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Abstract

A numerical model has been developed to predict gas-phase nucleation, growth, and coagulation of silicon
nanoparticles formed during thermal decomposition of silane. A detailed chemical kinetic model of particle
nucleation was coupled to an aerosol dynamics model that includes particle growth by surface reactions,
coagulation with instantaneous coalescence, and convective transport. Solution of the aerosol general dynamic
equation was handled by three approaches: (1) the e1cient and reasonably accurate method of moments;
(2) the quadrature method of moments, which requires no prior assumption of the shape of the particle size
distribution; and (3) a computationally more expensive sectional method (SM). The SM includes a conceptually
simple and computationally e1cient algorithm for treating coagulation that is found to be superior to widely
used methods from the literature. All three approaches gave similar results for the evolution of the 4rst few
moments of the particle size distribution. The SM was able to capture the bimodal distribution that appears
brie5y at short residence times due to simultaneous nucleation and coagulation. At longer residence time, only
coagulation remains important and both the sectional and moment methods give very similar results as they
approach the self-preserving size distribution.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A frequent by-product of silicon chemical vapor deposition (CVD) is the formation of powder
from gas-phase chemical reactions that lead to homogeneous nucleation. In most cases, gas-phase
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nucleation is viewed as an undesirable phenomenon that limits 4lm growth rate and causes contam-
ination (Girshick, Swihart, Suh, Mahajan, & Nijhawan, 2000; Kremer, Davis, Moore, & Ehrman,
2003). Particulate contamination is a leading cause of yield loss in semiconductor processing. As
feature sizes in microelectronic circuits decrease, the critical particle size that leads to device failure
decreases proportionately. In many cases, the particles are formed by homogenous nucleation via
chemical reaction. Fundamental understanding of the chemical nucleation process, as well as subse-
quent particle growth, coagulation and transport, is necessary if we are to eAectively control particle
formation during semiconductor processing. Intentional silicon nanoparticle synthesis is also of great
interest, due to the size-dependent, e1cient photoluminescence of these silicon nanoparticles that is
not present in bulk silicon. Our group is synthesizing silicon nanoparticles in a laser-driven aerosol
reactor (Li, He, Talukdar, & Swihart, 2003). It is important to understand the physico-chemical fun-
damentals of silicon particle formation in our reactor in order to control particle size and morphology.

Various mechanisms for the nucleation of silicon particles from silane have been proposed
(Frenklach, Ting, Wang, & Rabinowitz, 1996; Yuuki, Matsui, & Tachibana, 1987). A detailed chem-
ical clustering model was previously developed for chemical nucleation of silicon hydrides containing
up to ten silicon atoms (Swihart & Girshick, 1999), and that model was used here. The cluster-
ing model includes detailed information regarding the thermodynamic properties and reactivities of
silicon hydride clusters. The mechanism also includes cyclic and polycyclic clusters, which are im-
portant for explaining the formation of ‘stable’ nuclei in the gas phase. The chemical nucleation
model has to be coupled with the aerosol general dynamic equation (GDE) to predict the evolution
of the particle size distribution. In Girshick et al. (2000) and Nijhawan et al. (2003), a moment
method assuming a lognormal distribution was used to solve the GDE in conjunction with this
detailed nucleation model for simple one-dimensional geometries. Here we compare that approach
to methods that provide greater detail without making a priori assumptions about the shape of the
size distribution.

The aerosol GDE represents a population balance of particles undergoing internal processes of nu-
cleation, growth and coagulation along with the external transport processes of diAusion, convection
and thermophoresis. The GDE is a non-linear, partial integro-diAerential equation for which there is
usually no analytical solution. Hence, various numerical techniques have been used to obtain approx-
imate solutions to the problem. When particle formation occurs in a chemically reacting 5ow, the
GDE must be coupled to the appropriate mass, momentum, energy, and chemical species balances.
With increased computational power, it is increasingly possible to simultaneously capture details of
the 5uid 5ow and transport, the evolution of the aerosol size distribution and complex chemical
kinetics. However, to obtain a solution at reasonable computational cost, researchers constantly have
to make trade-oAs in the level of detail included in each area. Our goal is to provide a framework for
simultaneously incorporating detailed chemical kinetics in 5uid 5ow and transport models and cou-
pling these with an accurate, yet computationally tractable, aerosol dynamics model (Talukdar, Ng, &
Swihart, 2003). Similar eAorts to model detailed aerosol processes of simultaneous nucleation, growth
and coagulation have been developed for other systems (Prakash, Bapat, & Zachariah, 2003; Moody
& Collins, 2003) using nodal or multi-modal approaches. However, a simpli4ed sectional model for
silicon particle formation along with detailed chemical kinetics has not been previously presented.

