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Abstract

This paper addresses a production scheduling problem in an injection molding facility. It
appears to be the first attempt to schedule parallel machines for multiple items in presence
of multiple capacitated resource constraints with sequence-dependent setup costs and times.
The objective is to meet customer demands while minimizing the total inventory holding
costs, backlogging costs and setup costs. We present a mathematical formulation of the
problem. The computational complexity associated with the formulation makes it difficult
for standard solvers to address industrial-dimensioned problems in reasonable solution time.
To overcome this, a 2-phase workcenter based decomposition scheme has been developed
in this paper. The computational results for different problem sizes demonstrate that this
scheme is able to solve industrial-dimensioned problems within reasonable time and accuracy.
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1. Introduction

Injection molding is a huge global market. Molders Economic Index (MEI) indicate that
the medical molding, in U.S. alone, has shown accelerated growth rates in the past three
years. This is due to the massive expansion in health care spending in the U.S. caused by
an aging population. North American molding plants have never been as modern and well
equipped as they are now. In the 1990s and well into the year 2000 molders spent heavily on
capital improvements. New injection machines, advanced automation and inspection devices,
automated assembly machinery, sophisticated materials handling equipment, and decorating
and printing equipment all allowed molders to significantly lower the cost of direct labor
used in the manufacture of even low-cost commodity parts. In addition, injection molding
plants generally enjoy the highest possible productivity rates combined with highly advanced
product design and materials technology. In this light of the prospects held by the injection
molding industry, particularly the healthcare related injection molding industry, we were
motivated to work with a healthcare injection molding plant to improve their processes
through better production scheduling.

Injection molding operation is typically a single-stage manufacturing process wherein a
number of products are manufactured on shared machines with their respective dies. The
molding machine uses a vacuum to move the plastic from the “drier” to its initial holding
chamber. This chamber is actually a small “hopper” on the back of the “barrel” of the
machine. The barrel is where all the real work is done. It is essentially a large screw housed
in a heater which moves the plastic closer to the mold. As the screw turns, the plastic
traverses the barrel and reaches a molten state. Only when it is molten can it be injected
into the mold with a rapid turn of the screw. The tip of the barrel is called the “nozzle”
and from this point to the cavity in the mold the material is not heated and is constantly
cooled. The “runner” is the cooled/set plastic that extends from the nozzle to the cavity and
is process scrap. Actually, the cooled material from the nozzle to the mold is the “sprue”
but it is connected to the runner. The runners are ejected into a “conveyor” below the mold
and dumped into a “grinder”. The grinder chops the runners into bits and prepares them to
be moved back into the drier. “Ejector pins” (part of the mold) are then used to eject the
molded parts.

A setup needs to be performed for a product to be manufactured. The setup is sequence

dependent and parameters like changeover cost and setup time vary depending on which



product is setup after which. Further, a number of resources like grinders, driers and con-
veyors are required for the production process. These resources are constrained by their
limited numbers. Also different products require different machines and different sets of
resources and tools. Coming up with a good schedule in presence of all these constraints, is
a challenge, even for the single stage case.

We present a mixed integer formulation for scheduling parallel workcenters in presence of
multiple tooling and capacitated resource constraints with sequence dependent setup times
and costs. In the first stage, we solve the “aggregated” problem for a “part family”. In the
second stage, we solve the “disaggregated” problem on a rolling-horizon basis. We develop
a workcenter based decomposition scheme to decompose the “disaggregated” problem into
smaller subproblems and solve them to generate the final feasible schedule. We also developed
a software package that would incorporate the solution methodology and provide a GUI based
solution for the aggregate and the detailed scheduling problem.

In the following section, a recent literature review of the related topics is presented. The
problem definition and formulation is presented is Section 3. Section 4 presents the solution
approach including the 2-Phase workcenter based decomposition scheme. Computational
results are shown in Section 5. The results indicate that the proposed scheme provides good
feasible schedules for industrial sized problems within an acceptable time limit. We conclude
with remarks of this work in Section 6. The appendix contains a brief account of the software

system.

2. Literature Review

The literature review presented here is divided into two sections. The first section attempts
to define the different classes of lot-sizing problems considered in the literature; and the
second section summarizes the different solution strategies developed to deal with different

classes of lot-sizing problems.

2.1 Lot-Sizing and Scheduling Models
2.1.1 Basic Models

The simplest version of production planning disregards setup cost and for a single stage,
single product situation, attempts to minimize inventory holding cost in an uncapacitated

environment. The solution to this problem is a trivial lot-for-lot schedule because it clearly



minimizes the objective. This model is typically considered with some combination of the

following five aspects to result in a version of practical relevance.

