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ABSTRACT 

Subsurface flow and contaminant transport models are often used in 

solving groundwater management problems. Automated optimization involving 

such models is becoming commonplace, and researchers are increasingly 

encountering problems for which standard gradient-based search algorithms are 

inadequate. Such cases have motivated an interest in the use of more robust, but 

computationally expensive, heuristic algorithms. 

The research reported in this dissertation advances the state-of-practice of 

heuristic optimization in groundwater management by applying a variety of 

heuristic methods to three groundwater management problems: (1) optimization 

of pump-and-treat containment systems, (2) optimization of multi-layered sorptive 

barrier systems, and (3) calibration of reactive transport models involving nitrate 

contamination. These studies were facilitated by the development of a new open 

source software package for model-independent multi-algorithm optimization, 

which includes special tools for calibration and model ranking and selection. 

Overall, the optimization studies make several important research 

contributions by (1) suggesting methods and guidelines for the effective selection 

and use of heuristic algorithms, (2) investigating techniques for reducing the 

computational demand associated with heuristic algorithms, (3) providing general 

insight into the behavior of the selected problems, (4) utilizing modeling 

techniques, remediation constraints, and/or parameter representations not 

previously applied to the selected problems, and (5) introducing a novel 

optimization software package to the research community.
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1 INTRODUCTION 

Computer models of groundwater and contaminant transport are often key 

components in the investigation of groundwater management problems. More 

and more, such models are subjected to automated calibration, a specific type of 

optimization problem that quantifies and minimizes the level of uncertainty 

associated with model parameters and predictions. Furthermore, flow and 

transport models are increasingly being used in a general simulation-optimization 

framework; where the optimal design of a remedial system is determined by 

coupling a computer model with an optimization search algorithm. 

As suggested by Barry et al. (2002) and Mayer et al. (2002), rapid advances 

in the computational power of desktop computers have spurred the consideration 

of ever-more complex and computationally expensive simulations of groundwater 

flow and contaminant transport. Sophisticated computational techniques, 

requiring one or more levels of iteration, are typically employed to solve the 

governing equations for a given model. Optimization of such models adds 

additional levels of complexity and can require vast increases in computation 

time, due to the large number of required model evaluations. For example, the 

calibration exercise presented in Bell and Binning (2004) required more than 

2,000 times the computation of a single model evaluation. Furthermore, the 

pump-and-treat optimizations of Maskey at al. (2002) required up to 1,500 model 

evaluations, with each evaluation requiring execution of two programs 

(MODFLOW and MODPATH). In light of such added computational expense, an 
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important component of current research is the development and identification of 

efficient, yet robust, search algorithms. 

Traditional approaches to optimization have relied on gradient-based search 

algorithms, which are derived from formal mathematical analysis and are 

contingent upon several basic assumptions about the nature of the problem. To 

the extent that these assumptions are correct, gradient-based algorithms can be 

highly efficient and effective, identifying optimal parameter values using a 

minimal amount of computation. For problems that fail to satisfy the assumptions 

inherent in gradient-based approaches, heuristic algorithms offer a more robust, 

but less efficient, alternative. Heuristic techniques do not have mathematically 

rigorous formulae, and instead incorporate elements of randomness and follow 

empirical guidelines developed without regard to the character of the underlying 

problem. 

The inadequacy of traditional search methods for solving a variety of 

problems involving flow and transport modeling is becoming widely recognized 

[e.g. Ahlfeld and Sprong (1998), Mayer et al. (2002) and Smalley et al. (2000)] 

and researchers have begun adopting various heuristic methods [e.g. Bell and 

Binning (2004), Solomatine et al. (1999), and Dougherty et al. (1991)]. However, 

the selection and use of these methods has proceeded in a more or less ad hoc 

fashion. For example, the choice of heuristic has often been arbitrary and based 

on a given investigators particular preference. Furthermore, the adjustment of 

algorithm-specific parameters to values that best suit a given problem (a process 

known as algorithm tuning) has not been considered in any sort of rigorous 
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fashion. Additionally, due to inherent inefficiencies, heuristic algorithms often 

require large numbers of potentially expensive model evaluations. This 

computational burden has limited the general applicability of heuristics and has 

discouraged rigorous and routine analysis of algorithm behavior. Finally, whereas 

automated model calibration has been aided by the availability of several public-

domain model-independent gradient-based calibration packages (e.g. PEST and 

UCODE), an equivalent code supporting multi-algorithm general-purpose 

optimization is presently unavailable. 

The work performed for this dissertation has addressed the aforementioned 

deficiencies in the current state-of-practice of heuristic optimization in 

groundwater management.   The research was organized into a sequence of 

studies applying a variety of heuristic techniques to three important groundwater 

management problems: (1) optimization of pump-and-treat system design, (2) 

optimization of sorptive landfill liner design, and (2) calibration of subsurface 

nitrogen transport models.  

The pump-and-treat and landfill liner design problems were motivated by 

federally regulated activities (i.e. site remediation and solid waste disposal) that 

require enormous financial expenditures. For example, NRC (1994) estimated 

the national cost of cleaning up hazardous waste sites (where pump-and-treat 

systems are commonly employed) to be around $750 billion. Likewise, Koerner 

(1994) projected the nationwide cost of solid waste disposal to be $43 billion, and 

estimated that 70% of such waste would end up in some type of lined facility. 

Given the high costs associated with pump-and-treat and landfill liner systems, 
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insight into the optimal design of such systems can be expected to yield 

substantial practical benefit. 

Federally mandated TMDL (total maximum daily load) requirements have 

generated an increased interest in the detailed transport modeling of Nitrogen, 

one of the most commonly identified pollutants in the TMDL program (USEPA, 

1999). To improve the TMDL program and to assist states with the daunting task 

of implementing nearly 42,000 TMDL analyses, USEPA (2002) identified twenty 

research needs that could be effectively addressed by the scientific community. 

One of these needs is improvement in TMDL uncertainty analysis and the 

calibration component of this dissertation was designed, in part, to help advance 

the TMDL research agenda. 

Each of the three studies involved extensive numerical experimentation on 

a set of hypothetical model problems. These carefully formulated problems 

utilized field observed data and/or data derived from available literature, and, 

wherever possible, were based on published benchmark problems.  The studies 

shared a number of common features, including (1) knowledge of the ‘true’ 

solution, discovered via exhaustive search or, in the case of calibration, known a-

priori due to the use of synthetic observation data, (2) where applicable, heuristic 

algorithms were benchmarked against gradient-based approaches, and (3) to 

complete the studies in a reasonable timeframe, the numerical experiments 

relied heavily on parallel processing. 

In terms of research contributions, each study provided general insight 

into the particular problem considered, and considered methods and formulations 
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not previously applied to the selected problem. Furthermore, study results have 

been synthesized into a set of general guidelines for the selection, tuning, and 

assessment of heuristic algorithms. Portions of each study also explored 

methods of reducing the computation associated with heuristic algorithms. These 

guidelines and computational improvements establish an important basis for 

future research into groundwater management applications that involve the use 

of heuristic methods. 

A public-domain multi-algorithm optimization software code (named 

OSTRICH) was developed to facilitate the previously listed studies. The package 

is model-independent and can be integrated with a wide variety of conventional 

flow and transport modeling codes. Furthermore, the package contains several 

calibration-specific components, including a special-purpose calibration search 

algorithm and a variety of post-calibration statistical and diagnostic measures. It 

is anticipated that the availability of OSTRICH will contribute to the continued 

exploration of sophisticated optimization problems involving complex flow and 

transport models. Early evidence of this contribution is provided by published 

studies in which OSTRICH and a related package named ISOFIT have been 

used [e.g. Rabideau et al. (2005a), Bartelt-Hunt et al. (2005), and Rabideau et al. 

(2005b)]. 
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2 OBJECTIVES 

The primary research hypothesis for this work is that, within the 

groundwater management community, the usefulness of heuristic optimization 

can be improved by appropriate attention to algorithm selection and 

implementation, and by the adoption of recent computational advances. This 

hypothesis was formally investigated through a series of studies that are fully 

detailed in Chapters 4-6 of this manuscript.  The general research organization 

and objectives for these studies, taken as a whole, are briefly outlined below. 

Section 2.1 frames the research in terms of optimization research objectives, 

while Section 2.2 organizes the research around the investigation of groundwater 

management applications. 

2.1 Optimization Research Objectives 

In terms of heuristic optimization, each study was organized around the 

development of methods for robust algorithm selection and implementation, and 

the integration of computational advances, with a particular focus on reducing 

computation time.  In this regard, four specific optimization methods were 

examined: (1) swarm intelligence algorithms, (2) formal algorithm tuning, (3) 

parallel computing, and (4) model-based surrogate methods. 

2.1.1 Swarm intelligence algorithms 

Many heuristic algorithms are population-based in that they utilize a 

collection of solution sets that are revised and evaluated at each algorithm step. 

A current trend in heuristic optimization research is the development of 

algorithms in which population elements maintain some form of limited memory, 
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a concept known as swarm intelligence. Examples of swarm intelligence 

algorithms include particle swarm optimization (Kennedy and Eberhart, 1995), 

ant colony optimization (Dorigo and Stutzle, 2004), and tribes (Clerc, 2003).   At 

the start of this research, a review of existing literature revealed that swarm 

intelligence algorithms had not yet been applied to problems involving 

groundwater flow and/or transport modeling.  Therefore, it was hypothesized that 

swarm intelligence algorithms could be more effective than classical heuristic 

methods (e.g. the genetic and simulated annealing algorithms) at solving such 

problems.  For this research hypothesis, the corresponding research objective 

was to introduce swarm intelligence algorithms to the groundwater management 

community and compare the performance of such algorithms to more established 

optimization methods. 

2.1.2 Algorithm tuning 

Recent studies in the heuristic optimization literature have highlighted the 

importance of tuning algorithm parameters so as to enhance optimization 

performance.  While a variety of procedures have been suggested for this 

purpose [e.g. Coy et al. (2001), Parsons and Johnson (1997), Hinterding et al. 

(1997), Kivijarvi et al. (2003), and Talbi (2002)], none were previously 

incorporated into optimization studies involving flow and transport modeling. 

Therefore, it was hypothesized that automated tuning of heuristic algorithms 

would lead to more robust optimization of problems based on flow and/or 

transport models. As such, a corresponding research objective was to examine 
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methods for the automated tuning of heuristic algorithms, as applied to realistic 

groundwater management problems.  

2.1.3 Parallel computing 

Within the last decade, the state-of-practice in parallel computing has 

shifted from a shared- to distributed-memory architecture [Gropp et al. (1999) 

and Foster (1995)]. In a distributed computing environment, population-based 

heuristic algorithms may be characterized as ”embarrassingly parallel” because 

evaluation of a given population set may be distributed across processors with a 

minimum of inter-processor coordination. Therefore, one goal of this research 

was to quantify the speedup afforded by parallel implementations of population-

based algorithms. 

2.1.4 Model-based surrogate methods 

Automated model calibration (also known as parameter estimation and 

inverse modeling) is a specific type of optimization problem that has been 

extensively studied in relation to groundwater flow modeling.  In this regard, 

recent research has stressed the consideration of alternative conceptual models.  

To minimize uncertainty, these models are first calibrated and then subjected to a 

model ranking procedure that seeks to select the “best” conceptual model.   

Application of such multi-model uncertainty analysis techniques to reactive 

transport models has not been previously investigated, primarily because of the 

high computational costs that are incurred. 

A possible technique for addressing the computational burden of 

automated reactive-transport calibration is the use of surrogate models (Booker 
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et al., 1999). As calibration proceeds, simpler surrogate models are evaluated in 

lieu of the more complex model, reducing the required number of complex model 

evaluations.  This research hypothesized that, in addition to reducing the 

computational burden of automated calibration, model-based surrogate methods 

could also be used to simultaneously perform the tasks of model ranking and 

selection. Therefore, the final optimization-based objective of this research was 

to develop and test a novel model-based surrogate calibration method that is 

capable of simultaneous model ranking, selection, and calibration.  

2.2 Applications Research Objectives 

Objectives related to applications research focused on three problems 

involving the simulation of groundwater flow and/or subsurface contaminant 

transport: (1) pump-and-treat optimization, (2) multi-layer sorptive barrier design, 

and (3) calibration of subsurface reactive transport models.   The selected 

problems provided an experimental framework for testing the optimization 

research objectives discussed in Section 2.1.  Additionally, each study was 

designed to address a number of application-based research objectives, as 

described below. 

2.2.1 Pump-and-treat optimization 

Engineering objectives for pump-and-treat optimization are to determine 

the number, locations, and rates of extraction and injection wells such that plume 

containment is realized at the lowest cost.  Previous simulation-optimization 

studies of pump-and-treat systems have utilized either finite-difference or finite-

element flow-models, and have considered particle tracks and/or simulated head 
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values to determine whether remedial goals are satisfied. To advance this state-

of-practice, research objectives were to (1) assess the applicability of an 

alternative flow modeling technique, the analytic element method (AEM), in a 

pump-and-treat optimization context, and (2) introduce and assess an alternative 

plume containment indicator that utilizes AEM flux output.  Research hypotheses 

related to these objectives were that (1) the AEM could be effectively employed 

in a pump-and-treat optimization context, and (2) using AEM flux output as a 

plume containment constraint could lead to improved reliability. 

2.2.2 Multi-layer sorptive barrier design 

Engineering objectives for multi-layer sorptive barrier design are to 

determine the appropriate number, ordering, and material-composition of a 

sequence of layers so that contaminant transport through such layers is 

minimized at the lowest financial cost. Optimal sorptive barrier design using 

automated simulation-optimization techniques is a recent development and 

research objectives were to (1) assess the performance of several heuristic 

algorithms, as applied to such problems, (2) explore techniques for integrating 

design constraints into the barrier cost function, and (3) examine relationships 

between algorithm performance and barrier problem formulation. 

2.2.3 Subsurface transport model calibration 

Modeling subsurface nitrogen transport is of considerable interest to the 

bioremediation and water quality communities, where it is alternately viewed as a 

remediation aid and a groundwater contaminant. In general, subsurface reactive 

transport (SRT) is influenced by a complex set of hydrologic and biogeochemical 
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processes.  To be used effectively in a regulatory or research context, SRT 

models must adequately represent these processes while being computationally 

tractable. Furthermore, model uncertainty must be rigorously quantified. In this 

regard, two extremes must be avoided: (1) very complex models with many 

highly uncertain parameters, and (2) highly simplified models that calibrate well 

but “lump” and/or omit important processes. 

When determining an appropriate balance between computation, 

complexity and uncertainty, modelers have generally relied on ad-hoc model 

development and trial-and-error and/or literature-derived assignment of uncertain 

model parameter values. Regulators are increasingly stressing the importance of 

more rigorous procedures, including automated model calibration and formal 

consideration of multiple models.  The computational burden of these uncertainty 

analysis techniques was addressed in this research via the surrogate model 

approach (outlined in Section 2.1.4) and via the use of massively parallel 

computing infrastructure.  These computational developments facilitated the 

assessment of several application-based research objectives, which were to:  (1) 

characterize the degree of non-linearity associated with subsurface reactive 

transport calibration, (2) compare the performance of heuristic and gradient-

based algorithms, as applied to such problems, and (3) examine techniques for 

determining the appropriate level of model complexity, given the types of data 

that are typically collected from the field. 
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2.3 Organization of the Research and Thesis Document 

The research objectives were realized in four stages, starting with the 

development of the OSTRICH optimization software package, described in 

Chapter 3. The OSTRICH code formed the basis for subsequent studies in 

heuristic optimization, namely the studies of pump-and-treat optimization 

(Chapter 4), multi-layer sorptive barrier design (Chapter 5), and the calibration of 

subsurface nitrogen transport models (Chapter 6). Finally, Chapter 7 provides a 

summary of all research results.  



 

 13

3 SOFTWARE DEVELOPMENT 

The software development approach for the OSTRICH code focused on 

object-oriented design and parallel computing. All code was written in C/C++ and 

compiled for execution on both Linux and Windows platforms. The model-

calibration component of OSTRICH was also ported to execute on the super-

computing ’Grid’, a geographically disparate and multi-institutional network of 

heterogeneous computing clusters. Access to Grid-based calibration is provided 

via a user-friendly and web-accessible graphical user interface developed using 

a combination of PHP, HTML and JavaScript.  OSTRICH software has been 

released to the public domain via the University at Buffalo Groundwater 

Research Group website (www.groundwater.buffalo.edu), which provides access 

to the latest OSTRICH binaries (version 1.8) and a pdf version of the user-

manual (Matott, 2006a). 

3.1 Optimization 

Optimization may be defined as the minimization (or maximization) of an 

objective function (e.g. cost), subject to a variety of constraints. Equation 

3.1 provides a general mathematical formulation of constrained optimization 

(Vanderplaats, 2001): 
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where f(X) is the objective function, which depends on some vector of 

parameters (X) whose values are constrained by upper (XU) and lower (XL) 
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bounds, and gi(X) and hj(X) are a set of m and l inequality and equality 

constraints, respectively. 

Equation 3.2 describes two techniques (the additive and multiplicative 

penalty methods) for converting constrained optimization into more readily 

solvable unconstrained optimization problems:  

method)(additive
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XXX

XXX
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+=

+=
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where F(X) is the penalty-adjusted objective function, and P(X) is a penalty term 

that accounts for violations of one or more equality and inequality constraints. For 

this research, the optimization parameters (X) consisted of inputs to a flow or 

transport model that was coupled with the optimization software (i.e. OSTRICH). 

Upon completing a run of the model using a given set of parameter values, the 

optimization software would compute F(X), f(X) and P(X) based on the parameter 

values and/or any relevant model-simulated output. 

3.2 Calibration 

Model calibration is a specific type of optimization wherein the objective is 

to assign parameter values such that model uncertainty is minimized. A variety of 

mathematical formulations have been applied to the task of model calibration, 

including least squares, average weighted error, maximum-likelihood, and 

maximum entropy. One of the main differences between the various formulations 

is the manner in which residuals (i.e. differences between model-simulated and 

field-observed data) are accumulated. 
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In groundwater flow and transport modeling, the dominant automated 

calibration approach is weighted least squares, where the objective is to find the 

values of model parameters such that the resulting sum of squared error 

between field-measured and model-computed observations (as shown in 

Equation 3.3) is minimized: 

)()( simobssimobs YYQYY −−= TΦ        (3.3) 

Where Φ is the weighted sum of squared errors objective function, Yobs is a 

vector of m measured observation values, Ysim is a vector of m model simulated 

values, and Q is an m × m observation weight matrix. 

Automated calibration using regression (e.g. Draper and Smith, 1998) is a 

well-established approach for groundwater flow modeling [e.g. Cooley and Naff 

(1990) and Hill (1998)], and recent research [e.g. Christensen and Cooley 

(1999), Yager (1998), and Rabideau et al. (2005a)] has begun utilizing a variety 

of post-regression diagnostic measures, such as measures of model non-linearity 

[e.g. Bates and Watts (1980) and Linssen (1975)] and influential observation 

measures [e.g. Belsley et al. (1980) and Cook and Weisberg (1982)]. Such post-

regression measures are calculated and reported by the OSTRICH software 

following a successful calibration. 

Due to their high complexity and associated computation time, automated 

calibration of subsurface reactive-transport models is relatively uncommon. 

Parameter values in such models are generally: (1) taken from available 

literature, (2) extrapolated from laboratory experiments, and/or (3) calibrated via 

trial-and-error. Notable exceptions include Barth and Hill (2005) who used the 
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UCODE software package, and Bell et al. (2002) and Bell and Binning (2004), 

who used an evolutionary algorithm. 

3.3 Search Algorithms 

The studies described in Chapters 4-6 considered up to five search 

algorithms: four heuristic algorithms (particle swarm optimization, two genetic 

algorithm variants, and simulated annealing), a conjugate gradient algorithm 

(Fletcher-Reeves), and a non-linear regression algorithm (Levenberg-Marquardt). 

Many other optimization algorithms have been developed, including: ant colony 

optimization (Dorigo and Stutzle, 2004), big bang - big crunch (Erol and Eksin, 

2006), tribes (Clerc 2003), tabu search (Glover, 1986), implicit filtering (Gilmore 

and Kelley, 1995), branch-and-bound (Balas, 1968), artificial neural networks 

(Govindaraju and Rao, 2000), and outer approximation methods (Duran and 

Grossman, 1986). An investigation of the entire catalog of available algorithms 

was beyond the scope of the research and the chosen algorithms represent a 

manageable cross-section of established methods. 

3.3.1 Fletcher-Reeves algorithm 

The Fletcher-Reeves algorithm (Fletcher and Reeves, 1964) is 

representative of the general class of gradient-based methods. At each iteration 

of the algorithm, gradient information [∇ F(X)] is used to compute a revised 

search direction (Vanderplaats, 2001): 

oldSXS β+−∇= )(F        (3.4) 
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Where, S and Sold are the revised and previous search directions, 

respectively, and β is a scalar multiplier. As suggested by Press et al. (1995), β is 

computed using the Polak-Ribiere formulation: 

( ) ( )
( ) ( ))()(
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XX
XXX

FF
FFF

T

T
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∇∇+∇
=β       (3.5) 

where ∇ F(Xold) is the gradient vector of the previous iteration.  Following the 

standard simulation-optimization approach, the OSTRICH package evaluates the 

gradient vector numerically using a finite-difference approximation. This 

technique requires repeated executions of the underlying flow or transport model. 

3.3.2 Levenberg-Marquardt algorithm 

Levenberg-Marquardt regression (Levenberg, 1944, with extensions by 

Marquardt, 1963), is utilized by several popular automated calibration codes [e.g. 

PEST (Doherty, 2004) and UCODE (Poeter and Hill, 1998)]. Minimization of 

Equation 3.3 proceeds by performing a Taylor series expansion about Xold, 

yielding a linearized approximation for Ysim: 

)( oldoldsim XXJYY −+≈        (3.6) 

Where J is the Jacobian matrix, consisting of the partial derivatives of each 

simulated observation with respect to each parameter, and Yold is the simulated 

observation vector from the previous iteration. 

Based on this approximation, the following iterative update strategy for 

computing a revised parameter estimate is defined: 

)()( 1
oldobsold YYQJIQJJXX −++= − TT α      (3.7) 
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Where α is a control parameter and Ι is the identity matrix. Adjustment of the 

control parameter allows the method to smoothly transition from a steepest-

descent approach far away from the optimal parameter set to a more efficient 

Taylor series approximation close to the optimal parameter set. Like the gradient 

computations of the Fletcher-Reeves algorithm, OSTRICH evaluates the 

Jacobian matrix numerically using finite-differences. 

