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Abstract

This paper considers the problem of finding the least cost rectilinear distance path in the presence of
convex polygonal congested regions. We demonstrate that there are a finite, though exponential number
of potential staircase least cost paths between a specified pair of origin-destination points. An upper
bound for the number of entry/exit points of a rectilinear path between two points specified a priori in
the presence of a congested region is obtained. Based on this key finding, a “memory-based probing
algorithm” is proposed for the problem and computational experience for various problem instances is
reported. A special case where polynomial time solutions can be obtained has also been outlined.
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1 Introduction

The problem of finding the rectilinear least cost path between two points on a plane is trivially solved. There

is an infinite number of alternate optima except when the points share abscissa or y-coordinate. However,

the situation is more complicated in the presence of obstacles or barriers, and originates in many fields, such

as wire routing in VLSI, motion/path planning in robotics, plant and facility layout, urban planning and

transportation, geographical information systems, etc. It has been extensively studied in the past. Lee, Yang

and Wong [19, 11] emphasized its application to VLSI design and presented efficient algorithms for finding

rectilinear collision-free paths between two given points in the presence of rectilinear obstacles. Guha and

Suzuki [8] is a study of proximity problems for points on a rectilinear plane with rectangular obstacles.
∗Corresponding Author: Avijit Sarkar. E-mail: avijit sarkar@redlands.edu
†Submitted to Computers and Operations Research
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Schuierer [18] presented a data structure to preprocess a rectangular polygon such that the shortest distance

between two query points can be determined employing the rectilinear distance metric. Larson and Li [9]

proposed an efficient algorithm for determining the shortest rectilinear path between two points in <2 in the

presence of arbitrarily shaped polygonal barriers. The algorithm of [9] runs in O(m(m2 + n2)) time where

n is the total number of vertices of the barriers and m is the number of origin-destination points. Algorithms

for the same problem were also developed by Clarkson, Kapoor and Vaidya [6] and Mitchell [13]. A related

problem is that using the Euclidean distance. This is considered by Mitchell and Papadimitriou [14].

A barrier which can be penetrated but through which travel is at a higher cost is referred to in the litera-

ture as a congested region. Butt and Cavalier [3] considered the rectilinear p-median problem in the presence

of convex polygonal congested regions. They claimed that at least one least cost path will always coincide

with segments of the grid obtained by drawing horizontal and vertical lines through the existing facilities

and the vertices of the congested regions. Sarkar, Batta and Nagi [16] established with the aid of a counter-

example that the grid structure proposed by Butt and Cavalier to solve the rectilinear p-median problem is in-

adequate. They also proved that Butt and Cavalier’s grid structure suffices for rectangular congested regions.

However a generalized solution methodology to determine the least cost path between two points in the pres-

ence of non-rectangular congested regions still does not exist. In [17], Sarkar, Batta and Nagi addressed the

problem of placing a new department of given area but unknown dimensions in a shop floor layout in the

presence of other departments, where all departments are modeled as rectangular congested regions. This

paper proposes a “memory based probing procedure” to determine the least cost path between a pair of

origin-destination points in the presence of convex polygonal congested regions.

The remainder of this paper is organized as follows. Section 2 describes some preliminaries to the

problem. Section 3 defines the problem. Section 4 demonstrates the existence of an exponential number

of potential least cost paths. In Section 5 we establish an upper bound for the number of entry/exit points

for a single convex polygonal congested region. Based on these results, a “memory-based probing” solution

algorithm is proposed in Section 6. Computational results are reported in Section 7. In addition a special

case of the problem has been outlined where it is possible to obtain polynomial time solutions. Finally,

conclusions and directions for future research are outlined in Section 8.

2 Preliminaries

2.1 Larson and Li’s [9] probing approach

Larson and Li developed an efficient algorithm to determine the minimum rectilinear distance path between

a given set of origin-destination points in the presence of polygonal barriers. They defined the origin-

destination points and the barrier vertices as nodes. From every node, the authors constructed a “vertex

seeking tree (VST)” that seeks all other vertices which “communicate” with the start node and contains the

minimal length path from the start node to each such vertex. A VST, rooted at an origin-destination point
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(node) D having coordinates (x, y), is the union of four “probes” originating from D, in the +x, −x, +y

and −y travel directions. They defined the following:

1. A “positive x probe” originating from D is a horizontal line, drawn from D in the +x direction. A

“positive x probe” of D is denoted as rx+(D).

2. A “negative x probe” originating from D is a horizontal line, drawn from D in the −x direction. A

“negative x probe” of D is denoted as rx−(D).

3. A “positive y probe” originating from D is a vertical line, drawn from D in the +y direction. A

“positive y probe” of D is denoted as ry+(D).

4. A “negative y probe” originating from D is a vertical line, drawn from D in the −y direction. A

“negative y probe” of D is denoted as ry−(D).

There are three possibilities for each of these probes. They are illustrated in Figure 2 of [9].

1. A probe intersects no barrier, i.e., proceeds to infinity and becomes a ray.

2. A probe intersects another node, upon which it terminates.

3. A probe intersects an edge of a barrier partitioning the edge into two sub-edges. From the point of

intersection, the probe proceeds along the sub-edge that lies at an obtuse angle to the incident probe

and terminates at the end-point (a barrier vertex or a node) of the sub-edge. Clearly in this case, the

probe itself is the union of a vertical (or a horizontal) line segment and the sub-edge that lies at an

obtuse angle. It is pertinent to add that if the probe is incident on an edge at a right angle, then the

probe terminates.

