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The principal differences between conventional tight-binding methods and a nonconventional tight-binding
method proposed earlier by one of the authors �Z. M. Khakimov, Comput. Mater. Sci. 3, 95 �1994�� are
highlighted here. The latter has been optimized for simulation of the structure, cohesive energies, ionization
potentials, and electronic affinities of silicon clusters. A single tight-binding approximation has been used to
predict all of the above properties with accuracy comparable to state-of-the-art ab initio methods. This dem-
onstrates the potential of tight-binding methods as a quantitative, predictive tool, provided they are based on an
accurate total energy functional and exploit properly the individual properties of chemical elements, accounting
for both intra- and interatomic charge redistributions.
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I. INTRODUCTION

The tight-binding �TB� approach introduced by Slater and
Koster1 and developed by Harrison2 for the simplified esti-
mation of a variety of properties of solids has become a
popular and convenient tool for total energy calculations and
molecular dynamics simulations. It offers a reasonable com-
promise between classical interaction potentials and ab initio
electronic structure calculation methods, being rather close
in efficiency to the former due to strong simplifications in the
electronic structure calculations. In the last two decades
much attention has been paid to development of different TB
models, particularly for silicon,3–23 applying them for simu-
lations of the structure and stability of both defects in bulk
material and atomic clusters. In particular, density
functional-based TB �DFTB� �Ref. 15� was very helpful in
determining possible low-energy isomers of silicon
clusters,23 providing initial guess geometries for computa-
tionally expensive first-principles calculations. One can also
find successful applications of this TB model in chemistry
and biology.24 However, this model inherits disadvantages of
both the local density approximation �LDA� and conven-
tional TB methods that lead to overestimation of cohesive
energies and bond distances for silicon clusters, respectively.
Because of the ever-increasing importance of TB models for
complex systems and unknown structures, particularly for
the rich variety of possible nanostructures where the environ-
ment of the atoms is intermediate between the molecular and
bulk environments, the development of highly accurate and
transferable TB models of other types is of great importance.

Conventional TB total energy calculation models are
based on a total energy functional of the following form:3,9,22

Etot = Ẽrep + Eband − �Ẽ . �1�

Here, Eband is the so-called band structure energy, the sum of
energies of occupied electronic states, which can also be
written as

Eband = �
�,�

�
i,j

P�i,�jH�i,�j , �2�

where H�i,�j and P�i,�j are Hamiltonian and bond-order ma-
trix elements, � and � denote nuclei, and i and j denote
atomic orbitals �AO�. This term includes electron-electron
interaction energy �Eee� twice, so this extra inclusion must be
removed. As TB does not treat Eee explicitly �it is param-
etrized implicitly together with H�i,�j�, Chadi3 proposed
avoiding this difficulty by introducing a single repulsive en-
ergy term of the form

Ẽrep = Enn − Eee
inter, �3�

where Enn and Eee
inter are nuclear-nuclear and interatomic

electron-electron interaction energies, respectively. This term
is then approximated by a sum of simple analytical functions

of interatomic distances. Because Ẽrep involves complex
nonpairwise electron-electron interaction energies, it cannot
be represented reliably by pairwise functions. On the other
hand, the introduction of complex embedding functionals
that explicitly or implicitly depend on the number of chemi-
cal bonds �or neighboring atoms� did not lead to significant
improvement of these results, but did introduce new difficul-
ties associated with ambiguity in defining the number of

chemical bonds. In fact, none of the functional forms for Ẽrep
and H�i,�j proposed in the literature has been found19,22 to be
clearly superior to others.

Apart from the above, conventional TB models strongly

underestimate the role of the last term in Eq. �1�. �Ẽ is either
the intraatomic part �Eee

intra� of Eee or the sum of the energies
of occupied AO9 of isolated atoms, provided that total energy
is measured relative to that of isolated atoms and charge
redistribution among both AO of the same atom and different
atoms is neglected. However, even in this approximation de-

PHYSICAL REVIEW B 72, 115335 �2005�

1098-0121/2005/72�11�/115335�11�/$23.00 ©2005 The American Physical Society115335-1

http://dx.doi.org/10.1103/PhysRevB.72.115335


velopers of TB have often used �Ẽ arbitrarily, in particular,
as an ad hoc total energy corrector term8,12 or sum of AO
energies with values that differ significantly not only from
exact results for the silicon atom, but also in different TB
parametrizations;6,11,19 in fact these values are not represen-
tative of Si.

Development of conventional TB total energy calculation
models has been mostly driven by the desire to have the
simplest electronic structure-based computational approach
possible, while accuracy and transferability problems have
been addressed by increasing the complexity of functional
forms for terms in Eq. �1�, as well as by increasing the num-
ber of fitting parameters and reference systems. For this ap-
proach to succeed, the modifications of the TB functionals
must incorporate more of the chemistry and physics of the
system in question. Particular attention must be paid to self-
consistent charge calculations that naturally account for dif-
ferent atomic environments that occur in realistic systems,
including nanoscale systems. The tight-binding model14 pre-
viously developed by one of us is an attempt to do this. It is
based on a different total energy functional and relies on
individual properties of chemical elements for determining
its fundamental parameters. This model, which we will call
the nonconventional tight-binding �NTB� model, even with a
simple parametrization, was able to treat correctly25 such
properties of defects in silicon as the negative-U property of
Si vacancies and the electron-enhanced low energy migration
of Si self-interstitials. It also predicted the electrical levels of
a number of impurities without using Koopmans’ theorem.
These are not applications where conventional TB can typi-
cally succeed. In this paper we present the development of
NTB for calculating the geometry, cohesive energy, ioniza-
tion potentials �IP�, and electronic affinities �EA� of atomic
clusters and apply it to simultaneously predict all of these
properties accurately for small and medium-size silicon
clusters.

