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Goals of Complexity Theory

To provide a method of quantifying problem difficulty in an absolute 
sense.

To provide a method comparing the relative difficulty of two different 
problems.

To be able to rigorously define the meaning of efficient algorithm.
(e.g. Time complexity analysis of an algorithm).



Computation of Problems

Concepts and Definitions
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Problems and Instances

Measurement of Difficulty
Instance

Running time (Measure the total number of elementary operations).

Problem
Best case (No guarantee about the difficulty of a given instance).
Average case (Specifies a probability distribution on the instances).
Worst case (Addresses these problems and is usually easier to analyze).

A problem or model is an infinite family of instances whose 
objective function and constraints have a specific structure.

An instance is obtained by specifying values for the various 
problem parameters.
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Time Complexity

Θ-notation (asymptotic tight bound)

O-notation (asymptotic upper bound)

Ω-notation (asymptotic lower bound)

o-notation (asymptotic “loose” upper bound)

0

0

( ) :  there exist positive constants  and such that
( ( ))

0 ( ) ( ) for all                 
f n c n

O g n
f n cg n n n


=  ≤ ≤ ≥

1 2 0

1 2 0

( ) :  there exist positive constants , ,  and  such that
( ( ))

0 ( ) ( ) ( ) for all          
f n c c n

g n
c g n f n c g n n n


Θ =  ≤ ≤ ≤ ≥

0

0

( ) :  there exist positive constants  and such that
( ( ))

0 ( ) ( ) for all                 
f n c n

g n
cg n f n n n


Ω =  ≤ ≤ ≥

0 0

( ) :  for any positive constant 0,  there exists a constant
( ( ))

0 such that 0 ( ) ( ) for all 
f n c

o g n
n f n cg n n n

>
=  > ≤ < ≥



University at Buffalo Department of Industrial Engineering 7

…Time Complexity (contd.)
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Algorithm Types

Polynomial Time Algorithm:
An algorithm whose running time is bounded by a polynomial function is called 
a polynomial time algorithm. 
Example: Shortest path problem with nonnegative weights. Running Time: O(n2)

Exponential Time Algorithm:
An algorithm that is bounded by an exponential function is called an exponential 
time algorithm.
Example: Check every number of n digits to find a solution.          Running Time: O(10n)

Pseudopolynomial Time Algorithm:
� A pseudopolynomial time algorithm is one that is polynomial in the length of the 

data when encoded in unary.
� Example: Integer Knapsack Problem. Running time: O(nb)
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Turing Machine

A Turing machine is an abstract representation of a computing 
device.
The behavior of a TM is 
completely determined by:

• The state the machine is in,

• The number on the square it 
is scanning, and

• A table of instructions or the 
transition table.
“A function is computable if it can be computed by a Turing 
Machine.” - Church-Turing Hypothesis
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Finite State Machine

State Read Write Move Next 
State

S1
0 0 L S1

B 1 L S2

1 B R S1

S2
0 1 R S2

B 0 R S2

1 1 L S1

State Transition Table for a Turing 
Machine

Transition State Diagram for 
Turing Machine
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SATISFIABILITY: Given a set of variables and a collection 
of clauses defined over the variables, is there an assignment 
of values to the variables for which each of the clauses is 
true?
Example:
Consider the expression

1 4 3 2 1 2 4 3 2 3 1 5 5 1 4 2( )( )( )( )x x x x x x x x x x x x x x x x+ + + + + + + + + + + +

It can be easily verified that the assignment x1=0, x2=0, x3=0, 
x4=0, and x5=0 gives a truth assignment to each one of the 
four clauses.

Decision Problem

Decision problems are those that have a TRUE/FALSE answer. 
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Decision Problems and Reductions

For every optimization problem there is a corresponding 
decision problem.
Example: Fm||Cmax minimize makespan (optmization).

Is there a schedule with a makespan ≤ z ? (decision).

Problem Reduction:
Problem P reduces to problem P′ if for any instance of P an 
equivalent instance of P′ can be constructed.

Polynomial Reducibility:
Problem P polynomially reduces to problem P′ if a polynomial 
time algorithm for P′ implies polynomial time algorithm for P.

