and the dimension-
ality of the problem (the values M and N) never becomes
large. Therefore, we have chosen simulation-based complex-
ity comparison by counting the number of operations and
averaging them over a large number of experiments.

5. THE PROPOSED SEARCH METHODS

The algorithm of Figure 1 is only a general framework that
performs a greedy, constrained depth-first tree search. The
heart of the decoding algorithm is the function SYMLIST,
which creates the ordered list of source symbols satisfying
the partial constraint at the given tree level. This section pro-
poses several ways to implement the SYMLIST function.
The header of the function is described as (s,d,n) =
SYMLIST(«,T), where the inputs are the value of « and the
partial constraint T and the outputs are n, the number of
symbols on the list, the symbol list s = [sg,s1,. .. ,$n1]T, and

the corresponding metric list d = [do, dy,...,d,-1]".

5.1. The modulation-independent search

First, we assume that there is no a priori information avail-
able on the used constellation, so we have to develop an al-
gorithm that would work with any memoryless modulation
method. In this case, to create the source symbol list, we need
to enumerate all possible source symbols, and sort the ones
that satisfy the partial constraint, and put them onto the sym-
bol list.

The algorithm goes over all possible source symbols s =
0,1,...,B — 1, and for each source symbol, it calculates the
corresponding channel symbol x = Q(s) and the metric
d = |a — x|?. Then, it checks whether the partial constraint
d < T is satisfied. If not, the execution continues with the
next s value. If the constraint is satisfied, the source sym-
bol s is inserted into the list s, the metric d is inserted into
the metric list d, and the number of items on the list gets
incremented. At the end, the metric list and the symbol list



EURASIP Journal on Applied Signal Processing

are sorted according to the metric values such that the sym-
bol with the smallest metric will be the first on the list.

5.2. The fast search method

Most of the previously proposed sphere decoding approaches
enumerate all signal points x satisfying the partial constraint
at all tree levels. However, it was observed via simulations
that most of the time, the first candidate solution x found
by the greedy tree search (i.e., the greedy solution) is actu-
ally the ML solution, so only one leaf node is explored dur-
ing the decoding process with high probability. This means
that enumerating (and possibly sorting [10]) all signal points
that satisty the partial constraints is redundant because most
source symbols on the symbol lists get eliminated via radius
reduction and the subtrees corresponding to their values will
never be explored.

To further improve the computational efficiency of the
sphere decoding algorithm, we propose a fast search ap-
proach by making the most probable case more efficient. The
proposed fast search algorithm performs a nearest-neighbor
signal point search. The symbol list generation algorithm
SYMLIST enumerates only a few nearest signal points x to
a and ignores the signal points that are further away, so
the unnecessary enumeration and sorting operations can be
avoided.

5.2.1. Square QAM

If the used constellation is B-ary square QAM, the source
symbol s can be expressed as the concatenation of its real and
imaginary parts: s = (s8,s7), s8,s' € {0,1,...,/B — 1}, and
the complex channel symbol corresponding to this source
symbol is

vB-1 1) +j(sI _VB-1 1). (20)

x:Q(s):<sR— 5 5

For the simplicity of the explanation, we do not consider
Gray bit-mapping and neglect the edge effects, assuming that
the point « falls in a region where it has four neighbor-
ing signal points, as shown in Figure 2. The basic idea of
the fast search method is to identify these four constellation
points efficiently by exploiting the geometrical properties of
the QAM constellation. The first step is to express the value
of « in the coordinate system of the real and imaginary parts
of the source symbols as

vB-1
2 bl

VB -1
— ()

55 = Re{a} + sﬂ = Im{a} +

Then, the source symbols corresponding to the four neigh-
boring constellation points can be identified easily by round-
ing the values of s® and s! up or down. For example, in
Figure 2, the source symbol ¢y = (c(}f,cé) corresponding to
the upper right signal point can be obtained as cX = [sX]
and ¢ = [s,]. After determining the 4 source symbols ¢; =
(cf, cf), i =0,1,2,3, that correspond to the 4 nearest neigh-
bors of a, we need to determine the order in which they

‘q&

®

F1GURE 2: The fast QAM-search algorithm.

should be put on the list. The space between the neighbor-
ing QAM constellation points is divided into 4 quadrants,
as shown by the dashed lines in Figure 2, and the fractional
parts of sR and s/, are calculated to determine which quad-
rant the value s, falls in by comparing the fractional parts
to 0.5. Once the index of the quadrant is known, the source
symbol corresponding to the signal point closest to « (¢ in
Figure 2) can be easily determined. The signal point furthest
away from « (¢, in Figure 2) can also be identified. Based on
this approach, the order between the other two source sym-
bols (¢; and ¢3 in Figure 2) cannot be decided, but our simu-
lations have shown that the actual order of the symbols is not
important as long as the source symbol corresponding to the
closest signal point is the first on the list, so we set arbitrary
(e.g., random) order for those two signal points.

