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Abstract

This paper addresses the finite size 1-center placement problem on a rectangular plane in
the presence of barriers. Barriers are regions in which both facility location and travel through
are prohibited. The feasible region for facility placement is subdivided into cells along the
lines of Larson and Sadig (1983). To overcome complications induced by the center (mini-
max) objective, we analyze the resultant cells based on the cell corners. We study the problem
when the facility orientation is known a priori. We obtain domination results when the facility
is fully contained inside 1,2 and 3-cornered cells. For full containment in a 4-cornered cell,
we formulate the problem as a linear program. However, when the facility intersects gridlines,
analytical representation of the distance functions becomes challenging. We study the diffi-
culties of this case and formulate our problem as a linear or nonlinear program, depending on
whether the feasible region is convex or nonconvex. An analysis of the solution complexity is
presented along with an illustrative numerical example.

Keywords: 1-center placement, finite size facility location, barrier, rectangular plane

1 Introduction

Location problems which impose restrictions on locating new facilities and/or travel through are
typically referred to as constrained or restricted location problems. Such problems have the fol-
lowing two topographical properties. (1) The new facilities cannot be located within certain pre-
described restricted areas in the plane. (2) It is not always necessary that any two points in the plane
would be “simply communicating,” i.e., the minimum travel distance between any two points in
the plane may be made longer by the presence of the restricted regions.
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In real world location problems, situations are often encountered in which regions neither al-
low facility location nor travel through. Such regions are defined as barriers in the facility loca-
tion literature. Examples of barriers would be impassable areas on the shop floor like machines,
subassembly areas, input-output docks, etc. The available literature on location problems in the
presence of barriers can be classified according to the following criteria:

e shape of barriers (arbitrary, polygonal, circular, rectangular, etc.)
e size of new facility (infinitesimal or finite size)
o travel metric used (Euclidean, rectangular, etc.)

e type of objective (median or center)

In one the earliest facility location papers dealing with barriers, Katz and Cooper [8] investi-
gated a problem with a circular barrier considering the median objective and the Euclidean distance
metric. Larson and Li [9] developed an efficient algorithm for determining the shortest feasible rec-
tangular path between two points in the presence of polygonal barriers. Discretization results for
the p-median problem in the presence of arbitrarily shaped barriers under the rectangular distance
metric were obtained by Larson and Sadiq [10]. The authors introduced a grid construction proce-
dure that splits the feasible region into cells. By converting the original problem into an equivalent
p-median problem on a network, the authors proved that an optimal set of facility locations can be
chosen based solely on the grid points, i.e., the nodes (barrier vertices and/or demand points) and
the points of intersection of any two node traversal lines.

Batta, Ghose and Palekar [2] extended the results of [10] to include regions that prohibited fa-
cility location but allowed travel through. Aneja and Parlar [1] and Butt and Cavalier [3] developed
heuristics for the 1-median problem in the presence of polygonal barriers under the [, distance met-
ric. Though the center problem in %2 without barriers has been extensively studied in the literature
(e.g., books of Drezner [5], Love et al. [11] and Francis et al. [6]), very few references can be
obtained for the corresponding problem in the presence of barriers. Minimax locations problems
on a network have been studied in the book by Handler and Mirchandani [7]. p-center problems
on a network have been extensively studied in the book by Mirchandani and Francis [12].

Nandikonda, Batta and Nagi [14] address the 1-center problem with arbitrarily shaped barriers
under the rectangular distance metric. The authors divide the feasible region into cells as outlined
by [10]. To overcome complications due to the center objective, they introduce a new concept to
classify cells based on their cell corners. A solution procedure has been developed for each class
of cells. The overall complexity of the solution procedure is shown to be polynomially bounded.



Dearing, Hamacher and Klamroth [4] obtain dominating set results for the 1-center location prob-
lem in the presence of convex polygonal barriers under the rectangular distance metric. The fea-
sible region is decomposed into cells. A bisector algorithm, that finds bisectors by adapting an
algorithm of Mitchell [13], outputs the set of dominated points. Based on the domination results,
the authors develop a polynomial (in the number of demand points and number of extreme points
of the polygonal barriers) time algorithm to solve the resulting nonconvex optimization problem.
Their work differs from the work of Nandikonda et al. [14] in its solution approach as well as the
shape of barriers.

In all the above mentioned literature, the authors have assumed the new facility to be located as
infinitesimal in size. However such an assumption is not always valid. Savas, Batta and Nagi [16]
first considered the finite size “placement” problem of an arbitrarily shaped facility in the presence
of arbitrary shaped barriers with the median objective and rectangular distance metric. By studying
the behavior of the objective function, the authors identify the candidate(s) for optimal placement
of a new facility with a fixed orientation and then for the same facility with a fixed server location.
They also present a heuristic for the case when both facility orientation and server location are not
known a priori. Our work differs from the work of Savas et al. [16] with respect to the nature of
the objective. Also Nandikonda et al. [14] consider the same objective with an infinitesimal new
facility whereas our work addresses the finite size facility placement problem.

In this paper, we consider the problem of “placing” a facility in the presence of barriers. This
work can be practically applied to problems in layout analysis, where the objective, in many cases
is to place a new department in the presence of existing departments (or to place a new machine
in the presence of existing machines on the shop floor). An existing machine with its adjoining
area comprising of space for associated equipment, input buffer, output buffer, scrap area can be
considered to be a barrier.

The remainder of this paper is organized as follows. In §2, we describe and define our problem.
In §3, we briefly revisit the grid construction procedure of [10] and the concept of “Equal Travel
Time Lines” (ETT Ls), as established in [2]. We then study and establish some new properties of
ETTLs in §4. §5 considers the facility placement problem with a given orientation; this section
is split into several sub-sections, each dealing with a different case of the problem. We analyze
the complexity of our solution procedure in §6 for the fixed orientation problem. We present an
example problem and its detailed analysis in §7 to elucidate our solution methodology. Conclusions
and directions for future research are outlined in §8.