NTB14 is based on the following total energy functional:

Etot = Erep + Ebond + �E . �4�

Here, Ebond includes terms only with ��� from Eq. �2�, so
that it is a pure bond energy, containing the interatomic part
of the electronic energy only once �in the literature one can
find improper definitions of bond energy as twice this; see
for instance, Ref. 16�. �E is the sum of changes in total
energy of individual atoms with respect to isolated atoms,
which can be parametrized by a modified Slater-Zerner
formula,14 without explicitly addressing Eee

intra, and by using
rich and accurate spectroscopic data on atoms and ions. The
repulsive term has quite simple physical content,

Erep = Enn − Eee
inter + Ebond � Enn + Ene

inter, �5�

as it does not include more the complex Eee
inter term; this term

is canceled out in the difference Ebond−Eee
inter,14 leaving the

much simpler Ene
inter term, which is one-half of the attraction

energy of electrons localized around one nucleus to other
nuclei. �To contrast the difference between the two repulsive
terms, Eqs. �3� and �5�, the two-center electron kinetic en-

ergy term is not shown in Eq. �5�; the approximate sign
reflects this.�

Note that Eq. �1� can also be written in the form

Etot = Ẽrep + 2Ebond + �E , �1��

which is used in the bond-order form of TB,16 but again with
less attention paid to the last term for efficiency reasons,
imposing a local charge neutrality requirement. Comparing
Eqs. �1�� and �4�, one finds that Erep includes shorter-range

interactions than Ẽrep. Erep� Ẽrep /2 near typical bond dis-

tances and Erep� Ẽrep at large distances �this is also a result
of the functional form of Erep; see the next section�, provided
that Ebond and �E have the same values in both equations.
Because of this and its simple physical content, Erep can be
more reliably represented by a sum of pairwise functions of

interatomic distances than Ẽrep, which is important for both
efficiency and accuracy of calculations. This also immedi-

ately suggests that the long-range character of Ẽrep is perhaps
the main reason for systematic overestimation of bond dis-
tances in silicon clusters by conventional TB. Thus, NTB
should be more suitable for parametrization and minimiza-
tion of errors of semiempirical total energy calculations than
conventional TB.

The remainder of this paper is organized as follows. The
second section describes NTB �Ref. 14� with modifications
made in this work and its use in molecular dynamics simu-
lations, as well as other computational details. The third sec-
tion presents a NTB parametrization for silicon using experi-
mental and ab initio data for small silicon clusters consisting
of up to seven atoms. The fourth section contains results of
our calculations for silicon clusters Sin with 7�n	20.
Comparison of our results with those of accurate ab initio
and other TB calculations are made in both the third and
fourth sections. The last section summarizes the main con-
clusions of the work.

II. NONCONVENTIONAL TIGHT-BINDING METHOD

The total energy functional �4� of NTB14 is rewritten in
more detail as Eq. �6�,

Etot = �
�

�
���

Z�
scrZ�

scr

R��

+ �
�

�
���

Q�Q�

R��

+ �
�

�
���

�
i

�
j

P�i,�jH�i,�j + �
�

�E� − E�
0 � , �6�

where R�� is the internuclear distance,

Z�
scr = Z�

scr�R��,�N�i
0 	�

= Z� − �
i

N�i
0 �1 − a�i exp�− 
�iR��/R�i

0 �� , �7�

Q� = Z�
scr�R��,�N�i

0 	� − Z�
scr�R��,�N�i	� , �8�

are screened nuclear and nonpoint ionic charges, respec-
tively; Z� is the charge of the �th nucleus �or nucleus plus
core electrons�; R�i

0 =n�i /��i
0 is the most probable distance
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between the ith electron and the corresponding �th nucleus,
n�i and ��i

0 are the principal quantum number and Slater
exponent of ith AO centered at the �th nucleus; E�

0 and E�

are the total energies of individual atoms in noninteracting
and interacting systems characterized by sets of occupancy
numbers �N�i

0 
 P�i,�i
0 	 and �N�i
 P�i,�i	 and energies �E�i

0 	
and �E�i	 of valence AOs, respectively. Note the repulsive
term is defined14 as repulsion of screened nuclear charges of
neutral atoms in ground states, while accounting for effect of
intraatomic and interatomic charge redistributions is del-
egated to the ion-ion interaction term for the sake of conve-
nience. Therefore, the second term in Eq. �6� may be nonzero
even for a neutral atom, say, due to hybridization of valence
AOs; for this reason this term can be called a “generalized”
ion-ion interaction energy term. In formulas, hereafter, 
, �,
, a, b, d, e are fitting parameters, distances are in bohr,
energies are in hartrees, and charges are in the electron
charge unit.