Finally, for each of the 4 source symbols, the algorithm
calculates the corresponding channel symbol and checks
whether the partial constraint is satisfied. If so, the sym-
bol and the corresponding metric value are put on the lists.
The remaining B — 4 source symbols are ignored. Note that
the symbols on the list will not be perfectly ordered some
of the time. However, the algorithm ensures that the source
symbol corresponding to the closest constellation point to «
will always be the first. As can be seen, the algorithm avoids
the enumeration of all channel symbols satisfying the partial
constraint and avoids the sorting operation altogether.

The edge effects are handled by projecting the values of
sR and s!, onto the boundaries of the constellation if neces-
sary. That is, if s% is smaller than 0, it is set to 0, and if it is
greater than +/B — 1, it is set to /B — 1. The imaginary part s,
is transformed similarly. With this transformation, the trans-
formed « point will fall on the boundary of a region with four
neighboring constellation points, so the previously described
algorithm can work properly. Since the original signal point
a was outside the constellation, this perpendicular projection
will not affect the identity of the closest constellation point.

52.2. PSK

In case of B-ary PSK, the modulated complex channel sym-
bol is determined by

x = Q(s) = Re/PBs+®) st 1,... B—1}. (22)
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TaBLE 3: Number of real operations for the preprocessing stages.

. Number of Number of Number of Number of Total number
Implementation ... e .
additions multiplications divisions square roots of FLOPS
Complex 128.00 154.00 12.00 2.00 296.00
Real 158.00 196.00 18.00 4.00 376.00
Preprocessing stage of [12] 646.00 916.00 27.96 4.00 1593.96

In (22), R is the radius of the constellation (usually unity),
and @ is the rotation angle of the constellation (usually zero).
The idea is similar to the square QAM case: we identify
the source symbols corresponding to the two closest signal
points to « without enumerating all signal points that satisfy
the partial constraint. As the first step, we express « in the
coordinate system of the source symbols, which is an angular
coordinate system:

B
Sa = %(Cb(x - (D)) (23)

where @, is the angle of &, given by ®, = arctan(Im{a},
Re{a}), and arctan(-, -) is the four-quadrant arcus tangent
function. Now we can easily determine the two source sym-
bols ¢y and ¢; corresponding to the nearest neighbors of s,
by rounding up and down its value. For easy explanation, the
edge effect will not be considered, so ¢y and c; are assumed to
be in the set {0, 1,..., B — 1}. If they fall outside, we can eas-
ily map them back by adding or subtracting B to/from their
values. Then, the fractional part of s, is calculated to deter-
mine which neighbor is the closest by comparing it to 0.5.
The source symbol corresponding to the closest signal point
is put on the list first, and the other source symbol will be the
second, provided that they satisfy the partial constraint. The
rest of the source symbols are ignored.

6. SIMULATION RESULTS

To illustrate the performance of the proposed sphere de-
coding algorithm, we provide some simulation results. The
simulated communication system had 2 transmit antennas
(K = 2), 2 receive antennas (L = 2), and the 2 X 2 orthogo-
nal design (6) was used as the SF code (M = KL =4, N = 2,
G = 2). The OFDM modulation had S = 128 subcarriers
with an OFDM symbol period of T = 128 ps. The frequency-
selective MIMO channel was modeled by the COST 207 Typ-
ical Urban 6-ray power delay profile [23].

Since the computational complexity of the preprocessing
stage is independent of the applied modulation method and
the sphere radius, it is discussed separately from the search-
ing stage. Table 3 shows the number of real operations exe-
cuted by the complex and real preprocessing stages for each
decoded code block. The entries in the first two rows of the
table were obtained by substituting M = 4 and N = 2 into
the formulas of Tables 1 and 2. The last row of the table con-
tains the operation counts for the preprocessing stage of the
sphere decoding algorithm in [12], which uses real QR de-
composition. The QR decomposition was implemented ac-
cording to the description in [20], and the values were ob-
tained via simulations. The operation count values show that

2TX/2RX antennas, 64 QAM, 6-ray COST TU channel model
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FIGURE 3: Average bit error rate of the decoding algorithm with 64
QAM.

considerable complexity reduction can be achieved by im-
plementing the preprocessing stage in the complex domain,
even for small M and N values. Particularly the number of
necessary multiplications and square root operations can be
reduced significantly. The computationally most expensive
part was the calculation of the matrix H¥H (or H'H), and
the complexity of the Cholesky decomposition was negligi-
ble due to the small size (2 X 2) of the matrix to be de-
composed. It can also be observed that the preprocessing
stage of [12] has considerably higher computational com-
plexity, mainly due to the complexity of the QR decompo-
sition.