3.3.3 Genetic Algorithm (GA) 

The GA (Goldberg, 1989) operates on a population of parameter sets and 

follows a Darwinian survival of the fittest process, where selection, crossover, 

mutation, and elitism operators are applied to successive generations of the 

population. In this manner, the GA gradually evolves the initial population into 

one that surrounds, and may contain, the globally optimal solution. As shown in 

Figure 3.1, the optimization process begins by randomly initializing the 

population. Then, an iterative process is followed in which successive 

generations of the algorithm are evolved. Population evolution begins with a 

preservation stage, in which the fittest members (the elites) are added, unaltered, 

to the gene pool of the next generation. Remaining population members compete 

for membership in a mating pool via the tournament selection operator. Members 

of the mating pool are then selected two-at-a-time to serve as parents for the 

next generation of the population.  The crossover operator simulates the 

generation of a child population member, whose parameter values are assigned 

based on a mixing of parent parameter values. After subjecting child parameter 

values to random adjustment via the mutation operator, each child enters the 
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gene pool of the next generation. When the new gene pool is full, the fitness 

(objective function) of each child member is evaluated by executing the 

simulation model multiple times. 

 
Figure 3.1: Genetic Algorithm Optimization Procedure 

 
3.3.4 Particle Swarm Optimization (PSO) 

Particle swarm optimization (Kennedy and Eberhart, 1995) was developed 

from attempts to simulate the flocking behavior of birds, fish and other animals. 

The PSO algorithm contains a population of parameter sets, known as the 

particle swarm. During iteration, particles move through the design space and 

revised locations are computed as follows (Beielstein et al., 2002): 
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where i is the iteration number, n is the number of parameters, xj is the value and 

vj the velocity of parameter j, χ is the constriction factor, w is the inertia weight, r1 

and r2 are independent and uniformly distributed random numbers, c1 is the 

cognitive parameter, the weight of a particles own experience, c2 is the social 

parameter, the weight of the combined experience of the swarm, pl is the 
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parameter value corresponding to the best solution ever personally visited by the 

given particle, and pg is the parameter value corresponding to the best solution 

ever visited by any particle (the current global best). The components for 

updating a particle are the previous velocity, and the current local and global 

best. A given particle retains a fraction (w) of its velocity and the direction of 

movement is biased towards the global (pg) and local (pl) best, which are 

randomly weighted (via the r1 and r2 terms) and scaled by the cognitive (c1) and 

social (c2) parameters. 

3.3.5 Simulated Annealing (SA) algorithm 

The SA algorithm (Kirkpatrick et al., 1983) is based on analogy to the 

physical process of annealing; wherein a solid is heated to an extremely high 

energy state and then slowly cooled, enabling the material to achieve its lowest 

possible energy state. Simulated annealing emulates this cooling process by 

introducing a randomness control parameter (i.e. the temperature) that is 

reduced after each step of the optimization, such that a highly random initial 

search is slowly transitioned into a focused descent onto the global minimum. 

Within each SA iteration is an equilibration process that makes a series of 

transitional moves based on the Metropolis algorithm (Metropolis et al., 1953). An 

important characteristic of the Metropolis algorithm is that, depending on the 

value of the randomness control parameter, moves that increase the objective 

function may be made. 

Figure 3.2 illustrates the simulated annealing algorithm utilized in this 

research. Following Vanderbilt and Louie (1984), the procedure begins with a 
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melting phase, in which the initial temperature is established by evaluating many 

different parameter sets. The algorithm proceeds by performing a sequence of 

Metropolis equilibrations and temperature reductions until convergence is 

achieved. 

 
Figure 3.2: Simulated Annealing Optimization Procedure 

 
3.3.6 Parallel Algorithms 

Research objectives related to algorithm parallelization were addressed by 

implementing parallel versions of the genetic algorithm and the particle swarm 

optimization algorithm. These population-based algorithms were coded to run in 

parallel on distributed, cluster-based processors using the industry-standard 

Message Passing Interface (MPI) (Gropp et al., 1999) library. In the parallel 

version of each algorithm, a supervisor processor begins each step by 

broadcasting a revised population set to a group of subordinate processors. Each 

subordinate processor computes the objective function (via model execution) of 

one or more population members and sends the results back to the supervisor. 

The supervisor completes the procedure by performing bookkeeping and 

algorithm-specific operations (i.e. particle advection (PSO) or selection, 
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crossover, and mutation (GA)). The entire process begins again with the next 

iteration. 

3.4 Multi-Model Ranking and Selection 

Researchers are beginning to embrace multi-model approaches to 

subsurface reactive transport (SRT) modeling, in which more than one model is 

considered for a given application. For example, Dai and Samper (2004) 

advocate a stepwise calibration strategy in which sequentially more complex 

SRT models are calibrated and compared.  Such procedures mirror recent efforts 

by Poeter and Anderson (2005), who applied information theoretic measures to 

statistically rank a set of calibrated groundwater flow models. Information 

theoretic metrics suitable for comparing multiple SRT formulations include 

variations of Akaike’s Information Criterion (IC) (Hurvich and Tsai, 1994), 

Bayesian IC (Schwarz, 1978), Hannan/Quinn IC (Hannan and Quinn, 1979), and 

Kashyap IC (Kashyap, 1982).  These methods extend traditional goodness-of-fit 

measures to consider the number of calibrated parameters and observation data.  

The calibration component of this research applied selected IC metrics to 

multiple SRT scenarios involving nitrate-contamination. 

3.5 Software Testing 

A variety of numerical experiments were performed to test the OSTRICH 

software and verify its proper operation. A complete discussion of these tests is 

provided in Appendix A. 

All numerical experiments developed for this dissertation were performed 

on parallel computing clusters maintained at the University at Buffalo Center for 
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Computational Research (UB CCR).  These parallel computing facilities contain 

over 5,000 Linux-based processors, spread across 8 commodity dual-processor 

workstation clusters. While all UB CCR participants share most clusters, two 

clusters, “Clearwater” (32 1-GHz Pentium 3 processors w/ 1-GB RAM) and 

“MuddyWaters” (26 3.3-GHz Intel Xeon processors w/ 4-GB RAM), are 

committed to research performed by the UB Groundwater Research Group, and 

were dedicated resources for the research presented herein. Additional CCR 

resources that were utilized included the “Joplin” (512 2.4-GHz Pentium 4 

processors w/ 2-GB RAM) and “U2” (2056 3.3-GHz Intel Xeon processors w/ 2-

GB RAM) clusters.  Access to the CCR clusters is via a Portable Batch System 

(PBS) resource manager and Maui scheduler, and the CCR supports parallel 

programs via the industry standard Message Passing Interface (MPI) 

specification. 
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4 PUMP-AND-TREAT OPTIMIZATION USING AEM FLOW MODELS 

The material in Chapter 4 has been published as “Matott LS, 
Rabideau AJ, Craig JR. 2006. Pump-and-Treat Optimization Using 
Analytic Element Method Flow Models. Advances in Water 
Resources, vol. 29, no. 5, pg. 760-775”, copyright by Elsevier. 
 

4.1 Overview 

Plume containment using pump-and-treat (PAT) technology continues to 

be a popular remediation technique for sites with extensive groundwater 

contamination. As such, optimization of PAT systems, where cost is minimized 

subject to various remediation constraints, is the focus of an important and 

growing body of research. While previous pump-and-treat optimization (PATO) 

studies have used discretized (finite element or finite difference) flow models, the 

present study examines the use of analytic element method (AEM) flow models. 

In a series of numerical experiments, two PATO problems adapted from the 

literature are optimized using a multi-algorithmic optimization software package 

coupled with an AEM flow model. The experiments apply several different 

optimization algorithms and explore the use of various pump-and-treat cost and 

constraint formulations. The results demonstrate that AEM models can be used 

to optimize the number, locations and pumping rates of wells in a pump-and-treat 

containment system. Furthermore, the results illustrate that a total outflux 

constraint placed along the plume boundary can be used to enforce plume 

containment. Such constraints are shown to be efficient and reliable alternatives 

to conventional particle tracking and gradient control techniques.  Finally, the 

particle swarm optimization (PSO) technique is identified as an effective 

algorithm for solving pump-and-treat optimization problems. A parallel version of 
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the PSO algorithm is shown to have linear speedup, suggesting that the 

algorithm is suitable for application to problems that are computationally 

demanding and involve large numbers of wells. 

4.2 Introduction 

Remediation of contaminated groundwater is a continuing problem for the 

industrialized world. At many contaminated sites, a pump-and-treat system 

consisting of extraction and injection wells is installed to prevent further plume 

migration and remove contaminant mass.  Designers typically determine the 

number, locations, and rates of extraction and injection wells such that plume 

containment is realized at the lowest cost. In this context, the plume is defined as 

a closed boundary delineating a fixed containment area (i.e. a region of 

groundwater contamination that must not be allowed to expand), and plume 

containment occurs when all groundwater initially residing within the containment 

area either remains within this boundary, or is extracted by a well during the 

remediation period. 

Optimization of pump-and-treat systems using automated simulation-

optimization techniques has been extensively studied over the past quarter 

century. Mayer et al. (2002) provided a detailed review of this body of research 

and set forth a suite of community problems intended to serve as a unifying 

benchmark for future work. While previously published studies of pump-and-treat 

optimization (PATO) have used finite-difference (FD) or finite-element (FE) flow 

models, this paper investigates the use of groundwater flow models based on the 

analytic element method (AEM).  Therefore, a major contribution of this study is 
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that it is the first to assess the feasibility of AEM-based PATO. The purpose of 

this work is not to compare the merits of AEM versus FD/FE for PATO 

applications, but to examine the applicability of the AEM to this class of problems 

and develop guidelines for the appropriate PATO formulation. 

Several major characteristics distinguish AEM groundwater models from 

their FD/FE counterparts.  In AEM models, hydrologic features are treated as 

distinct model elements rather than distributed over a spatial grid or mesh.  

Continuously varying aquifer properties, such as hydraulic conductivity and 

recharge, are approximated using a set of parameter zones. While such zones 

are commonly assigned average or effective parameter values, solutions for 

continuous variation within a zone have been developed [e.g. the multi-quadric 

area sink (Strack and Jankovic, 1999)]. Point features (such as wells) are directly 

represented in AEM models and their spatial coordinates can be varied as 

continuous functions.  Conversely, such point features can be only approximately 

located in common FD and FE modeling software, and the effects of such 

features are averaged over the entire grid- or mesh-cell in which they are placed. 

Finally, while FD/FE techniques result in a set of discrete nodal or grid cell 

solutions, AEM flow solutions are inherently continuous over the entire model 

domain. Introductory treatments of AEM modeling are provided in Strack (1989) 

and Haitjema (1995), while Jankovic (1997) and Jankovic and Barnes (1999) 

provide details on the high-order techniques underpinning the numerical engine 

used in this study. The particular AEM implementation used in this study 

assumes two-dimensional, steady state flow. Such assumptions are common 
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among published PATO studies and should not be a limitation for most PATO 

applications.  Notable exceptions are problems involving time-varying pumping 

rates and/or flexible management periods [e.g. Chang et al. (1992), Culver and 

Shenk (1998), Culver and Shoemaker (1992, 1993 and 1997), and Lee and 

Kitanidis (1991)] and/or containing significant layering of aquifer permeability 

[e.g. Ahlfeld and Page (1995), and Sawyer et al. (1995)]. 

Given the fundamental differences between AEM and FD/FE flow 

modeling, the use of AEM introduces several unique possibilities with respect to 

PATO. For example, AEM-modeling allows for the coordinates of pump-and-treat 

wells to be directly represented as continuous design variables. Conversely, the 

majority of previous FD/FE-based PATO studies have optimized well coordinates 

using a discrete list of candidate well locations.  Notable exceptions are found in 

Huang and Mayer (1997) and Wang and Ahlfeld (1994), but in these studies 

potential well locations were nonetheless limited to the nodes of the FE mesh 

(Huang and Mayer, 1997) or the cell center of a FD grid (Wang and Ahlfeld, 

1994). Limitations in the placement of FD/FE wells can be overcome via spatial 

grid adaptation methods, but such methods can be computationally expensive 

and result in a more complicated linkage between the simulation and optimization 

software. 

Another benefit of AEM-based PATO arises when particle-tracking 

techniques are used as plume containment indicators. Particle tracking, 

described by Mulligan and Ahlfeld (1999), considers the advection of a series of 

particles, initially located inside or along the perimeter of the plume. Plume 
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containment is indicated if all particles remain within the plume, or are extracted 

by pump-and-treat wells, at the conclusion of the remediation time frame.  When 

particle tracking is applied to FD/FE model solutions, the accuracy of a particle 

track is sensitive to the level of grid or mesh discretization. Conversely, AEM flow 

solutions are grid-free and the corresponding particle tracks are not affected by 

domain discretization error.  

In contrast to particle tracking, the hydraulic gradient control plume 

containment technique, introduced by Atwood and Gorelick (1985), specifies a 

series of control locations along the perimeter of the plume. When the head 

gradient at all control locations is oriented toward the interior of the plume, plume 

containment is presumed to occur. In FD/FE models, head gradients are 

approximated using a pair of head values defined at each control location, with 

one member of the pair located inside the plume and the other outside of the 

plume.  The separation distance between gradient points in such models is 

restricted to discrete multiples of the grid spacing, limiting the accuracy of the 

numerical gradient calculations. Conversely, AEM-based PATO allows for exact, 

analytic computation of head gradients, and provides a unique opportunity to 

examine the sensitivity of PATO to the inaccuracies of the numerically computed 

gradient control approach.  

While previous PATO studies have used particle tracking and/or gradient 

control pairs, the present study includes consideration of an alternative plume 

containment indicator, designated here as the “zone outflux constraint”. A 

complete mathematical description of the constraint is provided in Section 4.2.4, 



 

 29

and is derived from the decomposition of flux (vertically-integrated discharge) 

across an arbitrary transect into influx and outflux terms. A zone flux polygon is 

then assembled by connecting a series of transects. Plume containment is 

signified when the total outflux, summed over all transects in a plume-enclosing 

zone flux polygon, is identically zero. 

In consideration of the possibilities suggested by AEM-based PATO, this 

study examines several AEM-based PATO formulations to identify those that are 

particularly efficient, effective and reliable. The following sub-sections summarize 

the various facets of PATO considered in this paper: (1) optimization algorithm, 

(2) system cost, and (3) constraint integration. Mathematical formulations 

associated with system cost and constraint integration are included in Appendix 

B. 

4.2.1 Optimization algorithms 

Numerous algorithms have been applied to pump-and-treat and related 

hydraulic optimization; a thorough review and tabulated summary is provided by 

Mayer et al. (2002). More recent studies have used various heuristic approaches 

(genetic algorithm, simulated annealing, tabu search, and/or artificial neural 

networks) [e.g. Chan Hilton and Culver (2005), ESTCP (2004), Guan and Aral 

(2004), Maskey et al. (2002), and Zheng and Wang (2003)], non-linear 

programming (e.g. Guan and Aral, 2004), and implicit filtering (e.g. Fowler et al., 

2004a and 2004b). 

For this study, five algorithms were considered, with the goal of 

discovering those most effective at solving AEM-based PATO problems. The 
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methods consisted of three heuristic algorithms: simulated annealing (SA) 

(Kirkpatrick et al., 1983), particle swarm optimization (PSO) (Kennedy and 

Eberhart, 1995), and a real-coded genetic algorithm (GA) [Goldberg (1989) and 

Yoon and Shoemaker (1999)], one non-linear programming algorithm [Fletcher-

Reeves conjugate-gradient (CG) (Press et. al, 1995)], and a random (RND) 

search algorithm.  

The choice of GA and SA algorithms was motivated by the fact that they 

are heuristic (global) algorithms successfully applied in previous PATO studies 

[e.g. Aly and Peralta (1999), Chan Hilton and Culver (2000 and 2005), Dougherty 

et al (1991), ESTCP (2004), Guan and Aral (2004), Huang and Mayer (1997), 

Maskey et al (2002), Rogers and Dowla (1994), and Yoon and Shoemaker 

(1999)]. The CG algorithm is representative of non-linear programming, a 

common approach in the PATO literature [e.g. Guan and Aral (2004), McKinney 

and Lin (1996), Mulligan and Ahlfeld (2001), Wang and Ahlfeld (1994), Yoon and 

Shoemaker (1999)]. The random search algorithm, where an optimal solution is 

selected from a random sample of solution sets, served as a control for the other 

algorithms.  

Importantly, this paper represents the first application of the PSO 

algorithm to PATO problems. The algorithm was introduced by Kennedy and 

Eberhart (1995), and is an outgrowth of attempts to simulate the cooperative-

competitive nature of social behavior. The algorithm can effectively solve a 

variety of engineering optimization problems, and Coelho et al. (2002) and Gies 
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and Rahmat-Samii (2003) demonstrated applications where PSO performance 

compared favorably with the GA and SA algorithms. 

4.2.2 System cost  

Mayer et al. (2002) summarized some of the more commonly used PATO 

cost formulations, which can be divided into three components: (1) CTOTQ: total 

pumping rate as a surrogate for cost, (2) COPER: operational costs only (such as 

energy, treatment, disposal and labor costs), and (3) COPER+: both operational 

and capital (well installation and pump) costs. The numerical experiments in this 

study examined each of the three cost formulations in order to demonstrate the 

feasibility of their use in an AEM-based PATO problem, and to assess the 

influence of the cost function on algorithm effectiveness (the ability of a given 

optimization algorithm to determine the minimum cost plume containment 

system). Details on the three cost formulations, as implemented in this study, are 

provided in Appendix B. 

4.2.3 Integration of constraints  

The pump-and-treat objective can be mathematically formulated as a 

combination of the system cost function (either CTOTQ, COPER, or COPER+) and a 

penalty function, PTOTAL, which accounts for the cost of various constraint 

violations.  Mayer et al (2002) provide a summary of the types of constraints that 

have been applied to pump-and-treat optimization, and this study demonstrates 

that AEM-based PATO is capable of handling commonly applied constraints on 

capacity, drawdown and plume containment.  Capacity constraints limit total 

pumping so that the PAT system does not overload an established treatment 
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facility, drawdown constraints prevent aquifer dewatering, and plume 

containment constraints enforce the remedial goals of the PAT system.  

Formulas for PTOTAL and associated constraints are given in the appendix.  

Chan Hilton and Culver (2000) discuss several techniques for combining 

cost and PTOTAL to form the objective function, including the additive penalty 

method (APM), the multiplicative penalty method (MPM), and the exponential 

penalty method (EPM); formulations for these methods are provided in the 

appendix.  Following the reasoning of Mulligan and Ahlfeld (2001), the APM was 

initially viewed as the preferred penalty method for all experiments in this study 

because the MPM and EPM methods tend to over-penalize constraint violations, 

biasing the optimization to favor constraint reduction over cost reduction. 

However, a set of initial experiments indicated that while the APM was effective 

in problems utilizing particle-tracking constraints, the MPM performed better for 

gradient control and zone outflux constraints.   

4.2.4 Zone outflux constraint 

The zone outflux constraint enforces plume containment by utilizing the 

normal component of the vertically-integrated discharge, ηQ  [L2/T], which may be 

expressed as: 

∫=
h

dzqQ
0

ηη          (4.1) 

where h [L] is the saturated thickness of the domain, ηq  [L3/T] is the specific 

discharge normal to some vertical plane through the aquifer, and z [L] is the 

vertical direction.  Figure 4.1 illustrates the decomposition of ηQ  across an 
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arbitrary transect into directional components, )(sQ +
η  and )(sQ −

η , that vary in a 

piecewise continuous manner between transect endpoints a and b. Total fluxes 

( +
abF  and −

abF ) in each direction are computed via integration along transect ab, as 

shown in Equation 4.2. 
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Where +
ηQ  and −

ηQ  are strictly positive and −+ −= ηηη QQQ .  A ‘zone flux polygon’ 

can be assembled by connecting a series of transects aligned such that +
ηQ  

terms for all transects correspond to outflow from the polygon and −
ηQ  terms 

correspond to inflow. Using this convention, the total outward flux ( +
ZFBF ) and total 

inward flux ( −
ZFPF ) across the boundary of a given zone flux polygon are 

computed by summing the appropriate transect fluxes, as shown in Equation 4.3. 

∑∑
=

−−

=

++ ==
N

i
iZFP

N

i
iZFP FFFF

11
      (4.3) 

Where, N is the number of transects in the given zone flux polygon, and +
iF  and 

−
iF  are the respective total outflux and total influx across the i-th transect 

boundary of the zone flux polygon.   

 
Figure 4.1: Example of flux decomposition across an arbitrary transect 
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For pump-and-treat optimization, a zone flux polygon is configured to 

match the plume boundary, and plume containment is enforced by constraining 

the total outward flux ( +
ZFBF ) to be identically zero (i.e. no groundwater exits the 

plume, unless removed via a well). The zone outflux constraint may be 

considered equivalent to that of an infinite number of gradient control points 

placed along the plume boundary. For a given pump-and-treat system design, 

the zone outflux constraint is violated if the total outflux ( +
ZFBF ) is nonzero. Such 

violations cause a penalty (proportional to +
ZFBF ) to be assessed to the pump-and-

treat system cost.  

Evaluation of the transect flux integrals in Equation 4.2 is dependent on 

the groundwater modeling strategy employed. For grid-based models, the flux 

terms +
ηQ and −

ηQ  across each transect may be interpolated from the discretized 

flow solution and integrated numerically. Interpolation (and its associated 

numerical error) may be avoided if the geometry of the zone flux polygon is 

configured so that polygon sides coincide with cell faces. However, such a 

rectilinear geometry of the zone flux polygon may lead to an over-conservative 

constraint formulation. AEM-based models provide a continuous flow solution 

everywhere in the modeled domain and, regardless of zone flux polygon 

geometry, no interpolation is required to determine the flux across a given 

transect. Furthermore, the transect flux terms of an AEM-based flow solution can 

be integrated in two ways: strictly numerically or numerically with an analytic 

correction term (hereafter referred to as semi-analytically). For the semi-analytic 

method, the integrals in eq. (4.1) are first evaluated numerically. Then the net flux 
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through each transect, ∫=−= −+
b

a
ababab dssQFFF )(η , is calculated analytically (as in 

Craig, 2005 (pg. 61-64),  Craig and Rabideau, 2006 (section 3.1), and Craig and 

Rabideau, 2004 (pg. 385-387)). If, for a given transect, flow is unidirectional (i.e., 

+= abab FF  or −−= abab FF ), then the analytic expression is used. Otherwise, a 

correction is applied to the numerically calculated total fluxes in order to be 

consistent with the analytic net flux: 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+

+−
−=⎥
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⎤
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⎣
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+−
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−+
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abab

ababab
abCORRab FF

FFF
FF

FF
FFF

FF 11            (4.4) 

Note that ( ) ( ) abCORRabCORRab FFF =− −+ , as desired.  

