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Abstract

This paper studies a facility location model in which two-dimensional Euclidean space represents the
layout of a shop /oor. The demand is generated by 0xed rectangular-shaped user sites and served by
a single supply facility. It is assumed that (i) communication between the supply point and a demand
facility occurs at an input=output (I=O) point on the demand facility itself, (ii) the facilities themselves
pose barriers to travel and (iii) distance measurement is as per the L1-metric. The objective is to determine
optimal locations of the supply facility as well as I=O points on the demand facilities, in order to minimize
total transportation costs. Several, increasingly more complex, versions of the model are formulated and
polynomial time algorithms are developed to 0nd the optimal locations in each case.

Scope and purpose

In a facility layout setting, often a new central supply facility such as a parts supply center or
tool crib needs to be located to serve the existing demand facilities (e.g., workstations or mainte-
nance areas). The demand facilities are physical entities that occupy space, that cannot be traveled
through, and that receive material from the central facility, through a perimeter I=O (input=output or
drop-o6=pick-up) point. This paper addresses the joint problem of locating the central facility and de-
termining the I=O point on each demand facility to minimize the total material transportation cost.
Di6erent versions of this problem are considered. The solution methods draw from and extend re-
sults of location theory for a class of restricted location problems. For practitioners, simple results
and polynomial time algorithms are developed for solving these facility (re) design problems.
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1. Introduction

Facility layout problems frequently require the application of tools and techniques from Lo-
cation Theory. Examples of such applications include Co et al. [1], Dowling [2], Houshyar and
McGinnis [3], Kim [4], and Welgama and Gibson [5]. An excellent coverage of these two areas
and their overlap is available in the well-known text of Francis et al. [6]. A common scenario
in many of these problems is to locate a service facility, say a parts supply center, to serve a set
of demand centers, which may be manufacturing cells or workstations; it is required to locate
this facility in order to minimize the total material handling cost. Whereas there are well-known
location models, such as the Minisum model (Francis et al. [6, Chapters 4 and 6]) for such
problems, they almost always assume that the supply and demand centers are in0nitesimally
small and hence, pose no barrier to travel or location. While such an assumption may be rea-
sonable when the facility to be located is in0nitesimally small compared to the area where it
can be located (e.g. when choosing the location of a store in a city), it may not be valid for
layout problems. These problems frequently originate on the shop /oor where equipment, ma-
chinery, workstations, etc. may be demand centers themselves, but also occupy substantial space
and pose barriers to travel and location. Motivated by such limitations, there has been some
research done on the location of facilities in the presence of forbidden regions, i.e., regions that
pose a barrier to location and transportation — see for example Katz and Cooper [7–9], Batta
et al. [10], Larson and Sadiq [20] and, more recently, Butt and Cavalier [11], Hamacher and
Nickel [12], Brimberg and Wesolowsky [13] and Savas et al. [14]. The fact that transportation
in these models is accomplished in the presence of impenetrable barriers requires computation
of shortest paths in the presence of obstacles; a problem 0rst studied by Lozano-Perez and
Wesley [15] and later, by Larson and Li [16], Alt and Welzl [19].

Despite the progress made in considering more realistic travel metrics in the presence of
0nite-sized impenetrable barriers, it is noted that the median to be located usually remains
in0nitesimal in size. An notable exception is the work of Savas et al. [14]. In their work,
however, the demand facilities have 0xed and predetermined perimeter points through which
material handling takes place. Methodologically, this implies that the computation of shortest
paths in the presence of obstacles has speci0c termination points. However, in many, if not most,
manufacturing layout situations, such an assumption is excessively restrictive. In most cases,
the material handling points can be freely chosen on the perimeter of the demand facilities, and
restricting them can result in excess material handling costs.

This paper attempts to address the above concern by considering a shop /oor layout, which
has 0xed rectangular-shaped demand facilities inside it. It is desired to locate a central facility,
such as a parts supply center, which supplies desired materials to each demand facility (e.g.
a workstation or a maintenance area). We begin with the assumption that this central facility
is an in0nitesimal point (referred to as a supply point) and then relax this assumption later,
allowing for it to be described by a 0xed rectangular shape too. We further assume that each
demand center is a physical entity that occupies space and communicates, i.e., receives material
from the central facility, through an I=O (input=output or drop-o6=pick-up) point located on its
periphery.