We compared the complexity of the searching stages of
different decoding algorithms by counting the number of
real operations and averaging them over a large number
(10° — 10°) of experiments. The complex operations were
counted according to the method described earlier. More-
over, one floating-point comparison was counted as one
addition. Some algorithms also used transcendent function
evaluations, such as arcus tangent and arcus cosine; these op-
erations are counted separately. The floating-point operation
(FLOP) count includes all operations.

Figure 3 shows the bit error rate (BER) curves of the pro-
posed sphere decoding algorithm with 64 QAM modulation,
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and the average FLOP counts per code block of the searching
stage of the proposed algorithm is shown in Figure 4, both
as a function of the average signal to noise ratio (SNR) in
case of different radius values. The figure shows how the per-
formance improves at the price of increased computational
complexity. If the radius is small and the SNR is low, no solu-
tion vector will fall inside the sphere some of the time, which
reduces the average decoding complexity, but results in con-
siderable performance degradation. It can also be observed
that increasing the radius beyond r = 3 has almost no effect
on the decoding complexity of the searching stage. Therefore,
the radius was set to a large enough value, r = 10, to ensure
ML performance in the SNR range of interest in case of all
simulations.

6.1. 64 QAM

In case of 64 QAM modulation, we compared the complexity
of the searching stages of five different decoding algorithms:
the ML decoding algorithm (performing exhaustive search),
the real-domain sphere decoding algorithm described in
[10] (preprocessing stage: real Cholesky decomposition), the
real-domain sphere decoding algorithm described in [12]
(preprocessing stage: real QR decomposition), and the pro-
posed decoding framework (preprocessing stage: complex
Cholesky decomposition) with two symbol list generating
method: the modulation-independent search and the fast
QAM-specific search. Figure 5 depicts the BER curves as
functions of the average SNR. It can be observed that all
sphere decoding algorithms have the same performance as
the ML decoding algorithm in the SNR range of interest.
Table 4 provides a detailed break-down of the number of op-
erations for the searching stages, including the average value
of n.. Since the variations of the operation counts is very
small over the different SNR values, we only present the op-
eration counts averaged over the simulated SNR values. In
Figure 6, we also provide an example histogram of n., which
is the number of valid signal vectors found in the sphere, at
SNR of 16 dB.

Based on the above results, we can make several observa-
tions. First, using sphere decoding, the computational com-
plexity of the SF decoder can be reduced by orders of magni-
tude without perceptible performance loss in the meaning-
ful BER range. Second, the computational cost of the QAM-
specific sphere decoding algorithms is dominated by the pre-
processing stage. This is due to the combined effects of sphere
radius reduction, the greedy tree search, and the fast symbol
list generation method. Third, the complexity of the search-
ing stages do not change considerably as the SNR increases,
contradictory to the results of [13]. The reason is that in [13],
the initial radius was reduced as the SNR increased (while we
kept it constant), and the greedy tree search was not imple-
mented. Fourth, n, takes the value of 1 with overwhelming
relative frequency, and its average value is very close to 1,
indicating that the first solution found by the greedy search
was actually the ML solution most of the time. Finally, the
searching stage of the algorithm described in [12] requires
the least number of FLOPs, followed by the proposed fast
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FIGURE 4: Average FLOP counts of the searching stage of the decod-
ing algorithms with 64 QAM.
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FIGURE 5: Average bit error rate of the decoding algorithms with 64
QAM.

search method, and the searching stage of [10] is the com-
putationally most expensive. However, taking into account
the complexity of both the preprocessing and the searching
stages, the proposed QAM-specific fast search algorithm is
the most efficient. The total number of FLOPs per decoded
code block, including both stages, as a function of the SNR is
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TaBLE 4: The average umber of real operations for the searching stages, 64 QAM.
Algorithm Number of Number of Number of Number of Number of n.
additions multiplications divisions square roots FLOPS
ML decoding 167936 163840 0 0 331776 4096
Searching stage of [10] 183.6 48.5 8.1 8.1 248.3 1.00
Searching stage of [12] 57.8 20.8 4.1 0 82.7 1.00
Proposed method, modulation-indep. 1707.6 273.1 4.1 0 1984.8 1.00
Proposed method, fast search 76.1 26.3 4.0 0 106.4 1.00

Histogram of n.: 2TX/2RX, 64 QAM, 6-ray COST TU channel model
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FIGURE 6: The histogram of n, for the decoding algorithms with 64
QAM at SNR = 16 dB.

depicted in Figure 7. Combining the FLOP counts of Tables
3 and 4, we observe that the total number of FLOPs per code
block was reduced to about 64% of the FLOP count of the al-
gorithm in [10] and to about 25% of the FLOP count of the
algorithm in [12].