2 Problem Description

Let there exist a finite number of barriers where travel through and facility placement are both
prohibited. The existing users are distributed over a finite set of demand points located anywhere
in the plane outside of or on the boundary of the barriers. A new facility is to be placed. The new
facility communicates with the existing users through a single server located on its boundary. The
1-center facility placement problem is to determine the optimal placement of the facility such
that the facility does not overlap with any of the existing barriers, and the maximum rectangular
travel distance (circumventing barriers) from the server to any user is thereby minimized.

2.1 Definitions and Notations

We assume that each barrier is a closed and bounded area in %2, with finite area. Let B; (an open
set) denote the set of points (z,y) € R? contained strictly within barrier j. We also define B; =
B; U {boundary of barrier j}, to be a closed set. Each set B; is called a barrier. Each barrier
has a finite number of horizontal and vertical tangential lines. We let B = U; B; and B = U, B;.
Let H (an open set) denote the set of points contained strictly within the new facility that is to be
placed and let H = H U {boundary of the facility}. We note here that B; N B; = (,i # j and
B; N H = (). The distinction between the inside and the boundary of a barrier/facility is necessary
to allow travel on the boundary of the barrier/facility but not inside. Let F(B) define the smallest
rectangle (bounding rectangle) that encloses all barriers and users and whose sides are parallel to
the x and y axes.

For a finite size facility, the coordinates of a single point cannot convey full information about
the placement of the facility in 2. Hence, we let | = [X, o] denote the placement vector for the
facility. Here, X = (z,y) represents the location, i.e., point coordinates for the server. The angle
0 < a < 27 between the +x-axis and the line joining the server location and a predetermined point
P on the facility (measured in the anti-clockwise direction) specifies the orientation of the facility.
Figure 1 shows the placement vector. In summary, X is the location and « is the orientation of the
facility. Together they determine the placement of the facility.

We will now define the feasible region for the finite-size facility placement problem. Let
H(X, ) be the set of points that correspond to the facility when the server is at X and has an
orientation a. H (X, «) is a closed set. The feasible region is defined as follows:

F={[X,a]: HX,a)N B =0}.

We note here that ' may be composed of mutually disjoint sets.
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Figure 1: A Finite-Size Facility, its Location and Orientation

2.2 Problem Definition

There is interaction between users and the server. The extent of interaction between user i and
the server is denoted by w; > 0. The interaction between any user and server takes place through
a shortest feasible rectangular distance path that penetrates no barriers or facilities. Let d;(i, X)
represent the length of such a shortest rectangular path between the user i and server at X when
the facility placement is [. The subscript [ signifies that the distance is a function of the facility
placement.

Let D denote the set of all users. For a given facility placement [ = [X, «], we define the
function J(l) as follows:

J(1) = max {w;d(i, X) + 7},
€D
where w;d, (i, X) is the weighted travel distance between user i and the server X of the new facility
and ~; is the constant addendum associated with user 7.
Then the weighted 1-center problem with arbitrarily shaped barriers can be denoted as follows:
min J(1).
leF

3 Background

3.1 Grid Construction and Cell For mation

A grid construction procedure in the presence of barriers that divides the feasible region F' into
cells has been established in the work of Larson and Sadiq [10]. The same procedure is followed
here. Let Q(B;) denote the points of tangency of barrier B, i.e., points on the boundary of B;
through which a horizontal and/or a vertical line can be passed and for which all points on the
boundary sufficiently close to this point lie in or either on one side of the line or the other. The grid
construction procedure is outlined as follows:



(7) Draw lines parallel to the = and y axes through all barrier vertices and the users, with each line
terminated at the first barrier interior encountered (i.e., point in B), else at E(B), as illustrated in
Figure 2. (ii) Exclude from the set of lines in (i) any line extending from a barrier vertex that is
not a user and where the vertex is the endpoint of the line. An example of the grid construction

procedure is illustrated in Figure 2. For further details of the grid construction procedure, we refer

the interested reader to [10].
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Figure 2: Example of the Grid Construction Procedure

The resulting set of lines are called “node traversal lines” in [10]. For simplicity in presentation,
let us refer to these lines as gridlines. We let L;, denote the set of horizontal gridlines and L, denote
the set of vertical gridlines. We define . = L, U L, as the set of all gridlines. The barriers and
L divide F' into a number of cells, as illustrated in Figure 2. Each cell boundary is composed of
solely gridlines or segments of barrier boundaries and gridlines. For a given cell C, let us consider
the points (Zyin: Ymin)r (Tmazs Ymin)s (Tmaz Ymaz)r (Tmin s Ymaz )» WHEIE Tnins Yrmin: Tmaz » Ymax are
the respective bounds on = and y in the cell. Clearly, at least one of the four points (z,in, Ymin),
(Tmaz, Ymin)y (Tmazs Ymaz)s OF (Tmin, Ymae) 18 CcOntained in C. All such points contained in C, up
to a maximum of four, are henceforth referred to as cell corners of C. We will later utilize the
following results, as proved in [10] and [16]:

Result 1 [10]: A shortest feasible rectangular path froma user to an infinitesimal point located
inacell C passes through a cell corner of C.

Result 2 [10]: A shortest path in % between any (z,, y,) and (3, y,) can be found by restrict-
ing travel to nodal paths, i.e., paths containing a sequence of nodesa — ny —no — -+ —n, — b
where (a,ny), (n1,n2), ..., (ng, b) are pairs of simply communicating nodes (two nodes commu-
nicate smply if the presence of barriers causes no net increase in the travel distance between
them).

Result 3 [16]: A nodal path between two points (x,, y,) and (3, y,) can be represented as a
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“traversal line path” P(a,b), i.e., a path that comesin contact with a sequence of horizontal and
vertical gridlines, hy, ho, ..., hy, @and vy, vs, ..., v,.