Moment models, typically solving for the 4rst three moments of the particle volume distribu-
tion, are simple to implement. With relatively small computational eAort, these can give represen-
tative properties of the aerosol size distribution such as total particle concentration, mean size and
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polydispersity. However, conventional moment methods have the disadvantage that the shape of the
particle size distribution must be speci4ed in advance to obtain closure of the equations (Pratsinis &
Kim, 1989). This could be a limitation if size distributions at early stages of particle formation are to
be studied, where bimodal distributions are often observed (Landgrebe & Pratsinis, 1990; Park, Lee,
& Choi, 1999; Xiong & Pratsinis, 1991). To avoid specifying the shape of the distribution a priori,
the quadrature method of moments (QMOM) developed by McGraw (1997) approximates the inte-
gral moments of the size distribution by an n-point Gaussian quadrature (Gordon, 1968; Hulburt &
Katz, 1964). The QMOM does not de4ne or produce an explicit size distribution, but the moments
could, in principle, be used with an assumed functional form to obtain a size distribution (Barrett
& Webb, 1998; McGraw, Nemesure, & Schwartz, 1998; Diemer & Olson, 2002). For comparison
to experiment or other computational methods, having only a list of higher moments and not a
size distribution or an easy means of obtaining quantities like the geometric standard deviation is a
signi4cant disadvantage of the QMOM method, as discussed further below.

Sectional methods (SM), based on dividing the continuous particle size distribution into discrete
sections and dealing with one integral property at a time have been extensively used for more than
20 years (Gelbard & Seinfeld, 1980; Hounslow, Ryall, & Marshall, 1988; Kumar & Ramkrishna,
1996a; Landgrebe & Pratsinis, 1990; Xiong & Pratsinis, 1991). Coagulation is generally the most
computationally expensive part of aerosol dynamics calculations using SM, due to the presence of
complex kernels and the fact that it involves double summations over the particle size bins to account
for coagulation of each size with all other sizes. This becomes demanding if aerosol dynamics are
to be coupled with multidimensional computational 5uid dynamics models (Johannessen, Pratsinis,
& Livbjerg, 2000; Muhlenweg, Gutsch, Schild, & Pratsinis, 2002; Schild, Gutsch, Muhlenweg, &
Pratsinis, 1999). It may be important to use a SM to capture the early stages of particle formation.
We have thus implemented a SM (referred to below as STMS code) with a simple treatment of
coagulation based on conserving the mean volume of two particles from diAerent bins colliding to
form a third particle in some other bin. This method is similar to the general approach used by
Kumar and Ramkrishna (1996a) for population balances involving coagulation and breakage. In this
case, we couple this treatment of coagulation, conserving particle number and volume, with particle
nucleation and growth by chemical reaction.

Surface growth generally introduces numerical diAusion for 4xed SM as noted in Wu and Flagan
(1988) and Kim and Seinfeld (1990). Moving SM (Kim & Seinfeld, 1990; Kumar & Ramkrishna,
1997; Spicer, Chaoul, Tsantilis, & Pandis, 2002) can eliminate numerical diAusion by surface growth
and have been used in the past quite successfully. However, these are not easily integrated into
multi-dimensional simulations where one wants to use the same set of size bins at every spatial point
in the simulation. In our eAort to develop this computationally feasible framework for coupled aerosol
dynamics and detailed chemical kinetics, we have used a simple ‘two-point’ method of discretization
for surface growth, similar to that used in Hounslow et al. (1988). Numerical dispersion could be an
important issue, especially for evolution of initially narrow size distributions when there is substantial
surface growth. However, for the simultaneous nucleation, coagulation, and growth processes modeled
here, where surface growth contributes but is never the dominant or only contributor to evolution
of the size distribution, the simple two-point method used here provides reasonable accuracy at
low computational cost. We did observe slight broadening of the size distributions with decreasing
number of sections, vide infra, but the changes were small, suggesting that numerical diAusion is
not important in this case.
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As implemented here, our method is both conceptually simple and computationally e1cient relative
to SM that have been widely used in aerosol dynamics modeling. This simplicity and e1ciency is
highly desirable for problems like the one at hand, where there are complexities both in the chemical
reaction kinetics and the aerosol dynamics and therefore the aerosol dynamics cannot be the sole
focus of the overall solution procedure.

2. Theory

The aerosol GDE for simultaneous nucleation, growth and coagulation can, in principle, be solved
for given initial and boundary conditions to give the particle size distribution function. The continuous
GDE represents a population balance of the particles in the volume interval from v to v+ dv and is
given in its general form by the following equation:

@n(v)
@t

+ ∇ · Vn(v) − ∇ · D(v)∇n(v) + ∇ · Vthn(v)

=
1
2
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)
+ I(v∗)
(v− v∗): (1)