2.2 Need for “memory-based” probing

In our problem, the endeavor is to determine a rectilinear path of least cost between origin-destination points

in the presence of congested regions. Since congested regions allow travel through, a probe, on intersecting

an edge of a congested region, will pass through the region. In doing so, the probe will generate an entry

point (point at which the probe enters the region) and an exit point (point at which the probe leaves the

region). Each such entry and exit point can potentially generate three probes, one in each travel direction

apart from the direction of the probe that generated the point. The same is true for any following entry/exit

point, potentially resulting in an exponential number of probes. For ease of understanding, let us consider

the example illustrated in Figure 1. The first entry point of ry+(O) to the congested region is E1. Probing

“without memory” will result in the entry/exit points E2, E3, E4, etc. Note that the probe originating from

E1 is a positive y probe, while the probe originating from E3 is a negative y probe. Consequently, as

depicted in Figure 1, an infinite sequence of turning steps (a turning step is defined in Larson and Li as a
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probe directly connecting two horizontal or two vertical probes whose directions of travel are reversed) may

result. Hence a simple “barrier extension” of Larson and Li’s vertex seeking tree approach will not suffice

for our problem.
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Figure 1: Memory-less probing
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Figure 2: Arbitrarily shaped congested region

2.3 Need for convex polygonal restriction

Figure 2 illustrates a single non-convex congested region with congestion factor α → 0 and a pair of origin-

destination points O and D lying on x = 0. By increasing the height of the congested region in both

the +y and −y directions, we can ensure that the least cost path between O and D will never bypass the

congested region. Among paths that penetrate the congested region, the one with least cost is the straight

line joining O and D along x = 0, at a cost of d(O, D) + Mεα, where d(O, D) is the length of the

shortest rectilinear path between O and D, ε is the width of each wedge as shown in Figure 2 and M , a very

large number, denotes the number of entry/exit points. If we let α → 0, ε → 0 and M → ∞ under the

condition that Mεα → 0, we get d(O, D) + Mεα → d(O, D). Thus we have a limiting example where

the least cost path between O and D can enter/exit a congested region an arbitrarily large number of times.

To overcome this difficulty, we consider convex polygonal congested regions in the remainder of this paper

(except in Section 7.4 when a special case of our problem is discussed). A convex shape helps limit the

number of entry/exits. A polygonal restriction helps us to identify the entry/exit points.

We proceed in our analysis by:

1. Determining an upper bound on the number of entry/exit points for a single congested region, and

2. Associating memory with the probes such that a path never contains a “turning step”.
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3 Problem Definition

Let Gi (an open set) denote the set of points (x, y) ∈ <2 contained strictly within the ith congested region.

We also define Gi = Gi∪{boundary of congested region i}, a closed convex polygonal set. The set Gi rep-

resents the ith congested region. Let v(m, i) denote the mth clockwise ordered vertex of congested region

Gi, with coordinates (x(m, i), y(m, i)). Each congested region is characterized by a finite number of such

vertices through which vertical and/or horizontal lines of tangency can be passed. Traveling through the

interior of a congested region is permitted at an additional cost per unit distance. This additional cost per

unit distance for traveling in congested region Gi is denoted by αi, 0 ≤ αi < ∞, and is referred to as its

congestion factor. Thus if w is the cost of travel per unit distance between two points lying outside or on the

boundary of Gi, then the cost of travel (between the same points) along a path entirely contained in Gi would

be (1 + αi)w. It is pertinent to note that there is no congestion along the boundary of a congested region:

hence the distinction between the inside and the boundary of a congested region. Note that the boundary of

a congested region can be written as Gi\Gi. We assume that there are p non-intersecting congested regions.

Thus Gi ∩Gi′ = ∅ ∀i, i′ = 1, . . . , p, i 6= i′. We let G = ∪iGi.

Consider a pair of origin-destination points O and D in<2\G. The objective is to find the least cost path

between O and D in the presence of p convex polygonal congested regions. Note that the least cost path

between any such pair of points may want to bypass a congested region Gi or enter it depending on the value

of αi.

4 Initial Insights

In this section, we state two observations which provide substantial insight into the nature of the problem.

However, before doing so, we present a few definitions from Larson and Li, suitably adapted for our purposes

and some facts about least cost paths.

4.1 Least Cost Paths

A staircase path between O = (xo, yo) and D = (xd, yd) is a rectilinear path having length |xo − xd| +
|yo − yd|. Two points are said to communicate if there exists at least one feasible staircase path between

them. Here the term feasible implies a path that does not contain a point belonging to the interior of a

congested region.

We now present some cases for a path between O and D:

1. If O and D communicate, the least cost path between O and D will never enter the interior of a

congested region.

2. The shortest length path between O and D may not necessarily be the least cost path between O and

D. This is illustrated later by examples in Figures 4(c) and 4(d).
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3. Two paths of equal length between O and D may not necessarily have equal cost. In fact, we later ob-

serve (Observation 2) that among two paths of equal length, the path with lesser cumulative weighted

travel (product of the rectilinear travel distance inside a congested region and the congestion factor of

the congested region) is the path of smaller cost.

4. The least cost path between O and D may enter and exit a congested region more than once. This is

illustrated later by an example in Figure 4(b). When αi becomes prohibitively high, the least cost path

may bypass the congested region.

4.2 Observations

Observation 1: In the presence of p congested regions in <2, there are in the worst case 22p+2 uniquely

different candidate staircase least cost paths between an origin and a destination.

The observation is based on the construction of 22p+2 unique staircase paths between an origin O and a

destination D in the presence of p congested regions.

E
2

2
E
2

3
E
2

4

E
2

8

E
2

7

E
2

5 E
2

6

X
2

1

X
16

2

G1

�
�
�
�

��
��
��

��
��
��

v(3,2)

v(1,1)

E
1

1

E
2

X
1
1

X
2

1
X

3

X
4

E
2

1

v(2,2)

1

1

1

32 staircase paths
betweed O  and D

G2

v(2,1)

v(3,1)

v(4,1)

v(1,2)

  

O

D

    

Figure 3: Exponential growth in number of staircase paths between O and D

We start by considering two congested regions G1 and G2 as depicted in Figure 3. Let (x(m, i), y(m, i))

denote the coordinates of the mth clockwise ordered vertex v(m, i) of congested region Gi. G1 and G2 are

constructed such that x(1, 1) < x(4, 1) < x(2, 1) < x(3, 1); y(3, 1) < y(2, 1) < y(4, 1) < y(1, 1) for G1

and x(1, 2) < x(2, 2) < x(3, 2); y(3, 2) < y(2, 2) < y(1, 2) for G2. We denote an entry point of a path

passing through the interior of Gi as Ei
s (using increasing subscript in decreasing order of y-coordinates of

the entry points). From each such entry point, the path splits in +y and +x travel directions and exit points
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Xi
s (again using increasing subscript in decreasing order of y-coordinates of the exit points) are generated.