The objective then is to simultaneously 0nd the location of the central facility and one I=O
point on each demand facility to minimize the total material transportation cost (or weighted
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distance). The complication lies in that the 0nite areas of demand centers and supply facility
act as barriers to travel. Thus every travel path must be a feasible path, in the sense that the
path should not properly intersect with (penetrate) any 0nite-area entity=facility. We begin by
considering the case of a supply point and assume its location is 0xed. Having solved this
initial case, we relax this constraint of 0xed location by stipulating that the supply point can
be located anywhere within a given rectangular region that does not physically overlap with
the demand facilities. These results are then extended to the case where the supply point can
be anywhere in the layout, without overlapping the demand facilities. Our 0nal variant is one
where the supply facility is a 0nite dimensional rectangle and it is required to determine the
optimal locations of (i) the supply facility, (ii) the I=O point on the supply facility, and (iii)
the individual I=O points of the demand facilities. Polynomial time algorithms are developed
for each case.

The remaining paper is organized as follows. Section 2 discusses preliminaries, introduces
notation and formulates the basic location problem under study. In Section 3, a solution to
determine the optimal I=O points on demand facilities is presented, considering a 0xed in0nites-
imal supply facility. In Section 4, we relax the assumption of 0xed location but still constrain
the in0nitesimal supply facility to be located within a rectangular area. This is followed by
Section 5, where we discuss the version where the supply facility itself is rectangular-shaped.
Section 6 presents some eLciency improvement rules. Finally, Section 7 summarizes the paper
and presents avenues for future research.

2. Problem formulation

Facility layout problems have been viewed in the literature in one of the following two
ways (see Meller and Gau [17]): either as departmental (also called block layout),
which tends to be space-0lling or as detailed (also called machine or cellular) layout
that tends to further specify exact resource locations, such as aisle structures, I=O points,
etc. The facility layout context which provides the framework of our location problem
is of the second type; hence it is not space-0lling. We begin by assuming that
the given layout is described by a rectangular area in the plane and with four vertices (0; 0),
(u; 0), (0; v) and (u; v). There are n rectangular demand facilities with 0xed locations in the
layout. To be determined are the location of a supply facility and an I=O point on its perime-
ter. Further, the location of an I=O point has to be determined for each of the
demand facilities.

The objective of the model is to minimize the total transportation (i.e., material handling)
costs. We assume that the model follows the L1-metric, also referred to as the Manhattan or
Rectilinear metric. Such an assumption is reasonable when layout problems are concerned, as
it faithfully models aisle structures, storage racks, etc. Assume now that two points X and Y
represent two di6erent locations in our layout of the shop /oor. Given that, we de0ne a path
between X and Y as any continuous sequence of line segments, each of which is parallel to
either the abscissa or the ordinate, that connects X and Y ; the length of such a path is simply
the sum of the lengths of its individual component line segments. Such a path is called feasible
only if it does not properly intersect any of the travel barriers (given by demand and the supply
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facilities). Finally, the length of a shortest feasible path between X and Y is referred to as the
distance between X and Y , and denoted by d1(X; Y ).

Next, suppose that the demand facility Fi=(xi; yi; ui; vi) has four vertices (xi; yi), (xi+ui; yi),
(xi; yi+vi), and (xi+ui; yi+vi) for i=1; 2; : : : ; n and supply facility F0 has four vertices (x0; y0),
(x0 + u0; y0), (x0 + u0; y0 + v0), and (x0; y0 + v0). Then our problem can be formulated as the
following:

minimize
n∑

i=1

wid1(X0 = (x′0; y
′
0); Xi=(x′i ; y

′
i))

subject to xi6 x′i6 xi + ui for i=1; : : : ; n;

yi6y′i6yi + vi for i=1; : : : ; n;

X0 ∈A ∩ R;

(1)

where wi is the unit distance cost for material supplied to demand facility Fi; A is the feasible
region such that F0 does not physically overlap with any demand facility; R is the set of points
on the perimeters of F0; xi, yi, ui, and vi are given constants; and x′i and y′i are decision
variables, for i=0; : : : ; n and represent the location of the I=O point on the ith demand facility
respectively. Intuitively, X ∗

i , the optimal solution to (1), will satisfy (i) d1(X ∗
i ; F0)6d1(Xi; F0)

for any Xi ∈Fi and (ii) be located on the perimeter of Fi.