Cells that do not share a common boundary with a barrier B are rectangular and have four cell
corners. Cells that share their boundaries with a barrier may not be rectangular and hence may
have less than four cell corners. Let the subset (? denote all cells with p cell corners. Based on the
previous discussion, we denote by ( a set of all cells, then

(=Cluctuctudt

3.2 Equal Travel TimeLinesand Subcells

For a fixed location X € C, we can meaningfully talk of the assignment of users to cell corners
of C. If the assignment of users to cell corners does not change upon moving the location X in
C, the distance functions are linear and monotonous over the cell C. However, any change in the
assignment of users to cell corners necessitates the construction of “Equal Travel Time Lines”
(ETTL). The concept of ETT Ls was introduced in the work of Batta et al. [2] and subsequently
utilized in the work of Nandikonda et al. [14]. Details regarding construction of ETT'Ls can be
found in [2] and [14].
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Figure 3: Example of an ETTLs in a Rectangular Cell

Let us consider a cell C with corners V,, k = 1,2, 3,4 as shown in Figure 3. For the sake
of simplicity and without loss of generality, let the corners V7, V4, V3, V; have coordinates (0, 0),
(a,0), (a,b), (0,b) respectively. Let the shortest rectangular distance from user i to cell corner V
be denoted by d;;, for k = 1,2, 3,4. If |[d;; — di»| < a, where a is the length of the edge V5, then
an ETT L with respect to i between corners V; and V5 is generated such that it is perpendicular to
the edge V; V5 at a distance %{\dﬂ —d;2| 4+ a} from the cell corner that is closest to user . The cases



between other adjacent cell corners can be dealt with similarly. If |d;; —d;3| < a+b, where b is the
length of the edge V5 V3, then an ETT L with respect to i between corners V; and V; is generated
that touches the cell boundary at a distance 3{|d;; — d;3| +a+ b} from the cell corner that is closest
to user 7. It is pertinent to mention here that £ 77 Ls generated due to diagonally opposite cell
corners are inclined at 45° to the edges of a 4-cornered cell, e.g., the ET'T L generated due to V;
and V3 makes an angle of 45° with the edges V,V5 and V3V,. After the construction of ETT Ls,
which are induced on a cell C by user 4, has been completed, the same procedure is repeated for
all other users k, k # i. ETTLs partition a cell C into subcells SC. All ETT Ls generated by
the users in Figure 2 are illustrated in Figure 4. For example, consider ETTL AB in cell C in
Figure 4. AB isan ETTL in the following sense: if X is located at a point on AB, a shortest
rectangular path between X and user 1 goes through either cell corner V; or V4 (in other words,
one has to cover equal distance (hence the name ETTL) to travel from user 1 to X, either through
ViorV,). Clearly ETTL AB helps to uniquely assign user 1 to cell corner V; or V5 depending on
the location of X € C.

CellC

ue to
point 4

=

ETTL dueto
demand point

0 5 10 30 34

Figure 4: Cells and subcells

It is pertinent to mention here the following result proved in [14].
Result 4: A demand point generates at most one E'T"T'L in a four-cornered cell.

4 Additional Propertiesof ETTLs

4.1 Existing ETT Lsmay move

As discussed in §3.2, an ET'T' L may be generated between any pair of cell corners of a 4-cornered
cell. Due to the finite size of the new facility, an existing £77 L may move. In fact, the following
are now possible.



1. Due to its finite size and shape, the length of the shortest rectangular path between a user
i and the new facility’s server X, d(i, X'), may increase. Consider the ETT L generated
in the cell C between adjacent cell corners V; and V5, as illustrated in Figure 5a. Due to
placement of the new facility as illustrated in Figure 5b, d(i, X) increases by 2p (note that
user ¢ is uniquely assigned to cell corner V7). Hence the ETT L moves closer to V; by p. We
conclude that the position of an existing £7T' L may thus move when a finite sized facility is
fully contained in a cell. Similar analysis can be performed for ETT Ls between other pairs
of adjacent as well as opposing cell corners.
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Figure 5: Movement of ETT'Ls

2. The finite sized new facility may block cell corners of cell C through which a user : commu-
nicates with X € C. Consequently d(i, X') may increase and an existing 77T L in C may
move. However unlike the previous case 1, the new facility now intersects gridlines. The
amount of movement of the ETT'L is a function of the increment of d(:, X'). We refer the
interested reader for more details to [15].

Our solution methodology proposed later is based on a cell decomposition approach. When the
new finite size facility is not fully contained ina cell, i.e., it intersects gridlines (§5.2.2), the shortest
rectangular path between users and the server of the new facility is affected. Consequently the
unique assignment of users to cell corners may change. Accurate distance measurements between
users and the server is central to our solution methodology. Hence it is crucial to consider the
movement of ETT Ls. Note that this complexity is not encountered in [14] due to the infinitesimal
size of the new facility.

4.2 FETTL intersectionsin acel

We conclude this section with the following lemma, which helps to simplify our analysis.



Lemma4.2.1. ETTLs between both pairs of opposing cell cornersin a four-cornered cell cannot
exist.

Proof : Consider a 4-cornered cell C with cell corners Vi, V5, Vs, V4. Assume that an ETTL,
labeled ETT L1 exists between V; and V5 due to user 1 associated with barrier By, as illustrated in
Figure 6a. This happens when V5 is not rectangularly visible to 1. (Otherwise an 7T L would not
exist between V; and V5 and an E'TT' L could exist between V5 and V3 or V4 and V5.) However V;
and V3 may be rectangularly visible to 1 if the cell is formed due to barrier traversal lines associated
with By, as illustrated in Figure 6b.