1. Presence of Setup Costs. In this case, the simplest lot-sizing problem was formulated

by Wagner and Whitin [39].
2. Capacity Constraints.
3. Presence of Backlogs.

4. Multiple Products. The Capacitated Lot-sizing and Scheduling Problem (CLSP), was
addressed by Drexl and Kimms [13], for a single-stage multiple product system. The

model minimizes total setup and holding costs.

5. Multiple Stages. The multi-stage (“multi-level”) capacitated lot-sizing (MSCLS) prob-
lem is concerned with the determination of production lot sizes in resource-constrained
multi-stage MRP (Materials Requirement Planning) systems so as to minimize the
sum of production, set-up and inventory costs. The MSCLS problem, is shown to be
NP-Complete by Franga et al. [19]. This is important because it implies that it is

unlikely that any algorithm can optimally solve large problems.

2.1.2 Time Period Based Classification of Models

Two terms used in lot-sizing problems, are small and big (or large) bucket, as defined by
Belvaux and Wolsey [5]. The CLSP is called a large bucket (or big bucket) problem by Drexl
and Kimms [13] and Belvaux and Wolsey [5], because several items may be produced per
period. The case where the (macro) periods are subdivided in several micro-periods leads
to the Discrete Lot-sizing and Scheduling Problem (DLSP), called a small bucket problem,
by Drexl and Kimms [13] and Belvaux and Wolsey [5], because at most one item can
be produced per period. The DLSP has the same objective function as the CLSP. DLSP
follows the approach. The Continuous Setup Lot-Sizing Problem (CSLSP) constraint allows

the system to produce under its full capacity.

The Proportional Lot-sizing and Scheduling Problem (PLSP) occurs when the CSLSP
model does not use the full capacity of a period, as described by Drexl and Kimms [13]. Drexl
and Haase [15] present the PLSP with setup times (PLSPST) where the capacity constraint



now includes the setup. The General Lot-Sizing and Scheduling Problem (GLSP), proposed
by Drexl and Kimms [13] and Fleischmann and Meyr [17], features multiple products,
single-machine sequence-dependent setup costs, small bucket time, but with neither setup
times nor backlogging. Models and applications of the Continuous Time Lot-Sizing and
Scheduling Problem (CTLSP), including the Batching and Scheduling (BSP), are discussed
by Belvaux and Wolsey [5], Drexl and Kimms [13], Drexl and Haase [14] and Potts and
Van Wassenhove [31]. We do not elaborate on these models any further as these models are

not within the scope of this paper.

2.1.3 Multiple Machine Models

This section covers the multiple-machine problem which simultaneously preserves the single-
stage feature, i.e., machines in parallel. Anderson et al. [2] and Barbarosoglu and Ozdamar
[3] distinguish three special cases for single-stage in parallel machines: identical parallel ma-
chines, uniform parallel machines and unrelated parallel machines, a feature often omitted
by the researchers. Meyr [27] develops the following features: multiple-products, multiple
heterogeneous machines, capacitated, sequence-dependent setup times, without backlogging
and the objective function has a particularity including the holding, sequence-dependent
costs and production costs, in a single-stage scheme. Meyr [27] develops the model of
Fleischmann and Meyr [17] to the multiple machine case denoted General Lot-Sizing and
Scheduling Problem Parallel Production Line (GLSPPL). A different modeling approach is
adopted in Clark and Clark [9], which presents two formulations to lot-sizing when setup
times are sequence-dependent in the context of rolling-horizon planning and scheduling for
parallel machines. The first formulation is an exact model while the second is an approxima-
tion for rolling-horizon use. Instead of using macro and micro periods, the models by Clark
and Clark [9] permit multiple setups within each planning period. In the model by Clark
and Clark [9], the nth setup can occur at different times on each machine, for which, a
binary variable is introduced. The resultant MIP is huge, but solved using a rolling horizon
basis, using continuous variable approximations for future setups. Research is continuing on

such models.

2.2 Solution Methods

A recent overview of the lot sizing procedures for the multi-stage, multi-item case is given

by Katok et al. [24]. Bahl et al. [4] and Maes et al. [26] summarize efforts for different
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classes of lot-sizing problems.

