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Abstract

Detailed chemical kinetic modeling based on computational quantum chemistry has been quite successful in making quantitative

predictions about some systems, particularly the combustion of small hydrocarbons and certain areas of atmospheric chemistry. The gas

phase chemistry of many processes in high-temperature inorganic systems, from materials synthesis to propulsion to waste incineration,

could in principle be modeled with equal or greater success using detailed chemical kinetic modeling. This contribution provides examples

from our own work of how computational quantum chemistry can be used in developing gas phase reaction mechanisms for modeling of high

temperature materials processing. In the context of CVD of silicon from dichlorosilane, CVD of alumina from AlCl3/H2/CO2 mixtures, and

particle nucleation from silane, this detailed chemical kinetic modeling has given us insight into gas phase reaction pathways that we would

not likely have gained by other means.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Detailed chemical kinetic modeling has been quite

successful in making quantitative predictions about some

systems, particularly the combustion of small hydrocarbons

and certain areas of atmospheric chemistry. Both of these

successes involve reactions of small molecules made up of

light elements that are amenable to treatment by compu-

tational quantum chemistry and reaction rate theories. In

addition, for both of these cases there is a database of

experimentally measured elementary rate parameters that

can be used in constructing detailed reaction mechanisms

[1–6]. The gas phase chemistry of many processes in high-

temperature inorganic systems, from materials synthesis to

propulsion to waste incineration, could in principle be

modeled with equal or greater success using detailed

chemical kinetic modeling. However, in these cases we
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generally have very few experimentally measured rate

parameters and may not even have experimentally measured

thermochemical properties (enthalpy of formation, etc.) for

many of the important chemical species. While experiments

are still the most reliable source for most of this needed data,

they are also in many cases prohibitively expensive and

time-consuming. Therefore, we turn to computational

quantum chemistry to attempt to build useful detailed

chemical kinetic models of these gas-phase processes.

In this general approach, we first compute thermo-

chemical properties of potentially important chemical

species, using ab initio or density functional theory

methods, and benchmark these calculations against what-

ever experimental results are available. We then use these

same methods to characterize transition states for reactions

among these species, or to identify reaction paths that have

no energetic barrier. For reactions with energetic barriers,

we can apply conventional transition state theory to

estimate rate parameters. For barrierless reactions, we

can either make empirical estimates or apply variational

transition state theory. For unimolecular reactions and
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many chemically activated reactions, we can treat the

pressure dependence of the reaction rate by using RRKM

theory for the microcanonical rate constants and solving

the master equation. If the reaction mechanism is too large

to allow every reaction to be considered individually, as is

the case in chemical nucleation of nanoparticles, we can

generalize the results by fitting the thermochemical

properties to a group additivity scheme, proposing

reactivity rules for estimating rate parameters, and

applying automated reaction mechanism generation

methods that have been developed for hydrocarbon

pyrolysis and combustion. Most of the above can be

done using commercially or publicly available software,

though some of this software requires significant expertise

to produce meaningful results.

This contribution describes some of our experiences in

applying these methods to problems including silicon

epitaxy from chlorosilanes [7–9], nanoparticle nucleation

during thermal and plasma decomposition of silane [10–15],

reaction of aluminum atoms with HCl [16–18], and

chemical vapor deposition of alumina [19]. We are one of

many groups applying this approach to the construction of

gas phase reaction mechanisms related to high-temperature

materials chemistry. We do not attempt to review here

the large body of work in this field, but focus on our own

work because it is the most convenient source of examples.

Of particular note is the large body of work of Allendorf,

Melius, and co-workers, from which a few representative

publications are [20–24]. Many results of their groups’ work

are currently available online at http://www.ca.sandia.gov/

HiTempThermo/.
2. Computational methods and tools

There are a variety of commercial computational

chemistry packages that can be used to carry out the ab

initio and density functional theory quantum chemistry

calculations that form the basis for the work described here.

For the majority of our work, we have used the GAUSSIAN94

and GAUSSIAN98 packages [25,26]. Details of the methods

used in each case can be found in the original publications.

