

IE 661 Scheduling Theory Course Introduction

Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY)

University at Buffalo (SUNY)

Department of Industrial Engineering

APPI IFD SCIFA

This graduate level course covers topics from:

- (i) *Deterministic Scheduling Theory* that provide the fundamentals and algorithms from single machine, parallel machine, flow and job shop environments,
- (ii) Project and Network Scheduling that are more prevalent in assembly products (BOMs), workflows, and project management, and
- (iii) Scheduling Practice that covers dispatching rules, local search methods, stochastic search, and mathematical programming based solutions.

- The objective is to expose participants to basic scheduling theory results, and in a participatory setting, enable them to discuss and creatively synthesize these ideas to research projects of choice.
- It blends quantitative and qualitative material, from multiple disciplines of industrial and management engineering.
- The course will be conducted in a beneficial cooperative learning setting. Lectures, group discussions, research projects and participant presentations will constitute this course.

- Doctoral level, research focused course
- Meets OR as well as PS elective requirements

Course Topics

- Deterministic Scheduling
 - Single Machine
 - Parallel Machine
 - Flow Shop and Flexible Flow Shop
 - Job Shop
 - Open Shop
- Project and Network Scheduling
 - JIT scheduling of Assemblies
- Scheduling in Practice
 - Dispatching Rules
 - Filtered Beam Search
 - Local Search: SA, Tabu Seach, GA
- Several Research Articles and Case Studies University at Buffalo (SUNY) Department of Industrial Engineering

Course prerequisites

- IE 505 Production Planning and Control or similar course
- Advanced Graduate standing in engineering or management
- Optimization (linear IE 572, discrete IE 573 are highly recommended)

Course Elements

- Homework
- **Class** presentations
- **Research project** report, presentation
- (C/C++, Java or VB)

- 4-5 assignments 15%
- 2 lectures 10%
- progress report, final 50%
- Programming project High level languages 10%
- one midterm Exam 15%

(+/- Grading scheme will be employed)