Here V is the convective velocity, D(v) is the Brownian diAusion coe1cient for a particle of size
v, Vth is the particle thermophoretic velocity, � is the particle collision frequency function and I
is the nucleation rate. The 4rst term on the left-hand side (LHS) describes the rate of change of
particle concentration while the next three terms represent loss or gain of particles due to convection,
diAusion and thermophoresis, respectively. These are collectively referred to as the external processes
as they involve movement of particles across the control volume boundary. For the steady-state,
isothermal, one-dimensional plug 5ow reactor that was used to develop the aerosol model described
here, the transient term, diAusion term and thermophoresis term are omitted. The 4rst two terms on
the right-hand side (RHS) of Eq. (1) represent gain and loss of particles due to Brownian coagulation
(Friedlander, 2000). The collision frequency � is based on the harmonic mean approximation (Lee
& Chen, 1984; Pratsinis, 1988) to interpolate between the free molecular and continuum regimes, and
is described in detail in Appendix A.1. The third term on the RHS of Eq. (1) is related to particle
growth, which is treated as a chemical vapor deposition (CVD) process where the gas-phase species
react on the particle surface by reactions like those in the silicon 4lm growth mechanisms presented
by Ho, Coltrin, and Breiland (1994). The particle growth rate by surface reactions was calculated
self-consistently using species concentrations determined from the gas-phase chemical kinetic model.
The gas-phase species equations were also fully coupled to the particle growth by properly accounting
for species depletion as a result of surface reactions (Girshick et al., 2000). Chemical nucleation of
particles is based on a chemical clustering model (Swihart & Girshick, 1999), in which the basic
mechanism includes reversible chemical reactions between silicon/hydrogen molecules containing up
to ten silicon atoms. The nucleation rate is taken to be the rate at which these chemical reactions
irreversibly produce molecules containing more than ten silicon atoms. This critical nucleus size of
ten silicon atoms is presently just a coarse estimate, but in the future can hopefully be obtained from
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kinetic Monte Carlo simulations of cluster formation, as presented in Li and Swihart (2001), or from
the automated reaction mechanism generation approach (Broadbelt, Stark, & Klein, 1994; Broadbelt,
Stark, & Klein, 1996) being applied to this system by Wong, Li, Swihart, and Broadbelt (2003).
The observations of Nijhawan et al. (2003) suggest that the present nucleation model overpredicted
the nucleation rate for the conditions that they studied.

2.1. Method of moments (MOM)

An e1cient and reasonably accurate means of approximately solving the GDE is the MOM,
which has been extensively used due to its relative ease of implementation and low computational
cost (Lee, Chen, & Gieseke, 1984; Nijhawan et al., 2003; Pratsinis & Kim, 1989). The kth moment
of the particle size distribution function n(v) is given by

Mk =
∫ ∞

0
vkn(v) dv; (2)

where n(v) is the particle size distribution in volume. The dynamic behavior of a lognormal dis-
tribution can be described from the 4rst three moments of the particle size distribution in volume
(Pratsinis, 1988). The zeroth moment (M0) represents the total particle concentration, the 4rst mo-
ment (M1) gives the particle volume fraction (volume of particles per unit volume of gas) and the
second moment (M2) is related to the light scattering intensity from particles. Using MOM, the
GDE can be reduced to a set of three moment equations (Frenklach & Harris, 1987; Mahajan, 1999;
Pratsinis & Kim, 1989). A major drawback of this method is that it requires that all terms in the
moment equations be expressed as functions of the moments themselves. This closure of the mo-
ment equations is usually achieved by assuming the shape of the size distribution to be lognormal.
Many experimental results suggest that aerosol size distributions are generally lognormal and the
lognormal distribution has three parameters that are readily related to the 4rst three moments of the
size distribution (Pratsinis, 1988).

2.2. Quadrature method of moments

The QMOM avoids using an assumed shape for the size distribution by approximating the integral
moments by an n-point Gaussian quadrature (Lanczos, 1988). This solves the problem of obtaining
closure of the moment equations, so the coagulation, growth, diAusion and thermophoretic terms
can be expressed in their original forms. The moments of the size distribution can be expressed as
functions of abscissas and weights of the Gaussian quadrature:

Mk =
∫ ∞

0
rkn(r) dr ≈

Nq∑
i=1

f(ri)Weightsi : (3)

The abscissas and weights are calculated from the moments through a product-diAerence (PD) algo-
rithm from the lower-order moments (Marchisio, Vigil, & Fox, 2003; Gordon, 1968). This method
is an extension of the Hulburt and Katz (1964) procedure applied to aerosol dynamics problems
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by McGraw (1997). For a three-point quadrature approximation, six radial (not volume) moments
(M0–M5) are required and were used in our calculations. The QMOM does not de4ne or produce
an explicit size distribution and hence was used only for calculating the integral properties, but the
six moments could be used with an assumed functional form for a size distribution with six degrees
of freedom to produce one a posteriori (McGraw et al., 1998; Diemer & Olson, 2002).

2.3. Sectional method

The SM approximates the continuous size distribution by a 4nite number of sections or bins
within which one numerically conserved aerosol property is held constant (Gelbard, Tambour, &
Seinfeld, 1980; Hounslow et al., 1988; Kostoglou & Karabelas, 1994; Kumar & Ramkrishna, 1996a;
Landgrebe & Pratsinis, 1990). This is computationally more expensive than the two moment methods
described above, but it is able to capture the details of early stages of particle formation where the
assumption of a lognormal size distribution (for MOM) often breaks down. Using a 4nite element
type formulation, the particle size distribution can be approximated as

n(v) ≈
imax∑
i=1

ni�i; (4)

where the �i are basis functions that are equal to one within bin i (for vi−1¡v¡vi) and zero
elsewhere; the ni are the coe1cients of the discretized particle size distribution, which are constant
within each bin; and imax is the number of bins used (typically 100 in this work). Multiplying the
GDE by �i and integrating over all v from 0 to ∞ gives an equation for the number of particles in
the size range vi−1¡v¡vi, which converts the GDE (Eq. (1)) into a set of imax equations for the
number of particles in each size range.