In order to estimate reaction rate parameters, one must not

only compute the structure and energy of molecules, but

also of transition states on reaction paths connecting

different possible sets of reactants and products. Stable

molecules are local minima in energy with respect to the

positions of the atoms, while transition states are saddle

points on the potential energy surface. If there is an

energetic barrier to reaction, then the minimum energy path

from reactants to products on the potential surface will have

a maximum. This is the saddle point that we identify as the

conventional transition state structure. The Gaussian

programs have fairly sophisticated transition-state locating

algorithms that usually allow these saddle points to be

located, at least for small molecules. In many cases, one is
not able to guess in advance whether a given reaction will

have an energetic barrier, or whether the energy along the

path from reactants to products changes monatonically.

If there is no energetic barrier, then there is no saddle point,

which means that one often spends substantial time

searching for a saddle point that does not exist. In order to

demonstrate that there is no saddle point, one must identify

some path from reactants to products, along which there is

no maximum in energy. This can be done using partial

optimizations of the molecular geometry in which one or

two bond lengths or angles are fixed at a series of values and

for each of these values the other bond lengths and angles

are varied to minimize the energy of the structure.

Once one has the properties (electronic energy, molecu-

lar geometry, and harmonic vibrational frequencies) of the

molecules and transition states that may be important in a

given reaction mechanism, the next step is to estimate

reaction rate parameters. Conventional transition state

theory calculations are carried out using spreadsheets or

simple computer programs of our own. For unimolecular

reactions and chemically activated reactions, we use RRKM

theory and master equation calculations to compute the

pressure and temperature dependent rate constants. For

different reactions, this has been implemented using the

UNIMOL program [27], the ChemRate program [28], or the

Variflex program [29]. These three codes are all available

from their respective authors. UNIMOL was available long

before the other two, and was hence used in much of our

earlier work. ChemRate has a user-friendly graphical

interface and strong capabilities for treating chemically

activated reactions. Variflex has the most sophisticated and

realistic treatment of ‘loose’ transition states, for reactions

with no energetic barrier to reaction.

After calculating all of the thermochemical properties of

potentially important chemical species and estimating rate

parameters for the reactions among them one can assemble

these into a reaction mechanism. This mechanism will

usually contain many reactions and some chemical species

that are not actually important in the chemical processes of

interest. However, it is usually difficult or impossible to

guess in advance which reactions will be important. To do

so, one must incorporate the reaction mechanism and rate

expressions into a simple reactor model, such as a batch

reactor, plug flow reactor, or perfectly mixed continuous

stirred tank reactor and then solve these equations and

examine the results. We usually do this either with our own

simple programs in Fortran or Matlab or with the

CHEMKIN suite of programs [30–34], or with some

combination of the two. A more recent suite of applications

and tools with many of the same capabilities as the

CHEMKIN suite of programs, as well as some advantages

relative to it, is the CANTERA package created by David

Goodwin. This package is available from the author, via

download from http://www.cantera.org. Both the CHEM-

KIN and Cantera codes allow one to conduct sensitivity

analyses to determine the sensitivity of each species

http://www.ca.sandia.gov/HiTempThermo/
http://www.ca.sandia.gov/HiTempThermo/
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concentration to each rate parameter, as well as to analyze

species concentrations and reaction rates. By examining the

reaction rates, species concentrations, and sensitivity

coefficients for the time-scales and concentration ranges of

interest, one can identify the most important reactions and

chemical species and develop a simplified reaction

mechanism that may provide insight into the most important

chemical processes occurring in the system.
Fig. 1. Schematic representation of the overall reaction mechanism for

3. Examples
thermal decomposition of dichlorosilane. Heavier arrows indicate greater

reaction rates.
3.1. Gas-phase chemistry during CVD of silicon

from dichlorosilane

We constructed a reaction mechanism for homogeneous

decomposition of the chlorinated silanes [9] (S3Cl, SiH2Cl2,

and SiHCl3) with rate parameters based self-consistently on

ab initio molecular orbital calculations [7,8]. This mechan-

ism predicted that thermal decomposition of dichlorosilane

is accelerated by chain reactions propagated by SiH2,

SiHCl, and SiCl2, and that secondary reactions convert

SiHCl produced by unimolecular decomposition of dichlor-

osilane to SiCl2. These results are consistent with exper-

imental observations of dichlorosilane decomposition and

reconcile them with predictions of ab initio calculations for

the unimolecular decomposition of dichlorosilane that

seemed to be in conflict with the experimental evidence.