There are two distinct approaches to solving MLCLSP. The first one uses the optimiza-
tion approach and the second approach is the heuristic approach. Helber [22] separates
the heuristic procedures into three categories. They are: 1) Decomposition approaches, 2)
Local search procedures, and 3) Lagrangean based procedures. Katok et al. [24] introduces
a fourth category to this list: 4) LP based procedures. Often these approaches have been
combined to get better results. Helber [22] describes combinations of decomposition ap-
proaches with local search procedures, while Salomon [33] and Salomon et al. [32] describe

combinations of LP based procedures with local search techniques.

2.2.1 Optimization Approaches
Shortest Route

These involve methods for finding strong lower bounds. Eppen and Martin [16] developed
the shortest route formulation of the single stage capacitated lot sizing problem (CLSP),
where the LP relaxation provided stronger lower bounds than the standard formulation of
Billington et al. [6]. Tempelmeier and Helber [36] extended this shortest route formula-
tion to MLCLSP. Pochet and Wolsey [30] used the shortest route formulation and added
valid inequalities find near-optimal solutions for both uncapacitated, and capacitated (single

resource) multi-item problems having either a single-stage or a multi-stage general structure.

Lagrangean Relaxation

Some optimization approaches use Lagrangian relaxation to generate strong lower bounds.
Diaby et al. [11] used Lagrangean relaxation with subgradient optimization to generate
lower bounds, followed by a branch and bound algorithm to locate the optimal solutions
for a single level problem with a single capacitated resource, setup costs, and setup times.
They showed that capacity constraint relaxations produce better lower bounds than demand

constraints relaxations.

2.2.2 Heuristic Approaches

Decomposition Approaches

These ignore the multi-level structure of MLCLSP and solve a sequence of CLSPs. Blackburn
and Millen [8] developed a decomposition procedure for the multi level problem by modifying

setup and holding costs. They considered uncapacitated assembly systems with constant



demand, infinite time horizon, and setup costs. They solve these problems using an existing
single level lot-sizing algorithm. Tempelmeier and Helber [36] used the cost adjustment
procedures of Blackburn and Millen [8] and Heinrich and Schneeweiss [21] along with the
heuristic technique proposed by Dixon and Silver [12] to solve a sequence of single level
CLSPs. The final stage of the algorithm restored feasibility using a smoothing heuristic.
Stadtler [35] proposed a time-oriented decomposition heuristic to solve the dynamic multi-
item multi-level lot-sizing problem in general product structures with single and multiple

constrained resources as well as setup times.

Lagrangean Relazxation

Trigeiro et al. [38] considered the single level lot-sizing problem with setup costs, setup
times, and a single constrained resource. They used Lagrangean Relaxation of the capacity
constraints to decompose the problems into uncapacitated single-item problems, which were
then solved by dynamic programming. At the last stage, a heuristic smoothing procedure was
used to generate feasible production plans. Tempelmeier and Derstroff [37] used Lagrangean
relaxation of the multi-level inventory balancing constraints and capacity constraints, and
updated Lagrangean multipliers using subgradient optimization to compute lower bounds.
Feasible solutions were then generated using a heuristic finite scheduling procedure. Trigeiro

et al. [38] used Lagrangean Relaxation and Dynamic Programming for MLCLSPs.

Local Search Procedures

These heuristic methods include simulated annealing, tabu search, genetic algorithms, and
evolution strategies. Salomon [33] and Helber [22] compared some of these methods.
Salomon and Kuik [34] discussed simulated annealing based methods. Helber [22] compared
decomposition, local search, decomposition and local search, and the Lagrangean based
methods of Tempelmeier and Derstroff [37]. According to Helber [22], simulated annealing
located solutions with the best average quality, but required much computational effort
which were sometimes prohibitive for small problems. A mix of evolution strategy and

decomposition performed the best for medium sized problems.

LP Relaxation

Maes et al. [26] presented three LP based heuristics for solving multi-item, multi-stage lot-

sizing problems with multiple constrained resources, setup costs, and no setup times. These



three heuristics started with a solution to the LP relaxation of the problem, and solved
sequences of LP restrictions until an integer solution was found. There was, however, a
trade-off between the quality of solutions and the computational effort. The best performing

heuristic required branch and bound at the last step of the algorithm.

Coefficient Modification Heuristic

Harrison and Lewis [20] described the Coefficient Modification Heuristic (CMH) which
gave good solutions to multi-item, multi-stage lot-sizing problems with multiple constrained
resources and serial assembly systems. The CMH was designed to handle setups that consume
capacity (setup times) and assumed that the setup costs are small enough to be ignored.
Katok et al. [24] introduced the Coefficient Modification Heuristic with Cost Balancing
and Setup Reduction (CMHBR) heuristic. They extended CMH to handle setup costs and

general assembly structures.