P∝P′



Complexity

Classes and Problems
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Complexity Classes

Definition: (Class P) The class P contains all decision problems 
for which there exists a Turing machine algorithm that leads to 
the right “yes/no” answer in a number of steps bounded by a 
polynomial in the length of the encoding.
Definition: (Class NP) The class NP contains all decision 
problems for which, given a proper guess, there exists a 
polynomial time “proof” or “certificate” C that can verify if the 
guess is the right “yes/no” answer.

NP

P

A tentative view of the world of NP
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… Complexity Classes (contd.)

Definition: (Class co-P) The class co-P contains all decision 
problems for which there exists a polynomial time algorithm 
that can determine what all “yes/no” answers are incorrect.
Definition: (Class co-NP) The class co-NP contains all 
decision problems such that there exists a polynomial time 
“proof” or “certificate” C that can verify if the problem does 
not have the right “yes/no” answer.

co-NP

A view of the world of NP and co-NP

NP

P
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Important Results

P = co-P
NP ≠ co-NP 
P ≠ NP
It turns out that almost all interesting problems lie in NP and P
is the set of easy problems. So are all interesting problems 
easy, i.e. do we have P = NP?
This is the main open question in Computer Science. It is like 
other great questions

Is there intelligent life in the universe?
What is the meaning of life? 
Will you get a job when you graduate?
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NP-Complete Problems
Definition: (NP-complete) A decision problem D is said to be 
NP-complete if DNP and, for all other decision problems 
D′NP, there exists a polynomial transformation from D′ to D, 
i.e., D′∝ D.
Assumption: P≠NP.
Result: If any single NP-complete problem can be solved in 

polynomial time, then all problems in NP can be solved.

co-NP

The world of NP, revisited

NP

P

co-“NP-complete”

“NP-complete”

Cook’s Theorem

A problem is NP-complete if:

(i) The problem is in NP

(ii)  All other problems in NP
polynomially transforms into 
the above problem.
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NP-Hard Problems

Definition: (NP-hard) A decision problem whether a member 
of NP or not, to which we can transform a NP-complete 
problem is at least as hard as the NP-complete problem. Such 
a decision problem is called NP-hard.

Example:

| |2 ,Ak ≤

KTH LARGEST SUBSET: Given a set , 

and do there exist at least K distinct subsets where    
and such that ?

,j
j A

b a
∈

≤∑1 2{ , , }tA a a a∈ …

A A′ ⊆ j
j A

S b
′∈

≤∑1 2{ , , }KA S S S′∈ …



University at Buffalo Department of Industrial Engineering 19

3-SATISFIABILITY: Given a collection C = {c1, c2, …, cm} of 
clauses on a finite set U of variables such that |ci|=3 for 
1≤i≤m, is there a truth assignment for U that satisfies all the 
clauses in C?

Six Basic NP-Complete Problems

PARTITION: Given positive integers a1, … , at and b =             ,
do there exist two disjoint subsets S1 and S2 such that

for i= 1, 2 ?

1

1
2

t

j
j

a
=
∑

i

j
j S

a b
∈

=∑

3-DIMENSIONAL MATCHING: Given a set                       
where W, X, and Y are disjoint sets having the same number 
q of elements, does M contain a matching, i.e., a subset

such that |     | = q and no two elements of       agree 
in any coordinate?

/

M M⊆

,M W X Y⊆ × ×

/M /M
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…Six Basic Problems (contd.)

VERTEX COVER: Given a graph G=(V,E) and a positive 
integer K ≤ |V|, is there a vertex cover of size K or less for 
G, i.e., a subset such that |    | ≤ K and, for each edge

at least one of u and v belongs to     ?

/V V⊆ /V
{ , } ,u v E∈ /V

HAMILTONIAN CIRCUIT: For a graph G = (N, A) with 
node set N and arc set A, does there exist a circuit (or tour) 
that connects all the N nodes exactly once?

CLIQUE: For a graph G = (N, A) with node set N and arc set 
A, does there exist a clique of size c? i.e., does there exist a
set , consisting of c nodes such that for each distinct 
pair of nodes , the arc {u,v} is an element of A?

*N N⊂
*,u v N∈
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Transformation Topology

SATISFIABILITY

3-SAT

3DM VC

PARTITION                    HC         CLIQUE

Diagram of the sequence of transformations used to prove that the six basic 
problems are NP-complete.