For example, in Figure 3, the entry points (on G1) are E1
1 and E1

2 whereas the exit points are X1
1 , X1

2 , X1
3

and X1
4 . From each exit point, the paths again split in +y and +x travel directions. Note that the paths

(from O) are constructed according to the probing procedure described in Section 6.1. Due to the way G2

is constructed, (eight) probes from all (four) exit points of G1 are incident on G2. Consequently there are

sixteen exit points from G2.

Clearly, a third congested region G3 can be added such that all 32 probes exiting G2 are incident on G3

(and there are 128 staircase paths from O to D); a fourth congested region G3 can be added such that all 128

probes exiting G3 are incident on G4 (and there are 512 staircase paths from O to D) and so on. Hence, in

the worst case, there could possibly be 22p+1 uniquely different staircase paths from O to D that enter and

exit each congested region exactly once, where p is the number of congested regions that cause O and D to

not communicate.

Analogously in the worst case, 22p+1 uniquely different staircase paths (that enter and exit each con-

gested region exactly once) can be constructed by probing from D back to O. Note that during backward

probing (from D to O), some of the probes generated may intersect entry/exit points that were previously

generated during forward probing (from O to D). In such cases, the backward probes are terminated at those

entry/exit points. It is pertinent to mention here that 2-entry 2-exit staircase paths can be captured by the

union of these two sets of 22p+1 uniquely different staircase paths which result due to forward and backward

probing. For an example of a 2-entry 2-exit staircase path, we refer the reader to the example illustrated

in Figure 4(b). Also note that if the two sets of 22p+1 uniquely different staircase paths do not intersect,

the total number of paths is additive; hence the 22p+2 uniquely different candidate staircase least cost paths

between O and D.

Finally, a staircase path that enters and exits a convex polygonal congested region more than two times

cannot exist (proved later in Theorem 5.1).

Observation 2: Among all staircase paths POD of length lOD between origin-destination points O and D

that pass through congested regions Gi, i = 1, . . . , p with congestion factors αi, the least cost path is the

one that minimizes
p∑

i=1

φiαi, where φi is the length of a portion of POD in the interior of Gi.

Without loss of generality, let w = 1. The cost incurred to travel along path POD is
p∑

i=1

φi(1 + αi) + δ,

where δ is the total length of portions of POD that lie outside the congested regions. Since
p∑

i=1

φi(1 + αi) +

δ =
p∑

i=1

φiαi + lOD, the observation is valid.

From Observation 1, at most 22p+2 uniquely different candidate staircase least cost paths can be con-

structed, i.e., at most O(4p) entry/exit points may be generated between a given origin j and destination

k. However, due to Observation 2, none of these paths can be pruned a priori. Note that the staircase
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least cost path P ∗
jk is the one that minimizes

p∑

i=1

φiαi, which can be interpreted as a weighted sum of the

distances traversed in the interior of congested region Gi, αi’s being the weights. Let us consider, for the

sake of argument, a dynamic programming-like approach, that selects the best exit point Eb (among all exit

points) for the first congested region intersected and prunes all other exit points. Now consider such a pruned

exit point Epr. The weighted travel of a staircase path through Epr may be less than the corresponding travel

through Eb; because we do not have a priori knowledge of the exact amount of “interior” travel of staircase

paths through subsequent entry/exit points, lying on the staircase path passing through Epr. Hence an “a

priori pruning procedure” (of paths) cannot be designed for our problem. Consequently, there could be at

most O(4p) candidate staircase least cost paths between a given origin and destination.

The remainder of the paper focuses on the development of an algorithm (entitled “memory-based prob-

ing algorithm”, described later in Section 6) to determine the least cost path between a pair of origin-

destination points in the presence of convex polygonal congested regions. It is pertinent to note here that a

least cost path could be non-staircase too (note examples in Section 5). To this end, the following section

establishes an upper bound on the number of entry/exit points of a rectilinear (staircase or non-staircase)

path between two points for a single convex polygonal congested region.

5 Establishment of Maximum Number of Entry-Exit Points

In this section, we demonstrate, with the aid of some examples (in Figure 4), that a least cost rectilinear

path between two points specified a priori may enter and exit a convex polygonal congested region up

to two times. Then we prove that a least cost rectilinear path cannot enter and exit a convex polygonal

congested region three or more times because travel along a 1-entry 1-exit path and a 2-entry 2-exit path

cannot simultaneously cost more than a 3-entry 3-exit path. Determining an upper bound on the number of

entry/exit points is crucial to the development of our solution methodology because it prohibits the formation

of turning steps in the memory-based probing procedure. Let v(m) denote the mth clockwise ordered vertex

of congested region G1.

1. In Figure 4(a), the least cost path between A and B does not enter congested region G1 because A

and B communicate simply.

2. In Figure 4(a), the least cost path between O and D is OE1E4D. It enters and exits the congested region

G1 once, at E1 and E4 respectively, for 0 < α ≤ 1.33. For α > 1.33, the least cost path Ov4v1D

bypasses G1.

3. In Figure 4(b), the least cost path between O and D (now at (12.5, 10)) is OE1E2E3E4D. It enters

and exits G1 two times for 0 < α ≤ 0.59. The first entry and exit points are E1 and E2 respectively

and the second entry and exit points are E3 and E4 respectively.
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Figure 4: Examples of 1-entry/exit and 2-entry/exits

4. However for α = 0.61, the least cost path between O and D is Ov3E3E4D. It enters and exits G1

once, at E3 and E4 respectively. Note that in this case, the least cost path between O and D is no

longer the path of shortest length between O and D. This is illustrated in Figure 4(c).

5. In Figure 4(d), the least cost path between O and D is OE1E2E3E4D. It enters and exits G1 two

times for α = 0.30. The first entry and exit points are E1 and E2 respectively and the second entry

and exit points are E3 and E4 respectively. Note that in this case also, the least cost path between O

and D is no longer the path of shortest length between O and D.