Other Heuristics

Akker et al. [1] use Column Generation for these class of problems. Degraeve et al. [10] used
a Branch-and-Price (Column Generation) algorithm for the Capacitated Lot-Sizing Problem
with Time Periods (CLSTP). Kuik et al. [25] discussed simulated annealing based methods.
Helber [22] compared decomposition, local search, decomposition and local search, and the
Lagrangean based methods. According to Salomon [33] and Kuik et al. [25], simulated
annealing and tabu search performed better than pure LP based heuristics. Jordan and
Drexl [23] solve DLSP by batch sequencing using a branch-and-bound based heuristic.
Miller et al. [28] have used branch-and-bound to solve MLCLSP. They used results of
Miller et al. [29] concerning the polyhedral structure of simplified models obtained from a
single time period of MLCLSP, to obtain strong valid inequalities for MLCLSP. But their
approach required extensive branch-and-bound techniques to guarantee feasibility (even for

small sized problems).

2.3 Summary

The literature review presented here indicates that the production planning and scheduling
of parallel workcenters for multiple items have not been properly addressed in conjunction
with multiple tooling and capacitated resource constraints, and sequence-dependent setup

costs and times. The previous efforts do not consider all of these realistic constraints together



as are faced by a modern injection molding facility. Different solution strategies have been
developed in the literature. But for large sized problems, there remains a significant tradeoff
between the solution quality and the computational times. For practical sized problems, it is
desirable to obtain a good solution with a small optimality gap within acceptable processing
times. Faster solution generation mechanisms are also helpful for recalculation schedules
should there be a change in the demand data. This paper attempts to make the following

two-fold contributions:

(1) A new lot-sizing problem formulation with sequence dependent setup times and changeover

costs, and multiple capacitated resource constraints, and

(2) A decomposition based heuristic that is capable of handling the problem dimensionality,

solution quality and speed required in injection molding operations.

3. Problem Description and Formulation

Our problem is motivated by a production planning and scheduling problem faced by a
healthcare products manufacturing plant. The manufacturing facility has 43 injection mold-
ing workcenters that produce 175 different parts in a single stage operation. Within the same
product “family”, products require the same tooling but vary according to color schemes.
The operations are conducted over two 12 hours shifts, 7 days a week. Presently high volume
batches are usually produced in 7-day runs. Other logical rules like this are used to schedule

the facility. There are a number of constraints that affect the production. These include:

1. Part-Workcenter Matching: A particular part can only be produced on a particular
subset of workcenters that are compatible with tools required to produce the part and
are of appropriate tonnage. The workcenters that comprise this compatible “set” for

the part are treated as functionally identical parallel workcenters.

2. Part-Resource Matching: There are multiple resources that are necessary for a part to
be set up for production. These include options from Desiccant Drier, Auger Grinder,
Conveyor Grinder, Upright Grinder and Color Mixer. Specific resources that are re-

quired by a part must be available for the part to be set up for production.

The setup is a lengthy and expensive process and incurs losses in terms of productivity.

It involves line clearance and/or color purging and/or tool changes. A typical tool change
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requires about 4 hours. If a different part needs to be setup, material change may or may not
occur. If the preceding and the following parts belong to the same “family” of parts, then
the setup change involves minimal tool change. However there might be a “Color Purging”
operation. Color purging operation flushes out the system when the following part is lighter
in color than the previous part. Color purging is a “low-cost” operation and the tool-change
operation for the same “family” of products is minimal. If the two consecutive parts belong to
separate product families, then the changeover cost can be high as it involves expensive tool
and die change along with material change and/or color purging. Ideally, setups of a “family”
of parts should be done together. This minimizes the changeover time and cost and hence the
setup change cost. Sequence, in such a sequence dependent setup, is therefore an important
issue. Also, the company wants to come up with a production schedule that minimizes the
total setup, inventory holding and backlogging costs. We model the production situation

described above through a mixed integer programming model in the following section.