3. Solution procedure for a �xed supply point

This section addresses the most basic variant of the model in which the supply facility is a
point (called supply point) whose coordinates are known and 0xed. The objective then is to
0nd optimal locations for the I=O points associated with each of the demand facilities; this can
be formulated as

minimize
n∑

i=1

wid1(X0 = (x0; y0); Xi=(x′i ; y
′
i))

subject to xi6 x′i6 xi + ui for i=1; : : : ; n;

yi6y′i6yi + vi for i=1; : : : ; n;

(2)

where x0, y0, xi, yi, ui, and vi are given constants and x′i and y′i are decision variables, for
i=1; : : : ; n. Note that (2), in turn, can be decomposed into n subproblems of the type

minimize d1(X0 = (x0; y0); Xi=(x′i ; y
′
i))

subject to xi6 x′i6 xi + ui;

yi6y′i6yi + vi:

(3)

Since d1 depends highly on the layout structure a direct solution of (3) is impractical. Hence,
we now introduce the concept of probe termination points.
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Fig. 1. The probe termination points.

Given a point X0 in the layout, a probing procedure starts from this point going up (and
down) vertically and right (and left) horizontally until the procedure is forced to terminate at
the 0rst barrier (facility) encountered or at the bounding rectangle’s perimeter. If the termination
point, say Xt , is in a perimeter of a facility, then Xt is said to be a probe termination point
of X0. For example, Fig. 1 illustrates a case where Xt1, Xt2, Xt3, and Xt4 are probe termination
points of X0. We record the probing procedure from X0 by dashed lines and call them node
traversal lines. We de0ne the probe termination points of the layout as the probe termination
points of all vertices of the facilities (including the supply facility) and the probe termination
points of a facility F as the probe termination points of the layout which are located on the
perimeter of facility F .

Lemma 1. The I=O candidates of a facility F are its vertices and probe termination points.

Proof. We 0rst consider the probe termination points on F created by the vertices of the other
demand facilities. As illustrated in Fig. 2, the node traversal lines which cause probe termination
points on F and the node traversal lines of the four vertices of facility F partition the layout
into cells. We say a cell is adjacent to F if they share a segment. In our example, B2 is adjacent
to F but B1 is not adjacent to F .
Now, consider the location of the supply point. If it is located in a cell that is adjacent to

facility F (e.g. C1), then by the de0nition of probe termination point, we must have a candidate
I=O point caused by the probing procedure from the supply point. Also, this point is obviously
the optimal I=O point of facility F . Thus the lemma holds.
If the supply point is located in a cell which is not adjacent to facility F , then the short-

est feasible path to F will either end at one of F’s vertices (e.g. C2) or be coincident
with one of the node traversal lines incident on F (e.g. C3). If the shortest feasible path
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Fig. 2. Partition cells of the layout corresponding to facility F .

reaches F at some vertex, then the lemma holds because the four vertices are candidates
for the optimal I=O point. Finally, when the shortest feasible path has to be coincident with
(or meet) one of the node traversal lines incident on F , then there must be a shortest path
that does not have to cross the node traversal line. This is because the path, continuing
from the intersection then following the node traversal line to reach F at the correspond-
ing candidate, has a shorter distance than others which cross the line. It completes
the proof.

The cell in which the supply facility is located is called the supply cell. In Fig. 2, for instance,
if the supply point is C2 then B1 is the supply cell. On the other hand, if C3 is the supply point
then B3 is the supply cell. We can now narrow down the candidates of the optimal I=O point
of the facility F as follows.

Lemma 2. The optimal I=O candidates of a facility F are its vertices and probe termination
points corresponding to the node traversal lines that are either the perimeters of the supply
cell (if the supply cell is not adjacent to F); or within the supply cell (if the supply cell is
adjacent to F).

Proof. The proof follows from Lemma 1.

Next, we introduce the notion of L1-visible points and work on the characterizations of the
shortest feasible paths between any two given points. Two points, X1 = (x1; y1) and X2 = (x2; y2),
are said to be L1-visible if: (i) segments (x1; y1)–(x2; y1) and (x2; y1)–(x2; y2) do not properly
intersect any facility, or (ii) segments (x1; y1)–(x1; y2) and (x1; y2)–(x2; y2) do not properly
intersect any facility, or (iii) both (i) and (ii). It is clear that the length of the shortest feasible
path which connects two L1-visible points X1 and X2 is d1(X1; X2)= |x1 − x2|+ |y1 −y2|. Given
this de0nition, Lemma 3 will establish that:
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Lemma 3. For any two points X1 = (x1; y1) and X2 = (x2; y2) in the layout; it can be assumed
that one and only one of the following conditions holds:

(i) X1 = (x1; y1) and X2 = (x2; y2) are L1-visible and the length of the shortest feasible path
between them is d1(X1; X2)= |x1 − x2|+ |y1 − y2|.