ETTL1 between V and V

1 3
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4 s P!y @@= o 3
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1 2 1 2
< Barrier Bl ( Barrier B
1
1 1
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. , /\ - /\
4 3 3
Y
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N
N
N
N
A Y
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1 2 2
Barrier B2 Barrier B2
P
< Barrier B 1 < Barrier B 1
1 1
(c) (d)

Figure 6: Figure for Lemma 4.2.1

Let us also assume that user 2, associated with barrier B, generatesan ETTL, labeled ETT L2
in C' between V5 and V, as shown in Figure 6¢ and Figure 6d. Depending on the placement of Bs,
V1 and V3 (as in Figures 6¢ and 6d) will not be rectangularly visible to 2. In either case, a shortest
rectangular path from server location 1 to V; (in Figure 6¢) and to V3 (in Figure 6d) must pass
through cell corner V5. Hence an ET'T' L would exist between (adjacent cell corners) V5, and V5 in
the case depicted in Figure 6¢ and between (adjacent cell corners) V; and V5 in the case depicted
Figure 6d, not between (opposite) cell corners V; and V5. This contradicts our first assumption.
The lemma follows. B
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Lemma 4.2.1 helps to restrict the number of subcells generated, as evident later in solution
complexity analysis in §6. Based on the previous background, we now move on to the actual
solution methodology of our problem.

5 Solution Procedure

5.1 Introduction

Before a new facility is placed, the gridlines that are drawn due to the existing barriers and users
were adequate to provide the framework that is required to obtain the minimum feasible rectangular
distance path between any two users. Placement of a new facility alters the existing framework.
Specifically, two things happen. Firstly, the facility itself acts as a barrier to travel. Hence a new set
of traversal lines parallel to the coordinate axes must be passed through the vertices of the facility
and the server on the facility as outlined in [10]. [16] has referred to these lines as facility traversal
lines. Secondly, some existing gridlines will be terminated as they will encounter the interior of
the new facility. As a result of placing a new facility, a new grid structure will be obtained.

Savas et al. [16] consider the 1-median problem of placing a finite-sized facility. The authors
take advantage of the concave property of the distance functions and the nature of the objective
function which is a positive linear combination of concave functions. However the objective (min-
imax) function of our problem does not help in deducing any such property. Hence it becomes
imperative in our problem to represent the distance functions analytically, as shown in later sec-
tions. This becomes challenging especially because of the arbitrary shape of the barriers and the
new facility to be placed. Some concepts of Nandikonda et al. [14] are useful here as their work
deals with location of an infinitesimal facility under the center objective. However since our prob-
lem addresses the finite size facility placement problem, we cannot directly extend the results of
[14]. Analogous to [14], we split up our analysis into different cases. Unlike [14] due to the finite
size of the facility to be placed, we have to identify a feasible region of location in each case. Also,
in our problem, if the new facility to be located moves, the assignment of users to cell corners may
change (as described in §4).

To facilitate our analysis, we conclude this section by defining the smallest enclosing rectangle

of the new facility as £(H ). Similar to what we have previously defined for a cell, let the corners

of E(H) be denoted as Hy, k = 1,2, 3,4. We note that as the facility orientation remains fixed, so

does E(H).
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5.2 Optimal Placement Candidates for the Facility with Fixed Orientation

In this section, we deal with the placement of a facility with known orientation «,. We split up our
analysis into two cases:

e when the facility placement does not cut off any element of the set L

¢ when the facility placement cuts off at least one element of the set L

5.21 Thefacility placement doesnot cut off any element of L

We note at the outset that we are concerned with the location of the server such that the new facility
does not cut off any element of the set L, i.e., the facility is fully contained within a cell C. This
means that the set of feasible locations for the server 7 C C. F C C can be obtained by moving
the facility inside the cell such that it does not cut off any element of L. Based on the previous
background, we now consider the following cases:
Case 1. Thefacility isfully contained in a 1-cornered cell

A 1-cornered cell C can be generated in four ways by choosing any one of the four possible cell
COMMErs (Zpmin, Ymin)s (Tmazs Ymin)s (Tmazs Ymaz )y (Tmin, Ymaz)- LEL US cOnsider the new facility to
be contained fully inside C with cell corner V;, as illustrated in Figure 7. The following lemma
establishes the fact that in such a scenario, the facility can be moved inside the cell thereby bringing
the server closer to V.

Lemma 5.2.1. Consider the new facility to be fully contained in a 1-cornered cell. Its optimal
location is either (i) a unique point lying inside the cell, or (i¢) on the vertical or horizontal
tangent passing through the only cell corner, or (iii) the cell corner itself.

1-cornered cell C

New facility with its server X
facility traversal lines

Barrier

Figure 7: A 1-cornered cell (used in the proof of Lemma 5.1.1)
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Proof: Let X be the optimal server location such that it is different from locations (i), (i¢), and
(#7i) in the lemma statement. If the facility is moved from X to X along the rectangular path
XOX; (such that ZXOX,; = 90° as illustrated in Figure 7) until at least one facility traversal
line coincides with the tangent (horizontal or vertical depending on the shape of the 1-cornered
cell) passing through V7, the distance between the new server location X; and all users necessarily
decreases. This follows from Result 1 [10] mentioned earlier and hence a contradiction is estab-
lished. The optimal facility location (i) is thus obtained. The optimal location mentioned in (i7)
may be obtained if X lies on E(H). Location (iii) is a special case of locations (7).

Since similar arguments can be made for any 1-cornered cell formed by choosing any one of
the four points (Z,min, Ymin)s (Tmazs Ymin)s (Tmaz Ymaz)s (Tmin, Ymaz ), the lemma follows. B

Note that the optimal location of the new facility (for the fixed orientation problem) is given
by the optimal location of X, its server. Clearly, the optimal server location for the case illustrated
in Figure 7 is X;. From Lemma 5.2.1, in a cell C € (%, the point X; dominates all other points.
Hence it is sufficient to evaluate the 1-center objective function at X .
Case 2: Thefacility isfully contained in a 2-cornered cell

A 2-cornered cell C can be generated by choosing any two of the four possible cell corners
(Taniny Ymin)y (Tmazs Ymin)s (Tmazs Ymaz)s (Tmin, Ymaz)- ThiS can be done in six ways. Figure 8a
illustrates a 2-cornered cell with the cell corners Vi(Zmin, Ymin)» Vo(Tmaz, Ymin) While Figure 8b
illustrates the case with Vi (Zazs Ymin)s Vo(Tmin, Ymaz)- VWE NOW state and prove the following
lemma.