3.1 Notation

P different part types are processed through M functionally similar workcenters. The work-
center may differ in tonnage or process features. FEach part requires a combination of dif-
ferent resource types out of L available resource types. Only one replicate for each of the
required resources is to be assigned to the part-workcenter combination. n; such replicates
are available for the ItP resource type. Production planning and setup sequencing have to
be performed over a planning horizon in response to deterministic orders. We assume at all
times that the setup times are smaller than the production time period. Further, setups are
not allowed within a time perid, i.e., at most one product type is allowed on a particular
workcenter at a particular time period.
Following is the notation for various indices and parameters used in the model.

Indices:

1 = Index of part types, i =1,2,..., P,
m = Index of workcenters, m=1,2,..., M,
t = Index of time periods, t=1,2,...,T, and

[ = Index of resources, [ =1,2,...,L
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Data:

dit

Pim
Tjim
Hji

Sjim

Demand for part ¢ at time period ¢,

Capacity of workcenter m to produce part ¢ per unit time period,
Production rate for part ¢ on workcenter m,

Tooling setup time of from part j to part i on workcenter m,
Material changeover time from part j to part ¢,

Cost due to setup change from part 7 to part ¢ on workcenter m,
Penalty cost for holding inventory of a unit of part 7, and

Penalty cost for backlogging of a unit of part i,

1 if It resource is required to produce part ¢ on workcenter m
0 otherwise (VI, Vi, Vm),

1 if part ¢ can be processed on workcenter m
0 otherwise (Vi, Vm).

Decision Variables:

Real:

Binary:

¢imt

wjimt

= Quantity of part ¢ processed on workcenter m at time period t,
= Inventory of part ¢ at time period ¢, and

= Backlog of part ¢ at time period t.

1 if part ¢ is assigned to workcenter m at time period ¢
0 otherwise (Vi, Ym, Vt,)

1 if part ¢ is setup from part j on workcenter m at time period ¢
0 otherwise (Vi,j, Vm, Vt), and

3.2 Formulation

(P)

Subject to:

Min :

M T P T P T
Z Z Sjimd)jimt + Z Z h;L; + Z szbzt

1 m=1 t=1 i=1 t=1 i=1 t=1

M=

N
<

. .
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M
Iy —by = ILig1)— b1y + Z Timt — dit Vi, Vi, (1)

m=1
P
Limt S Cim¢imt - Z pim(Tjim + ,uji)wjimt
j=1] Tjm = 1
1 #]
Vi,m | mim =1, Vi, (2)
P M
Z Z rt b < My Vi,m | mm =1, Vi,t, (3)
i=1 m=1
P
> bim <1 Vi,m | mm =1, Vi, (4)
=1
1/inmt Z ¢imt + ¢jm(t—1) - ]- Vi)j,m | Tim = 7r]m - 1)7’ 7£ j) Vt) (5)
b € {0,1} Vi, m | Tim = 1, Vt, (6)
wjimt S {07 1} Vi7j7m | Tim = 7rjm = 177/ % j? Vt, (7)
Limt, Iita bit Z 0 V’L, vma Vt (8)

The objective function minimizes the total setup cost and the inventory holding and
backlogging costs. Constraint (1) maintains the mass balance of parts produced/delivered
and the inventory levels across the time periods. Constraint (2) determines the number of
parts that can be produced subject to the capacity constraint of the workcenter and the
loss of production incurred as a result of setup and/or material change, if any. Constraint
(3) ensures that the number of replicates used for a particular resource type is less than or
equal to the number of replicates available for that resource type. Constraint (4) ensures
that only one part type can be processed by a particular workcenter at a particular time
period. Constraint (5) determines when the setup state changes. Constraints (6) and (7) are
the binary constraints. Finally, constraint (8) indicates that the number of produced parts,
parts in inventory and parts in backlog are non-negative.

Constraint (7) can be relaxed as the variables 1);;,,; remain binary even when the binary

restriction is relaxed (see Lemma 1).

Lemma 1. In an optimal solution of P with the binary constraint (7) relazed, the variables

Yjime take on binary values.

Proof: ~ Equation (2) does not guarantee integral values for the variables ;. Given

that the variables ¢;,,; are binary, the positive fractional values of 1;;n; are automatically
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pushed up to 1 by the equation (5) to maintain feasibility. The values of the variables 1)
are therefore determined by the equation (5). The variables 1), are in the objective function
with positive coeflicients. As P is a minimization problem, they take up the minimum of
the RHS of equation (5), which provides values of 9j;,: to be —1, 0 and 1. In the MILP

the variables 1;n; are positive. Hence the variables i, take up values 0 and 1. U

4. Solution Approach

The problem described here becomes huge for large number of parts, workcenters, resources
and length of the planning time period. Florian et al. [18] showed that the lot-sizing problem
(LSP) is NP-hard. Bitran et al. [7] proved that the CLSP is also N P-hard. In our case, the
additional resource constraints and the non-zero sequence dependent setup change, make the
problem subsume previously proven N P-hard versions. So, without going through a formal
proof, we assume that our problem is N P-hard. We attempt to overcome the complexity and
dimensionality of the problem by developing a decomposition based solution methodology
where we break down the original problem into a set of subproblems. At this point we have

the following challenges:

1. The dimensions of the subproblems should be manageable.
2. The set of subproblems must address the entire large-sized industrial problem.