d
dx

(Vni) =
Coagulationgain; i − Coagulationloss; i

vi − vi−1
+
ni−1Growthi−1 − niGrowthi

vi − vi−1
+
Inucleation; i

vi − vi−1
:

(5)

The particle number concentration in each bin changes due to contributions from coagulation,
nucleation, and growth. In treating coagulation, many researchers, including Landgrebe and Pratsinis
(1990) and Gelbard et al. (1980) have used size-dependent inter-bin and intra-bin coagulation coe1-
cients that lead to complicated integrals for these terms. We instead use a relatively simple treatment
of coagulation that simpli4es the calculation and decreases computational cost. This is similar to the
approach adopted by Kumar and Ramkrishna (1996a), Hounslow et al. (1988) and Lister, Smit, and
Hounslow (1995), who used a constant collision kernel within each bin to simplify the calculations.
Our approach starts from the point of view of the coagulating particles, 4rst computing the rate at
which particles from each bin collide with those from another bin of the same or larger size. For
the collisions between particles from bin j and bin k, we 4rst 4nd the total coagulation rate between
such particles:

Bcoagulation( j; k) = njnk�(vmean; j ; vmean; k)(vj − vj−1)(vk − vk−1): (6)

Here �(vmean; j ; vmean; k) is constant for a particular (j; k) pair, which is a reasonable assumption
to make when using a large number of narrowly-spaced bins. �(vmean; j ; vmean; k) is the harmonic
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Fig. 1. Collision of two particles from a (j; k) pair of bins is distributed among bin i and bin i + 1 such that particle
number and volume are conserved.

mean average of the continuum and free-molecular regime as employed by Pratsinis (1988) and
Xiong and Pratsinis (1991), shown in more detail in Appendix A. The spacing factor (fs) is de4ned
as the ratio of the width of bin i + 1 to the width of bin i. In terms of the total number of bins,
imax, and the maximum (Vmax) and minimum (Vmin) particle volumes considered, the spacing factor
is de4ned by

fs = exp
(

ln(Vmax=Vmin)
imax

)
; (7)

where Vmax and Vmin are the maximum and minimum volumes of the size bins and imax is the
maximum number of size bins used. When particles from bin j and bin k (with mean volumes of
vmean; j = (vj−1 + vj)=2 and vmean; k = (vk−1 + vk)=2, respectively) collide, the resulting particle could
fall in some third bin, i, with mean volume vmean; i = (vi−1 + vi)=2 or in the next bin, i + 1, with
mean volume vmean; i+1 = (vi + vi+1)=2, where vmean; i ¡ (vmean; j + vmean; k)¡vmean; i+1 (Fig. 1). In the
formulation used here, the fraction of particles (f) resulting from (j; k) collisions that falls in bin i
is obtained from Eq. (8), which ensures that the coagulation process conserves particle volume (or
mass) as well as particle number:

vmean; j + vmean; k = f ∗ vmean; i + (1 − f) ∗ vmean; i+1: (8)

Thus, the changes in particle number in bins i, i+1, j, and k as a result of (j; k) collisions is given
by the following equations:

Coagulationgain; i = f · Bcoagulation( j; k);

Coagulationgain; i+1 = (1 − f) · Bcoagulation( j; k);

Coagulationloss; j = Coagulationloss; k = Bcoagulation( j; k): (9)
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Doing this for all (j; k) pairs with j6 k and summing the contributions to each bin gives the total
net change in particle number in each bin due to coagulation. For the case j= k, Bcoagulation must be
divided by two to avoid double counting of collisions. This approach of conserving particle volume
by a simple balance is similar to that used by Kumar and Ramkrishna (1996a). In the present model,
we do not make a special eAort to conserve the higher moments of the distribution, by conserving
v2 instead of v, for example, as it is the number and volume distributions that are of most interest
in this case.

The third term on the RHS of Eq. (5) represents growth due to chemical reactions on the surface
of each particle. As reviewed by Kumar and Ramkrishna (1997), growth terms introduce additional
complexity in the problem due to dispersion of numerical solutions obtained using 4nite-diAerence
approximations. Discontinuities are introduced as a result of combined nucleation and growth pro-
cesses, and can result in negative values of the size distribution. Here we have used a simple upwind
diAerence scheme (a standard ‘two-point’ method) where we compute the particle 5ux into and out
of bin i based on the growth rate and particle number in bins i − 1 and i, respectively. While
higher-order 4nite diAerence methods may provide more accurate results, as suggested by Kumar
and Ramkrishna (1997), it seems unlikely that the improvements oAered by using higher-order dif-
ferencing schemes will signi4cantly aAect the integral aerosol properties that are of interest to us.
Similar to the approach of Hounslow et al. (1988), the contribution of particle growth to the number
of particles in bin i is given by the diAerence between the rate at which particles from the smaller
bin (i− 1) grow into the size range of bin i minus the rate at which particles from bin i grow into
the next larger size bin (i + 1):