In the AEM modeling software utilized in this study, calculation of transect 

fluxes in a plume-enclosing zone flux polygon is carried out using the semi-

analytical technique.  Computation of the constraint is highly accurate, fairly 

inexpensive and convenient in that no decisions regarding the number and 

location of gradient pairs and/or particles are required. The enhanced accuracy 

of the semi-analytic technique may be superfluous in the context of a pump-and-

treat constraint, as a single outflux term in the numerical integration will trigger a 

penalty. The analytic correction simply adjusts the penalty value to more 

accurately represent the severity of the constraint violation, which is unlikely to 

affect the overall optimization results.  However, the additional computation 

required for the analytic correction is minor compared to the numerical integration 

step, and the zone flux feature is a standard component of the AEM software 

used in this work.  
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4.3 Methods 

To investigate the performance of AEM-based PATO, two problem 

formulations were developed: (1) a ‘control’ problem, selected from the 

community problems presented in Mayer et al (2002), and (2) a ‘complex’ 

problem, based on the twin-plume problem presented by Mulligan and Ahlfeld 

(2001). These problems were selected based on two criteria.  First, they were 

readily adaptable to the AEM modeling software used in this study, which is 

limited to two-dimensional steady-state flow with homogeneous conductivity and 

recharge zones. Second, the two problems differ significantly in terms of domain 

size, plume geometry, and boundary conditions, allowing for meaningful 

generalization of observed optimization trends. 

In each of the test problems, the optimization design variables were the 

location and rates of extraction and injection wells.  Most optimizations were 

carried out using well coordinates varied as continuous functions; a subset of the 

experiments limited well location coordinates to evenly spaced intervals. The 

optimal number of wells was determined implicitly by allowing algorithms to 

consider a large maximum number of wells. Of this maximum number, only wells 

operating above a threshold value (1.5 m3/day) were retained in the solution. 

4.3.1 Control problem 

The AEM setup of the control problem is illustrated in Figure 4.2.  The 

problem is based on Application III of the community problems posed by Mayer 

et al (2002), and is located in an unconfined aquifer with no-flow boundaries to 

the south and west and specified head boundaries (i.e. a head gradient of 0.001) 
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to the north and east, resulting in a north-northeasterly flow direction near the 

plume. Following the guidelines for the community problem, aquifer porosity, 

hydraulic conductivity and recharge were set at 0.32, 4.33 m/day, and 0.00164 

m/day, respectively. To facilitate comparison with Fowler et al (2004a), the plume 

containment boundary was delineated by the 50 ppb concentration contour 

resulting from 5 years of contaminant transport from the initial plume source.  In 

this case, contaminant transport was simulated using Cardinal (Craig, 2005), a 

multi-species single-phase reactive-transport model that integrates an AEM flow 

solution with a finite-element or finite-difference transport model.  

 
Figure 4.2: Control model setup (w/ simulated head contours [m]) 

 

4.3.2 Complex problem 

 The AEM setup of the complex problem is illustrated in Figure 4.3. The 

problem, adapted from a two-dimensional example developed by Mulligan and 

Ahlfeld (2001), is an unconfined aquifer containing no-flow boundaries in the 
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north and south, and specified heads in the west (head gradient of 3/3100) and 

east (head gradient of 3.17/3100), resulting in southeasterly flow through the 

plume. Following the description provided by Mulligan and Ahlfeld (2001), 

hydraulic conductivity, recharge and porosity were set to 5 m/day, 0 m/day and 

0.3, respectively. The plume is presumed to result from the transport of 

contaminants from two separate source zones, leading to the dual-lobe shape. 

For this problem, precise values for the specified head boundaries were not 

provided in the published literature and were therefore estimated using trial and 

error to achieve a flow-field closely resembling the descriptions provided by 

Mulligan and Ahlfeld (2001). 

 
Figure 4.3: Complex problem setup (w/ simulated head contours [m]) 

4.3.3 Plume containment constraints 

To assess the sensitivity of particle tracking and gradient control 

constraints to the number and distribution of particles and control pairs, several 
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different formulations of these constraints were implemented.  Particle tracking 

and gradient control constraints were divided into three size-classes, 

corresponding to “low”, “medium” and “high” numbers of constraints, equal to 2, 

5, and 10 times the maximum number of wells, respectively. Particle tracking 

constraints were further divided into two spatial categories: uniform placement of 

particles throughout the plume body, or uniform placement along the plume 

perimeter.   

Hydraulic gradient constraints were always placed uniformly along the 

plume perimeter, but a distinction is made between whether the gradients were 

computed numerically (based on a distance of 10 meters between head inside 

and outside the plume) or analytically, which is not possible with standard FD/FE 

methods. In all, the particle tracking, hydraulic gradient, and zone outflux 

constraints provided a total of 13 different plume containment constraint 

configurations. Figure 4.4 illustrates selected constraints and Table 4.1 

summarizes each of the formulations. In Figure 4.4, the arrows associated with 

gradient control constraints indicate an inward flow direction perpendicular to the 

plume boundary. 
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Figure 4.4: Selected Plume Containment Constraint Formulations 

 
Table 4.1: Plume Containment Constraints 

Acronym Type Number of Constraints 
(Control, Complex) 

Distribution or Computation 
Technique 

PTLB Low (10, 38) 
PTMB Medium (25, 95) 
PTHB High (50, 190) 

Uniformly distributed throughout 
the plume Body. 

PTLP Low (10, 38) 
PTMP Medium (25, 95) 
PTHP 

Particle Tracking 

High (50, 190) 

Uniformly distributed along the 
plume Perimeter 

HGLN Low (10, 38) 
HGMN Medium (25, 95) 
HGHN High (50, 190) 

Gradients computed Numerically 

HGLA Low (10, 38) 
HGMA Medium (25, 95) 
HGHA 

Hydraulic Gradient 
Control 

(Control points 
uniformly distributed 

around plume 
perimeter) High (50, 190) 

Gradients computed Analytically 

ZONE ZONE Outflux n/a n/a 
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4.3.4 Optimization algorithms 

 The performance of each of the optimization algorithms is dependent to 

some extent on the values assigned to various algorithmic parameters. Where 

possible, parameters were assigned values taken from published optimization 

studies, with preference given to references that specifically addressed pump-

and-treat optimization. For example, PSO parameters values were taken from 

the tuning study of Beielstein et al (2002) and the guidelines of Zheng and Wang 

(2003) were used in the assignment of SA and GA parameters.  Algorithm 

parameters related to computation time (for example, maximum number of 

generations) were assigned so that each algorithm would run to completion using 

a similar number of objective function evaluations.  

4.3.5 Software packages 

 Three software packages were utilized in the experiments, which were run 

on a workstation cluster comprised of 32 1-GHz Intel Pentium III processors with 

256-kB cache, 1-GB of RAM, and the Red Hat Linux 7.3 operating system. Two 

of the software packages, Split (Jankovic, 2005) and Bluebird (Craig and Matott, 

2005), are AEM flow modeling engines that incorporate high-order elements. For 

experiments with particle tracking or numerical gradient control constraints, the 

Split engine was used, while the Bluebird engine was used for experiments 

involving zone outflux or analytic gradient control constraints. The two flow 

engines use identical system representation and solution algorithms; selection 

between the two was based solely on the availability of desired output. Both 

models use an over-specified high-order representation of line elements 
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[Jankovic (1997), and Jankovic and Barnes (1999)]. For this work, the element 

segments were configured with an order of 12 and 18 control points, yielding 

maximum simulated head errors of 0.2 and 2 mm for the Control and Complex 

problems, respectively.  

The automated optimizations were performed using Ostrich (Matott, 

2004), a model-independent, multi-algorithmic optimization tool. For this purpose, 

a pump-and-treat optimization module was developed and is available with 

version 1.4 of the public domain software. 

4.3.6 Numerical experiments 

To assess different aspects of AEM-based PATO, a series of numerical 

experiments was designed using the control and complex AEM models in 

conjunction with various configurations of the PATO problem. The goals of the 

experiments were: (1) demonstrate that PATO problems can effectively make 

use of AEM flow models, (2) compare the effectiveness of various optimization 

algorithms, as applied to PATO, (3) compare the reliability (defined below, in 

Section 4.3.6.1) of various plume containment constraint formulations, and (4) 

examine algorithm parallelization. To facilitate analysis of the experimental 

results, quantitative expressions for constraint reliability (R), algorithm 

effectiveness (F), and speedup (S) were developed, as discussed below. 

4.3.6.1 Constraint reliability 

Constraint reliability was computed following the completion of a given 

optimization run and measures the adequacy of the plume containment 

constraint formulation used in the optimization. Using the current optimal well-
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field design, the flow model was run with a very large number of verification 

particles distributed uniformly throughout the plume and forward-tracked over the 

remediation time frame. The reliability of the constraints was computed as the 

percentage of verification particles successfully contained by the given optimal 

design. 

( ) %100/ ∗= totalcon NNR        (4.5)  

Where, Ntotal is the total number of verification particles and Ncon is the number of 

these particles successfully contained. 

4.3.6.2 Algorithm effectiveness 

The measure of algorithm effectiveness was defined as the optimal 

objective function value discovered by a given algorithm, computed using the 

applicable additive or multiplicative penalty method (APM was used for particle 

tracking constraints, while MPM was used for gradient control and zone outflux 

constraints). As such, lower values indicate more effective algorithms. 

4.3.6.3 Algorithm speedup 

Algorithm speedup (S) was defined as the ratio of the wall-time required 

for optimization using a single processor (T1) to the wall-time required when 

using p processors (Tp), where wall-time was the time required, from a human 

perspective, for an optimization to run to completion. 

( )pTTS /1=          (4.6) 

Highly parallel algorithms may be expected to produce linear speedup (S→ p). 
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4.4 Results 

More than 80 optimizations were performed. In general, a typical flow 

simulation for both the control and complex problems consumed less than one 

second of computation time.  However, the use of particle tracking constraints 

significantly increased the model computation time. On average, the tracking of 

particles increased the AEM model run-time by approximately 1 second for every 

25 particles. However, the increase was affected by the complexity of the local 

flow field and varied considerably between model configurations.  Because of the 

additional model computation, optimization using “high” numbers of particle 

tracking constraints required considerably more computer time than other 

constraint formulations. The Split modeling engine supports parallel particle 

tracking, and while not utilized in the present study, this feature may provide 

substantial benefit to more complex problems involving hundreds or thousands of 

particles. 

4.4.1 Algorithm comparisons 

To assess algorithm effectiveness, the CG, GA, PSO, RND and SA 

algorithms were applied to the control AEM model. For each algorithm, separate 

optimizations were performed using the CTOTQ, COPER and COPER+ cost functions 

and the HGMN (medium number of numerically computed gradient control 

constraints) and PTMB (medium number of particle tracking constraints, placed 

throughout the plume body) plume containment constraint formulations. 

Additionally, two implementations of the conjugate gradient (CG) algorithm were 

examined, differentiated by the assignment of the initial well locations and rates. 
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One CG run (CG/AR) used randomly assigned initial parameter values, while the 

other run (CG/EJ) used initial values assigned based on engineering judgment 

and a limited number of manual trial-and-error runs.  

In Figures 4.5 through 4.7, the effectiveness of each algorithm is 

presented for the various cost and constraint formulations. With the notable 

exception of the CG/EJ runs, the relative effectiveness of each algorithm was 

consistent across the different formulations. The particle swarm (PSO) algorithm 

was the most effective; the genetic algorithm (GA) also performed reasonably 

well across all formulations. For the CTOTQ and COPER costs, the CG/EJ 

formulation was highly effective, but, as shown in Figure 4.7, the same algorithm 

was also the least effective at optimizing the COPER+ cost formulation. It appears 

that the gradient-based CG algorithm was frustrated by the inclusion of capital 

costs in the COPER+ cost function.  These costs result in an optimization that is 

driven by the number of active wells in the system, a non-differentiable discrete 

parameter.  

Based on their effectiveness at solving the control problem, the PSO and 

GA algorithms were applied to the complex problem. As shown in Figure 4.8, the 

PSO algorithm was much more effective at solving the complex problem, which 

was optimized using the COPER+ cost function. In the complex problem, the 

maximum number of wells was nineteen, a value much larger than required for 

optimal satisfaction of the plume containment constraints (only one well is 

required). An examination of the optimization behavior of the two algorithms 

revealed that the PSO algorithm was much more effective at eliminating the 
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abundance of unnecessary wells. Given that the number of active wells drives 

the optimization of the COPER+ cost function, the large difference between the 

effectiveness of the two algorithms is therefore attributed to the superior ability of 

the PSO algorithm to eliminate wells. 

 

 
Figure 4.5: Comparison of algorithms applied to 
the control model optimization using PTMB and  

HGMN constraints and CTOTQ cost 
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Figure 4.6: Comparison of algorithms applied to  
the control model optimization using PTMB and  

HGMN constraints and COPER cost 

 
 

 
Figure 4.7: Comparison of algorithms applied to  
the control model optimization using PTMB and 

 HGMN constraints and COPER+ cost function 

 
 

 
Figure 4.8: Comparison of algorithms applied to  
the complex model optimization using PTMB and  

HGMN constraints and COPER+ cost function 
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4.4.2 Constraint comparisons 

The experiments described above focused on the ability of various 

algorithms to minimize one of three cost functions utilizing a baseline set of 

plume containment constraint formulations. Another set of experiments examined 

the ability of alternative constraint formulations to represent the goal of plume 

containment in a reliable fashion. Optimizations were performed on both the 

control and complex problems using the COPER+ cost function, the PSO algorithm, 

and each of the 13 constraint formulations listed in Table 4.1. Following each 

optimization, constraint reliability (as defined in Section 4.3.6.1) was computed 

based on the tracking of 1,000 particles initially located in and around the plume.  

Figures 4.9 and 4.10 summarize the resulting reliability measures for the various 

particle tracking and hydraulic gradient constraint formulations, respectively.  

Among the particle tracking constraints, plume perimeter distributions 

were clearly more reliable than plume body distributions, but no configuration 

achieved 100% reliability (the ‘Control, PTHP’ configuration had a 99.5% 

reliability). For plume-perimeter particle distributions, the ‘medium’ setting yielded 

approximately 97% reliability, while ‘high’ numbers of particles were required to 

achieve similar reliability for plume-body distributions in the complex model (all of 

the plume-body distributions in the control model have less than 90% reliability). 

Conversely, ‘low’ numbers of gradient control constraints resulted in a range of 

90-100% reliability while the ‘medium’ and ‘high’ gradient control settings were all 

between 97 and 100 percent reliable. Furthermore, the results show no 
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difference in reliability between the analytic and discretized gradient constraint 

formulations. 

The zone outflux constraint (not shown) was found to be 100% reliable for 

both the control and complex problems. Average computation times required for 

the various constraint types (particle tracking, gradient control and zone outflux) 

are shown in Figure 4.11, and illustrate a significant computational advantage 

when using zone outflux or gradient control constraints. The reliability of the zone 

outflux constraint combined with its computational efficiency makes this 

constraint an attractive and powerful technique for constraining AEM-based 

PATO problems.  

 

 
Figure 4.9: Comparison of particle tracking  

constraint reliabilities. 

 
 

 
Figure 4.10: Comparison of gradient control  

constraint reliabilities. 
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Figure 4.11: Average model computation times 

for various plume containment constraints 

 
4.4.3 Comparison with published solutions 

Table 4.2 provides a summary of the solutions to the control problem, 

using the zone outflux constraint and the most reliable particle tracking and 

gradient control constraint formulations. Also included in the table are the 

solution found by Fowler et al (2004a), using a finite difference flow model, and a 

solution found using the type curve procedures described by Javandel and Tsang 

(1986) and Grubb (1993).  The type curve analysis is based on the simplifying 

assumption of uniform flow through the plume. The most reliable solution is that 

of the zone outflux constraint, whose optimal design is roughly 5½ percent less 

costly than the published FD-based solution. One possible explanation for the 

lower reliability of the published FD-based solution is that it used relatively few 

gradient control points (examination of Figure 10 indicates that low numbers of 

gradient control points are associated with reduced reliability). A possible 

explanation for the increased cost of the FD-based solution is that the gradient 

control constraint was more restrictive than the one presented in the current 

study. In the FD-based study, the gradient control formulation constrained flow to 
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be precisely directed toward an installed well, whereas the present study 

required flow to be towards the interior of the plume.  

Table 4.3 provides a summary of solutions to the complex problem, using 

(1) the zone outflux constraint, (2) the most reliable gradient control constraint 

formulation (HGHA), (3) a particle tracking constraint formulation (PTMP) 

analogous to the constraint formulation used in the reference study (Mulligan and 

Ahlfeld, 2001), (4) the optimal solution reported in Mulligan and Ahlfeld (2001), 

which used a finite difference flow model and a particle tracking containment 

constraint formulation consisting of 110 particles placed along the plume 

perimeter, and (5) the optimal two-well solution using type curve analysis (as with 

the control problem, this requires the assumption of uniform flow through the 

plume body). 

Table 4.2: Solutions to the Control Problem 
Cost 

Function 
Constraint Formulation  

(or Literature Reference)
Optimized

Cost 
Number
of Wells

Well-field Configuration 
(Q [m3/day], X [m], Y [m]) Reliability

PTHP $20,273 1 (178.1, 264, 726) 99.5% 
HGHA $20,570 1 (219.3, 249, 711) 98.6% 
ZONE $20,745 1 (241.6, 242, 705) 100.0% 

Fowler et al (2004a) $21,957 1 (371.5, 250, 650) 96.8% 
OPER+ 

Type Curve Analysis $20,107 1 (152.5, 289, 741) 86.6% 
 

Examination of the FD-based Complex solution and the analogous AEM-

based solution (PTMP) reveals a close correspondence between the pumping 

rates of the two required wells. However, it is noted that the locations of the low-

rate and high-rate wells for the two solutions are inverted. The low-rate (7 

m3/day) well in the AEM solution is associated with the eastern lobe of the plume, 

whereas the low-rate (8 m3/day) well in the FD-based solution is associated with 
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the western lobe of the plume. Furthermore, the reliability of the FD-based 

solution (computed by configuring the AEM-based complex model with the 

reported FD-based solution) is fairly poor (less than 90%). The discrepancies 

between the FD- and AEM-based solutions, when using comparable plume 

containment constraints, suggests differences in the aquifer properties of the two 

models (recall that the specified head boundary conditions of the AEM-based 

complex model were estimated using trial-and-error).   

Table 4.3: Solutions to the Complex Problem 

Cost 
Function 

Constraint Formulation 
(or Literature Reference)

Optimized
Cost 

(Total Rate)

Number
of Wells

Well-field Configuration 
(Q [m3/day], X [m], Y [m]) Reliability

HGHA $3,385 
(62.8) 3 

(8.3, 1462, 1664) 
(28.2, 1432, 1759) 
(26.3, 1540, 1811) 

100.0% 

ZONE $3,489 
(64.7) 3 

(14.6, 1441, 1670) 
(11.9, 1435, 1745) 
(38.2, 1520, 1819) 

100.0% 

PTMP $1,694 
(31.4) 2 (24.4, 1449, 1679)  

(7.0, 1569, 1702) 97.6% 

Mulligan and Ahlfeld 
(2001) 

$1,565 
(29.0) 2 (8.0, 1347, 1680)  

(21.0, 1573, 1720) 88.7% 

TOTQ 

Type Curve Analysis  $1,511 
(28.0) 2 (14.0, 1504, 1676)  

(14.0, 1537, 1706) 89.9% 

 

The type curve solutions for both problems are low cost, but also have low 

reliability. Two aspects of the type curve analysis account for its low reliability: (1) 

the simplifying assumption of uniform flow results in a less-than-optimal rate for 

plume containment, and (2) the analysis applies to the steady-state capture zone 

(i.e. at infinite time), rather than the actual remediation time frames used in this 

study (5 and 30 years for the control and complex problems, respectively).  

For the complex model, examination of the gradient control (HGHA) and 

zone outflux constraint (ZONE) solutions reveals that, relative to the particle 
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tracking constraint formulation, one additional well is required and the total 

pumping rate is significantly higher (roughly double). This increase in cost and 

number of wells is likely due to the dual-lobed shape of the plume. As shown by 

the capture zones in Figure 4.12, the gradient control and zone outflux 

constraints prevent the “clean” region between the two lobes from being 

contaminated during remediation, while the particle tracking solution drags 

contaminated groundwater through this region and then back into the confines of 

the plume boundary. Maintaining an inward flux along the plume boundary where 

the two lobes converge (thus preventing contamination of the clean region) is a 

more restrictive constraint, and necessitates an increased number of wells and 

increased total pumping rate. 

 

 
Figure 4.12: 30-year Capture Zones for the Complex Problem 
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4.4.4 Continuous vs. discretized well coordinates 
 
Tables 4.4 and 4.5 summarize optimal solutions for various constraint 

formulations using continuous and discretized well coordinates. For discrete well-

coordinates, candidate well locations were set at 10 meter intervals in the x- and 

y- directions. Examination of Tables 4.4 and 4.5 reveals that discretization 

produces results nearly equivalent to those in which well coordinates are varied 

as continuous functions, both in terms of cost (the maximum cost difference is 

4%) and well location. Since both methods provide equivalent results, the choice 

between discretized and continuous well coordinates (if continuous well 

coordinates can be handled by the given flow-modeling engine, and if the PATO 

problem is similar to those presented in this study) can be based on 

computational considerations. For example, conjugate-gradient algorithms 

require continuous variables, to facilitate computation of partial derivatives. 

Conversely, a binary-encoded GA is more amenable to the use of discretized 

(integer-based) values. 

Table 4.4: Well-Coordinate Comparisons (Control Problem) 

Cost 
Function 

Constraint 
Formulation  Discretized? Cost Number

of Wells
Well-field Configuration 

(Q [m3/day], X [m], Y [m]) Reliability

No $20,273 1 (178.1, 264, 726) 99.5% 
PTHP 

Yes $20,333 1 (186.0, 280, 730) 98.5% 
No $20,570 1 (219.4, 249, 711) 98.6% 

HGHA 
Yes $20,588 1 (221.7, 250, 710) 98.8% 
No $20,745 1 (241.6, 242, 705) 100.0% 

COPER+ 

ZONE 
Yes $20,850 1 (253.9, 230, 710) 100.0% 
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Table 4.5: Well-Coordinate Comparisons (Complex Problem) 

Cost 
Function 

Constraint 
Formulation Discretized?

Cost 
(Total 
Rate) 

Number
of Wells

Well-field Configuration 
(Q [m3/day], X [m], Y [m]) Reliability

No $2,015 
(37.4) 2 (33.8, 1507, 1728) 

(3.6, 1449, 1646) 99.1% 
PTHP 

Yes $2,018 
(37.3) 2 (33.9, 1510, 1720) 

(3.4, 1440, 1640) 99.6% 

No $3,385 
(62.8) 3 

(8.3, 1462, 1664) 
(28.2, 1432, 1759) 
(26.3, 1540, 1811) 

100.0%

HGHA 

Yes $3,526 
(65.3) 3 

(7.5, 1460, 1660) 
(30.8, 1430, 1760) 
(27.0, 1540, 1820) 

99.9% 

No $3,489 
(64.7) 3 

(14.6, 1441, 1670) 
(11.9, 1435, 1745) 
(38.2, 1520, 1819) 

100.0%

CTOTQ 

ZONE 

Yes $3,580 
(66.3) 3 

(17.8, 1420, 1660) 
(17.4, 1440, 1760) 
(31.1, 1540, 1820) 

100.0%

 
 

4.4.5 Algorithm parallelization 

A final set of optimizations examined improvements in computation speed 

achievable via parallelization of the optimization algorithm. The PSO algorithm 

was parallelized for distributed, cluster-based processors using the message-

passing interface (MPI) (e.g., Gropp et al, 1999).  In the parallel PSO algorithm, a 

supervisor processor begins iteration by broadcasting a revised population set 

(particle swarm) to a set of subordinate processors. Each subordinate processor 

computes the objective function of one or more of the revised particles and sends 

the results back to the supervisor. The supervisor completes the iteration by 

revising algorithmic data (i.e. local and global memory) associated with each 

particle, and the entire process begins again with the next iteration. 
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Figure 4.13: Parallel speedup of the PSO algorithm 

 

As shown in Figure 4.13, nearly linear speedup of the PSO algorithm was 

achieved using up to thirty parallel processors.  The complex model appeared to 

benefit slightly more from the parallel processing, which is attributed to the use of 

a larger swarm size (i.e. number of candidate solutions) in solving the complex 

problem.  Evaluation of this larger swarm by the subordinate processors 

necessarily consumed more computation time and therefore diminished the 

relative amount of time spent performing MPI communication. 