3. The overall scheme should generate good feasible solutions within an “acceptable”

time limit.

4.1 Monolithic Approach

The complexity of the problem can be reduced by relaxing the binary constraint (7) due to
Lemma (1). The resultant problem is still a mixed integer problem (MIP). We solved the
entire problem (“monolithic” approach) for small and medium sized version using CPLEX
7.1 on a 1.7 GHz P4 processor, 256 MB RAM, WinNT 4.0 workstation. However the problem
sizes were huge for medium-sized and large-sized problems. The computational time for some
medium-sized problems exceeded the specified time limit of 2 hours. For other instances of

Y

medium and large sized problems, CPLEX 7.1 ran into “out-of-memory” conditions. The

computational test results are presented later in Section 5.
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4.2 2-Phase Workcenter Based Decomposition Strategy

Clearly, the problem could not be solved in its original form for the medium and large sized
versions. This was the motivation for developing the 2-Phase workcenter based decomposi-
tion scheme to tackle the medium and large sized problems. Further, the particular company
did not want to invest in expensive commercial solvers like CPLEX. We chose to solve the
set of related subproblems using an open-source solver, GLPK 4.0 in our case. The following
section describes the workcenter based grouping strategy that serves as the basis for the

decomposition.

4.2.1 Grouping Scheme

Let P™ denote that part ¢ is processed at workcenter W,,. Let us group the workcenters

into n groups such that G(1) = { Wi, W5, ..., W }, G(2) = { Wi, Wi o, ..., W },
o Gm)={..., Wiy_s, Wi, }. Here, W/ denote the workcenter that is mapped to the

mth entry in the set G(-), and might be different from the actual workcenter W,,. Figure 1

shows the part-workcenter relation.

Figure 1: Part-workcenter relation across group of workcenters.

Our choice for selecting the workcenters for a group is based on the following rationale.
There are certain parts that can be processed on fewer number of workcenters than some
other parts. Such workcenters are “critical” to the processing of those “less-fortunate” parts.
For instance, Figure 2 shows the part-workcenter relation before the group formation.

These parts are then sorted to determine the “critical” workcenters and for subsequent

group formation. Figure 3 shows the sorted parts in the ascending order of their “fortunes”.
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Figure 2: Part and workcenter relation before grouping.
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Figure 3: Part and workcenter relation after sorting.

Here, the workcenters Wy, W, and Wy are “critical” to the processing of parts P; and
Py than to the processing of parts P; and FPy. Next, we fix the group size as the nearest
integer that is 10% of the total workcenter size. This is an ad hoc decision. Next, we
group the workcenters in order of their “criticality” until either the group size is reached
or all the workcenters are covered. Alternatively, a matrix cross-decomposition can also be
performed to group the parts based on their “fortunes”. Figure 4 shows groups and the

member workcenters for the above example. The grouping algorithm is presented below.

Figure 4: Assignment of workcenter groups.

4.2.2 Grouping Algorithm

Step 1: Initialize: W = ;G = @; k = 1.
Step 2: Fori=1,...,P

15



w; = the set of workcenters W, | mim = 1
W=WUuw;
End for
Step 3: Sort W based on the ascending order of the cardinality of its subsets, i.e. |w;|.
Let wy denote the kth set in the sorted set W.
Step 4: While W # @
G =G U wy
W =W\ wy
Forallj=k+1,... | W|
wy = wij) \ Wik
End for
k=k+1
End while
Step b: Partition the set G into n subgroups, each of size s (except the last group which
contains the remaining elements of G after n — 1 partitions), such that
(n—1)xs + |G(n)| = |G|. We have G(1) ={ W{, W, ..., W! },
G(2) = { Wiy, Wlay, oo Wiy ey Gn) = { oy Wiy, Wiy )

th

(W! maps to the workcenter having m"™ entry in the set G.)

Step 6: STOP.