AOs are presumed to be orthogonal and a matrix equation
of the form

�
�j

�H�i,�j − ���i,�j�C�j = 0 �9�

is solved self-consistently to obtain electronic spectra ��k	
and AO expansion coefficients �C�j�k�	 of molecular orbitals
�MO� of the system. Self-consistent calculations are per-
formed by iterative recalculation of diagonal elements of the
Hamiltonian matrix elements using the dependence of the
bond-order matrix

P�i,�j = �
k

NkC�i�k�C�j�k� �10�

and AO occupancy numbers N�i
 P�i,�i on the AO expan-
sion coefficients C�j�k�. Here k denotes a MO and Nk denotes
the occupancy number of the kth MO. In conventional TB,
the Nk are all equal to 2 �except the highest MO of a system
with an odd number of electrons�. However, NTB is aimed at
treating charged and excited states etc., where several highest
occupied MOs may have occupations less than 2.

Diagonal and off-diagonal Hamiltonian matrix elements
of NTB are

H�i,�j = �E�i − �
���

Q�/R����ij , �11�

and

H�i,�j = ± 1
2h�ih�jAij�R� ���, � � � , �12�

respectively, where

h�i = b�i��i
0 exp�− ��iR��/2R̄�i

0 �F�i, �13�

F�i = �1 + exp�− �i�R�� − d�i��	−1, �14�

R̄�i
0 = �n�i+1/2� /��i

0 is the mean distance between electron

and corresponding nucleus, and Aij�R� ��� are angular func-
tions tabulated by Slater and Koster.1,2 In Eq. �12� the nega-
tive sign is taken for ss and pp-� matrix elements, while the
positive sign is taken for sp and pp-� matrix elements. In the

general case, matrix elements �12� between p-AOs result
from mixing of pp-� and pp-� matrix elements, which pre-
serves invariance of the results with respect to rotation of the
coordinate system.

E�i and E� are defined by formulas14

E�i = E�i��N�j	� = −
1

2Z�i
eff + �

j

q�jSij

+ ��i
corr�2

/�n�in�i
ef f�q��� , �15�

E� =
1

2�
i

N�i�E�i��N�j	� + E�i�1�� , �16�

where E�i�1� represents the energy of a valence s- or p-AO
containing one electron, with other p- or s-AO empty,

Z�i
ef f = ��i

0 n�i
ef f�0�, n�i

ef f�0� = − 2E�i
0 /���i

0 �2n�i, �17�

Sij = 1 − exp�− R̄�i
0 /R�j

0 � , �18�

n�i
ef f�q� = n�i

ef f�0� + �n�i − n�i
ef f�0��q�/�Z� − 1�, � � 1,

�19�

��s
corr = �e1q�s + �e2q�p + �e3�q��2, �20a�

��p
corr = �e4q�s + �e5q�p + �e6�q��2, �20b�

q�i = N�i
0 − N�i, q� = �

i

q�i.

Note that this modification of the well-known Slater-
Zerner formula consists of using a product of a quantum
number and an effective quantum number in Eq. �15� instead
of the square of the latter, and accepting linear dependence
�Eq. �19�� of the latter on the charge state of the atoms, so
that it will be equal to the corresponding quantum numbers
of hydrogen for the case of an ion with one electron. As
shown previously,14 the universal formula �18� for screening
constants describes the energies of AOs of elements for their
several charge states, as well as corresponding ionization po-
tentials and electronic affinities reasonably well. Here we
introduce fitting parameters through �20� for accurate repro-
duction of energies of several electronic transitions in atoms
and ions. In fact, the first two fitting parameters in each for-
mula �20� correct universal screening constants �18� and per-
haps reflect also the accuracy of early ab initio data26 on the
energy of AO and Slater exponents, optimized by minimiza-
tion of total energy of atoms in a minimal basis set. These
data are given for almost all of the elements and are the basis
for NTB.

The main differences between the present version of NTB
and the original one14 are a new definition �8� for Q, and the
addition of the Fermi-functionlike factor �14� for off-
diagonal matrix elements, which provides extra flexibility for
them and allows them to decay faster with increasing inter-
atomic distance. The present version also incorporates more
fitting parameters, taking advantage of a large database of
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structural and energetic data on small silicon clusters to de-
termine an optimal set of parameters. Thus, the number of
fitting parameters increased from 3 in the original NTB14 to
about 20 in the present version �see the next section�.

Note, however, the special form of the NTB formulae,
obtained as a generalization14 of the hydrogen molecule case
and based on individual characteristics of chemical elements
�energies and Slater exponents of AOs� does not initially
require any fitting parameters. Except for the new parameters
in Eq. �14�, they are “normalized” such that they can be set
equal to 1 �or 0 in Eq. �20�� and meaningful calculations can
be performed even for heteronuclear systems. Of course, this
feature of NTB, which is absent in other semiempirical
methods, must be used with care and additional research
must be done to improve it.

NTB is computationally more expensive than conven-
tional TB because it incorporates self-consistent calculations.
For converging these calculations, dynamical damping27 and
level shift28 schemes are used. We implemented a very tight
convergence test for clusters considered here, terminating ev-
ery single point self-consistent calculation only when
changes of atomic occupancy numbers in sequential itera-
tions were less than 10−9. Apart from this, forces are calcu-
lated numerically, because analytical derivatives cannot be
obtained for the last term in �6� that only implicitly depends
on the arrangement of atoms. However, numerical deriva-
tives are beneficial to some extent when one implements the
NTB within a molecular dynamics approach29 using an alter-
native algorithm30 for integration of equations of motion. In
this third-order algorithm, which was shown to be more ac-
curate than high-order predictor-corrector algorithms,30,31

positions, R, and velocities, v, of particles are advanced us-
ing the following equations:

Rt+�t = Rt + vt�t +
1

12
�7at − at−�t��t2� � 1 −

1

12

dat

dRt
�t2�−1

,

�21�

vt+�t = vt +
1

12
�8at + 5at+�t − at−�t��t , �22�

where at is the acceleration of a particle with mass m at time
t, and dai /dRt is its derivative with respect to the particle’s
position R. When forces �accelerations� are calculated nu-
merically, their derivatives can be simultaneously obtained
using the same two additional total energy values calculated
at positions Rt+�R and Rt−�R ��R is a small shift�,

at = −
1

m

E�Rt + �R� − E�Rt − �R�
2�R

, �23�

dat

dt
= −

1

m

E�Rt + �R� + E�Rt − �R� − 2E�Rt�
�R2 . �24�

Note that in the NTB parametrization stage there is no need
for molecular dynamics simulations because of the high
symmetry of small compact clusters and the small number of
geometric parameters to be optimized �see the next section�.
Therefore, a conjugate gradient technique is used for geom-
etry optimizations needed in determining the NTB param-
eters.

III. PARAMETRIZATION OF NTB FOR SILICON USING
DATABASE ON SMALL CLUSTERS

Charge and electronic state dependent energies of AOs,
which define diagonal matrix elements, Eq. �11�, and the last
term of the NTB total energy functional, Eq. �6�, were pa-
rametrized by fitting six parameters in �20� to the energies of
following lowest electronic transitions between highest spin
states of the silicon atom and ions:32 s2p2→s2p3

��−1.390 eV�, s2p2→s2p1�8.152 eV�, s2p1

→s2p0�16.346 eV�, s2p2→s1p2�13.460 eV�, s2p2

→s1p3�4.132 eV�, and s2p1→s1p2�5.310 eV�, reproducing
these energies with accuracy of better than 0.001 eV. The
AO energies �−14.9712 eV and −7.7601 eV for 3s and 3p
AOs, respectively� and Slater exponents �1.6344 and 1.4284
for 3s and 3p AOs, respectively� for neutral silicon atom
were from Ref. 26. Note that other transitions, such as
s2p2�3P0�→s1p3�3D1� etc., allow one to account for a multi-
plicity of electronic states in NTB, which will be the subject
of future work.

The repulsive and ion-ion terms together include four pa-
rameters �two parameters for each of s and p-type AOs�. The
NTB matrix elements include 16 parameters–4 parameters
for each type �ss ,sp , pp-� , pp-�� of matrix elements. A total
of 20 parameters were fitted to the following data on small
silicon clusters, Sin, with 2	n	7: �i� experimental33 bond
distance, binding energy, vibrational frequency, adiabatic
electronic affinity34 �EA�, and ionization potential35 �IP� of
Si2, as well as bond distances in the cation Si2

+ and anion
Si2

− computed at the MP2�full�/6-311G�3df ,2p� level of
theory: 2.258 Å and 2.118 Å, respectively; �ii�
experimental36 cohesive energies of Sin with 3	n	7, ex-
cepting Si5, for which the G2 theory result37 was used; �iii�
geometry of Sin with 3	n	7 obtained at the MP2/6-
31G* level of theory38 and given by two geometric param-
eters in each case: by two equal bond distances and angle
between them for Si3, by side length and short diagonal of
rhombus for Si4, by distance between two apex atoms and
side of base polygons of trigonal �D3h�, tetragonal �D4h�, and
pentagonal �D5h� bipyramids for Si5, Si6, and Si7 �Fig. 1�,
respectively. In addition, to maintain the correct ground state
symmetry for neutral Si2,38 we forced the highest occupied
level to be �-type and half filled. Table I presents values of
our NTB parameters obtained using least-squares fitting.

Tables II and III illustrate the accuracy of the parametri-
zation of the above properties of small silicon clusters with
2	n	7 and of the prediction of IP and EA for 3	n	7.
Along with the rhombus geometry �D2h� for Si4, trigonal

FIG. 1. �Color online� Equilibrium geometries of small silicon
clusters �Ref. 38� fitted by NTB. Geometric parameters for these
structures are given in Table III.
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�D3h�, tetragonal �D4h�, and pentagonal �D5h� bipyramids
have been found to be the lowest energy isomers �Fig. 1� for
Si5, Si6, and Si7, respectively, in agreement with experiment
and first-principles calculations. For Si4, the tetrahedral ge-
ometry, with Td point group and four equal bond distances of
2.395 Å, was predicted to be 0.606 eV higher in energy than
the rhombus geometry. The results of the NTB method
�NTBM� for cohesive energies, IP and EA, are comparable in
accuracy to the results of G2 theory,37 diffusion Monte Carlo
�DMC�,36 and density functional theory �DFT� with the gen-
eralized gradient approximation �GGA�,35 almost exactly co-
inciding with experimental data for electronic affinities �ex-
cept Si7�34 and cohesive energies.36 Note that our cohesive
energies are larger than experimental ones by approximately
the per atom zero-point energies calculated at MP2/6
-31G�d� level.39,40

The calculated bond distances deserve particular atten-
tion. Ab initio and conventional tight-binding calculations
are in reasonably agreement for the shortest bond distances.
However, they deviate noticeably in predicting larger bond
distances. Conventional TB methods, including DFTB �Ref.
15� and TB,12 which account for the nonorthogonality of AO,
have a clear tendency to overestimate the shortest bond dis-
tances as well. The NTBM results, being in excellent agree-
ment with ab initio results, overall tend to slightly underes-
timate �by 0.01–0.04 Å� bond lengths. The largest deviation,
however, is observed for Si3; the obtained bond distance and
angle for Si3 are 2.256 Å and 64.9°, respectively, compared
to ab initio results at the QCISD�T�/6-31G* level of theory:38

2.191 Å and 79.6°, respectively. There is perhaps another
local minimum in the multidimensional space of the NTBM
parameters where this deficiency is absent �or can be re-
moved by decreasing the accuracy of other results to some
extent�. However, we have not yet located such a parameter
combination and overall we are satisfied with the results ob-
tained using the present set of parameters.