Lemma 5.2.2. Consider the new facility to be fully contained in a 2-cornered cell. Its optimal

location is such that at least one edge of the facility bounding rectangle E(H ) coincides fully or
partially with one of the shortest rectangular paths (SRP) between the two cell corners.

Proof: By definition, a cell corner must be either (Z,in, Ymin)s (Tmazs Ymin)s (Tmin, Ymaz)s OF,
(Tmaz, Ymaz ). HENCE SiX cases can be generated by choosing any two of the four aforementioned
points as cell corners.

Let X be the optimal server location such that no edge of E(H) coincides with the SRP be-
tween V; and V,. However, as illustrated in Figure 8a (2-cornered cell with (2., Ymin) and
(Tmaz, Ymin) @S cell corners), we can move the facility along the perpendicular X X until E(H)
coincides fully with the SRP between V; and V5. Since the rectangular distance between X; and
all users necessarily decreases, a contradiction is established.

For the case depicted in Figure 8b, the size of the facility H is such that E(H) N B; # 0.
However as demonstrated in Figure 8b, a SRP can always be drawn between V; and V5 that partially
coincides with edges of E(H). The conditions of the lemma are thus met. Similar arguments hold
for other possible configurations of a 2-cornered cell. The lemma follows. B
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Figure 8: A 2-cornered cell (used in the proof of Lemma 5.1.2)

The immediate implication of Lemma 5.2.2 is the following: for the case depicted in Figure 8a
(i.e., when a 2-cornered cell is formed between adjacent cell corners), the “nondominated” region
D is a line segment. Any point on this line D dominates any feasible (x,y) € C such that (z,y) ¢
D. This line segment can be obtained by moving the facility inside the cell C, such that B;NH = ()
and E(H) coincides with the line segment joining V; and V5. D is demonstrated in Figure 8 by a
bold line.

For the case depicted in Figure 8D, (i.e., a 2-cornered cell with opposing cell corners), the server
X can be moved along a line (joining X and some point on the facility’s boundary) that makes
an angle of 45° with the +x axis without altering the minimum rectangular distance between a
user 4 (constrained to pass through V; or V5) and X. (The idea is similar to the case of 3-cornered
cell and is discussed in detail in the following case.) The nondominated region D can be obtained
by moving the facility inside C such that B; N H = 0 (in a similar manner as discussed next for
3-cornered cells).

Based on the previous background, we now proceed to determine the optimal server location.
Clearly cell corners V; and corners H;, of E(H) are rectangularly visible for j = k = 1, 2. Hence
the distance between user 7 and the facility server X can be expressed as follows:

d(i, X) =d(i,V;) +d(V;, H;) + d(H;, X),
where d(i, V;) and d(H;, X) are constants while d(V;, H;) is a linear function of z and y.
The 1-center facility placement problem in a 2-cornered cell C is as follows:

min - max [w;d(i, X) + 7).
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The 1-center facility placement problem can thus be solved by performing a line search over
the nondominated segment SP € D.
Case 3: Thefacility isfully contained in a 3-cornered cell

Following the discussion in Case 2, four possible cases are generated when any three of the four
cell corners (Zmin, Ymin)s (Tmazs Ymin)s (Tmazs Ymaz)s (Tmin, Ymaz) are selected to represent a 3-
cornered cell. Figure 9 shows a 3-cornered cell with the cell corners Vi (Z.in, Ymin)» Vo(Tmaz > Ymin)
and V3(Zymin, Ymaz ). e now state and prove the following lemma.

Lemma 5.2.3. Consider the new facility to be fully contained in a 3-cornered cell. Its optimal

location is such that at least one edge of the facility bounding rectangle £(H ) coincides with any
edge of the cell that is not common to a barrier boundary.

Barrier

3-cornered
cell C —

v v
1 2
New facility along with its server X

and bounding rectangle

Indicates non-dominated region for server location

Figure 9: A 3-cornered cell (used in the proof of Lemma 5.1.3)

Proof: Let us consider the new facility to be contained fully inside a 3-cornered cell C with cell
corners Vi, V5, Vs, as illustrated in Figure 9. Let us consider the point X; on the edge V;V3
such that /X X, P = 45°. By moving the server X of the new facility to X, along X X, the
minimum rectangular distances from any user 7 (constrained to pass through V5 or V3) to the server
X remains unaltered. Since we are considering the rectangular distance metric, any increase in y
distance from X to V5 or V3 is compensated by a decrease in z-distance and vice versa. However
for any user ¢ constrained to pass through V7, the minimum rectangular distance between i and X
strictly decreases. Similar arguments apply if X lies on V; V5. Since we assume that the facility is
fully contained inside the cell, the lemma follows. B
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Other cases of 3-cornered cells can be dealt with in a similar manner. An immediate implica-
tion of Lemma 5.2.3 is the following: the nondominated region D, when the new facility is fully
contained in a 3-cornered cell, is composed of line segments that are parallel to the edges of the
cell that are not common to a barrier boundary. D can be obtained by moving the facility inside C
such that B; N H = (0. D is demonstrated in Figure 9 by bold lines.

Based on the previous background, the problem to determine the optimal server location over
a segment D (when the new facility is fully contained in a 3-cornered cell), can be solved by
performing a line search alike Case 2.

Before moving on to case 4, we observe that Lemmas 5.2.1, 5.2.2 and 5.2.3 extend the results
obtained in Theorem 1 of Nandikonda et al. [14] to account for finite size of the new facility in our
work.