Growthi = ni−1 ∗ GeAective; i−1 − ni ∗ GeAective; i ; (10)

where GeAective is the harmonic mean average of the growth terms in the free molecular and continuum
regimes:

GCR = GlinearS(Dm=kr);

GFM = GlinearS; (11)

where the linear growth rate Glinear is obtained from the rate of production of the bulk phase silicon
per unit surface area by surface chemical reactions and is shown in Appendix A.2. S is the total
surface area of particles in the bin being considered (S =

∫ v
vi−1

(36�)1=3v2=3 dv), Dm is the molecular
diAusion coe1cient of a representative growth species, k is a representative surface reaction rate
constant for deposition and r is the particle radius. Silane is the representative growth species
used here, as it is the dominant contributor to surface growth. The group Dm=kr, whose inverse
is the dimensionless surface DamkTohler number for particle growth, approximately accounts for
diAusional limitations on the particle growth rate. In order to maintain conservation of mass between
the gas-phase species and particles, the depletion rates of gas-phase species were scaled to ensure
that the amount of silicon removed from the gas phase by surface reaction was identical to that
added to the particles during the growth process. Negative size distributions were avoided by simply
neglecting growth if the population, ni, in a given bin was below a 4xed value (usually 20 orders
of magnitude lower than that of the bin with the largest population) and the net growth contribution
to that bin would lead to a decrease in ni.
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Nucleation, the last term in Eq. (5) is obtained from the detailed chemical kinetic model of cluster
formation as described above. In the SM, the 4rst size bin was selected to have the same mean
volume as the critical nucleus produced by the kinetic model. The nucleation rate was taken to be
the formation rate of silicon–hydrogen clusters containing more than ten silicon atoms, as was done
previously with this same reaction mechanism (Girshick et al., 2000; Nijhawan et al., 2003).

3. Case study

The numerical solution of all three methods was carried out for an isothermal plug 5ow reactor at
atmospheric pressure. The chemical reaction and particle nucleation model included 1098 gas-phase
reactions and 104 surface reactions involving 133 gas-phase, 2 surface phase and 1 bulk species. The
simulation conditions were a constant temperature of 1023 K, pressure of 1 atm and inlet silane mole
fraction of 1% in helium carrier gas. For sectional simulations the initial size distribution was taken
to be uniform, with a negligibly small particle number to avoid numerical di1culties encountered
when starting from distribution with zero particles in each bin. Simulations utilized the Chemkin
group of codes (Coltrin, Kee, Rupley, & Meeks, 1996; Kee, Rupley, Meeks, & Miller, 1996) for
reaction rates and transport properties. The resulting diAerential equations were solved using DASSL
(Petzold, 1982). The emphasis in this paper is on using a reliable, yet computationally e1cient,
aerosol dynamics model coupled to a large reaction mechanism to understand particle formation. We
are trying to develop a framework for using detailed chemical kinetics coupled to aerosol dynamics
and 5uid 5ow in general and not just for the silicon particles mentioned here. So, although here we
present results for this particular case, we expect this to be representative of what to expect both for
improved chemical kinetic and transport models of silicon particle formation, and for other systems
characterized by coupled complex chemical kinetics and aerosol dynamics such as soot formation
and many 5ame and spray pyrolysis aerosol synthesis methods.

4. Results

4.1. Validation

The MOM results obtained here were validated against those presented by Girshick et al. (2000).
To validate our implementation of the SM we compared its results to analytical solutions and a
widely used numerical technique. This validation of the SM was carried out for coagulation as well
as growth, based on analytical solutions of Gelbard and Seinfeld (1978), implemented by Houn-
slow et al. (1988). Compared to methods using complex coagulation kernels (Gelbard et al., 1980;
Landgrebe and Pratsinis, 1990), Hounslow’s code is computationally e1cient because it assumes
constant collision frequency within each interval. This dramatically reduces the complex integration
required within each interval. The numerical error introduced as a result of this assumption can be
substantially reduced by using a larger number of bins (or smaller fs), as shown in more detail
below. The analytical solution for the coagulation only case (based on the sum kernel) was in ex-
cellent agreement with that obtained using our numerical method (STMS code, using a fs value
of 2) and was identical to the results from Hounslow’s numerical scheme (also using a fs value
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Table 1
Comparing relative CPU time for STMS and Lister et al. (1995, Table 2)

fs STMS Lister

2 1 1
1.41 1.98 8
1.26 2.98 21
1.19 3.99 49.5
1.15 4.96 95.4
1.12 5.98 167.7

Note: The CPU time shown above is for coagulation only, with a constant coagulation kernel, run until the total particle
number has decreased to 2% of its initial value.