(ii) X1 = (x1; y1) and X2 = (x2; y2) are not L1-visible and there exists at least one feasible
shortest path between them containing a sequence of L1-visible vertices.

Proof. The proof follows from Theorems 1 and 2 of Larson and Li [16].

In order to determine the optimal I=O points of facility F , we create a network, NF in which
the nodes are given by the supply point, the candidate I=O points of F , and the vertices of the
other demand facilities. An edge in NF exists for every pair of L1-visible nodes except when
neither of the nodes to be connected by an edge are vertices of the other demand facilities. The
edge length is the L1 distance between the nodes it connects. We can then prove Lemma 4.

Lemma 4. The length of the shortest path for any pair of nodes in network NF is their d1
distance (length of the shortest feasible path between them) in the given layout.

Lemma 4 can now be used to 0nd the optimal I=O point for facility F as follows: let the
supply point be the origin node and the I=O candidates of facility F be possible destination
nodes. Now apply a shortest path algorithm to determine the shortest paths between the origin
and the set of destination points (e.g. Dijkstra, [18]). Lemma 4 guarantees that the length of
the shortest path between the origin and the destination in the network is the length of the
shortest feasible path from the supply point to the candidate. The candidate corresponding to
the minimum length of the shortest feasible path is the optimal I=O point. Thus the algorithm
for 0nding the optimal I=O points for the demand facilities is as follows:

Algorithm 1.
For each demand facility F repeat Steps 1 and 2.
Step 1: Perform the probing procedure for the supply point and all vertices of the other

demand facilities to determine the set of candidates for the optimal I=O point of F . Create
network NF .
Step 2: Determine the lengths of the shortest paths between the supply facility and each

I=O candidate. The candidate corresponding to the minimal path length is the optimal I=O
point of F .

To determine the time complexity of Algorithm 1, note that the probing procedure of Step 1
is an O(n) procedure since probing has to be executed for the supply point and two opposite
vertices of each demand facility for a total of (2n + 1) points. Creation of NF is O(n2) cal-
culations since there are at most 4(2n+ 1) nodes and each pair of nodes have to be checked
if they are L1-visible. Step 2 depends on the shortest path algorithm employed; for instance,
a straightforward application of Dijkstra’s algorithm can be done with O(n2) time complexity.
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Since the shortest path algorithm is executed the between the supply point and each of the
candidate I=O points, the complexity of Step 2 is O(n3). Steps 1 and 2 need to be repeated for
n facilities. Therefore the worst-case time complexity of Algorithm 1 is O(n4).

4. Simultaneous location of supply point and I=O points of �xed demand facilities

In the previous section, we assumed that the location of the supply point is 0xed. In this
section, we relax this constraint and allow the supply point to be located in a given rectangular
feasible region that does not overlap with any existing facility. Since the shortest feasible
paths depend highly on the location of the supply point, we cannot divide the problem into n
subproblems as we did in the previous section. Instead, we approach this problem by identifying
a 0nite number of candidate points in the constrained region where the optimal location of the
supply point lies and creating a grid as follows.

Assume that the rectangular feasible region is given by the shaded facility shown in Fig. 3.
If we conduct probing procedures from the vertices of the demand facilities through the shaded
feasible region from all direction, the traversal lines divide the feasible placement region into a
number of rectangular cells. Note that by the way a cell is constructed, no node traversal line
is within the interior of the cell.

We 0rst focus on the cell in which the supply point is allocated. As shown in Fig. 4, the cell
can be partitioned into four blocks by segments A–B and C–D. For a speci0c demand facility
Fi, we de0ne a function fi : [A–B] → R, where [A–B] is the set of points located on segment
A–B and R represents the set of real numbers. This function maps the supply point, F0, in
[A–B] to the length of the shortest feasible path from F0 to facility Fi.
Note that, at least one of the following two cases has to be true: (i) the shortest path

from F0 to Fi is a straight line probing from F0 horizontally (e.g. in Fig. 3, F1 and F3)
or vertically to Fi (e.g. F2); (ii) there is a shortest path between F0 and Fi that passes
through either A or B (e.g. all demand facilities except F1, F2 and F3). In case (i), fi is
either constant (e.g. f2) or monotone (e.g. f1 and f3) as F0 moves horizontally. Therefore,
it is a special case of a concave function. In case (ii), we argue that fi is also a concave
function as follows.