4.5 Discussion And Conclusion 

In this paper, the use of AEM flow models in the automated optimization of 

pump-and-treat systems has been demonstrated for the first time. Two hydraulic 

control problems were adapted from published literature and numerous 

optimizations were successfully performed using a variety of algorithms, cost 

functions, penalty techniques, and plume containment constraints.   Although the 

chosen problems are amenable to solution by elementary type-curve analysis, 

they are also rather complex from the viewpoint of a general-purpose optimizer. 

When expressed in a constrained optimization framework, the problems are 
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highly non-linear and contain a multitude of design variables, and are therefore a 

useful means to benchmark AEM-based PATO against other simulation-

optimization approaches. 

Of the algorithms investigated, the particle swarm (PSO) algorithm 

performed most effectively and exhibited linear parallel speedup.  Of particular 

note is the ability of the PSO to reduce the number of extraction wells when the 

maximum number is highly over-estimated.  This paper also marks the first 

application of the PSO algorithm to PATO problems, and its superior 

performance suggests that it should be evaluated for more complex 

environmental optimization problems. 

The use of analytic element (AEM) flow models for pump-and-treat 

optimization provides several interesting capabilities that are either not possible 

or not yet utilized within standard finite difference (FD) and finite element (FE) 

flow models.  For example, the optimizations in this paper varied well coordinates 

as continuous functions, an approach that is not possible with grid-based FD/FE 

models. Furthermore, while AEM models can readily incorporate commonly used 

particle tracking and gradient control plume containment constraints, the method 

also supports the use of a zone outflux constraint (not presently implemented in 

FD/FE models) and the analytic computation of gradient control constraints (not 

possible in FD/FE models).  The zone outflux constraint was shown to be 

extremely reliable and, like the gradient control constraint, required significantly 

less computation time than particle tracking techniques. Conversely, in the 

context of pump-and-treat optimization, the results fail to demonstrate that other 
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features of AEM (such as well coordinates varied as continuous functions and 

analytically computed head gradients) offer a particular advantage. 

Limitations associated with the AEM modeling software used in this study 

include the assumptions of steady-state two-dimensional flow with zoned 

heterogeneity (i.e. piecewise constant regions of aquifer heterogeneity). Other 

public domain AEM software, such as TimML (Bakker, 2004), can overcome some 

of these limitations, suggesting that the AEM-based PATO concepts discussed in 

this paper may be applicable to more complex aquifer systems. Alternatively, the 

particular advantages associated with the use of AEM-based PATO could be 

utilized in a preliminary optimization exercise, to be followed by optimization of a 

more complex (e.g. three-dimensional, time-varying and/or heterogeneous) 

FD/FE model.  Such a preliminary model could be used to identify candidate well 

locations and estimate the required number of wells and total pumping rate.   
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5 APPLICATION OF HEURISTIC OPTIMIZATION TECHNIQUES AND 
ALGORITHM TUNING TO MULTI-LAYERED SORPTIVE BARRIER 
DESIGN 

 
The material in Chapter 5 has been accepted for publication as 
“Matott LS, Bartelt-Hunt SL, Rabideau AJ, Fowler KR. accepted. 
Application of Heuristic Optimization Techniques and Algorithm 
Tuning to Multi-Layered Sorptive Barrier Design. Environmental 
Science and Technology”, copyright by American Chemical Society. 

 
5.1 Overview 

Although heuristic optimization techniques are increasingly applied in 

environmental engineering applications, algorithm selection and configuration are 

often approached in an ad hoc fashion.  In this study, the design of a multi-layer 

sorptive barrier system served as a benchmark problem for evaluating several 

algorithm-tuning procedures, as applied to three global optimization techniques 

(genetic algorithms, simulated annealing, and particle swarm optimization). Each 

design problem was configured as a combinatorial optimization in which sorptive 

materials were selected for inclusion in a landfill liner to minimize the transport of 

three common organic contaminants.  Relative to multi-layer sorptive barrier 

design, study results indicate (1) the binary-coded genetic algorithm is highly 

efficient and requires minimal tuning, (2) constraint violations must be carefully 

integrated to avoid poor algorithm convergence, and (3) search algorithm 

performance is strongly influenced by the physical-chemical properties of the 

organic contaminants of concern. More generally, the results suggest that formal 

algorithm tuning, which has not been widely applied to environmental 

engineering optimization, can significantly improve algorithm performance and 

provide insight into the physical processes that control environmental systems. 
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5.2 Introduction 

Heuristic optimization algorithms have been applied to an increasing 

number of environmental engineering applications because they are capable of 

overcoming common challenges of environmental problems, such as extreme 

non-linearity, mixed parameter types, and the presence of local minima and/or 

discontinuities.  With a few notable exceptions [e.g. Matott et al (2006), Yoon and 

Shoemaker (1999), Maskey et al (2002), and Solomatine (1999)], comparisons of 

alternative search algorithms are uncommon and often characterized by ad-hoc 

algorithm selection and configuration.  Rardin and Uzsoy (2001) argue that 

meaningful comparisons should be anchored by a procedure (known as 

algorithm tuning) in which each optimization algorithm is adapted to the specific 

problem under consideration to maximize algorithm performance. 

While algorithm tuning is uncommon in environmental studies, several 

systematic approaches have been proposed in the optimization literature, 

including the use of experimental techniques and/or sensitivity analysis (Coy et 

al, 2001), the development of self-adaptive algorithms (Hinterding et al, 1997), 

and the use of meta-optimization algorithms (Talbi, 2002). The present work 

focuses on algorithm tuning via experimental techniques and, in particular, 

adopts the Taguchi design of experiments (DOE) approach (Roy, 2001), a 

popular method within process engineering for tuning various manufacturing 

processes.  While Beielstein et al. (2002) applied Taguchi analysis to various 

benchmark optimization problems, the present approach differs from Beielstein et 

al. (2002) by (1) considering non-linear behavior and interactions among tuning 
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parameters, (2) performing confirmation of tuning effectiveness, (3) comparing 

multiple search algorithms, and (4) examining a real-world environmental 

application. 

The optimization studies considered in this paper involve the design of 

multi-layer sorptive landfill liners, an application that is representative of a broad 

class of remediation problems involving multiple sequential barriers or treatment 

units.  While subsurface barrier design frequently emphasizes the minimization of 

advection through low permeability materials, several studies have demonstrated 

the significance of diffusion (Johnson et al, 1995, and Khandelwal et al, 1998), 

and this has motivated an interest in low permeability sorbing barriers capable of 

simultaneously controlling both advective and diffusive contaminant transport 

(Gullick and Weber, 2001, and Deitsch et al, 1998). 

Numerous studies have modeled contaminant transport through barrier 

systems (Bartelt-Hunt et al, 2005), and a few have investigated optimal barrier 

design using a simulation-optimization approach (Bartelt-Hunt et al, in press).  

The benchmark application for this study was a multi-layer sorptive liner design 

problem developed by Bartelt-Hunt et al (in press), in which sorptive materials 

are added to a multi-layer liner to inhibit organic solute transport. A detailed 

problem description is provided in the supporting information (Appendix C).  

Transport of three organic solutes [benzene, trichloroethylene (TCE) and 1,2-

dichlorobenzene (1,2-DCB)] with different nonlinear sorption behavior was 

considered, resulting in three distinct optimization problems. 
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This study makes a dual contribution by investigating a formal algorithm 

tuning methodology in the context of an important class of environmental 

engineering problems. Specific research objectives were to (1) assess the 

performance of several heuristic algorithms by comparing alternative 

formulations, using a DOE approach to enhance the efficiency and robustness of 

the process, (2) explore techniques for integrating design constraints into the 

liner cost function, (3) examine relationships between algorithm performance and 

liner problem formulation, and (4) assess the merits of the Taguchi DOE 

approach as a formal algorithm tuning procedure.  For each liner problem and for 

a variety of constraint integration methods, three popular heuristic search 

procedures [particle swarm optimization (PSO) (Kennedy and Eberhart, 1995), 

genetic algorithms (GA) (Goldberg, 1989), and simulated annealing (SA) 

(Kirkpatrick et al, 1983)] were applied, tuned, and compared. Algorithm analysis 

focused on measures of efficiency (amount of computation time required, in 

terms of objective function evaluations) and effectiveness (ability of an algorithm 

to identify the globally optimal design), and was aided by the identification of the 

true global optimum for each liner problem, determined via an exhaustive search 

involving millions of simulations on a massively parallel computing system.  

5.3 Methods 

5.3.1 Heuristic optimization algorithms  

The computational effort required for an exhaustive search of the multi-layer 

landfill liner design space is probably infeasible for routine applications and 

motivates the development of more efficient strategies. Traditional numerical 
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optimization methods are mathematically derived, deterministic, and gradient-

based.  Conversely, heuristic optimization techniques are derived from natural 

optimization processes and incorporate structured randomness. For the selected 

liner design problems, heuristic algorithms were preferred because the design 

space is discontinuous and has local minima, as shown in Appendix C (Figure 

C.3). Gradient-based methods can be frustrated by these factors, while heuristic 

methods are more robust. This study considered four heuristic algorithms: two 

genetic algorithm variants (with different parameter encoding techniques), 

particle swarm optimization, and simulated annealing. A brief overview of each 

algorithm is provided below and Matott (2005) provides additional implementation 

details.  

5.3.1.1 Genetic algorithm (GA)  

The GA (Goldberg, 1989) utilizes a population of candidate solutions 

(parameter sets) and applies selection, crossover, mutation, and elitism 

operators to successive generations of the population.  The chosen RGA (real-

coded GA) implements two-member tournament selection, uses real-valued 

parameter encoding and mutation, and implements crossover as a non-biased 

random-weighted average of randomly-selected parent parameters.  Conversely, 

the selected BGA (binary-coded GA) also uses two-member tournament 

selection, but encodes parameters into binary bit-strings, mutates by inverting 

random bits, and performs crossover via between-parent bit swapping.  For both 

algorithms, four configurable parameters were considered: the population size, 

the number of generations, the elitism level (the number of unchanged members 
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between generations), and the mutation rate (the probability of randomly re-

assigning the parameter values of a population member). 

5.3.1.2 Simulated annealing (SA)  

The SA algorithm (Kirkpatrick et al, 1983) is analogous to physical 

annealing, where a solid is heated to a high energy-state and slowly cooled to 

drive the material to its lowest energy state.  During each SA step, a randomness 

control parameter (the temperature) is reduced and an equilibration procedure is 

performed, where the design space is explored by a series of random-walk 

parameter adjustments. Each random-walk step is subject to an acceptance 

probability, allowing the equilibration procedure to accept uphill moves.  The 

selected SA estimates the initial temperature via a set of 'melting' trials consisting 

of random-walk steps with a 100% acceptance probability. This study considered 

four SA tuning parameters: the number of temperature reductions, the number of 

equilibration steps at each temperature reduction, the number of melting trials, 

and the temperature reduction rate. 

5.3.1.3 Particle swarm optimization (PSO)  

PSO (Kennedy and Eberhart, 1995) mimics the cooperative-competitive 

behavior of birds, fish and other animals. The algorithm utilizes a population of 

parameter sets (the particle swarm). During each algorithm step, particles move 

through the design space and revised locations and velocities (i.e. step sizes) are 

computed using simple vector calculations. In these calculations, each particle 

retains a fraction of its velocity (the inertia weight) and the direction of movement 

is computed as a biased-but-random combination of two vectors pointing from a 
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particle’s current location to the globally (visited by any particle) and locally 

(visited by a given particle) best solutions. Preference for global or local descent 

is determined by two PSO parameters: the cognitive weight and the social 

weight.  A high cognitive weight biases particles towards the local best, while a 

high social weight biases particles toward the global best.  This study considered 

five PSO tuning parameters: the swarm size, the number of generations, the 

inertia weight, the cognitive weight, and the social weight. 

5.3.2 Overview of experimental approach  

The numerical experiments performed in the study proceeded as follows: 

First, for each pairing of algorithm, optimization problem, and constraint 

integration technique, a set of Taguchi DOE tuning experiments were performed, 

requiring numerous optimizations and yielding optimal, problem-specific, 

configurations of algorithm and penalty parameters.  For each individual 

optimization, a given algorithm sought the optimal liner design via repeated 

executions of a solute transport model. Output from a contaminant transport 

simulator was forwarded to a constraint-integration step that determined whether 

the given design violated constraints, in which case the design was considered 

infeasible and a penalty was assessed to the overall liner cost.  After completing 

the DOE experiments, tuned algorithms were utilized in a set of confirmation 

optimizations, which facilitated a rigorous comparison and evaluation of the 

various algorithms with respect to each of the three organic solutes. A graphical 

illustration of the experimental setup is provided in Appendix C (Figure C.4). 
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5.3.3 Taguchi DOE method  

Robust comparisons of heuristic algorithms should be preceded by an 

algorithm tuning procedure that maximizes algorithm performance. The selected 

Taguchi DOE method configures preliminary optimizations using a variety of 

values (levels) for the various tuning parameters (factors). Rather than evaluating 

all factor-level combinations, the Taguchi method utilizes a combination of 

fractional experimental layout and statistical and/or graphical analysis to 

efficiently determine the optimal parameter settings for a given optimization 

process (i.e. a combination of heuristic algorithm, organic solute, and constraint 

integration technique).  Tuned parameter settings for each process were 

determined via separate applications of the Taguchi method, which is described 

below. 

5.3.3.1 Selection of experimental layout 

Table 5.1 summarizes the factors considered for each algorithm, with four 

levels per factor selected to allow consideration of non-linear effects. To simplify 

the representation of the Taguchi experimental setup, each factor and level in 

Table 5.1 was assigned an alphanumeric value, defined in the parentheses of 

row and column headings. Because up to six four-level factors were considered, 

a truncated L32 orthogonal array (requiring 32 experiments and replicated in 

Table 5.2) was selected for the experimental layout. Published material 

(Beielstein et al, 2002, Goldberg, 1989, and Zheng and Wang, 2003) and 

exploratory numerical experiments determined the range of values represented 

by the four levels of each factor.  
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Table 5.1: Factor-Level mapping of tuning parameters.   
Parenthetic values in the row and column headings  
define alphanumeric short-hand for the algorithm  

parameters (A-F) and the range of considered values (1-4) 
GA (Genetic Algorithm) Levels 
Factor (1) (2) (3) (4) 
(A) Penalty Weight [$/μg] 0.1 1 10* 100 
(B) Population Size C 20 50 100* 200 
(C) Number of Generations C 10 20* 50 100 
(D) Number of Elites 1 3* 5 10 
(E) Mutation Rate 0.1% 1% 5%* 15% 
PSO (particle swarm 
optimization) 

Levels 

Factor (1) (2) (3) (4) 
(A) Penalty Weight [$/μg] 0.1 1 10* 100 
(B) Swarm Size C 20 50 100* 200 
(C) Number of Generations C 10 20* 50 100 
(D) Initial Inertia Weight 0.25 1* 2 4 
(E) Cognitive Weight 0.25 1 2* 4 
(F) Social Weight 0.25 1 2* 4 
SA (Simulated Annealing) Levels 
Factor (1) (2) (3) (4) 
(A) Penalty Weight [$/μg] 0.1 1 10* 100 
(B) Equilibration Steps C 20 50 100* 200 
(C) Temperature Reductions C 10 20* 50 100 
(D) Melting Trials C 10 20 50* 100 
(E) Cooling Rate 1% 10%* 25% 50% 
* Denotes nominal values. 
C Denotes a computational parameter. 

 
5.3.3.2 Experiment evaluation  

Because heuristic optimization algorithms contain randomness, a single 

optimization was insufficient to characterize a given experiment. Therefore, each 

experiment evaluation was based on multiple repetitions (10 samples) of the 

given optimization process. Preliminary numerical experiments (with 

configurations of up to 100 samples) established that 10 samples yielded good 

computational performance with acceptably small error in the estimated median 

(less than 5%). 
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Table 5.2: Portion of the L32 orthogonal array used in this study.  
For algorithms involving only five factors, column F is ignored.  

For each experiment, the array identifies the required factor-level  
settings using the alphanumeric short-hand defined in Table 5.1 

Factor Levels Factor Levels Experiment 
Number A B C D E F

Experiment
Number A B C D E F 

1 1 1 1 1 1 1 17 1 1 4 1 4 2 
2 1 2 2 2 2 2 18 1 2 3 2 3 1 
3 1 3 3 3 3 3 19 1 3 2 3 2 4 
4 1 4 4 4 4 4 20 1 4 1 4 1 3 
5 2 1 1 2 2 3 21 2 1 4 2 3 4 
6 2 2 2 1 1 4 22 2 2 3 1 4 3 
7 2 3 3 4 4 1 23 2 3 2 4 1 2 
8 2 4 4 3 3 2 24 2 4 1 3 2 1 
9 3 1 2 3 4 1 25 3 1 3 3 1 2 
10 3 2 1 4 3 2 26 3 2 4 4 2 1 
11 3 3 4 1 2 3 27 3 3 1 1 3 4 
12 3 4 3 2 1 4 28 3 4 2 2 4 3 
13 4 1 2 4 3 3 29 4 1 3 4 2 4 
14 4 2 1 3 4 4 30 4 2 4 3 1 3 
15 4 3 4 2 1 1 31 4 3 1 2 4 2 
16 4 4 3 1 2 2 32 4 4 2 1 3 1 

 

5.3.3.3 Calculation of experiment performance  

Each optimization yielded a measure of sample performance, computed 

using Equation 5.1.  
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where, Si is the performance of the i-th sample, computed as a weighted 

combination of the efficiency (Ci) and effectiveness (Ei) terms, Ni is the number of 

objective function evaluations required by the i-th sample and is normalized by 

the range (NR) of evaluations required by the various optimizations, ( )iXF  is the 
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optimal objective function value discovered by the i-th sampled optimization, and 

( )minXF and ( )RXF  are  the true optimal objective function value and the range of 

optima reported by all optimizations of the given problem, respectively. As shown 

in equation 5.1a, a 90:10 effectiveness-efficiency ratio was utilized, biasing the 

optimizations to favor effectiveness. The fast (approximately one second) run-

times of the transport simulations suggest this weighting scheme is appropriate 

for the selected problems. For more computationally demanding applications, the 

higher cost of computer resources may be accommodated via an increased 

efficiency weight.  

The formulation of sample performance defined by equations (5.1a-5.1c) 

is non-dimensional and scaled to have a range from zero (worst) to one hundred 

(best). After evaluating all samples for a given experiment, overall experiment 

performance (Y) was computed using the median value of the sample 

performances. The median was preferred because of the small number of 

experiment samples, the structured-but-random nature of the search algorithms, 

and the skewed, non-random, sample distribution resulting from the optimization 

objective. 

5.3.3.4 Experiment analysis  

Two forms of experiment analysis were applied to the Taguchi method 

utilized in this work.  The first method computed the average experiment 

performance of each factor at each level and utilized these averages in a ‘main-

effects’ tuning procedure, which assigned optimal factor-level settings by 

selecting factor levels with the highest average performance. The second method 
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involved the inspection of two-way interaction plots, a graphical procedure in 

which the performance of a given factor-level was plotted for fixed levels of 

another factor.  Selected interaction plots are presented in Figure 5.1 and in 

Appendix C (Figure C.2).  For a given analysis, intersection of any of the four 

factor-level lines indicates factor interaction. In such cases, assignment of 

optimal factor-level settings to peak interaction points may provide superior tuned 

performance relative to main effects tuning. However, tuning using factor 

interaction plots was sometimes confounded by the presence of multiple, nearly 

equivalent, peaks in a given plot, and different interaction plots occasionally 

pointed toward conflicting settings.  These difficulties necessitated a somewhat 

subjective trial-and-error approach, in which various interaction plot 

interpretations were evaluated. The optimization processes in this study were 

tuned using both the main effects and the interaction tuning procedures, resulting 

in a pair of optimal factor-level configurations for each process.  

5.3.3.5 Confirmation of Taguchi analysis  

For each completed Taguchi application, a confirmation procedure was 

applied to the factor-level settings resulting from the two tuning analyses.  The 

first confirmation step involved performing experiments using ‘tuned’ process 

settings. The resulting measures of experiment performance were then 

compared to a 90% confidence interval on the tuned performance value, 

computed using an analysis of variance (ANOVA) on the tabulated experiment 

data, as described in Roy (2001). Confirmation results were also compared with 

a ‘nominal’ configuration of factor-level settings (nominal settings are identified in 
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Table 5.1). The confidence interval comparison estimated the statistical reliability 

of the Taguchi tuning procedure, while the comparison against nominal assessed 

the practical usefulness of the approach. 

5.3.4 Solute transport model  

The migration of leachate contaminants through a given landfill liner was 

modeled as transient one-dimensional solute transport through multiple layers of 

low-permeability sorptive material. In this study, the one-dimensional advective-

dispersive-reactive equation was solved using the MOUSER software (Rabideau, 

2003), modified to support multiple layers. Solute sorption behavior was defined 

in terms of empirical nonlinear isotherm parameters, using values established by 

previous work (Bartelt-Hunt et al, 2005). Appendix C provides a lengthier 

treatment of the solute transport model. 

5.3.5 Sorbing additives  

In this study, a given liner design was represented by six combinatorial 

parameters ( TLLLLLLX ],,,,,[ 654321= ) defining the order and material 

composition of 150-mm thick liner layers.  Each layer parameter (Li) was 

represented by an integer value and the material composition (and costs) 

corresponding to these values is given in Table 5.3 (organoclay and GAC costs 

were vendor-provided, while shale costs were derived from Gullick (1998)). The 

final layers included a "no layer" composition, allowing for consideration of a 

variable number of layers. The basis for the selected additives is a recent study 

considering liner design using sorptive amendments (Bartelt-Hunt et al, 2005).  

While the liners considered in this study consist of (possibly amended) earthen 
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layers, the current state-of-practice favors composite geomembrane-earthen 

materials.  The optimization and tuning methods presented in this study would 

apply equally well to these more conventional systems, provided the solute 

transport model was adapted to include composite barrier components (e.g. Edil, 

2003).   