of 2). For the simultaneous coagulation (size independent kernel) and surface growth case, numer-
ical dispersion was observed at longer times, as expected for the simple upwind two-point 4nite
diAerence scheme used here to describe growth. However as mentioned earlier, for the simultaneous
nucleation, growth and coagulation of silicon particles, this numerical diAusion arising due to growth
did not signi4cantly aAect the overall properties and can be safely ignored. In order to decrease the
error introduced as a result of the assumption of constant collision frequency in each bin, fs was
decreased from 2 to 1.15 (while increasing the number of bins from 30 to 150, thereby keeping
the same total volume range). Increasing the number of bins results in more accurate solutions as
noted by Landgrebe and Pratsinis (1990). The 5exibility of changing the spacing factor and thereby
reducing the numerical error is also present in Lister et al. (1995) using an adjustable geometric size
discretization with fs given by 21=q and integer values of q. However, compared to our simple model
and relative ease of changing the spacing factor, the equations developed by Lister et al. (1995) are
substantially more complicated, resulting in increased computational time. This can be seen from
Table 1, which compares the relative CPU times for the size-independent collision kernel as shown
in Table 2 of Lister et al. (1995). Primarily the increased computational time in their paper is a result
of additional summation terms that are included for increasing values of q (Table 1, Lister et al.,
1995). The increase in CPU time was reported to be proportional to q3 for the method of Lister et al.,
whereas for our code (STMS) the CPU times scales almost linearly with q. The dramatic reduction
in the relative computational time (without loss of accuracy) suggests that the adjustable spacing
factor in our simpli4ed sectional model has the potential to make signi4cant improvements in the
e1ciency of SM using large numbers of bins. The present method also accommodates non-constant
spacing factors without any change in the algorithm. The only limitation is that the width of each
bin be greater than or equal to the width of the bins at smaller particle size. Thus, it is possible to
concentrate bins by using a 4ner grid (smaller spacing factor) in a size range of interest, or to use a
series of discrete sizes at the lower end of the size distribution (a discrete-SM) without any special
treatment of the coupling between ‘discrete’ and ‘sectional’ bins. The concept of selective re4ning
of the grid has been used by Kumar and Ramkrishna (1996a,b), to obtain more accurate solutions
without increasing the number of bins. From Fig. 2 (for the size-dependent collision kernel), it can
be seen that decreasing fs from 2 to 1.15 (thereby increasing the number of bins from 30 to 150)
increases the computational time by 265% (from 139 to 509 s), and reduces the root mean square
(rms) error relative to the analytical solution by 91%. In this case, the rms error (y) scales with
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analytical solution and on the CPU time are shown for the same case using the size-dependent (sum) collision kernel.
The rms error (y) scales with the number of bins (x) as approximately the −1:5 power (y= x−1:5), while the CPU time
increases as approximately the 0.8 power of the number of bins (y = x0:8).

the number of bins (x) to approximately the −1:5 power (y = x−1:5), while the CPU time increase
is proportional to the number of bins to approximately the 0.8 power (y = x0:8). Thus, increasing
the number of bins will have a greater eAect on lowering the rms error than on increasing the
computational time. For coagulation alone, the SM was also tested to con4rm that it approaches
the self-preserving size distribution (Friedlander & Wang, 1966; Friedlander, 2000), as has been
done to validate other SM, such as that in Landgrebe and Pratsinis (1990). The geometric standard
deviation of the self-preserving size distribution in the continuum and free molecular regimes was
1.451 and 1.469, respectively, which are similar to the values obtained by Vemury, Kusters, and
Pratsinis (1994) for a volume-based sectional model using the same spacing factor.

The three methods that were used to solve the GDE are now compared with respect to some
characteristic aerosol properties (particle concentration, volume fraction and particle diameter) with
increasing residence time (in seconds) in the reactor for the case of silicon particle formation. Also
plotted in Fig. 3 is the silane conversion, which is helpful to illustrate the interactions between
chemical kinetics and aerosol dynamics. From Fig. 3, we see that the predictions for these three
quantities of interest are in excellent agreement between the three methods. However looking at
the inset in Fig. 3a, it can be seen that on a linear scale, the peak of the particle concentration
is overpredicted by MOM by almost 15% as compared to the SM. The total particle concentration
(that would be measured by standard particle counting instruments) can thus be measurably diAerent
between methods. However, this may not be signi4cant from a modeling perspective for gas to
particle conversion cases like this where we are unlikely to make predictions with this level of
accuracy. The overall good agreement between the MOM and SM is however not always guaranteed,
as considered in (Park et al., 1999) where the MOM and SM gave quite diAerent results. From Fig.
3a, we can see that the total particle concentration peaks around 2 ms, which is the time scale for
signi4cant silane decomposition under these conditions (Girshick et al., 2000). Particle nucleation
also peaks around this time, after which these particles become a sink for gas-phase species due
to the large particle surface area on which surface reactions occur. The silane conversion veri4es
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Fig. 3. Comparing MOM, QMOM and SM on (a) total particle concentration (on a logarithmic scale, and in the inset
on a linear scale), (b) volume fraction and (c) mean particle diameter with increasing residence time in the reactor.
Also included is the silane conversion, which helpful in identifying interactions between chemical reaction and aerosol
dynamics.