Case 4: Thefacility isfully contained in a 4-cornered cell

A 4-cornered cell C may be subdivided into subcells SC' by ETT Ls between adjacent and/or
opposing cell corners. Each subcell SC' is defined by a set of linear line segments (£77T Ls) and
the boundary of a rectangular cell C to which SC belongs. It is straightforward to see that any SC'
is a convex polyhedron (for discussion, see Figure 10). Let F denote a feasible region withina SC'
where a server of the new facility can be located. Note, however, that the new facility itself may
intersect 7T Ls and may cross over into one or more neighboring subcells. One can show the
following result Lemma 5.2.4.

Lemma5.2.4. F C SC are convex polyhedra.

Subcell SC1 Subcell SC2 Feasible

Subcelll
SC4

New Facility

with its

server

Subcell SC3

Rectangular Cell C

Figure 10: Figure for Lemma 5.1.4

Proof: Let us consider any subcell SC' of a rectangular cell C, as shown in Figure 10. 7 C SC'is
obtained by moving the new facility along the boundary of SC'. Thus the server X moves parallel
to the edges of SC'. The lemma follows since each subcell SC'is a convex polyhedron. l
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Hence F C SC' can be represented by a set of inequalities

Af(;“)gbf. (1)

The rectangular distance from a user ¢ to the server X can be expressed as follows:
d(i, X) =d(i,V;) + d(V;, Hy) + d(Hy, X),

where d(i, V;) and d( Hy, X)) are constants while d(V;, Hy,) is a linear function of the coordinates of
the server, i.e., z and y. Note that a pair of V; , H,, are rectangularly visible if j = k. Hence a user
i assigned to cell corner V; will communicate with the server X through corner H; of the facility
bounding rectangle. Since Hy, k = 1,2, 3,4 and X may not be rectangularly visible, Results 2 and
3 mentioned in §3.1 can be utilized to evaluate the distance function d(Hy, X).

The 1-center facility placement problem over each 7 C SC C C can be formulated as a linear
program as follows:

minimize 2
subject to
w[d(i, V) +d(V;, Hy) +d(H;, X)|+v < Z  forie V,Vk 2
AT ( ;3 ) <. (3)

V), denotes the set of users uniquely assigned to cell corner V;, such that U,)V, = D. Solution
to the linear program gives the optimal 1-center location in F.

5.2.2 Thefacility placement cuts off at least one element of L

When the new facility is placed over a number of gridlines, the facility may interfere with the
shortest rectangular paths between the existing users. The consequence of the facility cutting off a
number of gridlines is that the shortest feasible rectangular path from a user 7 to the server location
X may have to travel around the facility, i.e., the facility itself may act as a barrier to travel between
the user and its server. Hence E'T'T Ls may move, as discussed earlier in Section 4.1. Consequently
the assignment of users to cell corners may change. The placement of the new facility determines
the cell corner through which a user : communicates with the server X of the new facility.

Let us consider a feasible initial placement [ of the facility such that it cuts off at least one
element of L. We assume here that no element of L coincides with any facility traversal line.
Following the concept of Savas et al. [16], we identify the set of placements Q (of the server X)
such that when [ € Q, the facility will always interfere with the same element(s) of L. The idea
is elucidated in Figure 11a, in which the new facility cuts off two gridlines, marked as Line A and
Line B. The set Q obtained by moving the facility such that it interferes with no gridline other
than Line A and Line B is also shown. It is pertinent to note the following here:

1. @ may be composed of mutually disjoint sets, as illustrated by Figure 11b.
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Barrier
Barrier

S

Line B

Barrier

Line A

Line

Barrier
Line

Barrier Line

(a)

(b)
New facility to be placed along with its server N Set Q

Figure 11: Hlustration for the set Q

2. Q may be nonconvex nonpolygonal, as illustrated by Figure 12a.
3. @ may be convex polygonal, as illustrated by Figure 11a.

4. Q may be nonconvex polygonal, as illustrated by Figure 12b.

To demonstrate the existence of the previous cases, we have considered a rectangular new
facility in some cases for the sake of simplicity.

~—Line A Line B

Barrier

: e
Barrier A{ .
Barrier

(b)

Convex Polygonal QO C

\& “ Set Q m Rectangular facility with server

[«~— Line A

Figure 12: Illustration for different shapes of O

The 1-center problem is solved over each Q@ N C, since Q may span more than one cell C. For
the QN C under consideration, the shortest rectangular path from a user i to X is constrained to pass
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through the cell corners of C. Also as illustrated in Figure 12, there is no guarantee that Q is convex.
Since Q can be nonconvex, the optimal server location cannot be determined by formulating the
problem as a linear program in general. However in some special cases, the 1-center problem can
be formulated as a linear program. We present two such cases as follows:

Casel: Q9 NC isrectangular

New facility with server X(x,y)
C

A B | D
CellC1 CellC2 CellC3
BN 04 4,)

V4 [ \ V3
(0,Db) N (. b)
DS
20 22 )
(Xl’yl ) (Xu‘yl)
CellC8 CellC CellC4
v v,
(0,0) (a,0)
CellC7 CellC6 CellC5

N set 0

Figure 13: Q N C is rectangular

Let us consider a 4-cornered cell C as shown in Figure 13 with cell corners V7, V5, V3, and V.
Let C be bounded on all sides by gridlines (due to other barriers or users) parallel to the edges of C.
In other words, C is bounded on all sides by 8 rectangular cells labeled Cell C1, Cell C2, etc. Let
us consider the gridline segments V,V3 and BC'. The new facility is moved parallel to V,V3, BC,
BVy, and C'V; such that it cuts only V, V3 € L. O obtained by cutting V,V3 € L is rectangular.
Hence © N Cell C and Q N Cell C2 are rectangular.

The rectangular distance from a user 7 to the server X can be expressed as follows:

d(i, X) = d(i,V;) + d(V;, Hy) + d(Hy, X),
where d(i, V;) and d(H}, X) are constants while d(V;, Hy) is a linear function of the coordinates
of the server, i.e., z and y. Since Hy, k = 1,2, 3,4 and X may not be rectangularly visible, Results
2 and 3 mentioned in §3.1 can be utilized to evaluate the distance function d(H, X).