Table 5.3: Combinatorial encoding of layer parameters 
Coded 
Value Material Composition of the Layer 

Cost 
(wL [$/m2]) 

1 87% sand, 10% bentonite, 3% BTEA-
bentonitea 

19.33 

2 84% sand, 10% bentonite, 6% BTEA-
bentonite 

36.50 

3 81% sand, 10% bentonite, 9% BTEA-
bentonite 

53.46 

4 87% sand, 10% bentonite, 3% HDTMA-
bentoniteb 

20.32 

5 84% sand, 10% bentonite, 6% HDTMA-
bentonite 

37.68 

6 81% sand, 10% bentonite, 9% HDTMA-
bentonite 

53.46 

7 87% sand, 10% bentonite, 3% shale 2.08 
8 84% sand, 10% bentonite, 6% shale 2.20 
9 81% sand, 10% bentonite, 9% shale 2.31 

10 87% sand, 10% bentonite, 3% GACc 10.65 
11 84% sand, 10% bentonite, 6% GAC 19.34 
12 81% sand, 10% bentonite, 9% GAC 28.03 
13 90 % sand, 10% bentonite 1.96 
14 no layer 0.00 

aBTEA-bentonite: benzyltriethylammonium bentonite 
bHDTMA-bentonite: hexadecyltrimethylammonium bentonite 
cGAC: granular activated carbon 

 

5.3.6 Cost function and constraint integration  

The financial cost associated with the construction of a given landfill liner 

was computed using Equation 5.2, simplified from (Bartelt-Hunt et al, in press). 
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where ( )Xf  is the financial cost (in $/m2) of the landfill liner, hl is the actual height 

of the liner, hmin is the minimum height of the liner (0.6 m), woc is the opportunity 

cost factor [37.5 $/m3, derived from nationally averaged tipping fees], and 
iLw is 

the material cost of the ith layer, which includes the cost of grading and 

excavation plus the bulk cost of individual sorptive amendments. Opportunity 

costs reflect the revenue lost due to excess liner thickness (0.6 m is the 

regulated minimum), which decreases the amount of waste that can be 

accommodated by the landfill. While tipping fees and materials costs could 

change with time and location, such fluctuations were not considered. 

Besides minimizing financial cost, each liner was required to satisfy a 

constraint on the amount of contaminant released during the design lifetime, 

quantified using Equation 5.3: 

 
( ) ( )[ ]bXgwXP vio −×= ,0max       (5.3) 

 
where ( )XP is the penalty associated with a given liner design, X is a layer 

vector, ( )Xg  is the cumulative leachate mass per area exiting the liner after one 

hundred years of simulated transport, b is the maximum tolerable 100-year 

leachate mass per area (5 μg/m2), and wvio is the penalty weight, identified as 

one of the  tuning parameters of the Taguchi analysis.  Incorporation of the 

penalty function, ( )XP , into the overall objective function can be done in a variety 

of ways (Chan Hilton and Culver, 2000), and is referred to as constraint 

integration. In this study, two constraint integration techniques were considered: 
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the Additive Penalty Method (APM) and the Multiplicative Penalty Method (MPM).  

Objective function formulations for each method are given in Equation 5.4. 
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where the objective function, ( )XF , combines the financial cost and penalty 

function, and depends on the choice of penalty method.   

5.3.7 Summary of numerical experiments  

A typical 100-year leachate transport simulation required 0.8 seconds of 

computation time. All optimizations were performed using OSTRICH (Matott, 

2005), run on parallel computing clusters maintained by the University at Buffalo 

Center for Computational Research (CCR).  Appendix C provides additional 

detail on the numerical experiments. 

5.4 Results and Discussion 

5.4.1 Comparison of tuning procedures  

A total of 7,680 samples and 768 experiments were required by the 

Taguchi method for tuning the 24 selected optimization processes.  As illustrated 

in Figure 5.1, interaction plots suggest significant interaction between algorithm 

parameters. Tuned parameter settings for each algorithm and for each solute are 

tabulated in Appendix C (Table C.1). 
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Figure 5.1: Typical interaction plots for the considered problems. Significant crisscrossing 

indicates the presence of an interaction. These plots suggest that (a) for the BGA, an 
elitism of 3 should be combined with a 15% mutation rate, and (b) for the SA, 100 

temperature reductions should be coupled with a 25% cooling rate 

 
Figure 5.2 compares interaction and main-effects confirmation runs 

against nominal algorithm configurations. Confirmation runs were also compared 

with ANOVA-generated lower confidence limits on predicted performance 

(ANOVA results are tabulated in Appendix C, Table C.2). For the problems 

investigated, the main-effects tuning procedure was found to be unreliable.  Only 

67% of the main-effects confirmation runs were within ANOVA-generated 

confidence limits, and several confirmation runs failed to improve over the 

nominal configuration. Conversely, interaction tuning was found to improve the 

nominal performance of all of the considered algorithms, and 92% of the 

interaction-tuned confirmation runs were within the confidence limits. However, 
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deriving effective algorithm settings from interaction plots was a manual process 

and the development of automation procedures requires further investigation. 

 

 
Figure 5.2: Effects of algorithm tuning vs. nominal behavior for four algorithms (BGA, 

RGA, PSO and SA) and using the additive (APM) and multiplicative (MPM) penalty 
methods. (a) Comparison of the overall performance (using a 90:10 effectiveness-

efficiency weighting), of two types of tuning and the nominal algorithm settings, (b) 
Comparison of the effectiveness (liner cost) of interaction-tuned and nominal 

configurations, and (c) Comparison of the efficiency (computational cost) of the 
interaction-tuned and nominal configurations 

 

5.4.2 Exhaustive searches  

Optimal liner configurations discovered by the massively parallel 

exhaustive searches are given in Table 5.4.  Liner designs with identical layer 

materials, but containing different layer ordering, were extracted from the 

exhaustive searches and compared. These comparisons revealed considerable 

variation in simulated exit mass and in some cases the feasibility/infeasibility of a 

given set of layer materials was altered when an alternative layer ordering was 
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considered. The observed sensitivity of sorptive liners to layer ordering is the 

focus of ongoing research, and may be influenced by artifacts related to the 

modeling of non-linear sorption at low concentrations using empirically derived 

isotherms. 

Table 5.4: Optimal layer configurations. For each layer entry (L1-L6), the top value is the 
coded parameter value and the bottom value is the corresponding amendment percentage. 

Optimal Layer Configuration Leachate 
Material 

Optimal 
Cost ($/m2) L1 L2 L3 L4 L5 L6 

benzene 34.27 9 
(9% shale)

10 
(3% GAC) 

10 
(3% GAC) 

10 
(3% GAC) 

1,2-DCB 16.66 7 
(3% shale)

10 
(3% GAC) 

13 
(conv) 

13 
(conv) 

TCE 8.66 13 
(conv) 

9 
(9% shale) 

7 
(3% shale) 

9 
(9% shale) 

14 
(no 

layer) 

conv : 90% sand and 10% bentonite (conventional materials with no sorbing additives) 
 

 
5.4.3 Comparison of tuned algorithms  

Care should be taken in interpreting and/or extrapolating the results of any 

study involving algorithm comparisons. In this study, conclusions about algorithm 

efficacy are applicable to a specific set of problem formulations and algorithm 

implementations, namely variable-layered sorptive barrier problems with discrete 

parameter values, formulated using a penalty function approach to constraint 

handling, and solved using the RGA, BGA, SA, and PSO algorithms, as 

implemented in the OSTRICH software package. With these caveats in mind, the 

binary coded GA (BGA) was found to be the overall most efficient and effective 

algorithm. The tuned BGA was the only algorithm that correctly identified the true 

optimal for all three of the problem formulations. Although generally effective, the 

tuned PSO algorithm was less efficient than the BGA and did not identify the true 

solution of the benzene problem. Finally, while the performances of the SA and 
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RGA algorithms were significantly improved by tuning, these tuned algorithms 

nonetheless could not identify the true solutions of two of the three problems. A 

possible explanation for the superior performance of the BGA is the use of bit-

wise parameter encoding, which maps favorably with the discrete-valued 

formulation of the layer parameters.  

5.4.4 Sensitivity to penalty weight  

Analysis of optimization convergence behavior suggests that the selected 

algorithms are sensitive to both the penalty method and the value of the penalty 

weight.  When the lowest penalty weight ($0.10/μg) was used in combination with 

the additive penalty method, there was a tendency to converge on an infeasible 

solution. Importantly, this behavior was not observed for the multiplicative penalty 

method. With respect to the population-based GA and PSO algorithms, 

convergence on a sub-optimal design occurred when an artificially high ($100/μg) 

penalty weight was observed.  The SA algorithm displayed an opposite trend in 

which a low ($1/μg) penalty weight could result in sub-optimal convergence. 

These differing behaviors suggest an important and complex interplay between 

algorithm, penalty method, and penalty weight. Application of tuning analysis to 

determine an appropriate penalty weight is therefore an important pre-

optimization step.  

5.4.5 Insight into problem formulation  

The results in Figure 5.2 suggest that the design of a variable-layer 

sorptive liner for different organic solutes presented different levels of difficulty for 

the selected algorithms. The 1,2-dichlorobenzene formulation seemed to be the 
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most straightforward problem. All tuned algorithms, as well as the nominal PSO 

and BGA configurations, discovered the optimal 1,2-dichlorobenzene solution 

and required as few as one thousand model runs. In contrast, the true solution to 

the trichloroethylene problem was only discovered by the BGA (both nominal and 

tuned) and the tuned PSO algorithms.  The most difficult problem was the 

benzene formulation, as the true optimal was only discovered by the tuned BGA 

algorithm and required more than ten thousand model executions.  

The exhaustive searches of the design space provided further insight into 

the problem formulation. While all optimal solutions correspond to a 4-layer 

configuration, each algorithm was allowed to consider as many as six layers. 

Using data from the exhaustive searches, the number of feasible designs versus 

the number of active layers for each organic solute was determined.  Relative to 

feasible four-layer designs, benzene has the fewest feasible solutions (3,159), 

followed by TCE (6,556) and 1,2-DCB (18,293).  The number of feasible designs 

was found to be inversely related to the number of sorptive-amended layers 

required in each optimal design: 1,2-DCB required two amended layers, TCE 

required three, and benzene required four. Because solutes requiring more 

sorptive layers had fewer feasible solutions, search algorithms were discouraged 

from considering potential four-layer solutions.  Thus, for multi-layered sorbing 

barrier systems, algorithm effectiveness is significantly influenced by the sorption 

properties of the solute and liner materials. 

Since layer elimination appeared to be a major difficulty for most of the 

algorithms, additional numerical experiments were performed in which the 
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sorptive barrier problems were reformulated to require exactly four layers.  Using 

this four-layer formulation, all algorithms were able to locate the optimal liner 

design, regardless of solute. The finding that some algorithms have difficulty with 

layer elimination is consistent with a study involving plume containment (Matott et 

al, 2006), which considered a variable number of pump-and-treat wells. The 

study found that the RGA and SA algorithms were relatively ineffective and had 

difficulty eliminating unnecessary wells, while the PSO algorithm was highly 

effective and capable of eliminating numerous wells while maintaining a feasible 

solution. With respect to similarly formulated variable-parameter environmental 

engineering problems, these findings suggest that the ability to eliminate design 

components is an important algorithm criterion. 

5.4.6 Guidelines for algorithm tuning  

This study explored the use of Taguchi DOE techniques to formally tune a 

variety of heuristic algorithms to a set of problems involving the design of multi-

layer sorptive landfill liners. The study incurred enormous computational costs 

due to the large size of the experimental layout and the inclusion of 

computational tuning parameters (indicated with a ‘C’ superscript in Table 5.1).  

Such a layout is best suited for studies involving algorithm comparisons and/or 

seeking insight into a given problem. Conversely, for the optimization of a single 

problem using a single algorithm, the payoffs of algorithm tuning must be 

weighed against the computational cost. In this regard, study results have been 

organized into the following guidelines for algorithm selection, tuning, and 

analysis: 



 

 81

• For algorithm selection, the presence/absence of a variable number 

of engineered components (e.g. liner layers, wells, etc.) in the 

problem formulation is important, in addition to the usual 

considerations of whether or not the problem has local/multiple 

minima, is linear/non-linear and/or discrete/continuous. Depending 

on the selected algorithm, a variable-component formulation may 

impede algorithm effectiveness and lead to sub-optimal solutions. 

• For single-problem/single-algorithm uses, computational 

considerations may limit tuned parameters to the penalty weight 

and algorithm parameters that do not directly alter the number of 

required simulations. 

• Tuning using a straightforward main-effects analysis may be 

inadequate if parameters interact significantly.  In such cases, 

tuning via the analysis of interaction plots may provide superior 

results.  

• Because the use of formal algorithm tuning is relatively recent, 

optimal results reported for a tuned algorithm should be compared 

against a nominal algorithm configuration.  This information can 

then be incorporated into future optimization projects. 

5.4.7 Broader implications for sorptive barrier design  

A comparison of tuned heuristic algorithms suggests the binary coded 

genetic algorithm (BGA) is a suitable choice for solving the multi-layer sorptive 

barrier design problems considered in this study, which contain discrete-valued 
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parameters and allow for a variable number of layers. Relative to barrier design, 

this study also revealed a correlation between organic solute sorption behavior 

and optimization performance. When many sorptive layers were required to 

optimally contain a given organic contaminant, the algorithms had difficulty 

finding feasible reduced-layer configurations and tended to converge on solutions 

that incorporated unnecessary additional layers. In addition to landfill problems, 

similar considerations apply to other multi-component systems, such as 

sequential permeable reactive barriers and multi-layered sediment caps. 

Analysis of exhaustive searches revealed the sensitivity of barrier 

performance to the order in which sorptive materials are assembled, which 

influences the simulated mass of contaminants released from the liner.   The 

sensitivity to layer ordering is counterintuitive and underscores the value of the 

simulation-optimization approach to liner design.  However, differences due to 

layer ordering may also be influenced by the assumptions and procedures used 

to model nonlinear sorption at low solute concentrations; this issue is the subject 

of additional investigations.   

5.5 Supporting Information Available 

Available supporting information: (1) illustrative liner design, (2) illustrative 

factor interaction plots, (3) plots of the design surface, (4) descriptions of solute 

transport model and numerical experiments, (5) table of tuned parameter settings 

for each algorithm, (6) table of tuning results vs. lower confidence limits, and (7) 

plot of feasible solutions vs. number of active layers. This material is provided in 

Appendix C. 
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6 SELECTION AND CALIBRATION OF REACTIVE TRANSPORT MODELS 
USING A SURROGATE-MODEL APPROACH  

 

6.1 Overview 

While standard techniques for uncertainty analysis have been successfully 

applied to groundwater flow models, extension to reactive transport is frustrated 

by numerous difficulties, including excessive computational burden and 

parameter non-uniqueness. This chapter introduces a novel surrogate-based 

method that overcomes such difficulties by utilizing a global search technique 

that samples from a hierarchy of candidate reactive transport models. During 

calibration, the search algorithm is driven toward least-squares minimization of 

the most parsimonious model that best matches the available calibration data. 

This surrogate-model approach is demonstrated via application to several nitrate 

contamination problems. Results indicate that, due to the utilization of simpler 

models in regions of parameter insensitivity, the method is able to identify quality 

model fits at reduced computational expense, relative to traditional techniques.  

Furthermore, comparisons with a formal multi-model ranking procedure suggest 

the new approach is a promising tool for multi-model ranking and selection. 

6.2 Introduction 

The practice of subsurface reactive transport modeling has matured 

significantly due to increasingly powerful computer hardware and the 

development of new solution methods that enable integrated modeling of an 

array of physical, geochemical and microbiological processes controlled by 

kinetic and equilibrium conditions [e.g. Barry et al. (2002), Brun and Engesgaard 



 

 84

(2002), Fang et al. (2003), MacQuarrie and Sudicky (2001), and Parkhurst and 

Appelo (1999)].  For such models to be useful in a management context, model 

uncertainty must be rigorously assessed and, ideally, minimized via automated 

uncertainty analysis procedures (Environmental Protection Agency, 2002).  

Several aspects of subsurface reactive transport modeling make uncertainty 

analysis difficult, including (1) selection of an appropriate model, (2) excessive 

computational costs, and (3) parameter non-uniqueness.   

6.2.1 Model selection  

Given the variety and number of field-data typically available for calibrating 

subsurface reactive transport models, the appropriate level of model complexity 

may not be obvious. For example, Watson et al. (2003) found competitive 

microbiology and mineral-phase availability to be important components of a 

bench-scale system.  However, the study also noted that a lack of supporting 

data often hinders detailed field-scale modeling of such processes.  Keating and 

Bahr (1998) experienced similar problems when they studied reactive transport 

modeling at a Wisconsin field site.  In that study, the authors acknowledged the 

presence of a geologically complex subsurface regime but opted to utilize 

simplified zero-order reaction kinetics because additional complexity would result 

in poorly constrained rate parameters. More recently, Haws et al. (2006) 

compared alternative batch-reaction models based on a series of hypothetical 

case studies.  The results indicated that model discrimination was especially 

problematic when aqueous-phase concentrations were the only available 

evaluation criteria. This underscores the difficulty of subjectively choosing an 
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appropriate level of model complexity.  Focusing on ground water flow modeling, 

Poeter and Anderson (2005) utilized Kullback-Leibler information criteria to rank 

and select from multiple models.  While providing a structured and objective 

method for model selection, a drawback of the method is that accurate model 

rankings are contingent upon separate calibrations of all candidate models.  For 

reactive transport modeling, this requirement may render such ‘brute-force’ 

ranking and selection techniques computationally infeasible.  

6.2.2 Computational costs 

Detailed reactive transport models can incur immense computational 

costs. For example, MacQuarrie et al. (2001) report computation times for a field 

scale nitrogen transport application in excess of sixty hours. These costs are 

further exacerbated by automated calibration, which can require thousands of 

model evaluations [e.g. Bell and Binning (2004)].  One technique for addressing 

such computational burden is the use of surrogates (Booker et al., 1999). As 

surrogate-based calibration proceeds, cheaper models or expressions are 

evaluated in lieu of the overlying model of interest. Previous environmental 

modeling studies have utilized surrogate-expressions, in which surrogates are 

defined as functional approximations of a more complex mechanistic model [e.g. 

Regis and Shoemaker (2004), and Mugunthan and Shoemaker (2005)]. 

Examples of commonly employed function approximations are best-fit 

polynomials and radial basis functions. In contrast to the surrogate-expression 

approach, this study considers a surrogate-model approach, where surrogates 

constitute a hierarchy of candidate reactive-transport models.  Relative to 
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surrogate-expressions, the surrogate-model approach is attractive because it 

yields an automated procedure that is capable of simultaneous model ranking, 

selection, and calibration. 

6.2.3 Parameter non-uniqueness 

Available evidence suggests that complex reactive transport models suffer 

from parameter non-uniqueness, a characteristic that can frustrate traditional 

regression-based calibration algorithms. For example, Essaid et al. (2003) 

investigated the calibration of a hydrocarbon dissolution and degradation model 

and found that fitting a Monod-based kinetic formulation using traditional non-

linear regression was impractical due to excessive parameter correlation and 

insensitivity.  A number of alternative algorithms (variously classified as heuristic 

or global search algorithms) have been developed that are capable of 

overcoming parameter non-uniqueness. Classic examples of such algorithms are 

simulated annealing (Kirkpatrick et al., 1983) and genetic and evolutionary 

algorithms (Goldberg, 1989).  More recent developments include particle swarm 

optimization (Kennedy and Eberhart, 1995), tribes (Clerc, 2003), ant colony 

optimization (Dorigo and Stutzle, 2004), and the big-bang big-crunch algorithm 

(Erol and Eksin, 2006). A major hindrance for applying such algorithms to 

reactive transport calibration is that they generally require a large number of 

model evaluations to achieve good performance. Additionally, heuristic 

algorithms lack the robust suite of post-regression statistical and diagnostic 

measures commonly produced by Jacobian-based regression methods. This 

particular limitation may be overcome by hybridizing a heuristic-based calibration 
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with a regression-based ‘polishing’ step.  In such an approach, the starting point 

for non-linear regression is set equal to the optimal parameter set discovered by 

the heuristic. 

6.3 Research Objectives  

To address the difficulties of selecting and calibrating reactive transport 

models, this paper introduces a novel calibration method, referred to herein as 

the surrogate-model approach.  The new method combines the robustness of a 

hybridized heuristic calibration search procedure with the computational 

advantage afforded by the use of surrogate models.  The approach utilizes a run-

time decision module that interfaces between a given calibration search 

procedure and a hierarchy of candidate models. During calibration, the decision 

module adapts to the calibration design space using information from previous 

model evaluations. When evaluating each new design point, the decision module 

dynamically selects the model that provides the best tradeoff between model 

complexity and quality of fit.  The result is a powerful technique capable of 

simultaneous model ranking, selection, and calibration. This paper details the 

development of the surrogate-model approach and demonstrates it for a set of 

realistic batch and one-dimensional transport scenarios, based on a field site.  

The test problems considered in this study are based on hypothetical 

scenarios involving contamination of groundwater by nitrate. Excessive nitrogen 

levels in ground and surface-water are associated with a number of adverse 

outcomes, including fish kills, algal growth, hypoxia, eutrophication, and 

outbreaks of toxic bacteria.  Nitrate is a commonly identified pollutant (EPA, 
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1999) and discharge of nitrate-contaminated groundwater into surface water 

bodies may be a significant component of nitrogen loading. These factors have 

led to an increased interest in the detailed modeling of nitrogen transformation 

and transport in the subsurface, and the test problems are representative of such 

applications. 

6.4 Methods 

The methods section is organized as follows: section 6.4.1 contains a 

detailed description of the surrogate-model approach introduced in this work, 

section 6.4.2 contains a description of the test problems that are utilized to 

demonstrate and assess the new approach, and section 6.4.3 contains an 

overview of the numerical experiments performed for this study.  

6.4.1 Development of the surrogate-based approach 

In groundwater flow and transport modeling, the dominant problem 

formulation for automated calibration is weighted least squares minimization.  As 

shown in Equation 6.1, the approach seeks to minimize the sum of squared 

errors between field-measured and model-computed observations by adjusting 

uncertain parameter values.  For clarity, model-computed observations are 

sometimes referred to as simulated equivalents. 
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   (6.1) 

Where, WSSE is the weighted sum of squared errors objective function, Yobs is a 

vector of m measured observation values, Q is an m × m observation weight 

matrix that reflects uncertainties associated with the measured observations, X is 
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a vector of p uncertain parameter values, Ysim is a vector of m simulated 

equivalents computed via evaluation of the model for a given set of uncertain 

parameter values, and the XL and XU vectors are the lower and upper bounds of 

the uncertain parameters.  Note that in Equation 6.1, model evaluation is 

represented generically as F().  For reactive transport modeling, the appropriate 

level of model complexity (i.e. the appropriate form of F()) is often uncertain. This 

uncertainty motivates the consideration of multiple models.  