4.3 Solution Scheme

We solve the problem in two phases. In the first phase, we use the workcenter based grouping
strategy to generate the subproblems. Once the groups are developed, the subproblem for
that particular group is generated. In the next phase, we solve the individual subproblem.
The solution of a particular subproblem serves as the basis of input for the next subproblem.

th

There are k such subproblems for k£ such groups. The backlog of part ¢ in the subproblem

is the “modified” demand of part 7 in the k + 1th subproblem. The kth workcenter-based

subproblem can be defined according to the revised notation that follows.

Revised Notation

Data:

d,* = Modified demand for part i at time interval ¢ for subproblem &, and
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Decision Variables:

Integer:

Ii’i = Inventory of part ¢ at time interval ¢ for subproblem k, and

b = Backlog of part i at time interval ¢ for subproblem k.

The kth subproblem is:

1 m=1 t=1 =1 t=1 i=1 t=1
)

P M T P T P T
(WCSPF) Min : Z Zzsjimwjimt+Zzhilﬁ+zzpib§'
1, =

]

Subject to:

(2

M
IE =l = I =+ D T —d* Viom | mim = 1,m € G(k), Vt, (9)
m=1

P
Timt < CimPimt — Z Pim (Tjim + i) Qjime Vi,m | Tim = 1,
j=1|mjm=1
i#£J
i#j, meGk), v,  (10)
P M
SN i = Vi, l,m |, =1,mm =1,m € G(k), Vt, (11)
i=1 m=1
P
Z(bimt <1 Vlam | Tim = 1>m S G(k)a Vta (12)
i=1
’djjimt > Qimt + (z)jm(tfl) -1 Vi, j,m | Tim = Tjm = 1,
i # j,m € G(k), Vt, (13)
0< ¢jimt <1 Vi,j,m | Tim = Tjm = 1,m - G(k‘), \V/t, (14)
dime € {0,1} Vi, m | T = 1,m € G(k), Vt, (15)
Time, [E, 05 > 0 Vi, Vm € G(k), Vt. (16)

We solve the kth subproblem and determine if the demand for the corresponding parts

have been satisfied or not. If met, the part is not considered for future consideration and
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the subproblems are solved for the remaining parts or until all the workcenters have been
covered. However, the addition of the resource constraints in the “disaggregated” problem
blows up the problem dimension for medium and large sized problems. Figure 5 presents the

flow chart of the proposed solution strategy for the 2-phase workcenter based decomposition

scheme.

Sort Workcenters
based on “criticality"

Select Workcenters
and form Groups

Select Group and
Generate Sub
Problem

‘ Set index to the next
‘ group

Solve Sub-problem

Demand YES

satisfied for any Delete the part from the
part ? set of parts
NO
All groups
covered ? NO Analyze output and
OR generate next Sub—
Demand for all parts problem
satisfied ?

YES

Stop

Figure 5: Flow chart representing the 2-phase workcenter based decomposition scheme

5. Numerical Results

Several numerical experiments were conducted to compare the performance of the 2-Phase
Decomposition Scheme against the Monolithic approach. The problem instances were gen-
erated using data provided by an injection molding company. The testbed considered 51
different product types that were to be scheduled over a maximum of 45 injection molding

machines. There were 6 different types of constrained resources. Problem instances were
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generated for demand over a time period. The parts, workcenters (molding machines) and
the resources were selected through a series of demand data, BOM, routing data and in-
ventory data. The resultant problems were then classified into three categories as shown in

Table 1.

Problem Size No. of parts No. of work- No. of resource No. of time

centers types periods
small 1-10 10-30 1-6 1-10
medium 11-25 31-42 1-6 11-20
large 26-51 42-45 1-6 21-30

Table 1: Classification of Various Problem Sizes

The actual problem size was determined as the product of the number of parts, work-
centers, resources and time periods. The LP relaxed version and the monolithic version of
the original MIP problem were solved using CPLEX 7.1. Problems for the 2-Phase Decom-
position Scheme were solved using GLPK 4.0. As stated earlier, all the problem instances
were run on a 1.7 GHz Pentium 4 processor, 256 MB RAM, WinNT 4.0 workstation. The
optimality gap is defined as:

x100%

_ (Integer Optimal Value) - (Objective Value)
Gap(%) = (Integer Optimal Value)
For cases when an optimal integer solution is not available, the optimality gap is calculated

as follows:

(LP Relaxed Objective) - (Objective Value)
(LP Relaxed Objective)

Gap(%) = x100%

The average gap is calculated by averaging over the number of problem instances gener-

ated for each class of problem.