The fitted NTB matrix elements and, consequently, Si
-Si potential �Figs. 2 and 3� appeared to be short range,
falling rapidly to zero for interatomic distances larger than
that corresponding to the second-neighbor distance in bulk
silicon. Therefore, a 64-atom supercell model of bulk silicon
is quite reasonable for use with this NTB parametrization.

We calculated the cohesive energy, lattice constant, and band
gap of Si using this model and one, k=0, point of the recip-
rocal lattice, to check transferability of our NTB parameters
for the system with an infinite number of atoms. The pre-
dicted results are given in Table IV with a comparison with
those of conventional TB �Refs. 11 and 19� and experiment.
As seen from table, our results are in reasonably good agree-
ment with experimental data, but for the lattice constant we
obtained slightly worse results than those of conventional
TB.11,19 This is partially because, unlike conventional TB
methods, the present method did not include any bulk prop-
erties in the parametrization. This also reflects the small un-
derestimation of bond lengths shown by the present NTB
parametrization, which is reflected also in the bulk lattice
parameter, and consequently, in the other two parameters.
The cohesive energy and band gap calculated at the experi-
mental lattice parameter are given also in Table IV, which
demonstrates the possibility of achieving excellent agree-
ment with all three parameters of bulk silicon using the NTB
method.

FIG. 2. Pair potential for Si and its NTB components. The sharp
change in atom and bond energies at an interatomic distance around
2.15 Å is due to the alteration of order of � and � MOs.

TABLE I. Fitted values of NTB parameters for silicon clusters �given with more precision than needed to
avoid truncation errors�.

Repulsive and ion-ion
energies as 
s ap 
p

4.718871 2.224932 17.115649 2.289726

NTB matrix elements b � /2  �Bohr−1� d �Bohr�

Hss 1.346041 0.708266 4.021170 5.746866

Hsp 1.148782 0.741648 2.621936 7.249720

Hpp� 0.526912 0.392825 2.621936 7.249720

Hpp� 0.350851 0.303682 2.621936 7.249720

Energy of atoms �e1 �e2 �e3 �e4 �e5 �e6

0.091419 0.064977 −0.011790 0.042711 0.034672 −0.032179
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IV. APPLICATION OF NTB FOR MEDIUM-SIZE SILICON
CLUSTERS

Medium-size silicon clusters Sin in the range of 8	n
	20 have been already studied in detail by first-principles
calculations �Refs. 35–42 and references therein�, and avail-
able experimental data on ionic mobility and spectroscopic
energies41,42 of Si clusters indirectly support the geometries
predicted by these calculations. Therefore, the results of
these calculations can be used for checking transferability
and reliability of NTB for larger silicon clusters. On the
other hand, there are still a great variety of unexplored iso-
mers of silicon clusters that may also be consistent with the
experimental data, and the experiments themselves may also
be subject to correction. An intriguing finding from the first-
principles calculations is that the lowest energy geometries
for n�11 differ greatly between clusters that differ in size
by only one atom, although they are mostly based on the

FIG. 3. NTB matrix elements for Si versus interatomic
distance.

TABLE II. Cohesive and spectroscopic energies of small silicon clusters.

Method and reference No. Si2 Si3 Si4 Si5 Si6 Si7

Cohesive energy per atom �eV�
MP4/6-31G* �Ref. 38� 1.30 2.11 2.64 2.75 3.00 3.17

MP2/6-31G�d� �Ref. 39� 1.29 2.15 2.74 3.18 3.31

CCSD�T� /6-31G�d� �Ref. 40� 1.32 2.11 2.61 2.93 3.05

G2 theory �Ref. 37� 1.60 2.47 2.99 3.23 3.45d

LDA �Ref. 35� 1.97 2.93 3.51 3.79 4.00 4.15

GGA �Ref. 35� 1.76 2.54 3.04 3.27 3.44 3.56

DMC �Ref. 36� 1.58 2.37 2.86 3.26 3.43

DFTB �Ref. 18� 1.936 2.983 3.488 3.766 3.925 4.063

NTB �this work� 1.62 2.51 3.04 3.22 3.45 3.62

Nonorthogonal TB �Ref. 12� 1.65 2.66 3.33 3.43 3.63 3.75

TB �Ref. 19� 1.70 2.40 3.01 3.22

TB �Ref. 11� 1.60 2.51 3.21 3.16

Experiment �Ref. 36� 1.61 2.45 3.01 3.42 3.60

Adiabatic electronic affinity �eV�
MRSDCI/ �4s3p1d�d 2.21 1.92

G2 theory �Ref. 37� 2.25 2.24 2.06 2.36

NTB, this work 2.18 2.35 2.12 2.62 2.39 2.56

Experiment �Ref. 34� 2.18 2.29 2.13 2.59 1.85

Ionization potential �eV�
CCSD�T� /6-31G�d� �Ref. 40� /7.87 /7.88 /8.09 /8.02 /7.84 /7.86