Figure 6.1 compares the traditional multi-model selection and calibration 

approach with the new surrogate-model approach.  Figure 6.1a illustrates the 

determination of the best-ranked model (F*()) and corresponding best-fit 

parameter set (X*) using traditional uncertainty analysis methods.  The approach 

proceeds by first calibrating each model and then performing model ranking and 

selection based on the results of these calibrations. In contrast, the surrogate-

model approach performs simultaneous model selection and calibration via the 

use of a decision module.  As shown in Figure 6.1b, the decision module 

receives model evaluation requests for various parameter configurations (XS0) of 

the most complex model (S0).  For each of these requests, the decision module 

computes a corresponding WSSE value that is possibly evaluated via one of the 

n surrogate models. As illustrated in Figure 6.2 and described below, an adaptive 

model-selection algorithm makes the determination of which model to evaluate. 
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Figure 6.1: Comparison of  (a) traditional and (b) surrogate-model approaches to 

calibration and  model selection. FS0() is the most complex model with uncertain parameter 
vector XS0, calibrated parameter vector XS0

*, and calibrated WSSE value of WSSES0
*,  FS1(), 

FS2(), … FSn() are n simplified alternative models, with uncertain parameter vectors XS1, 
XS2…XSn, best-fit parameter vectors XS1

*, XS2
*…XSn

*, and best-fit WSSE values of WSSES1
*, 

WSSES2
*, …, WSSESn

*, and F*() is the best-ranked model (one of FS0(), FS1(), FS2(), …, FSn()), 
with  corresponding best-fit parameters X*.  

 
Figure 6.2 illustrates the model selection procedure that is followed by the 

decision module.  In Step #1, a problem-specific set of mapping functions (f1(), 

f2() … fn()) converts complex model parameter values into corresponding 

surrogate model parameter values. These mapping functions serve as a coupling 

mechanism for the various models, allowing the adaptive model selection 

strategy to operate independently of the calibration algorithm. As a result, the 

calibration algorithm operates solely in the parameter space of the complex 

model and proceeds as if performing a single-model calibration. 



 

 91

 
Figure 6.2: Decision module for calibration using surrogate-models. Subscript Si (i = 0 to n) 
identifies a candidate model, which are (loosely) ordered from most complex (S0) to most 
simplified (Sn),  XSi is an uncertain parameter vector, FSi() specifies model evaluation at XSi,   
f1(), f2(), …, fn() are mapping functions relating complex and surrogate model parameters,  
Nmin is the minimum number of model evaluations required for interpolation, AICcSi is the 

model ranking (lower is better), based on an AICc quality-of-fit and adjusted for 
computational expense,  and b identifies the model with the lowest ranking (AICcmin). 

 

 While mapping functions are necessarily problem specific, a few examples 

involving sorption and biokinetics are presented to illustrate the concept. 

6.4.1.1 Mapping example 1: sorption modeling  

The sorption of aqueous phase contaminants to aquifer solids is an 

important process in subsurface contaminant transport, and a variety of models 

are used in practice.  In this example, consider a hierarchy of equilibrium sorption 

models in which the most complex model (S0) presumes Langmuir sorption, an 
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intermediate model (S1) assumes linear sorption, and the simplest model (S2) 

assumes zero-order sorption (i.e. a constant sorbed concentration). General 

expressions for each of these models are given in Equations 6.2 - 6.4. 

bC
bCQ

qS +
=

1
max

0          (6.2) 

CKq dS =1          (6.3) 

02 QqS =          (6.4) 

Where, C is the aqueous concentration, qS0 is the sorbed concentration 

computed using the Langmuir isotherm, Qmax [M/M] is the maximum sorption 

density, b [L3/M] is the affinity of adsorbent to the adsorbate, qS1 is the sorbed 

concentration computed using the linear isotherm, Kd [L3/M] is the linear sorption 

distribution coefficient, qS2 [M/M] is the sorbed concentration computed using the 

zero-order expression, and Q0 is the constant sorbed concentration.  

Given these models, the uncertain parameters are XS0 = [Qmax, b]T, XS1 = 

Kd, and XS2 = Q0. For bC << 1, the complex model reduces to qS0 = (Qmax b) C, 

yielding the following relationship between the parameters of model S0 and S1: 

bQKf d max1 )( =→S0X        (6.5) 

Where, f1() is the mapping function for model S1 which specifies, in this case, 

that the Kd parameter is the product of the two parameters of the Langmuir 

model. For the simplest model, if one assumes bC >> 1, the complex model 

reduces to qS0 = Qmax, yielding: 

max02 )( QQf =→S0X         (6.6) 
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Where, f2() is the mapping function for model S2 and indicates that the constant 

sorbed concentration (Q0) in model S2 is equal to the maximum sorption density 

(Qmax) of  model S0. 

6.4.1.2 Mapping example 2: biokinetics modeling 

In this example, a complex dual-Monod model (S0) of biodegradation 

kinetics is paired with five simpler surrogate models. The surrogate models 

reflect parallel simplification pathways and are determined by whether the system 

is assumed to be substrate-limited or electron-acceptor (e-a) limited. Surrogates 

S1 and S3 assume that biokinetics are e-a limited, surrogates S2 and S4 assume 

substrate-limited biokinetics, and surrogate S5 assumes that biokinetics are 

neither substrate nor e-a limited.  With these assumptions in mind, surrogates S1 

and S2 are single-Monod models, surrogates S3 and S4 are 1st order biokinetics 

models, and surrogate S5 expresses biokinetics as a zero-order expression. 
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where, RS0-RS5 are the degradation rates [M/L3-T] for each of the candidate 

models, E is the terminal electron-acceptor concentration [M/L3], S is the 

substrate concentration [M/L3],  kS0,max is the dual-Monod maximum degradation 

rate [M/L3-T],  kS0,E is the dual-Monod half-saturation constant for the terminal 

electron-acceptor [M/L3], kS0,S  is the dual-Monod half-saturation constant for the 

substrate [M/L3],  kS1,max is the single-Monod maximum degradation rate, 

assuming e-a limited biokinetics [M/L3-T], kS1,E is the single-Monod half-saturation 

constant for the terminal electron acceptor [M/L3], kS2,max is the single-Monod 

maximum degradation rate, assuming substrate-limited biokinetics [M/L3-T], kS2,S 

is the corresponding single-Monod half-saturation constant for the substrate 

[M/L3], kS3 is the first-order degradation rate for the e-a limited pathway [1/T], kS4 

is the first-order degradation rate for the substrate-limited pathway [1/T], kS5 is 

the zero-order degradation rate [M/L3-T], and kS6 is the zero-order degradation 

rate [M/L3-T].   

The complex model may be reduced into the forms of the various 

surrogate models in a number of ways, and here we make the following 

assumptions: For surrogate S1, assume S >> kS0,S. For surrogate S3, additionally 

assume that E << kE. For surrogate S2, assume E >> kS0,E. For surrogate S4, 

additionally assume that S << kS. For surrogate S5, assume E >> kS0,E and S >> 

kS0,S. These assumptions yield the following mapping functions: 
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6.4.1.3 Model ranking and selection 

After mapping surrogate model parameter values, the decision module 

determines how many previous evaluations of each candidate model have been 

stored in an evaluation database. If too few model evaluations are stored, 

subsequent WSSE interpolation will not be sufficiently accurate.  Therefore, the 

decision module will automatically select a given model if it is found to have 

fewer than Nmin stored evaluations. At the start of calibration, this procedure 

results in the initialization of the decision module and its evaluation database.  

 Once the model evaluation database has been properly seeded, 

subsequent calls to the decision module result in the dynamic ranking of each 

model.  The first step in ranking each model is the calculation of an estimated 

WSSE value. These WSSE estimates are interpolated from the evaluation 

database, which will, in general, contain a collection of scattered data points.  

Based on this characterization, the selected interpolation scheme is a multi-

quadric radial basis function (Kansa, 1990), which is capable of robust 

interpolation using an irregularly spaced network of data points.  

 After a WSSE estimate is generated for a given model, model quality is 

computed using an appropriate measure.  This study utilizes the bias-corrected 

Akaike Information Criteria measure (AICc) (Hurvich and Tsai, 1994): 
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where AICci is the AICc value of the i-th model,  n is the number of observations, 

pi is the number of uncertain model parameters for the i-th model, and WSSEi is 

the estimated WSSE value of the i-th model.  As shown in Step #4 of Figure 6.2, 

the decision module completes a given iteration of the model ranking and 

selection process by choosing and evaluating the model with the lowest 

estimated AICc value.  The true WSSE value corresponding to this model 

evaluation is then stored in the model evaluation database and returned to the 

calibration algorithm.  

6.4.2 Description of the test problems 

The performance of the new surrogate-model approach was explored 

using carefully formulated reactive transport scenarios based on a highly detailed 

configuration of biokinetic and geochemical reactions.  The selected test 

problems for the surrogate-model approach focus on nitrate contamination in 

hypothetical (but realistic) batch and one-dimensional transport scenarios. To 

develop the surrogate-model calibration exercises, a “true” model was 

established for each hypothetical scenario.  The “true” batch model contained an 

extensive set of biogeochemical reaction processes including multiple-Monod 

biokinetics, secondary inorganic redox kinetics, and numerous geochemical 

equilibrium processes.  The “true” transport model problem also considered 

biokinetics, but neglected secondary reactions and considered a reduced number 

of equilibrium processes. 
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In developing the “true” models, uncertain kinetic parameters were 

assigned realistic literature-derived values, as tabulated in Appendix D, Table 

D.2. Forward runs of these truth models were used to generate a set of synthetic 

observation values, to be used in subsequent calibration experiments. To 

develop appropriate observation weights for use in the calibration experiments, 

each synthetic observation was treated as if it contained a certain amount of 

measurement error.  These errors were assigned following Hem (1985), and are 

as follows:  

(1) measurements greater than 1 mg/L have an error of +/- 5%,  

(2) measurements less than 1 mg/L incur an error of +/- 10%,  

(3) measurements less than 0.1 microgram per liter are below typical 

detection limits and are assumed to be in the range of 0-0.1 

micrograms per liter,  and 

(4) pH measurements are assumed to be accurate within +/- 0.02 pH 

units.   

Estimates of measurement error were converted to appropriate relative 

observation weights following the guidelines of Hill (1998).  

Conceptually, the batch-reaction test model may be considered an 

approximation of the effects of natural degradation, with transport within the 

system domain neglected.  In this scenario, a spike of contaminated groundwater 

is presumed to have infiltrated from the unsaturated zone and the batch model is 

used to estimate the biodegradation timeframe of various contaminants, most 

notably nitrate.  Synthetic observations sampled from the ‘true’ batch model  
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consisted of fifteen commonly collected aqueous-phase constituents (pH and 

total Na, K, Ca, Mg, Cl, HCO3, SO4, Fe, Mn, HS, NH4, O2, NO3, and DOC).  

These constituents were sampled twice-per-year over a 20-year simulation 

period.  To capture fast non-equilibrium kinetics, early-time samples of 1 hour, 1 

day, 1 week and 1 month were also collected. The overall sampling regime 

resulted in a total of 660 observation measurements available for a given 

calibration exercise. 

The transport problem extended the batch reaction scenario to include the 

vertical transport of a continuous contaminant source through a hypothetical 

aquifer column. For the transport model, eight aqueous-phase constituents were 

sampled (pH, HCO3, DOC, O2, NO3, Mg, Ca and Cl) at column depths of 0.5, 2.5 

and 4.7 meters. These locations were sampled after one day of transport 

simulation and then every four days for 52 days of simulation. This sampling 

scheme resulted in a total of 336 observations for use in the transport model 

calibration experiments. The sampling schedule for the transport test problem 

was designed to emulate realistic site-characterization activities, in which a short 

period of intense sampling is typical. 

Initial and boundary conditions for the test problems were motivated by 

data collection activities at the Lizzie Research Station, in Greene County, North 

Carolina. The research site is located on an actively operated hog farm in which 

liquid hog waste is applied to cropland as a fertilizer, resulting in high 

concentrations of nitrate in the groundwater. From 1999 to 2002, the U.S. EPA 

studied the site extensively, collecting groundwater samples from a number of 
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monitoring wells installed on the site and analyzing these samples for the 

aqueous-phase concentrations of nearly 20 chemical constituents (Spruill et al., 

2005). These aqueous-phase concentrations, along with hydrologic data 

gathered at the site and solid-phase and kinetic data taken from the literature, 

were utilized to develop a realistic set of biodegradation models. 

The remainder of this section is organized as follows: sections 6.4.2.1 and 

6.4.2.2 provide an overview of the subsurface reactive transport processes and 

related solution methods considered in this work, and sections 6.4.2.3 and 

6.4.2.4 describe the setup of the batch and one-dimensional transport test 

problems, respectively. 

6.4.2.1 Subsurface reactive transport model 

Barry et al. (2002) provided a thorough review of the various processes 

that influence subsurface reactive transport, which may include 

sorption/desorption (e.g. hydrophobic partitioning, cation exchange and/or 

surface complexation), mineral precipitation and dissolution, microbial activity, 

and equilibrium and kinetic geochemistry.  Apart from neglecting a given process, 

the simplest modeling approach is to assume local equilibrium for all reactions 

[e.g. Engesgaard and Kipp (1992), and Postma et al. (1991)]. Intermediate 

methods (in terms of complexity) consider kinetic processes using zero- or first-

order rate expressions [e.g. McNab and Narasimhan (1994), van Breukelen et al. 

(1998), Hunter et al. (1998), and Keating and Bahr (1998)].  

With regard to biotransformation in the subsurface, the most complex 

modeling approaches use multiple-Monod biokinetics in which growth inhibition 
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due to substrate, nutrient and/or electron acceptor availability is enforced via one 

or more empirically defined inhibition terms [e.g. MacQuarrie et al. (2001), and 

Killingstad et al. (2002)]. A further complexity is that microbial growth is often 

treated as a diffusion-limited process.  Here, nutrients, substrate, and/or electron 

acceptors must diffuse from aqueous solution into an immobile bio-phase [eg. 

Kinzelbach and Schafer (1991), Baveye and Valocchi (1989), Doussan et al. 

(1997), Lensing et al. (1994), Schafer et al. (1998), Schafer and Therrien (1995), 

Prommer et al. (1999), and Widdowson et al. (1988)]. 

 The reactive transport application considered in this study focused on the 

natural degradation and transport of groundwater contaminated by agricultural 

practices. As such, the primary contaminant of concern was nitrate (NO3
-), with a 

secondary emphasis on sulfur compounds, including sulfate (SO4
2-). A commonly 

applied transformation pathway for both nitrate and sulfate is degradation via 

microbially mediated redox processes.  In oxygen-depleted environments, 

specialized microorganisms will preferentially utilize nitrate, manganese, iron and 

sulfate as terminal electron acceptors.  Substrate for these microorganisms is 

commonly assumed to be an organic carbon source, often generically referred to 

as CH2O.  A number of inorganic geochemical reactions influence microbial 

degradation, and for the hypothetical test problems, the considered 

biogeochemical processes included: 

(1) Microbially-mediated kinetic reactions including aerobic degradation, 

denitrification, and manganese, iron and sulfate reduction.  Diffusion into 

the bio-phase was assumed to occur rapidly and was ignored. 
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(2) Kinetically controlled inorganic secondary redox reactions involving 

manganese, iron, and sulfur. 

(3) Aqueous equilibrium chemistry involving the carbonate, sulfate, and 

sulfide systems.  

(4) Equilibrium speciation of calcium, magnesium, sodium, potassium, 

iron, manganese, and ammonium. 

(5) Equilibrium precipitation and dissolution of calcite, siderite, 

rhodochrosite, gypsum, and iron sulfide.   

(6) Linear partitioning of sorbed and aqueous phase organic carbon.  For 

this work, the partition coefficient was assigned so that the initial aqueous 

phase DOC concentration was 2.0 mg/L.  

(7) Competitive cation exchange involving sodium, calcium, magnesium 

and potassium. This process was modeled using the Gaines-Thomas 

convention, where equivalent fractions are used for the activity of 

exchangeable cations. 

(8) Surface complexation of iron, manganese, and hydrogen onto hydrous 

ferric oxide.  This was modeled using the approach of Dzombek and 

Morel (1990), in which sorbing ions must overcome electrostatic effects 

before reacting with high (strong) and low (weak) affinity surface sites. 

The chemical reactions and modeling technique(s) associated with each of these 

processes are summarized in Table 6.1. 



 

 102

 

Table 6.1: Reaction Network for the Hypothetical Modeling Scenarios 
Microbial-mediated reactions  
(modeled using multiple-Monod, single-Monod,  1st order, or zero order kinetics) 
Aerobic degradation* R1: OHCOOOCH 2222 +→+  

Denitrification* R2: OHCONHNOOCH 22232 2
7

2
522

2
5

++→++ +−  

Mn(IV)-reducers R3: OHCOMnHOCHsMnO 22
2

22 2
3

2
12

2
1)( ++→++ ++  

Fe(III)-reducers R4: OHCOFeHOCHsOHFe 22
2

23 4
11

4
12

4
1)()( ++→++ ++  

Sulfate reducers R5: OHHSCOHOCHSO 222
2
4 222 ++→++ −+−  

Secondary Redox Reactions (modeled using 1st order kinetics or zero order kinetics) 

Manganese redox R6: ++ +→++ HsMnOOHOMn 2)(
2
1

222
2  

Iron redox R7: ++ +→++ HsOHFeOHOFe 2)()(
2
5

4
1

322
2  

Iron-Manganese redox R8: +++ ++→++ HMnsOHFeOHsMnOFe 2)()(24)(2 2
322

2  

Sulfide redox R9: +− +→+ HSOOSH 22 2
422  

Iron sulfide redox R10: −+ +→+ 2
4

2
22)( SOFeOsFeS  

Sulfide-Manganese redox R11: OHSMnHsMnOSH 2
02

22 22)( ++→++ ++  

Sulfide-Iron redox R12: OHSFeHsOHFeSH 2
02

32 624)()(2 ++→++ ++  
Aqueous Equilibrium Chemistry (modeled as equilibrium reactions) 

Carbonate system* 
R13: −+ +↔ OHHOH2  

R14: −+− ↔+ 3
2
3 HCOHCO  

R15: OHCOHHCO 223 +↔+ +−  

Sulfide System 
R16: −+ +↔ HSHSH2  

R17: −+− +↔ 2SHHS  

Sulfate System 

R18: −−+ ↔+ 4
2
4 HSOSOH  

R19: 4
2
4

2 CaSOSOCa ↔+ −+  

R20: 4
2
4

2 MgSOSOMg ↔+ −+  

R21: −−+ ↔+ 4
2
4 NaSOSONa  

R22: −−+ ↔+ 4
2
4 KSOSOK  

R23: 4
2
4

2 FeSOSOFe ↔+ −+  

R24: 4
2
4

2 MnSOSOMn ↔+ −+  

Calcium Speciation 
R25: 3

2
3

2 CaCOCOCa ↔+ −+  

R26: ++−+ ↔++ 3
2
3

2 CaHCOHCOCa  
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Magnesium Speciation 
R27: 3

2
3

2 MgCOCOMg ↔+ −+  

R28: ++−+ ↔++ 3
2
3

2 MgHCOHCOMg  

Sodium Speciation 
R29: −−+ ↔+ 3

2
3 NaCOCONa  

R30: 33 NaHCOHCONa ↔+ −+  

Iron Speciation 

R31: +++ +↔+ HFeOHOHFe 2
2  

R32: 3
2
3

2 FeCOCOFe ↔+ −+  

R33: +−+ ↔+ 33
2 FeHCOHCOFe  

Manganese Speciation 

R34: +−+ ↔+ MnClClMn2  
R35: 3

2
3

2 MnCOCOMn ↔+ −+  

R36: +−+ ↔+ 33
2 MnHCOHCOMn  

Ammonium Speciation R37: ++ ↔+ 43 NHHNH  
Mineral Precipitation/Dissolution  (modeled as equilibrium reactions) 

Calcite* R38: +− +↔ 22
33 )( CaCOsCaCO  

Rhodochrosite R39: −+ +↔ 2
3

2
3 )( COMnsMnCO  

Siderite R40: −+ +↔ 2
3

2
3 )( COFesFeCO  

Iron Sulfide R41: −+ +↔ 22
)( SFeFeS s  

Gypsum R42: ( ) OHSOCasOHCaSO 2
2
4

2
224 2)( ++↔ −+  

Additional Solid-Aqueous Phase Reaction Processes (modeled as equilibrium reactions) 
Carbon Partitioning R43: OCHadsOCH 22 )( ↔  

Surface Complexation 
(≡HFOw: weak sites, 
 ≡HFOs: strong sites) 

R44: ++ ≡↔+≡ 2OHHFOHOHHFO ww  

R45: +++ +≡↔+≡ HOFeHFOFeOHHFO ww 2  

R46: +− +≡↔≡ HOHFOOHHFO ww  

R47: ++ +≡↔+≡ HOFeOHHFOOHOFeHFO ww
2  

R48: +++ +≡↔+≡ HOMnHFOMnOHHFO ww 2  

R49: ++ ≡↔+≡ 2OHHFOHOHHFO ss  

R50: +− +≡↔≡ HOHFOOHHFO ss  

R51: +++ +≡↔+≡ HOFeHFOFeOHHFO ss 2  

R52: +++ +≡↔+≡ HOMnHFOMnOHHFO ss 2  

Ion Exchange 
(X: solid exchanger) 

R53: KXNaKNaX +↔+ ++  

R54: 2
2 22 CaXNaCaNaX +↔+ ++  

R55: 2
2 22 MgXNaMgNaX +↔+ ++  

R56: KXCaKCaX 22 2
2 +↔+ ++  

R57: KXMgKMgX 22 2
2 +↔+ ++  

R58: 2
22

2 CaXMgCaMgX +↔+ ++  
Summary: 65 species, 46 equilibrium reactions, 12 kinetic reactions 
All reactions listed were utilized in the ‘true’ batch reaction model. 

Only the reactions indicated with an asterisk (*) were considered for the ‘true’ transport model. 
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6.4.2.2 Numerical methods 

In this study, equilibrium reactions (R13 through R58 in Table 6.1) were 

modeled using ‘fast’ kinetics. Using this approach, all reversible equilibrium 

reactions are re-written as complementary pairs of high-rate forward and 

backward reactions. For example, the reaction A-+B+↔AB with equilibrium 

constant Keq=[AB]/([A][B]), would be re-written as A-+B+→AB, with forward rate 

Kf, and AB→ A-+B+, with backward rate Kb. To maintain equivalency with the 

equilibrium expression, the ratio of reaction rates was selected to be consistent 

with the equilibrium constant (i.e. (Kf/Kb) = Keq).  Furthermore, both rates were 

made sufficiently large so that equilibrium amongst the reacting species is 

achieved rapidly relative to the time step of interest. Following MacQuarrie and 

Sudicky (2001), these complementary reaction pairs combined with irreversible 

kinetic reactions (R1 through R12 in Table 6.1) to form a stiff set of coupled 

ordinary differential equations.  These equations are summarized in Appendix D 

and their solution requires a robust numerical solver. For this work, a number of 

solvers were investigated before selecting the CVODE solver (Hindmarsh and 

Serban, 2006), which is part of the SUNDIALS package (Hindmarsh et. al, 2005).  