An example of a chain reaction mechanism for dichlor-

osilane decomposition is:

Initiation : SiH2Cl2/SiHCl CHCl (1)

Propagation : SiHCl CSiH2Cl2/HCl2SiSiH2Cl (2)

HCl2SiSiH2Cl/HCl2SiSiCl CH2 (3)

HCl2SiSiCl/Cl2SiSiHCl (4)

Cl2SiSiHCl/SiCl2 CSiHCl (5)

The apparent overall reaction resulting from the above

sequence of reactions is SiH2Cl2 decomposition to give

SiCl2-plus H2. Similar chain reactions in which SiH2 and

SiCl2 were the chain carriers were also found to be

important. Sensitivity analysis allowed identification of

the steps in these chain reaction mechanisms that had the

greatest effect on the overall reaction rate and also allowed

construction of a reduced reaction mechanism containing

just 19 of the 39 reactions in the ‘full’ reaction mechanism

developed based on the ab initio calculations. Fig. 1 shows

schematically the reaction paths that were found to be most

important in this system, with thicker arrows denoting paths

with greater reaction rates.

Steps (2) and (3), shown above, could also occur as a

single chemically activated reaction:
SiHClCSiH2Cl2/HCl2SiSiH2Cl�/HCl2SiSiCl CH2

(6)

There are also several other possible sets of products that

can be produced by decomposition of the activated HCl2-

SiSiH2Cl* shown in reaction (6). However, it was shown in

this study that the results of simply using the high-pressure

limiting rate parameters for (2) and (3) provided a good

approximation to the results of more rigorous and much

more time consuming detailed analysis of the possible

multi-channel chemically activated reactions, which was

carried out for one set of reactions. This was another

important lesson learned from this study. Finally, this

reaction mechanism was incorporated into coupled reaction

and transport models for silicon epitaxy from dichlorosi-

lane. The conclusion drawn from these models was that

under conditions commonly used for silicon epitaxy from

dichlorosilane, gas phase reactions have little effect on the

deposition rate.
3.2. Reactions in the Al–H–Cl system for modeling

propulsion and CVD of alumina

The gas-phase chemistry of the Al–H–Cl system is of

interest in at least two contexts: (1) AlCl3 can be used as a

precursor for deposition of aluminum-containing materials

by CVD processes, often in the presence of H2; and (2)

aluminum is added to solid rocket propellant where it can

react exothermically with the products of combustion of

other fuels, including HCl, H2O, CO, and CO2. In order to

construct reaction mechanisms for this system relevant to

both propulsion and CVD applications, we first carried out a

series of high-level ab initio calculations to determine the

thermochemical properties of likely molecules in this

system, many of which were previously unknown or at

least uncertain [18]. This included many oxygen-containing

species as well as Al–H–Cl compounds. We then identified

transition states or barrierless reaction paths for the subset of

this system consisting only of molecules of stoichiometry

AlHnClm [17]. Even for these quite small, simple molecules,



Fig. 2. Schematic energy diagram for AlHCl2. Energies are in kcal/mol at

0 K, and are based on calculations using the CBS-RAD method as

described in [Swihart, 2001 #1307]. SP indicates a first-order saddle point

on the potential surface.
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the potential energy surface turned out to be rather complex.

An example is shown in Fig. 2.

On this potential surface, and on the similar surfaces for

other molecules in this system, we found that there were

many reactions that could occur either via a direct path, or

via a chemically-activated path through a stable intermedi-

ate. For example, the reaction

AlCl CHCl4AlCl2 CH (7)

can either occur directly or through formation and

decomposition of AlHCl2. At sufficiently low pressures,

the formation and decomposition of AlHCl2 will occur as a

chemically activated reaction, meaning that the AlHCl2
formed from AlCl2CH does not have time to equilibrate to

the temperature of the system before decomposing to

AlClCHCl. It was found that the vast majority of reactions

in this system occurred via either barrierless direct reaction

paths or via chemically activated reaction paths, and

therefore we could not compute rate parameters for them

using conventional transition state theory.