Suppose the length of segment [A–B] is l, the length of the shortest feasible path from A to
Fi is lA and the length of the shortest feasible path from B to Fi is lB. Let m=(lB − lA+ l)=2
and P=(xmin + m; y) be a point on segment [A–B]. From the de0nition of P, it is easy to
show that for those points between A and P, the shortest path passes A to reach Fi and for
those points between P and B, the shortest path passes B to reach Fi. Also, the length of the
shortest path from point P to facility Fi, which either passes through A or B, is (lB+ lA+ l)=2.
Furthermore, the fi value increases linearly as the point moves from A to P and reaches the
maximum at fi(P)= (lB+lA+l)=2. After reaching P, the function starts decreasing linearly and
reaches another local minimum at B. This shows that fi is a concave function. This desirable
property leads us to the following lemma which helps delineate a 0nite number of candidate
points in the constrained region.

Lemma 5. There is at least one optimal supply point located in the corner of a cell.
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Fig. 3. Cells of the feasible region.

Fig. 4. A cell in the feasible region.

Proof. We 0rst consider the possibility of locating the supply point on segment A–B. For any
F0 on A–B, the objective value of F0 is

∑
i fi(F0). Since fi is concave, the objective function,

which is a sum of concave functions, is also concave. Hence the function is minimized at
either A or B. If A is the optimal location on segment [A–B], we follow the argument above
on segment (xmin; ymin)–(xmin; ymax), and conclude either (xmin; ymin) or (xmin; ymax) has a better
solution than A. Similarly, if B is the optimal location on [A–B], then either (xmax; ymin) or
(xmax; ymax) has a better solution than B.

We can now provide a solution to the location of the supply point within a rectangu-
lar feasible region as follows. Given a feasible region, we divide the region into a
number of rectangular cells by node traversal lines (similar to Fig. 3). By Lemma 5, the
0nite set of candidate points consists of the corners of the cells. Given the way the traver-
sal lines are created, we have at most 2n horizontal lines and 2n vertical lines. Hence, the
number of candidate is no more than 4n2. We then apply Algorithm 1, with complexity
O(n4), to determine the objective value for each candidate. The candidate point with the
minimal objective value is the optimal location for our supply point and the complexity of
this algorithm is O(n6).
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Note that this algorithm can be easily generalized to apply to the case where the supply
point is required to be located anywhere in the layout, as long as it does not overlap with any
demand facility. In this case, the candidate points for the supply point are all grid points that
represent the intersection of two node traversal lines of the vertices of the demand facilities.

5. Finite dimensional rectangular-shaped supply facility

In this section, we relax the assumption that the supply facility is in0nitesimally small and
discuss the case where it is 0nite sized, given by a rectangle. This problem is more diLcult
since the supply facility is no longer in0nitesimal and itself causes a barrier in the layout.
Savas et al. [14] have recently considered a problem where they locate a single barrier in the
presence of other barriers to rectilinear travel. They examine the barrier location problems with
single and multiple I=O points as well as 0xed and non-0xed I=O point locations. The di6erence
between their paper and ours is that they assume 0xed I=O points on the demand barriers. By
contrast, ours is a more general model, where the locations of the I=O points on the demand
facilities are also decision variables.

Note that, from Section 3, we know the optimal I=O point of a demand facility must be an
intersection of node traversal lines of the vertices of the demand facilities and of the supply
facility. If we form a grid by node traversal lines of the vertices of the demand facilities,
this grid is a special case of the corresponding grid provided by Savas et al. Thus, we will
exploit the following results developed in Savas et al. (1) The only points we need to consider
as candidate locations for the I=O point of the supply facility are the intersections of node
traversal lines. (2) If the I=O point is 0xed and the supply facility is free to move as long as
the I=O point remains on its boundary, the optimal location of the supply facility must be such
that the sides of the facility coincide with node traversal lines. (3) If it is feasible to locate
the supply facility with the I=O point at the corner that coincides with the optimal location for
the in0nitesimal point location problem, then this is also the optimal location for the barrier
location problem and the objective values are the same; such an in0nitesimal point is called
corner feasible.