that the sharp increase (with a slope equal to that of the particle concentration) is due to chemical
nucleation and the silane decomposition rate peaks at the same time, around 2 ms, after which
the silane conversion slows down. Chemical reactions and, therefore, also some chemical nucleation,
continue until a residence time of about 90 ms, by which time all the silane gas has been converted to
particles. Between 2 and 90 ms, coagulation and surface growth are both active, and some nucleation
is also still occurring. The prevailing mechanism after 90 ms is coagulation, which reduces the
particle concentration with a corresponding increase in particle diameter (Fig. 3c). Particle volume
fraction in Fig. 3b shows a sharp increase around 2 ms and then a slower one up to a residence time
of 90 ms when gas-phase species have been fully consumed by surface reactions (silane conversion
is almost 100%). The surface growth mechanism is still active after the initial nucleation burst and
adds signi4cantly (about 64%) to the total particle volume between 2 and 90 ms, as can be more
clearly seen in the normalized plot of volume fraction shown in the inset of Fig. 3b. It is worth
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Fig. 4. Comparing particle size distributions versus particle diameter (on a logarithmic scale) from MOM and SM at
diAerent residence times in the reactor for the case shown in Fig. 3. The SM can capture the bimodal distribution at
shorter residence time, while SM and MOM both approach the self-preserving size distribution at longer residence time.

noting that near the nucleation burst at 2 ms, the silane conversion is over 60%, while the particle
volume fraction has reached less than 40% of its 4nal value. Thus, at that time, more than 20% of
the silicon atoms are in the form of intermediate molecules larger than silane but smaller than the
assumed critical nucleus size of 10 silicon atoms. A simple mass balance on the total system con4rms
that 4nal volume fraction predicted by all three methods is consistent with complete conversion of the
silane to particles. After 90 ms, when coagulation is the only active mechanism, the aerosol dynamics
is decoupled from chemical kinetics. Particle diameter increases in a two-step process: rapid increase
due mainly to surface growth at residence times below about 2 ms, followed by a slower increase
mainly due to coagulation, as shown in Fig. 3c. From the timescales of the various mechanisms
involved, it can be observed that nucleation, growth and coagulation are occurring sequentially, but
with substantial overlaps between them.

Particle size distributions at diAerent residence times (�) in the reactor are shown in Fig. 4. It
should be noted that for the SM, particle size distribution is plotted at the mid-point of each volume
bin (Vmid), while for the MOM the size distribution is evaluated at the same volume points used for
the SM plots. As mentioned earlier, QMOM does not imply a size distribution by itself and hence
QMOM results are not shown in this comparison. It can be seen from Fig. 4 that at small residence
time the size distributions resulting from MOM and the SM are quite diAerent. The SM is able
to capture the bimodal distribution at earlier stages when both particle nucleation and coagulation
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both nucleation and coagulation modes exist.

are taking place. The smaller peak is due to the nucleation mode while the larger peak is a result
of coagulation. Even though coagulation and surface growth is the dominant mechanism after 2 ms
as mentioned earlier, some nucleation continues through about 90 ms when silane conversion is
complete. Thus, there is some degree of overlap present between nucleation and coagulation that
gives rise to this bimodal peak. Bimodal distributions at short times have also been observed in other
systems (Park et al., 1999; Xiong & Pratsinis, 1991). At longer residence time, the SM agrees with
the MOM and looks almost lognormal due to the attainment of the self-preserving size distribution,
which predicts at that su1ciently long times, coagulating particles reach a distribution which is
independent of the initial conditions reaching the same value irrespective of the speci4c system
considered (Friedlander, 2000). Fig. 5 shows the polydispersity resulting from both MOM and SM.
The overall trends are almost the same, except for the sudden increase in the standard deviation
around 2 ms that corresponds to a time near that shown in Fig. 4b where both nucleation and
coagulation modes exist. The approximation to the size distribution by the MOM tends to reduce
the maximum in the polydispersity caused by the bimodal distribution, as was also observed by
Xiong and Pratsinis (1991). One interesting feature in this 4gure is that the standard deviation in
the SM does not reach the value for self-preserving size distribution in either the free molecular or
continuum regime and shows a dip towards the end. For these simulation conditions, the aerosol is
approaching the transition regime (Knudsen number equal to nine for the geometric mean particle
diameter at �=1 s) where the geometric standard deviation goes through a minimum before reaching
the self-preserving limit for the continuum regime.