We used ChemRate [28] to simulate the chemically

activated reaction AlClCHCl/products. These RRKM/

master equation calculations showed that in the temperature

range from 500 to 4000 K and at pressures from 1 to 50 atm,

stabilization of AlHCl2 is negligible. That is, all of the

chemically activated AlHCl2 formed from AlClCHCl

either decomposes to AlCl2CH or decomposes back to

the reactants. In this range of conditions, the branching ratio

for formation of AlCl2CH from the chemically activated

AlHCl2 was typically in the range of 1–10% (0.01–0.1),

increasing with temperature. The apparent rate constant for

the AlClCHCl/AlCl2CH reaction is the product of this
branching ratio with the rate constant for AlClCHCl/
AlHCl2* (the rate constant for formation of chemically

activated AlHCl2). Since the branching ratio increases with

temperature, the apparent activation energy for the overall

AlClCHCl/AlCl2CH reaction is higher than the barrier for

AlClCHCl/AlHCl2*. However, it is still significantly lower

than the endothermicity of the overall reaction (as observed

experimentally by Slavejkov and Fontijn [35]). For many

other reactions in this system, such detailed application of

reaction rate theories was not possible. For a large number of

barrierless abstraction reactions in this system, we estimated

rate constants by analogy with similar reactions [16].

We then constructed a reaction mechanism, based on the

calculations described above, to model the gas phase

chemistry during CVD of alumina from mixtures of

AlCl3, H2, and CO2 [19]. This model was able to explain

several trends observed experimentally, including the

promoting effect of H2, the inhibiting effect of HCl, and

the effect of temperature not directly on the alumina

deposition kinetics, but indirectly on the aluminum

precursor decomposition. The gas phase decomposition of

AlCl3 was predicted to occur primarily through the free

radical chain reaction sequence

AlCl3 CH4AlCl2 CHCl (8)

AlCl2 CH24AlHCl2 CH (9)

When H2 is present, this reaction sequence is initiated by

the pressure-dependent formation of H atoms from

H2 CM4H CH CM (10)

Additional free radical chain carriers are produced by the

chain branching reaction

AlHCl24AlCl2 CH (11)

Somewhat surprisingly, this model predicted that

formation of water during AlCl3 decomposition via the the

reaction sequence

CO2 CH4CO COH followed by (12)

H2 COH4H2O CH (13)

(globally the water shift reaction) is unimportant. Its

removal from the kinetic model did not appreciably change

the computed water concentration profiles. Instead, most

water was predicted to be formed by the reaction

AlO CH24Al CH2O (14)

This is potentially an important insight, because water is

believed to play an important role in the surface reactions

that lead to alumina formation. Once again, we believe that

detailed chemical kinetic modeling based on quantum

chemistry calculations has been able to provide new insights

into the gas phase chemistry of this process.
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3.3. Chemical nucleation of silicon nanoparticles during

silane decomposition

Particulate contamination is a leading source of yield loss

during semiconductor processing, and particles formed by

homogeneous clustering reactions within process equipment

are an important and growing source of this contamination.

Chemical vapor deposition (CVD) processes using silane

(SiH4) are common, and particle nucleation in these

processes can limit film growth rates and reactor pro-

ductivity. On the other hand, intentional synthesis of silicon

nanoparticles with controlled size and morphology may be

of great interest due to the unique optical and electronic

properties of nanostructured silicon. We have been working

to develop detailed chemical kinetic models for the

nucleation of these silicon nanoparticles [11–15,36–38].