The algorithm below determines the optimal location of the supply facility, its I=O point, and
I=O points of the demand facilities.

Algorithm 2.
Step 1: Label each intersection of node traversal lines of the layout as a 0xed supply point.

Apply Algorithm 1 to each intersection to determine the shortest paths to demand facilities and
sum the lengths of the shortest paths.
Step 2: Sort the values from Step 1 in an increasing order: f1; f2; : : : ; fk . Let i denote the

intersection corresponding to fi. Let i=1 and fk+1 =∞.
Step 3: For intersection i, if i is corner feasible, f′

i =fi. Otherwise, assume the supply facility
is free to move as long as i remains on its boundary, determine the 0nite number of locations
of the supply facility such that the sides of the facility coincide with node traversal lines. Label
the one with best objective function value as f′

i.
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Step 4: If f′
i6fi+1, the minimal f′

k (k=1; : : : ; i) is the optimal objective value and node k
is the optimal location of the I=O point of the supply facility. Also, the supply facility associated
with the f′

k value is the optimal location of the supply facility. Otherwise, i= i + 1 and go to
Step 3.
Step 5: With the optimal locations of the supply facility and its I=O point from Step 4, apply

Algorithm 1 to determine the optimal I=O points of the demand facilities.

To understand the working of Algorithm 2, note that it 0rst labels the intersections of node
traversal lines; these intersections are actually the candidates for the optimal I=O point of the
supply facility (see property (1)). As mentioned earlier, this step requires 2n probing procedures
and creates at most 4n2 candidates. Algorithm 1, with complexity O(n4), is then applied to
calculate the total length of the shortest paths from the interaction to the demand facilities. The
value is denoted by fi and fi is a lower bound of the objective value if i is the I=O point of the
supply facility. We have at most O(n2) number of fi’s and hence, we need O(n6) calculations
to determine them.

Given the I=O point for the supply facility located in i, Step 3 0rst checks if i is corner
feasible. Otherwise, we should determine all the possible locations of the supply facility that
may be optimal (see property (2)) and label the one with best objective function value as f′

i.
Note that fi is a lower bound of f′

i and if i is corner feasible then f′
i =fi (see property (3)).

Since fi is a lower bound of f′
i and fi is ordered increasingly, as f′

i6fi+1 (assume
fk+1 =∞), the minimal f′

k (k=1; : : : ; i) is the optimal objective value and the conclusion in
Step 4 follows. Since we have at most 4n2 candidates, the complexity of the sorting proce-
dure to determine f′

i is O(n
2 log(n)). Step 5 is of complexity O(n4). Thus, the complexity of

Algorithm 2 is O(n6).

6. E&ciency improvement by dominance rules

Recall from Section 3 that the network includes an edge between any pair of L1-visible nodes.
Consequently, the number of edges may be very large. Here, we develop dominance rules to
eliminate some edges and help reduce the network size. While these dominance rules do not
a6ect the worst-case time complexity of the two algorithms, their use in practice may speed up
execution.

To develop these dominance rules, we classify the demand facilities into the following four
sets based on their relationship with the probe termination rectangle (refer to Fig. 5):

S1: This set contains only one facility on which Xi is located (e.g. F7).
S2: This set contains facilities which (i) lie inside the probe termination rectangle or (ii)

overlap with the probe termination rectangle with a segment, but exclude the facilities on
which Xi and its probe termination points are located (e.g. F3, F4, F8 and F9).

S3: This set contains facilities which contain a probe termination point and overlap with the
probe termination rectangle with a segment (e.g. F1, F5, F6 and F11).

S4: This set contains facilities which lie outside the probe termination rectangle and do not
overlap with the probe termination rectangle (e.g. F2 and F10).
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Fig. 5. The probe termination rectangle of Xi.

Based on these set de0nitions, the following rules can be prescribed to determine the neces-
sity of creating an edge between a pair of L1-visible vertices Xi–Xj:

Rule 1: Xj is a vertex of an S1-type facility: in this case, Xi and Xj are located on the same
facility. Xi–Xj is created only if Xj is one of the two closest vertices of Xi.
Rule 2: Xj is a vertex of an S2-type facility: if the vertex of the facility, which is closest to

Xi, is L1-visible form Xi, then Xi–Xj is created only if Xj is the closest vertex to Xi. Otherwise,
check if Xj is the farthest vertex from Xi. If it is not, Xi–Xj is created.
Rule 3: Xj is a vertex of an S3-type facility: Xi–Xj is created only if Xj is on the perimeter

of the probe termination rectangle.
Rule 4: Xj is a vertex of an S4-type facility: Xi–Xj is not needed.