6.2. 16 PSK-QAM

The last experiment was conducted with 16 PSK-QAM mod-
ulation. The constellation corresponding to this modulation
method is shown in Figure 8. The 16 PSK-QAM constella-
tion is made up of two PSK constellations. In case of nat-
ural bit mapping, the inner PSK signal points can be gen-
erated by (22) with R = 1, ® = 0, and B = 8. The outer
constellation points are determined by the same equation
with R = cos(n/8) + /3sin(n/8) = 1.5867, ® = n/8, and
B =38.

The searching stages of four different decoding ap-
proaches were compared: the ML decoding algorithm, the
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F1Gure 8: The bit mapping for the 16 PSK-QAM constellation.

algorithm of [14], the proposed sphere decoding algorithm
with modulation-independent symbol list generation, and
the proposed sphere decoding algorithm with fast, PSK-
specific nearest-neighbor search. For all sphere decoding



12 EURASIP Journal on Applied Signal Processing
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FIGURE 9: Bit error rate of the decoding algorithms with 16 PSK-QAM.

TasLE 5: The average number of real operations for the searching stages, 16 PSK-QAM.

Algorithm Number of Number of Number of ~ Number of  Number of Number of ]
additions  multiplications divisions square roots  transc. op. FLOPS

ML decoding 10496 10240 0 0 0 20736 256

Searching stage of [14] 310.8 86.3 8.1 2.0 2.1 409.3 1.00

Proposed method, modulation-indep. 326.0 75.0 4.0 0 0 405.0 1.00

Proposed method, fast search 73.9 30.2 8.0 0 2.0 114.1 1.00

algorithms, the same complex Cholesky decomposition-
based preprocessing stage was used, and the PSK-specific de-
coding methods were modified for the 16 PSK-QAM modu-
lation.

The average bit error rate curves of the above mentioned
decoding methods are depicted in Figure 9. It is apparent that
all sphere decoding approaches perform as well as the ML
decoding algorithm. The detailed operation counts averaged
over the simulated SNR range are given in Table 5. The aver-
age number of transcendent function evaluations was added
to the table, as some of the decoding algorithms calculate ar-
cus tangent and arcus cosine values. The histogram of the
nc values at SNR = 14 dB can be observed in Figure 10. Fi-
nally, for overall comparison, the total number of FLOPS per
code block, including both the preprocessing and the search-
ing stages, is shown in Figure 11.

There are two important observations to be made. First,
the constellation-independent search performs slightly bet-
ter than the search method in [14]. However, for larger con-
stellation sizes, built from PSK constellations, the method
of [14] is expected to have lower computational complexity
than the modulation-independent decoding algorithm. Sec-
ond, the proposed fast nearest-neighbor search algorithm

achieved significant complexity reduction compared to the
search stage of [14]. Taking into account both decoding
stages, the total number of FLOPs was reduced by the pro-
posed decoding algorithm to about 58% of the FLOPs of the
decoding method described in [14].

7. CONCLUSION

We proposed a computationally efficient SF block code de-
coding algorithm based on the principles of sphere decod-
ing. We formulated the decoding problem in the complex
domain and developed a modulation-independent decod-
ing framework by interpreting sphere decoding as a greedy,
constrained depth-first tree search algorithm. We com-
bined this flexible decoding framework with a modulation-
independent symbol list generation algorithm, and two
modulation-specific symbol list generation algorithms that
perform nearest-neighbor signal point search. The simula-
tion results showed that the proposed decoding algorithm
further reduced the decoding complexity compared to pre-
viously existing approaches. If the MIMO channel is qua-
sistatic (i.e., the preprocessing stage has to be executed only
once for many code blocks) and QAM modulation is used,
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the algorithm described in [12] seems to be the right choice,
but in case of broadband MIMO-OFDM systems, where the
preprocessing stage has to be executed for every code block,
our algorithm offers the lowest decoding complexity without
any perceptible performance loss.

Note

The work described in this manuscript was in part presented
at the European Wireless Conference in February 2004 [24]
and at the IEEE International Conference on Communica-
tions in January 2004 [25].
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