We now prove that a rectilinear path between a pair of origin-destination points cannot enter and exit

a convex polygonal congested region three or more times. Consider a convex polygonal congested region

G1, as shown in Figure 5. Let Λ be the set of points contained strictly within G1. Let v(m), m = 1, . . . , q,
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denote the mth clockwise ordered vertex of G1. Note that since we consider one congested region, we

use the notation v(m) instead of v(m, i), as introduced earlier in Section 3. Also, let v(1), v(r), v(b) and

v(l) denote the vertices of G1 with the highest y-coordinate, highest x-coordinate, lowest y-coordinate and

lowest x-coordinate respectively. Clearly l ≥ b ≥ r ≥ 1. We denote as β(m) the “vertex angle” of v(m).

We now define the “vertex angle” and state some observations simultaneously:

1. Definition: The “vertex angles” β1(1) and β2(1) of v(1) are the angles between a horizontal line

drawn through v(1) and the edges v(1)v(2) and v(1)v(q) respectively.

2. Definition: The “vertex angles” β1(b) and β2(b) of v(b) are the angles between a horizontal line drawn

through v(b) and the edges v(b)v(b− 1) and v(b)v(b + 1) respectively.

3. Observation: Vertices v(1) and v(b) have two edge angles each, denoted as (β1(1), β2(1)) and

(β1(b), β2(b)) respectively, as mentioned earlier in items 1 and 2.

4. Observation: At most one of the angles β1(1), β2(1), β1(b) and β2(b) can be obtuse in order to

maintain convexity. However in such cases, it can be trivially established that a feasible rectilinear

path that enters and exits G1 exactly three times simply cannot be constructed.

5. Definition: For 2 ≤ m ≤ r − 1, the “vertex angle” β(m) of v(m) is the acute angle between a

horizontal drawn through v(m) and the edge v(m)v(m + 1). Observe that β1(1) < β(2) < β(m) <

β(r − 1).

6. Definition: For r + 1 ≤ m ≤ b − 1, the “vertex angle” β(m) of v(m) is the acute angle between

a horizontal drawn through v(m) and the edge v(m− 1)v(m). Observe that β(r + 1) > β(m) >

β(b− 1) > β1(b).

7. Definition: For b + 1 ≤ m ≤ l − 1, the “vertex angle” β(m) of v(m) is the acute angle between

a horizontal drawn through v(m) and the edge v(m)v(m + 1). Observe that β2(b) < β(b + 1) <

β(m) < β(l − 1).

8. Definition: For l + 1 ≤ m ≤ q, the “vertex angle” β(m) of v(m) is the acute angle between a

horizontal drawn through v(m) and the edge v(m− 1)v(m). Observe that β(l + 1) > β(m) >

β(q) > β2(1).

9. Observation: None of the angles β(m) defined in points 5, 6, 7, and 8 above can be obtuse due to the

convexity assumption.

10. Observation: The edge angles of v(l) and v(r) are undefined.

Let γ(m) = 90◦ − β(m). We define E(G1) to be the smallest rectangle that encloses G1. Let ∆

be the set of points contained strictly within E(G1). Consider an origin O and a destination D, such that

O, D ∈ ∆− Λ, and such that O, D do not communicate.
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Theorem 5.1. A least cost rectilinear path between a pair of origin-destination points that enters and exits

a convex polygonal congested region three or more times does not exist.

Proof: Without loss of generality, let us assume that the cost of travel per unit distance, w = 1.
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Figure 5: Figure for Proof of Theorem 5.1

Stage 1: Stating four paths under consideration

For the purpose of argument, consider the rectilinear path OE1E2v(m)E3E4E5D that enters and exits

the congested region exactly three times. We prove later that such a path cannot exist. Without loss of gen-

erality, the first, second and third entry points are E1, v(m) and E4 respectively, whereas the corresponding

exit points are E2, E3 and E5. Note that the path is non-staircase due to the way O and D are located. Cost

(of travel) along the path is e1 + e2 + c1 + c2 + b1 + y1 + b2 + y2 + z + (h + d1 + d2 + d′1 + d′2)(1 + α),

where e1, e2, c1, c2, b1, y1, b2, y2, z, h, d1, d2, d′1, d′2 are as shown in Figure 5 and α is the congestion factor

of G1.

OE1E2v(l)E4E5D is a rectilinear path that enters and exits the congested region exactly two times.

Without loss of generality, the first and second entry points are E1 and E4 whereas the corresponding exit

points are E2 and E5 respectively. Note that this path too is non-staircase. Cost of the path is e1 + e2 + c1 +

c2 + 2r + b1 + y1 + b2 + y2 + h + z + (d1 + d2 + d′1 + d′2)(1 + α).

OE6E7D is a rectilinear staircase path that enters and exits the congested region exactly once. Without

loss of generality, the entry and exit points are E6 and E7 respectively. Cost of the path is b1 + b2 + z +

(a + h)(1 + α).
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OE1E2v(l)v(1)D is a rectilinear non-staircase path that enters and exits the congested region exactly

once. Without loss of generality, the entry and exit points are E1 and E2 respectively. Cost of the path is

e1 + e2 + c1 + c2 + 2r + 2a′′ + h + b1 + y1 + b2 + y2 + z + d′1 + d′2 + (d1 + d2)(1 + α).

Stage 2: Comparing 3 entry-exit with staircase 1 entry-exit (Case A)

For the 3-entry 3-exit path to be cheaper than the staircase 1-entry 1-exit path, the following must hold:

e1 +e2 +c1 +c2 +b1 +y1 +b2 +y2 +z+(h+d1 +d2 +d′1 +d′2)(1+α) < b1 +b2 +z+(a+h)(1+α).

On simplification, we get
α >

e1 + e2 + c1 + c2 + d1 + d2 + d′1 + d′2
a− d1 − d2 − d′1 − d′2

. (1)

Stage 3: Comparing 3 entry-exit with 2 entry-exit (Case B)

For the 3-entry 3-exit path to be cheaper than the 2-entry 2-exit path, the following must hold:

e1 + e2 + c1 + c2 + b1 + y1 + b2 + y2 + z + (h + d1 + d2 + d′1 + d′2)(1 + α) < e1 + e2 + c1 + c2 +

2r + b1 + y1 + b2 + y2 + h + z + (d1 + d2 + d′1 + d′2)(1 + α).

On simplification, we get
α <

2r

h
. (2)

From Figure 5, h = h1 + h2, r
h1

= tan γ(m), r
h2

= tan γ(E3).