Hence the problem to determine the 1-center can be formulated as a linear program over the
shaded region Q N C as follows:

minimize Z
subject to
w;d(i, V) +d(V, Hy) + d(Hp, X)) +v < Z fori € Vi, VEk 4)
<z < T, (5)
WSy < Y (6)

where z;, x.,, yi, y, represent the lower and upper bounds of the xz-coordinate and y-coordinate
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respectively of the @ N C under consideration and V., denotes the set of users uniquely assigned to
cell corner V;, such that U,V = D. A similar linear program can be formulated over @ N Cell C2.
Case2: QN C isconvex polygonal

If Q@ N C is convex polygonal, as illustrated in Figure 12b, Q can be represented by a set of

inequalities
AC ( 27 ) < b9, (7

Hence the problem to determine the 1-center can again be formulated as a linear program, as
in Case 1.
Case 3: @ N C isnonconvex

However if Q is nonconvex, the problem to determine the 1-center involves finding the mini-
max location over a nonconvex set, which can be represented as an optimization problem with a
linear objective function and a nonconvex feasible region. Hence the problem can be formulated
as a nonlinear program and solved using standard nonlinear programming solvers.

The overall feasible region F' is composed of a number of such regions Q. The number and
structure of Qs depends on the number and shapes of barriers. However a number of Qs will be
rectangular or convex polygonal. As demonstrated earlier, the determination of the 1-center for

such cases involves solving a linear program. However for nonconvex Qs, the problem to deter-
mine the 1-center can be formulated as a nonlinear program and solved using standard nonlinear
programming solvers. Some nonconvex regions might lend themselves to division into a finite
collection of convex subsets. Here again, linear programming formulations are possible.

6 Solution Complexity

Our solution methodology for the fixed orientation problem can be split as two distinct cases:
(7) when the facility is fully contained in a cell/subcell (ii) when the facility intersects gridlines.
Hence the number of cells/subcells is an important factor that governs our solution complexity. The
number of 1, 2, 3, 4-cornered cells generated depends on the number of barriers, their shapes and
their placement. In fact, the number of cells generated is a direct function of the number of points
of tangency of each barrier. Formally, N barriers generate at most C'N horizontal and C' NV vertical
gridlines where C' is a constant that signifies the upper bound on the number of tangency lines of
a barrier (in fact, this is our only restriction to the arbitrariness of barriers). Hence the maximal
number of 4-cornered cells generated is O(/N?). However these many 4-cornered cells are typically
not generated as gridlines are terminated when they intersect barriers. The number of subcells into
which 4-cornered cells can be split is a function of the number of ETT Ls generated in each 4-
cornered cell. Recall that a user generates at most 1 7T L in a 4-cornered cell, as proved in [14].
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Also since ETT Ls between opposing cell corners do not exist, as proved by Lemma 4.2.1, the
number of subcells generated is also restricted. Hence NV users, one associated with each barrier,
can generate N ET'T Ls in a 4-cornered cell in the worst case, which can intersect in O(N?) ways.
Hence the number of linear programs to solve is O(N*?).

When the new facility to be placed intersects gridlines, the number of set Os formed depends
on the number of gridlines the facility intersects (which in turn is dependent on the number, shapes
and relative proximity of the barriers). It is pertinent to note here that the set Os are defined when
the facility intersects successive horizontal and/or vertical gridlines. The new facility can intersect
C'N vertical gridlines in O(NN?) ways because intersecting: (i) one at a time is C'N ways, (ii) two
atatimeis C N — 1 ways because of the successive intersection requirement, and so on. Similarly,
CN horizontal gridlines can be intersected in O(N?) ways, and the maximal number of set Qs
is O(N*). Note that if a facility cuts one vertical (or horizontal) gridline, Q can span at most
two cells. Similarly if a facility cuts two vertical (or horizontal) gridlines, © can span at most
three cells. Hence considering only vertical (or horizontal) gridlines, the number of Q@ N Cs is
O(N?). Considering there exist both vertical and horizontal gridlines, the number of Q N Cs is
O(N®). Consequently there are O(N°) optimization problems to solve. The complexity of the
entire solution procedure would depend on the complexity of the optimization problem in each
such set Q9 N C.

7 Numerical Example

We now elucidate our solution methodology with a simple five-barrier example, as illustrated by
Figure 4 in §3.2. We redraw Figure 4 as Figure 14 and Figure 15 for the convenience of the reader.
Each barrier has one user. The coordinates of the barrier vertices and users are known. The weight
(w;) and addendum (~y;) of user 7 are listed in Table 1.

Table 1: Example data
User(i) |12 ]3|4|5
w; 112212

The new facility (along with its server) is shown in Figure 14. The first step is to define
the feasible region (hatched region as illustrated in Figure 14). Following the grid construction
procedure of §3.1, we draw 11 horizontal (numbered 1 through 11 in boxes in Figure 15) and 13
vertical gridlines (numbered A through M in boxes in Figure 15) through the barrier vertices and
users. As a result, sixty-four cells are generated. The number of 1, 2, 3 and 4-cornered cells is 0,
7, 22 and 35 respectively. In Figure 15, the cells are numbered in circles. ETT Ls generated due
to various users are also illustrated.
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Figure 14: Feasible region for placing new
facility

Figure 15: Cells and gridlines numbered

The new facility (NF) can be fully contained in 7 cells (cells numbered 27, 28, 32, 59, 60, 63
and 64), all of which are 4-cornered. For all these cases, the weighted 1-center problem can be
formulated as a linear program (LP). The (local) optimal 1-center location and the corresponding
objective function values (z) for all these cases are listed in Table 2.