Attempts at solving the entire reaction network in Table 6.1 using PHREEQC 

(Parkhurst and Appelo, 1999) (which utilizes a differential/algebraic equation 

solver) were unsuccessful.  This difficulty motivated the consideration and 

subsequent adoption of the aforementioned fully kinetic approach. The 

correctness of the fully kinetic implementation was established by solving 
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subsets of the overall reaction network and comparing the results with those 

obtained using PHREEQC.  

Zheng and Bennett (2002) and Steefel and Maquarrie (1996) provide 

excellent reviews of the various approaches to reactive transport modeling. The 

experiments in this study utilized the sequential non-iterative approach (SNIA).  

This operator splitting technique separates reactive transport into an advective-

dispersive time-step followed by a reaction time-step.  The governing equation 

for the advective-dispersive transport of each solute through a one-dimensional 

unidirectional flow field is given in Equation 6.15: 

x
C

v
x
C

D
t

C iii

∂
∂

−
∂

∂
=

∂
∂

2

2

       (6.15) 

where Ci is the concentration of the i-th species, v is the seepage velocity, 

and D is the dispersion coefficient such that D=α v, where α is the longitudinal 

dispersivity.  In this study, equation 6.15 was discretized using finite-differences 

(as in Zheng and Bennett (2002), pg. 180, eqn. 7.20) and solved using a fully 

implicit temporal weighting scheme and an upstream spatial weighting scheme. 

For each time step, all reactive species were first advected and dispersed.  Next, 

each finite-difference cell was batch-reacted for one time step using the 

previously described fully kinetic reaction solver.  

6.4.2.3 Batch-reaction test problem 

The batch-reaction model configuration was developed using well data 

collected at the Lizzie Research Station (Spruill et al., 2005).  The well of interest 

is located within the central spray field area and contains the highest levels of 

nitrate contamination. The well was screened at three depth levels (shallow, 
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medium and deep) and the shallow well measurements provided the aqueous-

phase initial conditions for the batch reaction model.  The Lizzie data did not 

include the initial conditions of the solid-phase components of the model (i.e. 

mineral content, surface complexes, organic carbon partitioning, or ion exchange 

capacity) and these initial conditions were assigned based on literature-derived 

values. Solid phase concentrations were normalized to pore-volume 

concentrations by using typical porosity (0.3), soil density (2.65 kg/L), and bulk 

density (1.86 kg/L) values, as reported in Charbeneau (2000). Initial conditions 

for the batch-reaction test problem are given in Table 6.2. 

Table 6.2: Initial Conditions for Batch-Reaction Scenario. 
(CEC is the cation exchange capacity, SAHFO is the surface area of hydrous ferric oxide, 
HFOs and HFOw denote the strong and weak surface complexation sites, respectively.) 

Aqueous-phase 
Constituent 

Concentration 
(mol/L) 

Solid-phase 
Constituent 

Concentration 
(mol/L) 

H+ 2.51E-05 CEC (meq/L) 203.43 a 
TOT Na 1.31E-03 SAHFO (m2) 180.68 b 
TOT K 3.33E-04 TOT HFOw 6.77E-04 b 
TOT Ca 1.06E-03 TOT HFOs 1.69E-05 b 
TOT Mg 6.02E-04 MnO2(s) 8.87E-03 c 
TOT Cl 2.14E-03 Fe(OH)3(s) 3.41E-03 c 
TOT HCO3 1.17E-04 CH2O(ads) 4.34E-02 c 
TOT SO4 2.53E-04 FeS(s) 0.00 
TOT Fe 4.73E-06 CaSO4(H2O)2 (s) 0.00 
TOT Mn 4.02E-06 FeCO3(s) 0.00 
TOT HS 3.10E-06 CaCO3(s) 0.00 
TOT NH4 5.56E-06
TOT O2 1.56E-04
TOT NO3 2.50E-03

TOT CH2O (as C) 4.16E-04

Data Sources 
a –  Tucker (1999) 
b – Dzombak and Morel (1990), 
Knapp et al. (1998) 
c – Barcelona and Holm (1991) 

6.4.2.3.1 Candidate reaction models 
To demonstrate the surrogate-model calibration approach, a number of 

plausible candidate reaction models were developed.  For the most complex 

candidate model, a ‘kitchen-sink’ approach was taken, such that the 58 reactions 

in Table 6.1 were included in the model. Additionally, the complex model utilized 
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dual-Monod kinetic expressions (as in Equation 6.7) for the sequence of five 

microbially mediated reactions.  To develop the surrogate candidate reaction 

models, graphical analysis of the sampled synthetic observation data motivated 

the selection and exclusion of various reactive processes. Figure 6.3 contains 

representative plots of the synthetic observations that were investigated as part 

of this process. Analysis of the concentration data provided the following 

evidence for subsequent model development: 

(1) DOC concentrations are well buffered and remained nearly constant 

for the sampled timeframe. Therefore, any active biokinetics processes 

will not be substrate limited and the dual-Monod formulation of Equation 

6.7 is unnecessary. 

(2) Major cations and anions also remained nearly constant for the 

sampled time frame. This suggested that cation exchange processes 

could be neglected. 

(3) Concentrations of dissolved-oxygen, nitrate and sulfate reduced in 

sequence over time, suggesting the influence of aerobic, denitrifying and 

sulfate-reducing biokinetics processes.  

(4) Early in the simulation, pH was buffered via the removal of Fe and Mn 

from solution. Such buffering indicated the presence of surface 

complexation.  

(5) The early-time samples indicated an increase in Fe, Mn and sulfate 

with a corresponding decrease in HS. This was taken as evidence of 

secondary redox reactions, namely R8, R9, R11 and R12 in Table 6.1. 
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(6) During years 2 through 13, Mn, Fe and carbonate concentrations were 

significantly reduced. This was interpreted as evidence of biokinetics 

processes that produce Fe, Mn and CO2 and consume H+. Buffering of pH 

via surface complexation and precipitation of Fe-/Mn-carbonate minerals 

explains how the biokinetic production of Fe and Mn can actually drive 

these species from solution.  

 

Figure 6.3: Selected plots of synthetically generated observations of the batch-reaction 
system. (a) early-time increase in Mn and Fe, with corresponding decrease in HS, (b-c) 
evidence of manganese and iron reduction, where biokinetic production of Mn+2/Fe+2 is 
thought to trigger manganese and iron removal via surface-complexation and mineral 

precipitation reactions, (d) evidence of sulfate reduction late in the simulation 

 
Based on the above analysis of observation data, three secondary 

reactions (R6, R7 and R10) and the ion exchange reactions (R53 to R58) were 

excluded from consideration in the surrogate models. Additionally, the dual-
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Monod biokinetics formulation was neglected, and considered biokinetics 

formulations were limited to zero-order, and e-a limited first-order and single-

Monod expressions. The resulting set of six surrogate models are summarized in 

Table 6.3 along with the complex model.  Also identified in Table 6.3 are the 

equations used to assemble the complete set of mapping functions required for 

each surrogate model.  For example, using the equations specified for surrogate 

S1 would result in the following vector of 14 mapping functions (one mapping 

function per parameter): 
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where superscripts identify a reaction in Table 6.1; the ‘S1’ and ‘S0’ 

subscripts identify surrogate model S1 and S0, respectively;  a ‘max’ subscript 

identifies a maximum degradation rate; an ‘E’ subscript signifies an electron 

acceptor half-saturation constant; and [Fe2+]0, [O2]0, and [H2S]0 are the initial 

concentrations of iron, dissolved oxygen, and hydrogen sulfide. 

To constrain the calibration exercises, values for the upper and lower 

limits of each parameter were assigned based on initial experimentation. Ranges 

reported in the literature served as a useful guide for this process, particularly 
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Mayer et al. (2001) (for biokinetic rates), and Hunter et al. (1998) (for secondary 

redox rates). 

Table 6.3: Configurations of the batch-reaction candidate models. 
Batch-Reaction Model 

Reac- 
tion Complex 

(S0) 

Surro- 
gate 1 
(S1) 

Surro- 
gate 2 
(S2) 

Surro- 
gate 3 
(S3) 

Surro- 
gate 4 
(S4) 

Surro- 
gate 5 
(S5) 

Surro- 
gate 6 
(S6) 

R1 dual single single zero a zero a zero a zero a 
R2 dual single single single single single zero a 
R3 dual single single single zero a zero a zero a 
R4 dual single single single zero a zero a zero a 
R5 dual single single zero a single first c first c 
R6 first a n/a n/a n/a n/a n/a n/a 
R7 first a n/a n/a n/a n/a n/a n/a 
R8 first a first b zero b zero b zero b zero b zero b 
R9 first a first b zero b zero b zero b zero b zero b 
R10 first a n/a n/a n/a n/a n/a n/a 
R11 first a first b zero b zero b zero b zero b zero b 
R12 first a first b zero b zero b zero b zero b zero b 
Num. 

param- 
eters 

22 14 14 12 11 10 9 

Key to terminology, with mapping functions in parentheses.  
wrt  – with respect to; dual – dual-Monod; first a – first-order wrt to all reactants; 
single – e-a limited single-Monod (Eq. 6.11a);  first b – first-order wrt a single 
reactant (Eq. 6.18);  first c – e-a limited first-order (Eq. 6.12a);  zeroa – zero-
order biokinetics (Eq. 6.13); zerob – zero-order secondary redox (Eq. 6.19) 

 

6.4.2.3.2 Mapping functions for secondary redox reactions    
In this study, secondary redox reaction rates were presumed to take on 

one of three forms, depending on the level of model complexity: 

]][[ 21
iii

i AAkR = , or                (6.17a) 

][ 11
ii

i AkR = , or                (6.17b) 

i
i kR 0=                   (6.17c) 

where Ri is the rate of a secondary reaction listed in Table 6.1 (i = 6 – 12); 

][ 1
iA  and ][ 2

iA are the concentrations of the reactants involved in the given 
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reaction, where A1
T = [Mn2+, Fe2+, Fe2+, O2, O2, H2S, H2S], and A2

T = [O2, O2, 

MnO2(s), H2S, FeS(s), MnO2(s), Fe(OH)3(s)]; and the reaction rate may be first-

order with respect to both reactants (ki), first-order respect to reactant iA1 ( ik1 ), or 

zero-order ( ik0 ). 

 Mapping functions for ik1  and ik0  are given in Eq. 6.18 and 6.19 

respectively, and were derived by assuming constant reactant concentration(s):  

021 ][ iii Akk =          (6.18) 

02010 ][][ iiii AAkk =         (6.19) 

where, 01 ][ iA and 02 ][ iA are the initial reactant concentrations. 

6.4.2.4 One-dimensional reactive transport test problem 

The hypothetical transport scenario considered the simulation of nearly 

two months (52 days) of extensively monitored nitrate transport.  Because of the 

short monitoring period and focus on nitrate, the ‘true’ one-dimensional transport 

model considered a reduced number of reactive processes, relative to the batch-

reaction problem.  As indicated by the asterisked entries in Table 6.1, the 

transport problem involved 6 reactions and a total of 12 species. 

 Initial conditions throughout the one-dimensional aquifer column were 

derived from a well at the Lizzie Research Station located up gradient of the 

spray fields.  Measurements taken at this well were assumed to represent 

background aquifer conditions. As summarized in Table 6.4, the aquifer column 

was divided into five zones: a shallow zone, a medium zone, a deep zone, and 

two transition zones. Initial conditions for the shallow, medium and deep portions 
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of the aquifer column were derived from corresponding up gradient well data. 

Initial conditions for each transition zone were assigned via inverse-distance 

weighting of the concentration values of adjacent zones. Calcium carbonate 

mineral concentrations were assumed to be initially zero everywhere in the 

column. 

Entrance boundary conditions for the column consisted of a constant-

concentration source of contaminated groundwater, presumably infiltrating from 

the unsaturated zone.  Entrance concentrations were derived from shallow-well 

data collected at the in-spray-field well, and are tabulated in the relevant entries 

of Table 6.2. The exit boundary condition for the column was a zero 

concentration gradient for all species, a commonly employed condition for this 

type of problem (e.g. Doussan et al., 1997). 

Advective-dispersive components of the ‘true’ transport model were 

assigned as follows:  dispserivity was set at 0.1 m, the Darcy velocity was 4.5 

mm/day, porosity was assumed to be 0.3, and the retardation factor was set to 

1.0.  To facilitate numerical solution of the transport problem, the 5-meter spatial 

domain was discretized into 100 50-centimeter cells.  Furthermore, the time 

domain was broken into 52 steps of 1-day each.  This configuration yielded grid-

Peclet (Pe) and Courant (Cr) numbers of 0.5 and 0.3, respectively. When 

applying the sequential non-iterative operator splitting technique to systems 

involving fast reactions, Cr < 0.1 is generally required for good accuracy.  For this 

study, initial experimentation established that, relative to Cr=0.01, Cr = 0.3 

yielded an average error of less than 2%.  
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Table 6.4: Initial Conditions for One-Dimensional Transport 
Aquifer Zones (values in parentheses are the zone thicknesses) 

Constituent Shallow 
(0.9 m) 

Shallow-Med. 
(0.35 m) 

Medium 
(2.75 m) 

Med.-Deep 
(0.4 m) 

Deep 
(0.6 m) 

pH 5.10 4.60 5.20 
TOT HCO3 1.64×10-5 1.64×10-5 1.64×10-4 
TOT O2 1.31×10-4 1.06×10-4 1.88×10-5 
TOT NO3 1.86×10-4 2.93×10-4 6.35×10-5 
TOT DOC 
(as C) 1.17×10-4 5.00×10-5 4.16×10-5 

TOT Ca 5.49×10-5 8.73×10-5 1.50×10-4 
TOT Mg 1.83×10-4 1.83×10-4 2.85×10-4 
TOT Cl  2.82×10-4 

Assigned 
using 

inverse- 
distance 

weighting. 

2.57×10-4 

Assigned 
using 

inverse- 
distance 

weighting. 

6.49×10-4 
 

After establishing the truth model for the reactive-transport benchmark 

problem, a series of candidate transport models were developed.  Graphical 

analysis of the synthetic transport observation suggested that denitrification, if 

present, was likely to be substrate-limited.   The seven candidate reactive 

transport models that were considered are summarized in Table 6.5. Calibration 

of the uncertain parameters of these candidate models provided an experimental 

framework for evaluating alternative methods for model ranking, selection and 

calibration. 

Table 6.5: Configuration of the candidate transport models 
Reactive-Transport Model 

 Complex 
(S0) 

Surro- 
gate 1 
(S1) 

Surro- 
gate 2 
(S2) 

Surro- 
gate 3 
(S3) 

Surro- 
gate 4 
(S4) 

Surro- 
gate 5 
(S5) 

Surro-
gate 6
(S6) 

Uncertain reaction parameters 
R1 dual single a first  a first a zero zero n/a 
R2 dual single b first b zero first b  zero n/a 

Uncertain advection-dispersion parameters (directly mapped [e.g. vS6 = vS0] ) 
disper- 
sivity αS0 αS1 αS2 αS3 αS4 αS5 αS6 
velo- 
city vS0 vS1 vS2 vS3 vS4 vS5 vS6 

Num. 
param- 
eters 

8 6 4 4 4 4 2 

Key to terminology, with mapping functions in parentheses.  
wrt  – with respect to; dual – dual-Monod; single a – e-a limited single-Monod (Eq. 6.11a); 
single b – substrate-limited single-Monod (Eq. 6.11b); first a – e-a limited first-order (Eq. 
6.12a);  first b – substrate-limited first-order (Eq. 6.12b);  zero – zero-order biokinetics (Eq. 
6.13) 
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As shown in Table 6.5, all models considered uncertain advection-

dispersion parameters. The most complex model also considered dual-Monod 

biokinetics, while models S1 through S5 considered various biokinetics 

simplifications and the simplest model (S6) neglected biokinetics entirely. 

6.4.3 Setup of the numerical experiments 

To evaluate the surrogate-model approach, a series of numerical 

experiments were performed. The experiments sought to calibrate and rank the 

various batch and one-dimensional transport models using synthetic 

observations generated from the corresponding ‘truth’ model.  The experiments 

are summarized in Table 6.6, and consisted of combinations of calibration 

algorithm, test problem and model complexity. As shown in Table 6.6, for each 

test problem and level of model complexity, three non-surrogate calibrations 

were performed.  One non-surrogate utilized a multi-start regression (MSR) 

algorithm, another utilized particle swarm optimization (PSO), and the third used 

a hybridized particle swarm optimization algorithm. These calibrations (and 

subsequent model ranking and selection) served as a baseline for assessing the 

surrogate-model approach introduced in this work.  For the MSR algorithm, the 

Levenberg-Marquardt regression procedure was initiated from randomly 

generated initial guesses. This enhancement provided the gradient-based 

algorithm with a limited ability to avoid local minima. Four and eight initial 

guesses were used for the batch-reaction and reactive transport problems, 

respectively.    
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Besides the aforementioned baseline experiments, the surrogate-model 

approach was also applied to each test problem.  For this study, the surrogate-

model approach was implemented by linking the PSO algorithm with the 

previously described surrogate-model decision module.  The effect of ‘polishing’ 

the surrogate-model approach with a regression step was also examined.  For 

this polishing step, the best configuration of each candidate model was extracted 

from the surrogate-model calibration results. These configurations furnished the 

initial parameter values for a subsequent set of Levenberg-Marquardt regression 

runs (one regression per candidate model).   

Because the considered calibration algorithms (i.e. PSO and MSR) 

contain elements of randomness, the corresponding experiments were repeated 

multiple times in order to capture the central tendency of a given approach. 

Following previous work involving optimization algorithms (Matott et al., 2006b), 

between 10 and 20 samples were collected for each experiment. 

A final set of numerical experiments focused on a qualitative evaluation of 

the degree of parameter non-uniqueness and non-linearity associated with the 

selected calibration problems. For these experiments, massively parallel 

computing infrastructure was utilized to evaluate and map a series of two-

dimensional slices through the design space of selected calibration problems. 

All calibrations were run on parallel computing clusters maintained by the 

University at Buffalo Center for Computational Research (CCR). The clusters 

consisted of dual-processor 3.2-GHz Intel Xeon processors, with 2-GB of RAM 

and version 7.6 of the RedHat Linux operating system. Calibrations were 
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performed using Ostrich (Matott, 2006a), a model-independent, multi-algorithmic 

optimization tool that includes a surrogate-model calibration module (available 

with version 1.8 of the public domain software). 

Table 6.6: Experimental Setup 

Exp. Test 
Problem Algorithm Model Exp. Test 

Problem Algorithm Model 

1 S6 17 S6 
2 S5 18 S5 
3 S4 19 S4 
4 S3 20 S3 
5 S2 21 S2 
6 S1 22 S1 
7 

Multi-start 
Regression 

S0 23 

Multi-start 
Regression 

S0 
8a-b S6 24a-b S6 
9a-b S5 25a-b S5 
10a-b S4 26a-b S4 
11a-b S3 27a-b S3 
12a-b S2 28a-b S2 
13a-b S1 29a-b S1 
14a-b 

(a) Particle 
Swarm 

Optimization, 
 

 (b) Hybrid 
PSO 

S0 30a-b 

(a) Particle 
Swarm 

Optimization, 
 

(b) Hybrid 
PSO 

S0 

15 Surrogate-
model S* 31 Surrogate-

model S* 

16 

Batch-
reaction 

Surrogate-
model w/ 
polishing 

S* 32 

One-
dimensional 

transport 

Surrogate-
model w/ 
polishing 

S* 

S* - all batch or transport models, individual batch models are described in Table 6.3 and 
individual transport models are described in Table 6.5. 

 

6.5 Results and Discussion 

Typical batch-reaction model calibrations required between two and four 

hours of wall-time on the parallel clusters, corresponding to several days of 

computation time. Individual complex batch-reaction model evaluations required 

as many as 2 minutes of computation time, while the suite of surrogate models 

required between 30 and 90 seconds of computer time per evaluation. Because 

the reactive transport models involved fewer parameters that the batch-reaction 

models, the transport model calibrations generally required fewer model 

evaluations.  However, computation times for a given transport model evaluation 
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could be as much as ten minutes for the complex model, and ranged between 

one and five minutes for the surrogate models. As a result, the typical parallel 

cluster wall-time for the transport model calibrations was between four and 

twelve hours. On a single-processor system, such transport calibrations would 

have taken somewhere between five days to two weeks.  

6.5.1 Visualization of the Calibration Design Space  

Results from the two-dimensional mapping of selected calibration 

problems are provided in Figure 6.4. These graphical slices through the 

calibration design space reveal a highly non-linear objective function surface.  

Large patches of the design space are relatively flat indicating parameter 

insensitivity. Conversely, other regions displayed extreme sensitivity and contain 

a heterogeneous mixture of closely grouped peaks and valleys. 

 

Figure 6.4: Two-dimensional slices of the calibration objective function surface.  Unless noted, the 
plots compare the calibration objective function to changes in biokinetic parameters, where Kmax is 

the maximum degradation rate, KTEA is the electron acceptor half-saturation constant, and 
F()=log(WSSE)/log(WSSEmax) is the normalized objective function value.  (top left) denitrification 

process, TEA is NO3
-, (top right) lumped first-order biokinetic (Kbio) rate vs. lumped first-order 2nd-ary 

redox rate (K2nd), (bottom left) sulfate reduction, TEA is SO4
2-, (bottom right) manganese reduction, 

TEA is MnO2(s).   
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6.5.2 Calibration and Ranking of the Batch Reaction Models 

Table 6.7 summarizes the AICc-based model rankings of the candidate 

batch-reaction models, as determined by the considered algorithms. Taken as a 

whole, these rankings support the partitioning of the candidate models into three 

groups. First, the complex model (S0) and the most complicated surrogate (S1) 

were generally the highest ranked models.  Next, the least complicated 

surrogates (S5 and S6) also tended to be highly ranked, with AICc values 

typically within 20% of the highest ranked model. Finally, the remaining 

intermediate-complexity surrogates (S2 though S4) tended to be ranked lowest, 

with AICc values markedly higher (i.e. worse) than the alternative models.  

Examination of the batch-reaction model configurations (listed in Table 

6.3) suggests a possible explanation for the somewhat counterintuitive model 

ranking: the intermediate complexity models (S2-S4) paired simplified secondary 

redox reactions with complex single-Monod biokinetics processes. Conversely, 

the more preferred models paired complex secondary-redox and complex 

biokinetics expressions (S0 and S1), or paired simple secondary reactions with 

simple biokinetics formulations.  Apparently, mixing the complexity levels of the 

two reaction types was not a favorable way to represent the ‘true’ system. The 

convergence behavior of selected intermediate-model calibrations was 

supportive of this assertion.  In such calibrations, algorithms tended to drive all 

single-Monod half-saturation constants toward their upper or lower limits, 

effectively reducing such expressions to either zero- or first-order kinetics. Such 
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algorithm behavior can be viewed as an attempt to simplify the biokinetics in 

order to make them compatible with the secondary reactions. 