Hence, substituting h in (2), we get
α <

2
cot γ(m) + cot γ(E3)

. (3)

Stage 4: Comparing 3 entry-exit with non-staircase 1 entry-exit (Case C)

For the 3-entry 3-exit path to be cheaper than the non-staircase 1-entry 1-exit path, the following must

hold:

e1 + e2 + c1 + c2 + b1 + y1 + b2 + y2 + z + (h + d1 + d2 + d′1 + d′2)(1 + α) < e1 + e2 + c1 + c2 +

2r + 2a′′ + h + b1 + y1 + b2 + y2 + z + (d1 + d2)(1 + α).

On simplification, we get
α <

2(r + a′′)
(h + d′1 + d′2)

. (4)

Stage 5: Bounds on α

Combining (1), (2), (4), we get

e1 + e2 + c1 + c2 + d1 + d2 + d′1 + d′2
a− d1 − d2 − d′1 − d′2

< α < min{2r

h
,

2(r + a′′)
(h + d′1 + d′2)

}. (5)

Let min{2r
h , 2(r+a′′)

(h+d′1+d′2)
} = 2r

h . We first prove that the condition e1+e2+c1+c2+d1+d2+d′1+d′2
a−d1−d2−d′1−d′2

< α < 2r
h

can never exist. In other words, we establish (in stage 7) that both cases A and B cannot simultaneously

occur.

Later we consider the case min{2r
h , 2(r+a′′)

(h+d′1+d′2)
} = 2(r+a′′)

(h+d′1+d′2)
and establish in stage 8 that both cases

A and C cannot simultaneously occur..

Stage 6: Fact from convexity
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To ensure convexity of the congested region, γ(m) < 90◦−β2(b), where β2(b) is the second edge angle

of v(b). Since for any convex polygon, γ(m) < γ(m), γ(m) < 90◦ − β2(b).

Since 0◦ ≤ γ(m) ≤ 90◦,

tan γ(m) < tan(90◦ − β2(b)) ⇒ tan γ(m) < cotβ2(b) ⇒ cot γ(m) > tanβ2(b) (6)

Adding cot γ(E3) to both sides of (6), we get

cot γ(m) + cot γ(E3) > tanβ2(b) + cot γ(E3), i.e., 1
cot γ(m)+cot γ(E3) < 1

tan β2(b)+cot γ(E3)

⇒ 2
cot γ(m) + cot γ(E3)

<
2

tanβ2(b) + cot γ(E3)
. (7)

Stage 7: Establishing both cases A and B cannot simultaneously occur

Combining (1), (3), (7), we get

e1+e2+c1+c2+d1+d2+d′1+d′2
a−d1−d2−d′1−d′2

< α < 2
cot γ(m)+cot γ(E3) < 2

tan β2(b)+cot γ(E3)

⇒ e1+e2+c1+c2+d1+d2+d′1+d′2
a−d1−d2−d′1−d′2

< 2
tan β2(b)+cot γ(E3)

⇒ (e1 + e2 + c1 + c2 + d1 + d2 + d′1 + d′2)(tanβ2(b) + cot γ(E3)) < 2(a− d1 − d2 − d′1 − d′2). (8)

Note that for any convex polygon, γ(E3) < 90◦−ψ. Since ψ, γ(E3) < 90◦, cot γ(E3) > cot(90◦−ψ),

i.e.,

cot γ(E3) > tanψ. (9)
From (8) and (9),

(e1 + e2 + c1 + c2 + d1 + d2 + d′1 + d′2)(tanβ2(b) + tanψ) < 2(a− d1 − d2 − d′1 − d′2). (10)

From Figure 5, b1+y1

c1
= tanβ2(b) ⇒ y1 = c1 tanβ2(b)− b1.

Similarly b2+y2

c2
= tanψ ⇒ y2 = c2 tanψ − b2.

Since h + (b1 + y1) + (b2 + y2) = a + h + b1 + b2, we get a = y1 + y2.

Hence a = c1 tanβ2(b)− b1 + c2 tanψ − b2.

Substituting a in (10), we get

(e1 + e2 + c1 + c2 + d1 + d2 + d′1 + d′2)(tanβ2(b) + tanψ) <

2(c1 tanβ2(b)− b1 + c2 tanψ − b2 − d1 − d2 − d′1 − d′2). (11)

Note that (c1 + d1 + d2 + e1) = (c2 + d′1 + d′2 + e2). (12)

Simplifying (11) by using (12), we get

(e1 + d1 + d2) tan β2(b) + (e2 + d′1 + d′2) tanψ < −(d1 + d2 + d′1 + d′2 + b1 + b2). (13)

13



Due to the convexity of the polygon, 0◦ ≤ ψ ≤ 90◦ and 0◦ ≤ β2(b) ≤ 90◦. Hence the LHS of

(13) is always positive and inequality (13) presents a contradiction. Thus the 3-entry 3-exit path cannot be

simultaneously cheaper than the staircase 1-entry 1-exit path and 2-entry 2-exit path.

Stage 8: Establishing both cases A and C cannot simultaneously occur

We now consider the case min{2r
h , 2(r+a′′)

(h+d′1+d′2)
} = 2(r+a′′)

(h+d′1+d′2)
. This implies that the upper bound

imposed on α by the non-staircase 1-entry 1-exit path is tighter than the upper bound imposed by the 2-

entry 2-exit path; in other words, the non-staircase 1-entry 1-exit path does not enter the congested region

G1 a second time (bypasses the interior travel between entry point E4 and exit point E5 through the vertex

v(1)) and is hence cheaper than the 2-entry 2-exit path. Since G1 is convex, an imaginary path with 3 entries

and three exits (such as OE1E2v(m)E3E4E5D) would also bypass the interior travel between E4 and E5,

thus becoming a 2-entry 2-exit path, which in this case is costlier than the non-staircase 1-entry 1-exit path

under consideration. Hence a 3-entry 3-exit path that is simultaneously cheaper than a non-staircase 1-entry

1-exit path and a 2-entry 2-exit path does not exist.

Stage 9: More than 3 entry/exits

If a path enters and exits the congested region more than 3 times, we simply consider a sub-path that

enters and exits exactly three times and observe that this sub-path cannot be of minimal cost. Thus we can

keep reducing the number of entry/exits till we hit the 3 entry/exit case, which as shown previously cannot

hold as well.