This particle nucleation occurs via a sequence of reversible

chemical reactions among silicon–hydrogen clusters. Once

a cluster of some (unknown) critical size is formed, the

cluster will continue to grow, irreversibly, into a particle. In

this case, there are far more possible clusters and reactions

than can be explicitly treated by quantum chemical

methods. In fact, there are more possible clusters and

reactions than can be practically written by hand. Therefore,

one must either simplify the reaction mechanism (lumping

together many similar species and reactions) or pursue

computer-automated methods of generating reactions and

species. We have used both of these approaches.

The starting point for this modeling was the large set of

ab initio quantum chemical calculations presented by Katzer

et al. [39]. In order to be able to determine the

thermochemical properties (enthalpy, entropy, and heat

capacity) of an arbitrary SinH2m molecule, we fit a group

additivity scheme to the properties predicted by Katzer et al.

Such a scheme approximates a property (enthalpy, entropy

or heat capacity) as the sum of contributions from the

‘groups’ from which the molecule is made up [40]. Each

group consists of a non-hydrogen atom and is defined based

on the bonds it makes to its nearest neighbors. Additional

corrections are made for the presence of rings of varying

sizes.

Given the entropy and enthalpy values from the group

additivity scheme, we proposed reactivity rules to estimate

rate parameters for the classes of reactions expected to

occur, based on the known reactivity of small silicon–

hydrogen compounds [11]. This allowed us to construct,

semi-manually, a reaction mechanism including silicon–

hydrogen molecules containing up to 20 silicon atoms.

Reactions among those containing 10 or fewer silicon atoms

were taken to be reversible, while reactions leading to the

formation of molecules containing 11 or more silicon atoms

were taken to be irreversible. This led to a reaction

mechanism consisting of 2614 reactions among 221 species

[11]. A major simplification in this description of the

chemistry is the inclusion of just one isomer of each type

(silane, silylene, silene) for each stoichiometry. This is
equivalent to the assumption that rearrangements to form

the most stable isomer are infinitely fast. In some cases, this

is clearly an imperfect assumption. Thus, this mechanism,

which is about as large as can practically be assembled

by hand, still contains substantial ‘lumping-together’ of

reaction steps and species.

The mechanism described above has been incorporated

into several simple reactor models [11,14,38,41]. Reaction

rate and sensitivity analysis allowed identification of the

most important reaction paths leading to formation of

clusters containing 11 or more silicon atoms. The rate

of formation of these clusters was taken to be the rate of

particle nucleation in an aerosol dynamics model that was

fully coupled to the equations for the chemical species

concentrations. This allowed prediction of particle concen-

tration and size distribution for these different reactor

configurations. Comparisons with experimental data on

particle formation during low-pressure CVD of silicon from

silane [38] showed good agreement for the pressure and

temperature at which particle formation begins, particle

sizes and growth rates, and relative particle concentrations

at various process conditions. However, it overpredicted the

absolute rate of particle nucleation by roughly four orders of

magnitude. This strongly suggests that, for the conditions

considered in that work, there are kinetic bottlenecks on the

path to particle nucleation at cluster sizes larger than 10

silicon atoms. Since we arbitrarily terminated the reversible

portion of the reaction mechanism at clusters containing 10

silicon atoms, this model cannot find rate-limiting reactions

among larger clusters.

We are presently pursuing two approaches to simulate

the nucleation of silicon particles from silane that may allow

us to include both a greater level of detail (avoiding the need

to arbitrarily lump together reactions or species) and larger

silicon–hydrogen clusters (avoiding the need to arbitrarily

terminate the reaction mechanism at a fixed size). The first

of these approaches is automated reaction mechanism

generation, as described and implemented by Broadbelt

and co-workers [42–45]. In this approach, the computer

automatically enumerates all possible reactions among the

current list of chemical species and estimates the thermo-

chemical properties of species and the rate parameters for

reactions using the same group additivity scheme and

reactivity rules as in the manually generated mechanism

described above. New chemical species generated by the

reactions are added, and the process is repeated. However,

this is not as simple as it first sounds. The exponential

growth in the number of possible isomers with increasing

cluster size means that, if all isomers and reactions are

included, the mechanism quickly becomes too large to solve

in any reactor model or even to store in computer memory.