Table 2: Results when NF is fully contained in cells

NF fully contained in cell | # of sub-problems | Optimal 1-center (z*,y*) | 2
27 1 (3,18) 79

28 2 (10, 18) 65

(16, 18) 7

32 2 (30, 17) 58

(30,22) 48

59 1 (6,3) 92

60 1 (10, 3) 94

63 1 (26, 3) 74

64 1 (30,3) 60

As an example, let us consider the case when the NF is fully contained in cell 63. The weighted
1-center (x,y) objective function for cell 63 is as follows:

min  max{[1(6 + (z —23) +y) + 3], 2B+ (30 —x) + (5 —y)) + 5], [2(27+ (30 — x) +
G—y)+2, 1B+ (z—=23)+ (B —y) +1], 239+ (30 —2) + (5 —y)) + 4]},

with feasible server locations being bounded by 23 < x < 26 and 2 < y < 3. This 1-center
problem can be formulated as an LP. The optimal 1-center for cell 63 is x = 26 and y = 3 with
an objective function value of 74. Recall that when the NF is fully contained inside cells, ETT Ls
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do not move. Also note that when a cell is split into subcells by an ETT' L (for example, cells 28
and 32), the weighted 1-center problem splits into two sub-problems (one for each subcell), each
of which can be formulated as an LP.

When the NF intersects gridlines, set Qs are formed. In this example, 38 such set Qs are
generated. Recall that Qs may span more than one cell. In all such cases, the weighted 1-center
problem has to be solved over Q@ N Cs. Here, 60 Q@ N C sets are found. Consequently, there are
60 optimization problems to solve, only one of which turned out to be a nonlinear program (NLP)
(case 6 in Table 3). All other cases were formulated as LPs. The LPs and NLP were solved using
the LP solver LINDO 6.1 and the NLP solver LINGO 8.0. The solution times in all cases were less
than a second. We now present a few selected results, when the NF intersects gridlines.

For each of the following cases, Table 3 lists the gridline(s) intersected, shape of Qs generated,
shape of Q N C (thereby indicating the number of resulting optimization problems), their type (LP
or NLP) and the (local) optimal 1-center location along with its objective function value (z).

Table 3: Selected results when NF intersects gridlines

Case # Lines Shape of Q Shape of | LP/NLP | Opt. 1-median z
intersected onc (x*, y*)
1 L mutually disjoint sets,

convex polygonal (CP) - LP (30, 30) 86

rectangular(R) - LP (27,22) 42
2 L4 CP R LP (28.67,24) | 41.33
CP LP [ (26.89,22.22) | 41.33

3 H,10 nonconvex R LP (23,6) 94

non—polygonal(NC-NP) | NC-NP LP (23,5) 96

4 C R - LP (8.5,3) 87

5 C,9 nonconvex, CP LP (8,8) 78
polygonal(NC-P) CP LP (8.25,7) 78.5

6 C\8 NC-NP CP LP (6,13) 72

NC-NP NLP (8,12) 70

7 C,6,7 R R LP (6,15) 68

R LP (6,15) 63

R LP (6,16) 70

The optimal 1-center locations (obtained by comparing all local minima) of the new facility are
(26.89,22.22) and (28.67,24.00) (Case 2 in Table 3), both with objective function values of 41.33.

We make an interesting observation for Case 3. While one of the Q N C related to cell 61 is
nonconvex nonpolygonal, it is analogous to the 3-cornered cell for the fully contained case (see
Lemma 5.1.3). Thus its boundary dominates the interior and a line search (through an LP) is
adequate.

Note that since the new facility intersects gridlines, ETT Ls may move. Case 7 in Table 3is an
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example in which the ETTLs in cells 26 and 32 move. However the assignment of users to cell
corners does not change in any of the cases in this example.

Establishing domination results can significantly reduce the number of optimization problems
to be solved. In this example, it can be verified that parts of the feasible region, for example,
between (i) y = 30 and y = 32, (i7) « = 0 and = = 3, and (i7i) all feasible locations contained
strictly inside cell 42, are dominated. All such feasible locations are excluded from analysis.
Moreover, it is worthwhile noting that we can attempt to prune some cells (in which the NF can
be fully contained) based on a bound provided by the optimal 1-center location of an infinitesimal
facility. The overall efficiency of the solution procedure can thus be further improved.

Finally, the number of optimization problems to be solved depends on the number of barriers,
their shapes and relative proximity, as mentioned earlier. However, even for more complex prob-
lems, the computational time required to solve each of the mini optimization problems is expected
to be negligible.

8 Conclusions

In summary, this paper addresses the optimal placement problem of a single finite size arbitrarily
shaped facility in the presence of arbitrarily shaped barriers to travel with the center objective.
The rectangular travel metric is employed. The server location and the facility orientation define a
facility’s placement. Due to the complexities associated with the finite size of the new facility, the
placement problem with fixed facility orientation is studied in this paper. Based on the subdivision
of the feasible region into cells, we obtain cell domination results for 1, 2, 3-cornered cells when the
facility is fully contained inside such cells. When the new facility is fully contained in a 4-cornered
cell (or a subcell generated by ETT Ls), the 1-center placement problem can be formulated as a
linear program. When the facility cuts gridlines, we analyze the problem and develop a solution
methodology based on distinct but fixed sets of gridlines which the facility intersects.

Our work can be viewed as an extension of Savas et al. [16] who study a similar problem but
with “median” objective and Nandikonda et al. [14] who consider the 1-center placement of an
infinitesimal facility. [16] considers a median objective and proves the objective function to be
concave. However since distances are being measured explicitly in our work, the procedure can
be applied to a general class of problems irrespective of the objective considered. Unlike [16],
we solely consider the user-server interaction. We note that since the new facility to be located
itself acts as a barrier to rectangular travel, it can disrupt the level of interaction between two users.
Study of the 1-center placement problem under a similar setting but subject to a constraint that
the user-user interaction should not exceed a specified threshold is an interesting open problem.
Proposing a solution methodology to the variable orientation problem (when the server location
Xy is known a priori) is also a future research direction.
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