The theorem follows. ¥
As an immediate implication of Theorem 5.1, we associate memory with probes (described later in step

7(b) of Section 6.1) in the “memory-based probing” procedure.

6 Memory-Based Probing Algorithm

In this section, the “memory based probing procedure” between any pair of origin-destination points in the

presence of convex polygonal congested regions is discussed. Our solution methodology to determine the

least cost path P ∗
OD between origin-destination points O and D contains two major steps:

(i) the probing procedure whose steps are described in Section 6.1, and

(ii) generation of the network, described in Section 6.3. Note that the network generated as a result of

the probing procedure contains staircase as well as non-staircase paths.

6.1 Probing Algorithm

The steps of the “memory based probing procedure” are outlined as follows:

1. Choose any pair of origin-destination points O, D.

2. Check if the origin and destination simply communicate following criteria listed in [9]. If so, draw

one probe each from the origin and destination that intersect at a common point. Terminate the probes
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at the point of intersection.

3. Check if the origin and destination communicate but do not communicate simply. If so, draw a feasible

staircase path between the points, applying the Path-Push and Amalgamation procedure of [9].

4. If the origin and destination do not communicate, draw E(G), the smallest rectangle that encloses

O, D, and the set of all congested regions G. The edges of E(G) are parallel to the horizontal and

vertical axes.

5. Probe in all four rectilinear directions from the origin.

6. For each probe, the following possibilities exist:

(a) A probe intersects no congested region. Such a probe is terminated when it intersects E(G).

(b) A probe intersects an edge v(m, i)v(m + 1, i) of a congested region Gi, generating an entry/exit

point E and partitioning the edge into two sub-edges v(m, i)E and Ev(m + 1, i). From E,

the probe proceeds along the sub-edge that lies at an obtuse angle to the incident probe and

terminates at the end point of the sub-edge (a vertex of the congested region). We denote such a

vertex as b(m, i) and refer to it as a “bypass vertex”. However, if the probe is incident at a right

angle, then it terminates at the point of incidence E.

7. For entry/exit point E:

(a) If E communicates (simply or otherwise) with the destination, probe as in steps 2 and 3.

(b) Else, probe in all possible rectilinear directions apart from:

i. the direction that would split the (obtuse) angle of incidence into two smaller angles (an

acute angle and a right angle). For the ease of understanding, consider the example illus-

trated in Figure 6 in which the dotted direction should not be probed. The same probing

rule applies if the angle of incidence is inside a congested region.

ii. the directions that were probed by two previous entry/exit points, so that the formation of a

turning step within a congested region (as illustrated in Figure 1) is prohibited. This can be

achieved by associating a memory with each probe, which stores its direction of probing.
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8. For each “bypass vertex” b(m, i):
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(a) If b(m, i) communicates (simply or otherwise) with the destination, probe as in steps 2 and 3.

(b) Else, consider b(m, i) as a pseudo-origin and repeat steps 5 to 7. The necessity of step 8b is

explained in the following sub-section.

9. Let B = ∪i,m{v(m, i)} \ ∪i,m{b(m, i)} represent the set of congested region vertices where a probe

never terminated. For any vt ∈ B, t = 1, . . . , Kp, where p is the number of congested regions and

K, a constant, is an upper bound on the number of edges of each congested region, repeat steps 2 to 8

considering vt ∈ B as a pseudo-origin.

10. Interchange origin and destination and repeat steps 5 to 8.

11. Sequentially combine probes to form paths and eliminate all 3-entry 3-exit paths.

6.2 Correctness of the Probing Procedure

Lemma 6.2.1. The memory-based probing procedure of Section 6.1 is correct.

Proof: The correctness of the probing procedure follows from the correctness of its various steps. The

correctness of Steps 2 and 3 follows from the definition of simply communicating vertices and Theorem

1 of [9] respectively. Step 4 is necessary because the least cost path (union of probes) between O and D

must be contained within E(G). Step 5 ensures that all paths are rectilinear. Step 6b is identical to step

3 of the vertex seeking tree construction procedure of Larson and Li [9]. It only differs from [9] in the

generation of entry/exit points (since our paper considers congested regions and not barriers). Step 7b(ii)

eliminates turning steps within congested regions (as illustrated in Figure 1). Step 8b follows from the

probing procedure of [9], when the least cost path bypasses a congested region via its vertices (i.e., the

congested region acts as a barrier to travel) and thus recognizes the possibility that a least cost path may be

non-staircase. Consider the example illustrated in Figure 4(a), in which the least cost path Ov4v1D between

O and D bypasses G1 through the vertices v4 and v1 for α > 1.33. Step 9 is necessitated by the exact same

reason as step 8b. Step 10 is essential because our probing procedure yields unidirectional arcs. Step 11

follows from Theorem 5.1. ¥

6.3 Generation of the Network and Shortest Path Application

The network for our problem is H(W,L), where W = (∪i,m{v(m, i)} ∪ (∪iEi)) is the set of nodes (Ei

denotes the set of entry/exit points of congested region Gi) and L is the set of arcs (i.e., probes). We

partition the arc set L into subsets L1 and L2 where L = L1 ∪ L2. L1 denotes the set of arcs lying outside

congested regions. The length of all such probes is equal to the length of the shortest rectilinear path between

the start and end points of the probe. L2 denotes the set of arcs lying inside congested regions. The length

of such an arc is equal to (1 + αi) times the length of the shortest rectilinear path between the start and end

points of the arc, where αi denotes the congestion factor of Gi in which the arc is fully contained. P ∗
OD can

be obtained by solving the shortest path problem on this constructed network H(W,L). Depending on the
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size of the network generated, different shortest path algorithms can be employed. We discuss these issues

in greater detail later in Section 7.2.