LDA �Ref. 35� 7.94/7.94a 8.18/8.27 7.87/8.17 8.25/8.32 7.85/7.99 8.11/8.14

GGA �Ref. 35� 7.86/7.87 8.11/8.20 7.74/8.06 8.12/8.18 7.76/7.89 8.02/8.04

NTB �this work� 7.94/7.95 7.88/7.93 8.02/8.13 8.66/8.73 8.20/8.28 8.07/8.11

TB �Ref. 44�b /8.09 /8.11 /7.70 /8.07 /8.27 /7.73

TB �Ref. 45�b /8.24 /8.49 /7.95 /8.53 /8.42 /8.08

Experiment �Ref. 46� 7.94 7.97–8.49c 7.97–8.49 7.97–8.49 7.97–8.49 �7.9

aTwo values separated by slash are adiabatic and vertical IP, respectively.
bThese TB are not designed for total energy calculations; they use geometries from other calculations and
estimate IP using Koopmans’ theorem.
cReference 35.
dReference 43.
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tricapped trigonal prism unit.42 The actual growth pattern of
clusters by sequential addition of single Si atoms or small Si
clusters will not necessarily include only the lowest energy
isomers, because high barriers or requirements for large
atomic displacements may prevent rearrangement of each
lowest energy isomer to the lowest-energy isomer of larger
size, if these isomers are not structurally similar. Thus, from
a slightly more practical point of view, regular �smooth�
growth patterns of clusters are of interest.

Therefore, we decided to consider also a regular growth
pattern initiated by Si7 �Fig. 1�, a pentagonal bipyramid. This
growth pattern provides at least four bonds for each atom in
the cluster, with the exception of Si8, Si14, and Si20, each of
which has one three-coordinated atom. This pattern can be
periodically repeated indefinitely, using a capped pentagon
motif. One can always place a silicon atom above or below

the pentagon of Si7 in such a way �Fig. 4, Si8� that it can find
three neighbors �two from the pentagon and one of the two
capping atoms� at characteristic shortest interatomic dis-
tances �Table III�. If one places a second atom in the same
way above three atoms of Si7, such that it is also adjacent to
the first silicon atom �Fig. 4, Si9�, the second and first atoms
become four-coordinated atoms again at the same character-
istic distances from each other. The same is true when the
next two atoms are added. When one adds a fifth atom, it
forms an additional bond with the first atom added, complet-
ing another pentagon �Fig. 4, Si12�. Capping this pentagon
with a sixth atom, gives an icosahedral cluster �Fig. 4, Si13�,
increasing the number of bonds by one for each atom in the
pentagon. Such a construction of overcoordinated clusters
can be continued infinitely in one direction �Fig. 4 depicts
such clusters only up to Si19�. In this respect the Si7 cluster is

TABLE III. Characteristic bond distances �in Å� for small silicon clusters calculated by different methods.
For Si5, Si6, and Si7, R�1–2� is the distance between two apex atoms �Fig. 1�, R�1–3� is the distance between
an apex atom and an atom on the base of the bipyramid, and R�3–4� is the distance between neighboring
atoms in the base of the bipyramid. For Si4 the first and second values are the side and short diagonal of
rhombus, respectively.

Method and
reference No.

Characteristic
bond distances Si3 �C2v� Si4 �D2h� Si5 �D3h� Si6 �D4h� Si7 �D5h�

MP2/6-31G* �Refs. 38 and 34� R�1–2� 2.191a 2.312 3.057 2.694 2.512

R�1–3� 2.806a 2.413 2.296 2.356 2.457

R�3–4� 2.967 2.734 2.483

CASSCF/ �3s3p1d�
�Refs. 43�

R�1–2� 2.987 2.839

R�1–3� 2.346 2.403

R�3–4� 3.133 2.742

NTBM �this work� R�1–2� 2.256 2.299 3.047 2.683 2.502

R�1–3� 2.420 2.410 2.298 2.348 2.423

R�3–4� 2.980 2.724 2.439

Nonorthogonal TB
�Refs. 12�

R�1–2� 2.239 2.336 3.253 2.799

R�1–3� 2.800 2.516 2.356 2.527

R�3–4� 2.845 2.474

TB �Refs. 19� R�1–2� 2.28 2.34 2.94

R�1–3� 2.71 2.54 2.36

R�3–4� 3.20

DFTB �Refs. 15� R�1–2� 2.221 2.313 3.119 2.858

R�1–3� 2.972 2.659 2.331 2.658

R�3–4� 2.959 2.634

aResults at the QCISD�T� /6-31G* level of theory.

TABLE IV. Bulk silicon properties calculated by different tight-binding models as compared to
experiment.

Property
NTB

�this work�
TB

�Ref. 11�
TB

�Ref. 19� Experiment

Lattice constant �Å� 5.329 5.44 5.429 5.429 �Ref. 47�
Cohesive energy
�eV/atom�

4.582 �4.56�a 4.66 4.62 4.63 �Ref. 48�

Band gap �eV� 0.87 �1.06�a 0.78 0.829 1.17 �Ref. 49�
aValues in parentheses calculated at experimental lattice constant.
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unique; the shape and aspect ratio of other small compact
clusters cannot provide this possibility.