For example in Fig. 5, we need only create the edges connecting node Xi and nodes 1,
3, 4, 5, 6, 7, 11, 12, 13, 14, 16 and 17. This reduces the number of edges from 36 to 12.
However, what remains is to show that by applying the four rules above, the new network
created dominates the original network NF proposed in Section 3; this is accomplished in the
following lemma.

Lemma 6. Any two L1-visible vertices in the layout are connected by a path that consists of a
sequence of edges created by rules 1–3; and the length of the path is the L1-distance between
the two vertices.

Proof. Suppose the two vertices are Xi on facility Fi and Xj on facility Fj, we prove this
lemma by creating a path that satis0es the lemma. We condition the proof on whether or not
Xj is within the probe termination rectangle of Xi.
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Fig. 6. Xj is within the probe termination rectangle of Xi.

Fig. 7. Xj is not within the probe termination rectangle of Xi.

Case I: Xj is within the probe termination rectangle of Xi: in case that Xj is the closest vertex
of Fj to Xi, then by Rule 2, edge Xi–Xj is created. If Xj is neither the farthest nor the closest
vertex of Fi to Xi, by Rule 2, edge Xi–Xj is created. If Xj is the farthest vertex of Fi to Xi,
then we can 0rst apply Rule 2 on Xi and then Rule 1 on X1, the desired sequence of edges is
created (see Fig. 6).
Case II: Xj is not within the probe termination rectangle of Xi: since Xj is L1-visible to

Xi, there is a point, say Xk , such that edges Xi–Xk and Xk–Xj do not encounter any obstacles.
Without loss of generality, we display the situation in Fig. 7. Then, by the properties that Xj
is not within the probe termination rectangle of Xi and edge Xi–Xk does not encounter any
obstacles, edge Xk–Xj must be partly located inside the probe termination rectangle of Xi. Let
Xl denote the vertex which satis0es the following four properties associated with Xi and Xj:
(i) located in the upper-right corner of the probe termination rectangle; (ii) connected to Xi by
one of the four rules; (iii) located in the left hand side of the edge Xk–Xj; and (iv) no other
vertices which connect to Xi and locate between the vertical line passing Xl and edge Xk–Xj.
With these properties, Xl can reach edge Xk–Xj horizontally without encountering any obstacles.
To see this, if the probing process is terminated by a facility before it reaches edge Xk–Xj, then
there must be a vertex on the facility which connects to Xi (by Rule 2) and located between the
vertical line passing Xl and edge Xk–Xj. This contradicts (iv) according to the way we de0ne Xl.

We now focus on the L1-visible path is Xl–Xk+1–Xj. If Xj is within the probe termination
rectangle of Xl then the desired path exists by the argument of Case I. On the other hand, if Xj
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is not within the probe termination rectangle of Xl, then let Xl+1 be the vertex which satis0es
the four properties proposed above associated with Xl and Xj (we may perform this procedure
since Xl–Xk+1–Xj is not properly intersected). Again, if Xj is within the probe termination
rectangle of Xl+1 then the desired path exists by the argument of Case I. Otherwise, repeat the
procedure and 0nally a path that connects Xi and Xj is created since the distance between Xi and
Xj is 0nite. Note that since the vertex we pick to create the path is always on the upper-right
corner of the previous vertex, it is clear that the length of the path is equal to the L1-distance
of Xi and Xj.

7. Conclusion

This paper extends the existing literature on the location of facilities in the presence of
forbidden regions within the context of a layout problem. The salient contribution of this paper
is the formulation and solution of a model that combines the twin problems of Minisum location
of a (possibly 0nite-sized) supply facility with that of the location of i=o points on the demand
and supply facilities. Methodologically, the principal solution technique employed is to reduce
the continuous location problems to discrete ones by characterizing the 0nite sets of points
that are guaranteed to contain the optimal locations. Using this technique, several, progressively
more complex variants of the model are presented and polynomial time solution algorithms are
developed for each case.

We believe that this paper opens up new avenues for simultaneous location and I=O point
selection in facilities layout. Further work could include non-rectangular (convex or non-convex)
supply and demand facility shapes by using the theory developed by Batta et al. [10]. Another
interesting avenue is the location of more than one supply facility concurrently, which is more
general and practical.
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