7 Computational Results

7.1 Generation of Problem Instances

The numerical tests were performed on different problem instances. User input parameters of each prob-

lem were the number of congested regions, their congestion factors, and the coordinates of the origin and

destination. The number of vertices of each congested region was generated using standard random number

generators but never exceeded 10. The coordinates of the vertices were obtained by geocoding the ver-

tices of convex and non-intersecting land polygons (in an ArcGIS 9.1 framework) scattered across major

metropolitan areas in a five county region (San Bernardino, Riverside, Los Angeles, Orange County, and

San Diego) in southern California. The origin and destination were placed such that they were rectilinearly

invisible vis-à-vis most congested regions. Low congestion factors (less than 1) were assigned to each re-

gion to maximize the chances of a potential least cost path to pass through most congested regions. This

was necessary to ensure that the computation results reveal the true extent of the number of entry/exit points

generated when most of the congested regions are intersected. The memory-based probing algorithm was

implemented in C programming language.

7.2 Numerical Test Results

The results in Table 1 indicate the variation in the number of entry/exit points generated (ρ) and the runtime

(τ ) with the number of congested regions intersected (φ) due to probing. Note that (i) ρ and τ are functions

of φ, and not p, as all congested regions are not necessarily intersected during probing, (ii) τ reflects the

time taken by the probing procedure to generate all entry/exit points, and not to determine the least cost path

between the origin and destination, and (iii) the results in Table 1 are dependent on the locations of the

congested regions in <2, their relative proximity and the locations of the origin-destination points relative

to the congested regions.

The plots of φ versus ρ and φ versus τ are illustrated in Figures 7 and 8 respectively. The inherent

exponential nature of the problem is clearly evident from these plots.

A plot of φ versus log2 ρ is illustrated in Figure 9. The relationship between φ and log2 ρ can be approx-

imated by a straight line (using standard regression approaches), which has a slope of approximately 0.47;

implying that, for the numerical tests conducted, our probing algorithm generated O(20.47φ), i.e., O(1.385φ)

entry/exit points. Clearly the algorithm performs much better in terms of the total number of entry and exit

points generated, the upper bound of which is O(4p).

As evident from the computational test results, the number of entry/exit points generated for a reason-

ably large-sized problem instance (with 35 congested regions) is approximately 160, 000. The size of the
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Table 1: Test Results
Problem # p φ ρ τ (CPU secs.)

1 1 1 15 7
2 2 2 11 22
3 4 3 77 37
4 6 5 156 31
5 10 7 1586 61
6 15 9 3194 89
7 20 12 11407 174
8 25 17 50383 555
9 30 26 100823 736
10 35 31 160919 1505
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constructed network H(W,L) is the main determinant of the shortest path algorithm employed to obtain

P ∗
OD. The standard shortest path algorithm given by Dijkstra [7] and its various efficient implementations,

well studied in Ahuja, Magnanti and Orlin [1] would suffice for most problem instances. However, if com-

putation times become prohibitively high, either (i) large scale shortest path algorithms ([5]), or (ii) other

heuristic approaches have to be employed to determine P ∗
OD. Zhan and Noon [20] provides a comprehensive

and objective performance evaluation of 15 shortest path algorithms using a variety of real road networks

and recommends Dijkstra’s algorithm with “approximate buckets” implementation for the one-to-one (i.e.,

between one pair of nodes) shortest path problem.

7.3 Discussion on Computational Complexity

Larson and Li’s [9] Polypath algorithm to determine the minimum rectilinear distance path(s) in the pres-

ence of barriers is polynomially bounded in the number of nodes (comprised of barrier vertices and origin-

destination points) of the constructed network. In our case, the size of the generated network is also a func-
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Figure 9: φ versus log2 ρ

tion of the number of entry/exit points generated by the memory based proving algorithm. Clearly the num-

ber of entry/exit points is a function of the number of congested regions intersected during probing (φ) and

the number of times each congested region is intersected during probing. Our computational experience sug-

gests that φ itself is a function of (i) size, shape, and number of vertices of the congested regions, (ii) their

relative placement in <2, and (iii) location of the origin-destination points relative to the congested regions.

It is pertinent to mention here that these three factors compound the worst case performance analysis of

the algorithm. Additionally, recall that as a result of Observation 2 (discussed earlier in Section 4.2), a

priori pruning of probes is not possible, and consequently the state space (of entry/exit points) seems to

grow exponentially. Our empirical analysis (reported in the literature [1] as one of three widely adopted

approaches for measuring the performance of an algorithm) suggests that the memory-based probing algo-

rithm is an exponential time algorithm as its worst case running time and size of the network generated grow

exponentially as a function of φ. Note that while this is consistent with the inherently exponential nature

of the network generation problem, the performance of the algorithm for small and medium sized problem

instances (φ ≤ 12) is satisfactory. In conclusion, the authors conjecture that the problem of generating the

network for the least cost path problem in the presence of congested regions is NP-hard. However a formal

proof of NP-hardness (via the transformation of other network optimization problem(s) to the entry/exit

point network generation problem) eludes the authors at this point and is hence outlined as a direction for

future research.

7.4 Special Case: Known Entry-Exit

When all congested regions in<2 are rectangles with their edges parallel to the travel axes, Sarkar et al. [16]

established that the least cost path between a pair of origin-destination points is a subset of the grid structure

proposed by Butt and Cavalier. We now consider a special case of our problem when the number of entry/exit
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points of a least cost path between a pair of origin-destination points (in the presence of arbitrarily shaped

congested regions) and their exact locations are known a priori.

Consider a university campus located in an urban area. Speed limits inside a campus are typically less

than city roads or highways. Additionally, one can enter and leave a campus at a fixed number of entry/exit

points whose locations are distinguished. Such an area could be considered to be an arbitrarily shaped

congested region with a fixed number of entry/exit points whose locations are predetermined. This is a

special case of our problem. The objective is to determine the rectilinear least cost path between all pairs of

origin-destination points for this special case. However, note that the discussion in this section applies to a

more general shape of congested regions and is not limited to convex polygonal congested regions only.

Batta and Palekar [2] introduced a novel modeling framework for location problems that consisted of a

mixture of planar and network components. In [2], the authors introduced the concept of mega nodes, which

are arbitrarily shaped planar regions inside which any travel always follows the rectilinear distance metric.

The authors also considered the existence of infinitesimal nodes of zero dimension. Demand was distributed

at demand points which are (i) infinitesimal nodes, and (ii) a finite number of points spatially scattered in

the mega nodes. Travel to/from the infinitesimal nodes to demand points located inside mega nodes occurs

through “gates” located on the boundaries of mega nodes. Along the lines of Larson and Sadiq [10], [2]

divided the region inside mega nodes into cells and proved that at least one shortest path from a demand

point to a facility located in a cell C passes though the cell corner of C.