The dependence of the SM results on bin spacing was tested using diAerent size bins for the same
volume interval. Using a larger number of bins increases the accuracy of the solution at the cost
of increased computational time (Kumar & Ramkrishna, 1996a; Landgrebe & Pratsinis, 1990; Lister
et al., 1995). We have used 50, 100 or 150 bins (equally spaced on a log scale), which correspond
to spacing factors (fs) of 1.56, 1.25 and 1.16, respectively. As can be seen from Fig. 6, decreasing
fs slightly narrows the size distribution. For fs equal to 1.56 (corresponding to 50 size bins), the
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particle size distributions deviate from those with the lower fs values, at both shorter (�s = 5 ms)
and longer (�s = 100 ms) residence times. However, lowering fs from 1.25 to 1.16 does not have
much additional eAect on the size distribution, though it does substantially increase the required CPU
time. The very small change upon decreasing fs from 1.25 to 1.16 indicates that the distribution
is nearly converged with respect to the number of bins, which implies that numerical dispersion
is not important for this problem with this bin spacing. If numerical dispersion were important,
the distribution would be expected to broaden signi4cantly with increasing spacing factor. Fig. 7
shows that decreasing fs from 1.56 to 1.16 increases the CPU time (obtained on a SUN Blade
100 workstation, comparable in processor speed to a desktop PC) by 85% (from 564 to 3854 s).
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The choice of using a reasonable number of size bins that gives accurate results without excessive
computational time thus led us to select 100 bin sizes for most of our simulations. Fig. 7 also shows
the eAect on the CPU time of the interplay between the chemical kinetics and aerosol dynamics. If the
aerosol dynamics model is omitted completely, then simulation of this complex reaction system (with
1098 reactions and 133 gas-phase species) takes 71 s on a SUN Blade workstation. Adding aerosol
dynamics (using the MOM) to this reaction system is still computationally inexpensive (157 s), but
has a bigger eAect than might be expected. It adds only three additional equations to a system of
over 130 equations, and yet this more than doubles the total solution time. The more complicated
SM can take up to 3854 s for the same problem. Thus, unless we are interested in capturing the early
stages of particle formation, MOM still remains the most viable option, especially if we are to couple
aerosol dynamics with multidimensional computational 5uid dynamics (CFD). Our 100 bin (fs equal
to 1.25) SM takes about an order of magnitude more CPU time than the simple MOM approach.
This further demonstrates the fact that the bottleneck to computationally feasible treatment of coupled
reacting 5ow/aerosol dynamics problems may lie with the aerosol dynamics even when the chemical
reaction mechanism is rather large and complex. The simple, reasonably accurate yet computationally
e1cient, sectional model proposed here can help to alleviate this bottleneck while retaining the
ability to predict the details of the size distribution at short times. The size distribution at short
times is particularly important when one is using short reaction times to synthesize extremely small
nanoparticles. In our laboratory, we use millisecond residence times to produce silicon particles with
a mean diameter as small as 5 nm. While a direct comparison to experiment is clearly not possible at
this point, we can observe from these simulations that the geometric mean particle diameter reaches
5 nm near a residence time of 2 ms, which is also exactly where the geometric standard deviation
peaks and the MOM is least successful. Work is in progress to extract detailed temperature and
velocity distributions from a 3-D CFD model of the laser-driven six-way cross reactor used in our
laboratory, and to couple aerosol dynamics models to these pro4les in the particle formation zone
to gain a more complete understanding of the evolution of particle size distributions with changing
reactor conditions.

5. Conclusions

A detailed model that describes nucleation, coagulation and growth of silicon particles during
thermal decomposition of silane has been developed. The model includes detailed chemical clustering
of silicon hydrides containing up to ten silicon atoms. The aerosol dynamics model was solved using
a conventional MOM, the QMOM and a simple SM. All three methods were in excellent agreement
for the particle concentration, volume fraction and mean diameter. The evolution of the particle size
distribution predicted by MOM and the SM were compared. The SM is able to capture the bimodal
distribution that occurs at short times, while the MOM using a lognormal distribution fails to capture
this development during the early stages of particle formation, when there is competition between
nucleation and coagulation. The SM developed here treats coagulation based on conserving the mean
volume of colliding particles. This is computationally less expensive and easier to implement than
previous methods, as the coagulation coe1cient is held constant over each interval. The use of large
number of sections is thus possible to provide accurate solutions without excessive computational
cost.
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Appendix A

A.1. Coagulation

To calculate coagulation coe1cient in Eq. (6), based on Lee and Chen (1984) and Pratsinis
(1988), a harmonic mean approximation is taken between the free molecular and continuum slip
regime:

�(vmean; j ; vmean; k) =
�CR�FM

�CR + �FM
;

�CR(vmean; j ; vmean; k) =
2kBT
3�

(
C(v)

v1=3mean; j

+
C(v)

v1=3mean; k

)
;

C(v) = 1 +
1:257!
r

;

�FM(vmean; j ; vmean; k) =
(

3
4�

)1=6(6kBT
"bulk

)1=2( 1
vmean; j

+
1

vmean; k

)1=2

(v1=3mean; j + v1=3mean; k)
2; (A.1)

where kB is the Boltzman’s constant, T the gas temperature, C(v) the slip correction, ! the mean
free path of carrier gas and r the particle radius. This harmonic mean approximation captures well
the transition regime and gives results for pure coagulation very close to those using the Fuchs
interpolation (Fuchs, 1964).

A.2. Growth

Growth in Eq. (11) is taken as a harmonic mean approximation between the free molecular and
continuum slip regime:

GeAective =
GCRGFM

GCR + GFM
; (A.2)

where GCR and GFM are de4ned in Eq. (11), while the linear growth rate is de4ned by

Glinear =
ṠbulkMWbulk

"bulk
(A.3)

Ṡbulk is the molar production rate of bulk phase silicon atoms via surface reactions, MWbulk and
"bulk are the molecular weight and density of bulk silicon, respectively.
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