Problems of which the complexity is established through a 
reduction from PARTITION typically have pseudopolynomial
time algorithms and are therefore NP-hard in the ordinary sense.
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Other Popular Problems

3-PARTITION: Given positive integers a1, … , a3t and b with

, do there exist t 

pairwise disjoint three element subsets such
that 

3

1

,   1, ,3 ,     
4 2

t

j j
j

b ba j t and a tb
=

< < = =∑…

    1, , ?
i

j
j S

a b for i t
∈

= =∑ …
{1, ,3 }iS t⊂ …

TRAVELING SALESMAN PROBLEM: For a set of cities 
C={c1, c2, …, cm} does there exist a “tour”, of all the cities 
in C, of length ≤ b such that one city is visited exactly once?



Polynomial Time Reductions

Examples and Proofs
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Dealing with Hard Problems

You: Give up!

Boss: Fires you!
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Still Dealing!!

You: Challenge Boss!

Boss: Asks for proof!
You: Cannot prove!
Boss: Gives you a rise?…..very unlikely!
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Better Strategy

You: Prove that the problem is “hard” and that
everyone else has failed.

Boss: At least he gets no benefit out of firing you!
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Problem Reduction – Example 1
KNAPSACK PROBLEM

KNAPSACK problem is equivalent to the scheduling problem 
1|dj=d|∑wjUj. The value d refers to size of the knapsack and 
the jobs are the items that have to be put into the knapsack. 
The size of the item j is pj and the weight (value) of the item j
is wj. It can be shown that PARTITION reduces to KNAPSACK
by taking

It can be verified that there exists a schedule with an objective 

value ≤ iff there exists a solution for the PARTITION

problem.

1 1

,  ,  ,

1 1,  . 
2 2

j j j j

t t

j j
j j

n t p a w a

d a b z a b
= =

= = =

= = = =∑ ∑

1

1
2

n

j
j

w
=
∑
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Problem Reduction – Example 2
MINIMIZE MAKESPAN ON PARALLEL MACHINES (P2||Cmax) 

Consider P2||Cmax. It can be shown that PARTITION reduces to 
this problem by taking

It is trivial to verify that there exists a schedule with an objective
value ≤ iff there exists a solution for the PARTITION

problem.

1

,  ,  ,

1 . 
2

j j j j

t

j
j

n t p a w a

z a b
=

= = =

= =∑

1

1
2

n

j
j

p
=
∑
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Problem Reduction – Example 3
MINIMIZE MAKESPAN IN A JOB SHOP
Consider J2|recrc, prmp|Cmax. It can be shown that 3-PARTITION
reduces to J2|recrc, prmp|Cmax by taking the following transform-
ation. If the number of jobs be n, take

n= 3t+1, p1j=p2j=aj,    for j=1, …3t. 
Each of these 3t jobs has to be processed on machine 1 and 
then on machine 2. These 3t jobs do not recirculate. The last 
job, job 3t+1, has to start its processing on machine 2 and then 
alternate between machines 1 and 2. It has to be processes in 
this way t times on machine 2 and t times on machine 1, and 
each of these 2t processing times = b. For a schedule to have a 
makespan Cmax=2tb, this last job has to be scheduled without 
preemption. The remaining slots can be filled without idle 
times by jobs 1, ..., 3t iff 3-PARTITION has a solution. 
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Problem Reduction – Example 4

SEQUENCE-DEPENDENT SETUP TIMES

Consider the TRAVELING SALESMAN PROBLEM (TSP) or in 
scheduling terms 1|sjk|Cmax problem. That the HAMILTONIAN 
CIRCUIT (HC) can be reduced to 1|sjk|Cmax can be shown as 
follows. Let each node in a HC correspond to a city in a TSP. 
Let the distance between two cities equal 1 if there exists an arc 
between two corresponding nodes in the HC. Let the distance 
between two cites be 2 if such an arc does not exist. The bound 
on the objective is equal to the number of nodes in the HC. It is 
easy to show that the two problems are equivalent.



Summary
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Observation

Present research is in the boundary of polynomial time 
problems and NP-hard problems.
If a problem is NP-complete (or NP-hard), there is no 
polynomial time algorithm that solves it unless P=NP. (No 
pseudopolynomial time algorithms for strong NP-complete 
problems).
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Why all these analyses?

Determine the boundary of polynomial time problems and NP-
hard problems.
For which decision problems do algorithms exist?
Develop better algorithms in cryptography.
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Beyond NP-completeness

Try to prove that P=NP (AMS will give one million dollars).
Randomized Algorithms.
Approximation Algorithms.
Heuristics.