The geometry of the above clusters was optimized by mo-
lecular dynamics simulation with forces computed numeri-
cally using total energy calculations as described above. In
addition, we considered the lowest energy isomers suggested
in the literature for n�7, reoptimizing the geometries of
those clusters obtained at the MP2/6-31G�d� level of
theory.39,40 The resulting geometries are shown in Figs. 4 and
5, respectively. In most cases, upon reoptimization using
NTB, the MP2/6-31G�d� geometries preserved their original
shape and topology. For Si11 the tricapped tetragonal
antriprism geometry was subjected to some distortion, while
for Si15 the tricapped trigonal prism unit was transformed
completely into capped tetragonal antriprism �see lower part
of Figure 5, Si15�. We had some convergence difficulties in
the case of Si19, but eventually this cluster stabilized with a
more spherical shape than that predicted by ab initio calcu-
lations �Fig. 6�.

Figure 7 depicts the cohesive energy per atom �EPA� for
clusters from both growth patterns, calculated by the present
NTB method, as compared to ab initio and DFTB calcula-
tions. Our calculations, which are in the best agreement with
experiment �see also Table II� for small clusters �n	7�, re-
produce quite well the MP2/6-31G�d� EPA,39,40 scaled by us
as in Ref. 38 for larger clusters. Note that this scaling has a
tendency to overestimate EPA of clusters with n�3. Our

results for the MP2/6-31G�d� reoptimized geometries cor-
rect �curve 6�� to some extent these scaling errors, being
always lower than the scaled values. Note our results’
smooth peculiarities of EPA in the range 6�n�12, and
DFTB does so as well �curve 4��. In fact, one can see this
tendency in ab initio results with increasing levels of theory
�compare curves 4 and 5, curves 2 and 3� for large clusters
too.

The EPA for clusters from the regular growth pattern was
larger than for clusters from Refs. 39 and 40, as shown in
Fig. 7. Exceptions were Si11 and Si19. However, the latter
more nearly belongs to the family of clusters from the regu-
lar growth pattern, due to its drastic shape transformation
and change of bond topology �Fig. 6� upon reoptimization
with NTB. Examination of the differences in total energies
for the two growth patterns, as well as the NTB component
terms �Fig. 8�, helps to explain this. First of all, from Fig. 8
one can see clear anticorrelation between differences of bond
energies and atom energies, as well as between their differ-
ence and the difference of repulsive energies. This has a
simple explanation: an increase in coordination number �or
number of bonds� and decrease in interatomic distances
�chemical bonds� leads to increases in both repulsive energy
and the energy of individual atoms, promoting them to ex-
cited states �charge transfer from s- to p-AO increases�.
Bond energy also increases with increasing coordination
number and decreasing interatomic distances. As seen in Fig.
8, the component energy terms are consistently larger for

FIG. 7. Cohesive energy per atom for Si clusters calculated by
different methods. 1—scaled MP4/6-31G* �Ref. 38�; 2 and
2�—nonscaled and scaled �by us� MP2/6-31G�d� �Refs. 39 and
40�; 3—CCSD�T� /6-31G�d� �Refs. 39 and 40�; 4 and 4�—LDA
�Ref. 35� and DFTB �Ref. 18�, respectively; 5—GGA �Ref. 35�; 6
and 6�—NTB for the regular growth pattern and for reoptimized
geometries of MP2/6-31G�d� calculations �Refs. 39 and 40�, re-
spectively. The squares are experimental values �Ref. 36�.

FIG. 4. �Color online� Optimized geometries of clusters from
the regular growth pattern suggested in this work.

FIG. 5. �Color online� Reoptimized geometries of clusters from
Refs. 39 and 40; for Si19, see Fig. 6.

FIG. 6. �Color online� Geometry of Si19 from Ref. 40 before �on
the left� and after �on the right� reoptimization by NTB.
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clusters from Refs. 39 and 40 with the minor exceptions of
one term each for Si18 and Si19. However, the resulting total
energy differences favor the clusters from the regular growth
pattern. This seems to result from the existence of more short
bonds in the clusters based on the ab initio calculations com-
pared to clusters from the regular growth pattern. According
to the NTB calculations, the existence of these shorter bonds
results in a greater increase in the atom energies and repul-
sive energies than lowering of the bond energy, with the net
result that the structures from the smooth growth pattern are
predicted to be more stable. Bonds shorter than 2.30 Å are
common for both the initial and reoptimized clusters from
Ref. 40, while for clusters from the regular pattern such
bonds are only found between internal atoms in clusters Si19
and Si20. In addition, reoptimization of the cluster geometries
from Ref. 40 using NTBM leads to decreases in bond dis-
tances of up to 0.12 Å for bonds with lengths of up to 2.60 Å
�excluding Si19�. This is consistent with the general trend
toward prediction of shorter bond lengths by NTB compared
to MP2/6-31G�d�. Whether this may stabilize clusters from
the regular growth pattern compared to those from the pat-
tern established by ab initio calculations is not clear. It is
possible that shorter bond distances, predicted by NTB, may
mimic ab initio calculations with larger basis sets, which are
not yet available for clusters of this size. On the other hand,
underprediction of bond lengths may simply reflect remain-
ing deficiencies in the present parametrization of NTB.