5.1 Monolithic Scheme

The monolithic scheme attempted to solve the entire MILP problem within a time limit of
7200 secs (2 hrs). The MILP was solved for “small” and “medium” problems. However the
MILP could not be solved for some instances of the “medium” and “large” sized problems.
Tables 2, 3 and 4 show that the average gaps for the “small” and “medium” sized problems
were 0.00% and 0.02% respectively, whereas no integral solution could be found for some

“medium” and any “large” sized problems.
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5.2 2-Phase Decomposition Scheme

The 2-Phase Decomposition scheme was used to solve the exact same instances of the “small”,

“medium”, and “large” sized problems. Tables 2, 3 and 4 show that the maximum optimality

gap for the largest problem instance was 1.75%. There was a significant improvement in the

tradeoff between the solution quality and the solution time. The maximum time required

to solve the largest instance of the problem using the 2-Phase method was 1266.05 secs (21

mins).
#| i m j t | LP Lower CPLEX Sol. Time Gap | 2-Phase Sol. Time Gap
Bound (secs) (%) (secs) (%)
1 6 11 6 2 109246.12 109246.12* 0.12 0.00 109246.12 0.12 0.00
219 14 6 11 | 2156843.82 | 2156960.63* 15.53 0.00 | 2156979.68 12.48 0.01
3 122 41 6 4 | 1794977.25 | 1795171.90* 27.18 0.00 | 1795258.47 26.08 0.01
4 124 42 6 6 | 4708212.90 | 4708388.55* 34.88 0.00 | 4708711.43 32.85 0.01
Average =  0.00 Average = 0.01
Table 2: Results for the Small Size Problems
#| i m j t | LP Lower CPLEX Sol. Time Gap 2-Phase Sol. Time Gap
Bound (secs) (%) (secs) (%)
1|10 18 6 8 | 5981270.39 | 5981912.92* 278.87 0.00 | 5982331.18 93.09 0.01
2113 39 6 8 898717.91 899645.28* 1504.26 0.00 | 899935.63 271.42 0.05
3|7 31 6 31| 109910.13 109928.36* 2666.09 0.00 | 109958.70 314.49 0.04
4 132 42 6 20 | 20310417.51 | 20315414.27 e.t.l. 0.02 | 20327494.40 444.62 0.08
Average = 0.01 Average =  0.05
e.t.l. = Exceeded Time Limit
Table 3: Results for the Medium Size Problems
#| i m j t | LP Lower CPLEX Sol. Time Gap 2-Phase Sol. Time Gap
Bound (secs) (%) (secs) (%)
1129 42 6 31| 16610157.88 | 16738648.00 e.t.L 0.77 | 16748000.00 474.47 0.83
2 |39 42 6 30 | 25595555.50 | 25942726.75 e.t.L 1.36 | 26042672.51 364.79 1.75
3 |41 43 6 30 | 20140000.00 - 0.0.10. - 20308492.25 965.67 0.84 1
4 |51 43 6 30| 7205148.77 - 0.0.10. - 7314174.88 1266.05 1.51 ¢t
Average =  1.06 Average =  1.23

e.t.l. = Exceeded Time Limit; 0.0.m. = Out of Memory; 1 Gap calculated based on LP Lower Bound.

Table 4: Results for the Large Size Problems

20



6. Conclusions

In this paper, we cast an injection molding scheduling problem as a mixed integer formu-
lation that schedules parallel workcenters in presence of sequence-dependent setup times,
changeover costs, and multiple capacitated resource constraints for a multi-item, multi-class
of products in a single-stage case. This paper appears to be the first attempt in this category
to combine all these realistic constraints and come up with an efficient method to tackle the
problem when the time to generate good schedules is of foremost importance.

The 2-phase workcenter based decomposition scheme has been proposed. The scheme
helps to decompose large dimensioned problems into smaller subproblems. It also provides
good feasible schedules for cases where the monolithic approach fails to generate any solution,
either because of memory management policy of the solver or because of the time limit
restrictions (2 hours).

The computational time required by the 2-Phase strategy is significantly less than the
solution time of the original MIP problem. Yet the optimality gap is usually less than 2%.
In summary, the overall solution approach is applicable for industrial situations that require
quick and efficient solutions without any investment in sophisticated solvers and at the same
time can provide operational benefits in changeover costs, inventory management costs and

in meeting customer due dates.
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