Note that mega nodes of [2] can be considered to be congested regions and their gates could correspond

to the entry/exit points of a congested region. We assume that each such congested region is characterized

by a finite number of points of tangency through which tangential lines can be passed along the rectilinear

travel directions. We now describe our grid construction procedure, as outlined in the following steps and

as illustrated in Figure 10.

1. Analogous to the grid construction procedure of [2], we pass horizontal and vertical lines through the

known entry/exit point locations of the congested regions.

(a) The lines drawn inside the same congested region are terminated when they intersect the bound-

ary of the region.

(b) The lines extending outside from a congested region are terminated when they intersect other

congested regions, otherwise at the boundary of the smallest bounding rectangle.

2. Draw all possible tangency lines in the interior and exterior of the congested regions, along the direc-

tions of travel. Lines extending into the interior of a congested region are terminated as in step 1(a).

Lines drawn in the exterior of a congested region are terminated as in step 1(b).

3. Draw horizontal and vertical lines through the origin-destination points which terminate when they

intersect other congested regions, or at the smallest bounding rectangle.
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Figure 10: Special case: number of entry/exit points and their locations are known

A closed bounded region between intersection points on the grid and congested region boundaries (that

lie outside congested regions but inside the bounding rectangle) are defined as cells. Points of intersection

of gridlines with other gridlines or with congested region boundaries, that define a cell, are referred to as

cell corners. We now state and prove the following lemma:

Lemma 7.4.1. At least one least cost path between a pair of origin-destination points will coincide with

segments of the grid, drawn as described in the previous steps.

Proof: If the least cost path between a pair of origin-destination points bypasses all existing congested regions,

the congested regions can be thought of as barriers to travel and the grid structure of [10] (which would con-

sist of lines drawn in steps 2 and 3 previously but exclude the lines drawn in step 1) would apply. However,

the grid structure of [10] is a subset of our grid structure. The lemma follows from Lemma 3 of [10].

If the least cost path between a pair of origin-destination points passes through the existing congested

regions, the proof follows from Lemma 1 of [2]. ¥
The rectilinear least cost path between a pair of origin-destination points can thus be determined by

solving the shortest path problem on the network specified by the grid construction procedure. The cell

corners, origin-destination points, entry/exit points, and points of intersection of gridlines that lie within

congested regions comprise the nodes of the network. To formalize this, we note that N1 congested regions

generate at most CN1 horizontal and CN1 vertical lines, where C, a constant, signifies the upper bound on

the number of tangency points of each congested region. Similarly, the entry/exit points generate at most

N2 horizontal and N2 vertical lines; while the origin-destination points generate at most N3 horizontal and

N3 vertical lines. Hence the maximal number of cells is O(N1
2 + N3

2), and the maximal number of points
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of intersections of gridlines that lie within congested regions is O(N1
2 + N2

2). Clearly the number of cells

and points of intersections of gridlines that lie within congested regions is O(n2). Typically fewer cells and

interior points of intersection will be generated due to the terminating conditions mentioned earlier in the

steps of the grid construction procedure.

The length of an arc between a pair of nodes is given by either (a) the length of the horizontal or vertical

segment between the nodes, or by (b) (1+αi) times the length of the horizontal or vertical segment between

the nodes, if they lie with congested region Gi. Since the standard shortest path algorithm [7] is itself an

O(n2) algorithm, a polynomial time O(n4) solution to the special case can thereby be obtained.

8 Conclusions and Future Research

This paper analyzes the problem of determining the least cost path between a pair of origin-destination points

in the presence of convex polygonal congested regions. It has been established that the state-space for the

problem could be exponential, i.e., there could possibly be O(4p) potential staircase least cost paths be-

tween a specified pair of origin-destination points in the presence of p congested regions. An upper bound

for the number of entry/exit points for a single convex polygonal congested region has been obtained. A

“memory-based probing algorithm” has been proposed for the problem. It can be viewed as a generalization

of the algorithm proposed by Larson and Li [9] for the corresponding “barrier” problem. Computational

experience for various problem instances has been reported, which reflect the inherent exponential nature of

the problem.

When the network constructed by the “memory-based probing algorithm” becomes very large and con-

sequently computation of the least cost path is prohibitively expensive, G, the set of all congested regions,

can be partitioned into smaller subsets. Analogous to the idea proposed by Lombard and Church [12] (who

define a “gateway shortest path” to be a path between an origin and a destination that has to pass through a

specified node, called a “gateway”), each such subset can be assumed to have one or multiple “gateways”

(entry point(s) or exit point(s)) specified a priori, through which the least cost path between a given ori-

gin and a destination is constrained to pass. The motivation to partition the congested regions into smaller

subsets is to reduce prohibitively high shortest path computation times for large scale networks. For each

subset, the “local” least cost path can be determined between the entry gateway(s) and exit gateway(s). A

heuristic least cost path can be obtained by comparing the lengths of combinations of the least cost paths in

individual subsets of congested regions. The heuristic will yield an efficient path in terms of its length. This

path will clearly be sub-optimal; however, its length will provide a valid upper bound to the length of P ∗
OD.

We conclude this paper with the following directions for future research. Until now, the congestion

factors (α) have been assumed to be constants. However, in regional, urban and facility settings alike, the

congestion depends on the time of the day. Such situations can be modeled by dynamic congestion factors,

where the parameter α is replaced by a function of time α(t). The probing algorithm and network formation
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is expected to be unchanged. The analysis will require time-dependent shortest path algorithms ([15], [21],

[4]) on the network.

The dynamic routing of unmanned aerial vehicles (UAVs) is a problem frequently encountered in the

context of military reconnaissance operations. Such operations are often performed in high risk environ-

ments due to the presence of hostile forces. A hostile region and its “risk level” (either dynamic or stochas-

tic) could be surrogates for a congested region and its congestion factor. However, for this airborne version

of the traditional vehicle routing problem, the Euclidean (or l2) distance metric (rather than the rectilin-

ear distances, as considered in this paper) would clearly provide a better (and more practical) measure of

distances.
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