Thus, strategies must be incorporated to automatically

include only the most important chemical species and

isomers, as well as criteria for terminating the mechanism

generation process. There are existing strategies for doing

this [45–47], and these are being adapted and improved to
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meet the unique challenges encountered in the silicon–

hydrogen system [48].

The second approach that we are using is kinetic Monte

Carlo simulation of the particle nucleation process [36,37].

In this method, rather than assembling a reaction mechan-

ism, we follow the evolution of a single cluster. For a given

cluster structure, the group additivity scheme and reactivity

rules are applied to generate all possible reactions that the

cluster can undergo and to estimate the rate of each reaction.

A reaction event is then selected at random, with the

selection probability for each event proportional to the rate

for that event. The cluster structure is then modified to

reflect the occurrence of the selected reaction, and the

elapsed time is incremented. This process is repeated until

some specified time is reached, or until the cluster grown to

some maximum number of silicon atoms that we consider.

Finally, the whole clustering simulation is repeated many

times. From these simulations, we can predict the

probability of a cluster of a given size growing to a larger

size or shrinking to a smaller size, at given reaction

conditions. For sizes larger than the critical nucleus size,

growth should be more probable than shrinkage. Conver-

sely, for particles smaller than the critical cluster size,

shrinkage should be more probable than growth. The rate at

which particles grow past the critical cluster size approxi-

mately gives the particle nucleation rate. Fig. 3 shows how,

for a particular set of conditions, the probability of cluster
Fig. 3. Probabilities of cluster growth or shrinkage vs. number of reaction steps in

(b) 9, (c) 11, or (d) 13 silicon atoms. In each case the solid line and triangles give th

probability that it has shrunk, and the diamonds and dashed line give the probability

is related to, but not directly proportional to, time. These results are for simulatio
growth or shrinkage changes with cluster size. For a cluster

containing seven silicon atoms, the probability of shrinkage

is much greater than the probability of growth. For nine

silicon atoms, the probabilities are about equal, with growth

slightly more probable. Starting from 11 or 13 atom clusters,

growth is much more probable than shrinkage. Thus, for

these particular conditions, which strongly favor particle

nucleation, the critical cluster size appears to be around

eight or nine silicon atoms. When the temperature is

decreased from 1200 to 1150 K, the critical cluster size

appears to stay near nine silicon atoms, but when the

temperature is further decreased to 1100 K, it jumps to 13

silicon atoms, and at 1050 K it is larger yet. These kinetic

Monte Carlo simulations appear to provide a promising, if

somewhat tedious, means of identifying the critical cluster

size for this kind of chemical nucleation process.

In developing and applying the automated reaction

mechanism generation and kinetic Monte Carlo schemes

described above, we encountered many cluster structures for

which the group additivity scheme did not perform as well

as it had for the smaller set of manually generated clusters.

This has inspired us to develop an improved group

additivity scheme. To this end, we have recently completed

high-level ab initio calculations on a set of 135 molecules

containing up to seven silicon atoms and fit new group

additivity parameters to it [49]. We have also extended the

group additivity scheme to silyl radical species and used
the kinetic Monte Carlo simulation starting from a cluster containing (a) 7,

e probability that the cluster has grown, the squares and dotted line give the

that its number of silicon atoms is unchanged. The number of reaction steps

ns at 1200 K and 1 atm starting from 90% H2 and 10% SiH4.
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density functional theory calculations to compute electron

affinities of silicon–hydrogen molecules [13,15]. This

allows the nucleation mechanism to be applied to plasma

processes as well as thermal decomposition of silane. Thus,

we continue to use computational quantum chemistry to

refine, extend, and improve these models, even though we

do not directly use it to compute species properties or

reaction rates in these huge reaction mechanisms.
4. Summary

We have provided examples from our own work of how

computational quantum chemistry can be used in develop-

ing gas phase reaction mechanisms for modeling of high

temperature materials processing. In the context of CVD of

silicon from dichlorosilane, CVD of alumina from AlCl3/

H2/CO2 mixtures, and particle nucleation from silane, this

detailed chemical kinetic modeling has given us insight into

gas phase reaction pathways that we would not likely have

gained by other means.
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