Figure 9 compares the vertical IP calculated by NTB to
results of ab initio calculations and experiment. As seen
there, our results for both growth patterns are in reasonable
agreement with the latter, reflecting the general tendency of
IP to decrease with increasing cluster size, as well as some
peaks of IP for large clusters. Though these peaks are absent
in the regular growth pattern case, the remaining results for
this pattern are in reasonable quantitative agreement with
experiment. Overall, the IP for reoptimized clusters from
Refs. 39 and 40, though mostly overestimated by NTB, seem
to be in better agreement with experiment with respect to the
qualitative peculiarities of IP changes with cluster size, com-
pared to clusters from the regular growth pattern. Note that

overall underestimation of the vertical IP of silicon clusters is
characteristic of ab initio calculations. All this, of course,
indicates not only deficiencies of the current implementation
of theories and possibly missed ground state geometries but,
perhaps, the necessity for more precise experimental identi-
fication and characterization of silicon clusters.

Figure 10 presents vertical electron detachment energies
�VDE�, calculated by NTB and GGA,42 as compared to the
experimental values.42 As seen there, our results for reopti-
mized clusters from Refs. 39 and 40 reproduce the experi-
mental tendency of increase in VDE with increasing cluster
size quite well. However, peculiarities for clusters with 8, 9,
and 16 atoms are not reproduced. Overall, the NTB results
overestimate the VDE for large clusters, though deviation of
these results from the experiment is frequently of the same
order as that of GGA results. The results for clusters from the
regular growth pattern deviate substantially from experimen-
tal data, mostly underestimating the VDE for large clusters.

Thus, our results on IP and VDE as a whole seem to favor
the growth pattern established by ab initio calculations as
compared to the regular growth pattern. However, the oppo-
site is true based on predictions of energy per atom. This
may reflect remaining deficiencies of the present parametri-
zation of NTB, the improvement of which will be the subject

FIG. 8. Differences in total energy per atom and in the NTB
component terms between clusters from the regular growth pattern
and reoptimized clusters from Refs. 39 and 40. The values for the
former are subtracted from the corresponding values for the latter.
Results for the ion-ion term, which are negligible on the scale of
this plot, are not shown.

FIG. 9. Vertical IP of Si clusters calculated by different meth-
ods: stars—GGA �Ref. 35�; circles—CCSD�T� /6-31G�d� �Refs. 39
and 40�; filled and open triangles—NTB for regular growth pattern
and for reoptimized clusters from Refs. 39 and 40, respectively.
When both triangles coincide, only filled triangles are seen. Lines—
experimental lower and upper limits for IP �Refs. 46 and 35�.

FIG. 10. Vertical electron detachment energy of Si clusters:
circles—GGA �Ref. 42�; filled and open triangles—NTB for regular
growth pattern and for reoptimized clusters from Refs. 39 and 40,
respectively; when both triangles coincide, only filled triangles are
seen. Lines—the experimental values �Ref. 42�. Experimental and
GGA values reproduced from Fig. 3 in Ref. 42.

NONCONVENTIONAL TIGHT-BINDING METHOD FOR… PHYSICAL REVIEW B 72, 115335 �2005�

115335-9



of future work. In practice, it is not only the electronic en-
ergy of clusters, considered here, that determines the ob-
served cluster structures, but also thermal energy, entropy,
and the kinetic accessibility of the different structures. The
predicted energy differences between the two growth pat-
terns are small, and therefore these other factors could be
particularly important.

V. CONCLUSIONS

In summary, the principal differences between conven-
tional tight-binding methods and the nonconventional tight-
binding method14 have been highlighted and the latter has
been developed and parametrized for simulation of the struc-
tures, cohesive energies, ionization potentials, and electron
affinities of silicon clusters. All of the above properties have
been described with accuracy comparable to state-of-the-art
ab initio methods using a single TB model. Conventional TB
models have not been able to do this mainly because of �i�
underestimation of individual properties of chemical ele-
ments, �ii� underestimation of the role of self-consistent cal-
culations of intra- and interatomic charge redistributions,
which naturally account for different atomic environments
without introduction of ad hoc parameters, and �iii� using an
inconvenient total energy functional �1� with a repulsive term
of complex and rather long-range character that is respon-
sible, in particular, for systematic and mostly strong overes-
timation of bond distances by conventional TB.

NTB is based on a semiempirical total energy functional
with four easily interpretable energy terms that are initially
defined in terms of individual characteristics of chemical el-
ements, and, consequently, are available for all elements of
the Periodic Table. Thus, NTB is in fact a TB method with

broad possibilities for systematic improvement in the accu-
racy of the method based on understanding of the chemistry
and physics of each element. Significant improvement of
NTB likely can be achieved by further increasing the accu-
racy of, first of all, the atom energy term with accounting for
multiplicity of atomic electronic states, because the majority
of electronic correlation effects are inside the atomic sphere.
This enables one to treat more adequately atomic clusters
and remove the main deficiencies of the basic NTB param-
etrization. It is easy to observe the overall decrease of total
electron spin on each atom in the sequence from silicon atom
�2� to Si2 �1� and further with increase of cluster size �aver-
age spin value is always below 1 and approaches 0�. This
increases the atom energy term toward positive values, low-
ering the cohesive energy of clusters, calculated in this work,
toward accurate GGA energies.35 This obviously improves
the description of IP and EA as well, allowing one to distin-
guish neutral and charged states with respect to their spin
states. This may also improve the results for the geometry of
the Si3 cluster, for which the lowest triplet state lies just
0.1–0.2 eV above the singlet ground state.38 Work in this
direction is in progress.
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