Of the search algorithms, the PSO-regression hybrid generally provided 

the lowest AICc values for each candidate model. The corresponding model 

rankings were therefore thought to be the most reliable, and served as a 

benchmark for evaluating the ranking capability of the surrogate-model approach. 

The model rankings provided by the basic surrogate-model approach (without 

polishing) qualitatively agreed with the rankings of the hybrid PSO, with one 

important exception: surrogate model S1 was ranked very poorly by the 

surrogate-model approach, but was ranked very highly by the hybrid PSO. 

Following up the surrogate-model approach with a polishing step significantly 

reduced the AICc value of model S1, and the polished S1 model was within 8% 

of the 2nd place S5 model.  

Table 6.7: AICc Model Rankings for the Candidate Batch-Reaction Models 
Multi-Start 
Regression 

Particle Swarm
Optimization Hybrid PSO Surrogate-model

Approach 
Surrogate-model

w/ Polishing Model 
ID 

AICc Rank AICc Rank AICc Rank AICc Rank AICc Rank 
S0 3016 3 2575 2 1957 1 2375 1 2110 1 
S1 1951 1 2524 1 2017 2 3851 6 2540 4 
S2 10306 7 2685 4 2475 6 3456 5 3329 6 
S3 6210 4 2697 5 2501 7 3968 7 3609 7 
S4 6430 6 2652 3 2455 5 2946 4 2946 5 
S5 6417 5 2797 6 2328 3 2777 3 2346 2 
S6 2710 2 2926 7 2344 4 2655 2 2420 3 

 

Figure 6.5 compares the performance (i.e. efficiency and effectiveness) of 

the selected calibration algorithms, as applied to the set of candidate batch-

reaction models. For this work, algorithm efficiency was measured in terms of the 
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number of required model evaluations and effectiveness was measured in terms 

of root-mean-squared error (RMSE=[WSSE/(n-p)]½).  

In terms of efficiency, the results demonstrated that the surrogate-model 

approach required far fewer model runs than the considered non-surrogate 

alternatives. Calibration of all candidate models using the highly effective, but 

computationally expensive, hybrid PSO method required more than 25,000 

evaluations of the various models.  Conversely, the surrogate-model approach 

required less than 9,000 total evaluations, and the surrogate-model approach 

with additional polishing required slightly more than 11,000 total evaluations. The 

most inefficient method was multi-start regression, which required more than 

27,000 total evaluations.  Given the high computational cost of the MSR 

technique, it was surprisingly ineffective when applied to models S2 through S5, 

where it reported extremely high best-fit RMSE values of 2400, 109, 129 and 

128, respectively.  For these problems, the algorithm appeared to slowly 

converge on local minima. 

The bottom portion of Figure 6.5 compares algorithm effectiveness, in 

terms of RMSE values. Overall, the hybrid particle swarm optimization algorithm 

was the most effective of the considered algorithms. For most of the models, the 

effectiveness of the less expensive ‘polished’ surrogate-model approach was 

comparable to that of the hybrid PSO.  Notable exceptions are the results of the 

S2 and S3 calibrations, where the surrogate-model approach had difficulty even 

when followed with a polishing step. 
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Figure 6.5: Comparison of Algorithm Performance for the Batch-Reaction Models. Model 

evaluations are in thousands. MSR – multi-start regression, PSO – particle swarm 
optimization, HYB – hybrid particle swarm optimization, SRG – surrogate model approach, 
SRG* - surrogate model approach with additional polishing step, configurations of models 

S0-S6 are given in Table 6.3. 

 
Recall that the S2 and S3 models were poorly ranked and that non-

surrogate calibration procedures attempted to drive the Monod-kinetics of these 

models into simpler zero- and first-order behavior. The number of S2 and S3 

model evaluations under the surrogate-model approach was around 700 

evaluations each. Conversely, the number of S5 and S6 model evaluations was 

just over 1000 each. Therefore, rather than spending model evaluations driving 

the parameters of the S2 and S3 models toward simpler kinetics, in the 
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surrogate-model approach it appears that the decision module instead simply 

selected and evaluated simpler (i.e. S5 or S6) models, as appropriate.   

6.5.3 Comparisons of Calibrated and “True” Batch-Reaction Models 

For the selected test problems, a set of simulated concentration profiles 

were generated for the best-ranked models, as determined by the surrogate- and 

non-surrogate approaches. For comparison, these profiles also include a profile 

generated using the appropriate “true” model. Visual comparison of the profiles 

provides a qualitative analysis of model appropriateness. Figure 6.6 contains 

profiles of (a) oxygen, (b) nitrate, (c) sulfate, and (d) pH for the batch-reaction 

calibrations. 

The profiles of dissolved oxygen in Figure 6.6a indicate significant 

differences among the various calibrated models. At the extremes, the calibrated 

S2 model prolonged the degradation of oxygen for an additional day, relative to 

the ‘true’ model. Conversely, the calibrated S1 model preferred a degradation 

rate that depleted oxygen in less than three hours. In terms of denitrification (see 

Figure 6.6b), the best-ranked calibrated models (i.e. models S0*, S0, S5 and S6) 

were in very good agreement with the ‘true’ model, which required about 2.5 

years to fully degrade the nitrate concentrations from the initial contaminant 

release. Conversely, the poorly ranked models (i.e. models S2-S4) preferred 

rapid denitrification rates that fully degraded the contaminant source in less than 

6 months. As shown in Figure 6.6c, the sulfate reduction process of the true 

model was not well represented by models of simple (i.e. S5 and S6) or 

intermediate (i.e. S2-S4) complexity. 
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Figure 6.6: Comparison of simulated concentration profiles for the batch-reaction test 

problem. Profiles S0-S6 correspond to models S0-S6, calibrated using surrogate-model 
approach with an additional polishing step. Profile S0* is the S0 model calibrated using the 

PSO-regression hybrid. 

 
6.5.4 Calibration and Ranking of the Reactive-Transport Models 

Table 6.8 summarizes the AICc-based model rankings of the candidate 

reactive transport models. Overall, the model rankings were consistent across 

the various algorithms. Four of the five methods ranked model S5 best, and all 

algorithms also preferentially ranked models S0 and S1. Conversely, model S6 

was by far the worst ranked model and models S2 through S4 were given 

intermediate rankings.  Comparison of these rankings with the model 

configurations given in Table 6.5 suggests that while neglecting biokinetics 

entirely (i.e. model S6) was inadequate, inclusion of simple zero-order biokinetics 

(i.e. model S5) provided the best tradeoff between model complexity and quality 
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of fit. Additionally, for the selected reactive transport problem, it appears that 

approximating aerobic degradation and/or denitrification using first order kinetics 

(i.e. models S2-S4) was not favored.  

For the reactive transport problems, the AICc values of the multi-start 

regression were the lowest. Therefore, the corresponding MSR rankings were 

used to benchmark the rankings of the surrogate-model approach. Qualitatively, 

the rankings and AICc values of the basic surrogate-model approach were in 

good agreement with the MSR results. Applying a polishing step to the surrogate-

model approach quantitatively improved the AICc values of various candidate 

models, particularly models S0 and S2-S4. The resulting ‘polished’ model 

rankings match the multi-start regression rankings exactly. 

Table 6.8: AICc Model Rankings for the Candidate Reactive Transport Models 

Multi-Start 
Regression 

Particle 
Swarm 

Optimization 
Hybrid 
PSO 

Surrogate- 
model 

Approach 

Surrogate- 
model 

w/ Polishing 
Model 

ID 
AICc Rank AICc Rank AICc Rank AICc Rank AICc Rank 

S0 -764 2 -330 1 -395 3 -247 3 -763 2 
S1 -597 3 0.60 3 -438 2 -443 2 -443 3 
S2 3.11 4 9.75 5 3.13 5 827 5 3.11 4 
S3 3.15 5 6.47 4 3.11 4 207 4 3.14 5 
S4 128 6 138 6 128 6 1123 6 128 6 
S5 -769 1 -323 2 -767 1 -755 1 -770 1 
S6 1225 7 1225 7 1225 7 1225 7 1225 7 

 

Figure 6.7 compares the performance of the selected calibration 

algorithms, as applied to the set of candidate reactive transport models. With the 

exception of model S1, the surrogate-model approach required significantly fewer 

individual candidate-model evaluations, relative to non-surrogate approaches. 

Overall, the total evaluations required by the surrogate-model approach (3850) 

and the surrogate-model with polishing (4392) were significantly less than the 
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non-surrogate PSO  (7040), hybrid PSO (7467), and multi-start regression (8206) 

algorithms. Like the batch-reaction problems, the MSR algorithm tended to be 

the least efficient algorithm. However, unlike the batch-reaction problems, the 

MSR algorithm was highly effective when applied to the reactive transport 

problems.  

 
Figure 6.7: Comparison of Algorithm Performance for the Reactive Transport Models. 

Model evaluations are in hundreds. MSR – multi-start regression, PSO – particle swarm 
optimization, HYB – hybrid particle swarm optimization, SRG – surrogate model approach, 
SRG* - surrogate model approach with additional polishing step, configurations of models 

S0-S6 are given in Table 6.5. 

 
In terms of algorithm effectiveness, the various non-surrogate algorithms 

and the polished surrogate-model all tended to be equally effective.  The basic 
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surrogate-model approach was effective for most of the candidate models, but 

performed poorly on models S2 and S4.  In this regard, inspection of the 

surrogate-model behavior provided useful insight. Evidently, early algorithm 

exploration resulted in parameter configurations that favored the intermediate-

complexity biokinetics of models S2-S4. This early exploration quickly led the 

PSO calibration algorithm toward parameter configurations that favored the 

single-Monod biokinetics of the S1 model. For the majority of subsequent PSO 

iterations, the decision module continued to favor the S1 model. However, as the 

PSO progressed it began selecting parameter configurations in which the zero-

order simplification of the S5 model became more and more competitive with the 

single-Monod S1 model. Finally, in the late stages of the PSO algorithm, the 

decision module began favoring the S5 model. 

6.5.5 Comparisons of Calibrated and “True” Reactive Transport Models 

Figure 6.8 contains profiles of oxygen and nitrogen gas at the shallow well 

for the calibrated and ‘true’ reactive-transport models. As shown in Figure 6.8a, 

relative to the ‘true’ model, reactive transport of dissolved oxygen was well 

replicated by almost all of the calibrated candidate models. The lone exception is 

model S6, which neglected biokinetics. The nitrogen gas profiles in Figure 6.8b 

indicate that denitrification at shallow depths was just beginning at the end of the 

52-day simulation. Therefore, it is not surprising that the majority of the calibrated 

candidate models preferred to ignore denitrification by adjusting the relevant rate 

parameters toward zero. To allow for a more rigorous consideration of 

denitrification processes, a revised set of reactive-transport calibrations have 
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been undertaken.  These revised experiments extend the simulated reactive-

transport time period to one year, allowing for a more complete denitrification 

profile to develop throughout the 5-meter column. 

 
Figure 6.8: Comparison of simulated shallow-depth concentration profiles for the reactive 

transport problem. Profiles S0-S6 correspond to models S0-S6, calibrated using the 
surrogate-model approach, followed by an additional polishing step. 

 
6.6 Conclusions 

This study has introduced an integrated approach to the calibration, 

ranking and selection of alternative reactive transport models. The new method 

utilizes a surrogate-based approach, in which a suite of candidate reaction 

models is evaluated as surrogate representations of a more complex (and 

computationally expensive) model.  During automated calibration, an adaptive 

interpolation scheme is utilized to dynamically rank and select an appropriate 

model for a given configuration of calibration parameters. 

The new method was demonstrated using a set of hypothetical batch- and 

one-dimensional reactive transport scenarios. For both test problems, the 

surrogate-model approach was capable of efficiently and simultaneously 

performing the tasks of model ranking, selection and calibration. Additional 

experiments examined the effect of following up a surrogate-model calibration 



 

 128

with a relatively inexpensive regression-based polishing step.  Such polishing 

further enhanced both the accuracy of model rankings and the overall quality of 

model fits.  

In the regulatory and research communities, there has been increased 

interest in large-scale regional modeling of contaminant fate and transport. For 

example, models developed to support Total Maximum Daily Load (TMDL) 

analysis must often consider the contributions of surface and groundwater (both 

saturated and unsaturated) over a large spatial region. Furthermore, the role of 

groundwater in Nitrogen cycling is an important open science question (Holland 

et al., 2005) that will likely be addressed by the development of large-scale 

heavily-instrumented hydrologic observatories, such as those envisioned by the 

CUAHSI (Consortium of Universities for the Advancement of Hydrologic 

Sciences, Incorporated) and CLEANER (Collaborative Large-scale Engineering 

Assessment Network for Environmental Research) initiatives. As TMDL and 

nutrient cycling research proceeds, it is anticipated that selection and calibration 

of the associated complex, large-scale models will be desired. The surrogate-

model approach introduced here may be ideally suited for such activity. 
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7 SUMMARY AND CONCLUSIONS 

The objective of the research performed for this dissertation was to advance 

the state-of-practice of heuristic optimization, as applied to problems involving 

groundwater management.  This chapter summarizes the key contributions of the 

research. 

7.1 Contributions: Heuristic Optimization 

The use of heuristic optimization algorithms within the groundwater 

management community was advanced in several ways: 

 A rigorous examination and comparison of alternative heuristic and 

gradient-based algorithms, as applied to several important groundwater 

management problems, was performed.  For the considered problems, 

heuristic techniques tended to provide more robust performance, relative 

to gradient-based approaches. Following a heuristic search with a gradient 

based polishing step (as in the PSO-regression hybrid considered in 

Chapter 6) provided additional performance improvement.  

 A design-of-experiments technique for objectively tuning algorithm 

performance was introduced, and the technique was found to be a useful 

mechanism for performing robust algorithm comparisons.  These 

comparisons of tuned algorithm behavior and performance have led to 

novel insights into the physico-chemical processes governing the 

performance of multi-layer sorptive barriers. 

 Heuristic algorithms based on swarm intelligence were demonstrated to 

be readily adaptable to a variety of groundwater management problems, 
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including reactive transport calibration, multi-layer sorptive barrier design, 

and pump-and-treat aquifer remediation.  Such algorithms were readily 

parallelized and produced nearly linear speedup, making them suitable for 

large-scale optimization and/or calibration problems involving many 

parameters.  

 The calibration of reactive transport models containing a complex suite of 

biogeochemical reactions was examined.  Graphical analysis of slices 

through the calibration design space revealed a high degree of non-

linearity, with vast regions of insensitivity punctuated by localized areas of 

extreme sensitivity and multiple extrema.  Somewhat unsurprisingly, the 

gradient-based Levenberg-Marquardt regression method (a popular 

choice for calibrating groundwater flow models) had difficulty navigating 

the aforementioned reactive-transport calibration terrain.  Conversely, the 

PSO heuristic and a PSO-regression hybrid were demonstrated to be 

effective alternatives.  

 When combined with a novel surrogate-model scheme, heuristic 

algorithms were shown to be capable of simultaneously ranking, selecting 

and calibrating a suite of candidate reactive transport models. Such an 

approach was demonstrated to incur significantly less computational 

expense than traditional techniques, which involve a series of individual 

model calibrations, followed by model ranking and selection. 
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7.2 Contributions: Groundwater Management Applications 

Because realistic groundwater management problems served as the 

experimental framework for the aforementioned advancements in heuristic 

optimization, this research has also made several application-specific 

contributions:  

 Analytic element modeling engines were effectively employed as the 

underlying flow simulator for pump-and-treat optimization problems.  

Particular advantages of the AEM approach include the ability to directly 

represent well coordinates as continuous design variables and the 

availability of analytically computed head gradient constraints. While these 

features did not necessarily improve optimization results, they provided 

additional flexibility with regard to the choice of search algorithm and 

problem formulation.  

 The zone outflux constraint, a new plume containment constraint for 

pump-and-treat optimization, was introduced.  This constraint was shown 

to be effective and at least as efficient as the considered alternatives (i.e. 

head gradient and particle tracking constraints).  The analytic nature of the 

‘zone outflux constraint’ results in better plume containment, leading to 

improved reliability and eliminating the need for ‘constraint calibration’; a 

pre-optimization process that involves the determination of the appropriate 

number and location of particles and/or gradient control pairs. 

 Analysis of a set of sorptive landfill liner design problems revealed that 

barrier performance was sensitive to the order in which barrier layers were 
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assembled.  The precise nature of this sensitivity remains the topic of 

future research, and is probably related to isotherm modeling conventions. 

However, the discovery itself is an important contribution that highlights 

the value of simulation-optimization as a tool for developing insight into 

groundwater management applications. 

 Groundwater management applications commonly involve a variable 

number of design components (such as the number of wells in a pump-

and-treat system or the number of layers in a sorptive barrier system).  

When optimizing such applications using a simulation-optimization 

approach, the ability to eliminate unnecessary components was found to 

be an important criterion for search-algorithm selection. 

 A set of hypothetical (but realistic) reactive transport calibration problems 

were examined. Using carefully formulated and highly complex synthetic 

reference models, alternative models of varying complexity were 

developed and subjected to multi-model calibration, ranking and selection 

procedures.  Rankings of the calibrated models indicated a selection 

preference for models of high and low complexity, and a general disregard 

for models of intermediate-complexity. Graphical comparisons of 

calibrated concentration profiles supported such a model hierarchy. While 

these results are necessarily problem-specific, the counterintuitive nature 

of the model rankings underscores the usefulness of applying multi-model 

uncertainty analysis procedures to reactive-transport problems.  
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APPENDIX A: INITIAL SOFTWARE TESTS 

During initial software testing, particular attention was placed on the 

Levenberg-Marquardt regression algorithm and the calculation of calibration 

statistics and diagnostic measures, as these deterministic features are readily 

compared against existing software packages. 

A.1    West Valley Calibrations 

A series of calibrations were performed to support modeling of competitive 

cation exchange processes in a permeable reactive barrier (PRB) located at the 

West Valley Demonstration Project (WVDP) in Western New York (Rabideau et 

al., 2005b). Data from column experiments served as observations for 

calibrations in which values for species selectivity coefficients were estimated. A 

MOUSER (formerly known as TRANS1D) WVDP model was initially calibrated 

using UCODE (Chang, 2000), and the results served as a useful benchmark for 

subsequent calibrations utilizing selected OSTRICH algorithms (as shown in 

Table A.1). In Table A.1, LEV indicates the Levenberg-Marquardt algorithm, 

RMSE is the root mean squared error, Ry is the correlation between observed 

and simulated data, 2
NR  is a measure of residuals normality, est

KC , est
MgC , est

CaC , and 

est
SrC  are the calibrated selectivity coefficients for potassium (K), magnesium (Mg), 

calcium (Ca) and strontium (Sr), and the Clo and Chi terms represent upper and 

lower 95% confidence limits. The data in Table A.1 indicates good agreement 

between comparable UCODE and OSTRICH features, and also demonstrates 

that heuristics can be effective at solving calibration problems. 
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Table A.1: WVDP Calibration: Algorithm Comparisons 

 
 
A.2    AEM Calibration Paper 

Using the Ischua Creek drainage basin in Western New York as a case 

study site, Lim (2005) compared calibration results obtained using analytic 

element modeling (Rabideau et al., 2005) with those generated using finite 

difference flow modeling.  AEM-based models were calibrated using OSTRICH, 

while FD-based models utilized PEST. Allowing for differences between the flow 

model formulations, the calibration results qualitatively demonstrate good 

agreement between the PEST and OSTRICH regression algorithm (Levenberg-

Marquardt) and related statistical output (e.g. confidence intervals, parameter 

sensitivities, etc.). 

A.3    Sorption Isotherms 

Non-linear sorption isotherms, such as the Freundlich and Langmiur 

isotherms, are typically fit using trial-and-error or spreadsheet utilities, such as 

the MS Excel Solver add-in. In preparation of Bartelt-Hunt et al. (2005), isotherm 

fitting of laboratory sorption data was performed using both Solver and ISOFIT, 

an isotherm fitting code that utilizes OSTRICH. Results of the two isotherm fitting 
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approaches are given in Table A.2, which demonstrates that ISOFIT, which uses 

the PSO algorithm, discovers better (in terms of RMSE) Langmuir isotherm fits 

than the Solver package, which uses a gradient-based algorithm. 

Table A.2: Isotherm Fitting: ISOFIT and Solver Comparisons 

 
 
A.4    PEST And UCODE Comparisons 

The calibration exercise presented in the Visual Bluebird manual (Craig, 

2005) was solved using the PEST, UCODE, and OSTRICH implementations of 

the Levenberg-Marquardt regression algorithm. For the UCODE calibration, the 

Cook’s D and DFBETAS measures of influential observation were computed 

using the RESAN2K post-processing program (Hill et al., 2000), which uses a 

file-format that is consistent with UCODE output. Influential observation and 

linearity measures are not available (n/a) in the present version of PEST. Table 

A.3 summarizes the results from the various calibration packages, and the 

agreement between the packages suggests that the calibration and statistical 

components of OSTRICH are properly implemented. In Table A.3 K is the aquifer 

conductivity [m/d], N is the recharge [m/d] to a wetland region of the model, M2 is 
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Linssen’s linearity measure (Linssen, 1975), and the Cook’s D and DFBETAS 

rows identify influential observations and corresponding influence values. 

Table A.3: Groundwater Calibration: Program Comparisons 

 
 
A.5    Spring Problem Comparisons 

The problem described in Example 3-3 of Vanderplaats (2001) is an 

unconstrained optimization problem involving a series of springs and weights. 

The optimization determines the (x,y)-coordinates of the weights such that the 

potential energy (PE) of the spring system is minimized. Vanderplaats (2001) 

presents solutions obtained via the Fletcher-Reeves (FRV), Steepest-Descent 

(STP) and Powell (PWL) methods, and Table A.4 compares these solutions to a 

variety of algorithms implemented in OSTRICH. In Table A.4, X2 - X5 and Y2 - Y5 

are the optimized design variables, PE is the optimal objective function (potential 

energy), and ”Evals*” and ”Total” are the number of required PE evaluations, 

which Vanderplaats reports without including the cost of one-dimensional 

searches. Gradient-based methods utilize a one-dimensional search procedure 



 

 137

at each step of the optimization process, and comparisons among different 

methods are confounded if different procedures are used.  

The data in Table A.4 shows a close match between the Vanderplaats 

solutions and the equivalent OSTRICH gradient-based algorithms. The table also 

highlights the inefficiency of heuristic algorithms and underscores the importance 

of utilizing such methods only when gradient-based methods are found to be 

inadequate or inappropriate. 

Table A.4: Spring-Weight Optimization: Algorithm Comparisons 
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APPENDIX B: SUPPORTING INFORMATION FOR CHAPTER 4 

Appendix B provides more information on the pump-and-treat cost and 

constraint formulations described in Chapter 4, as well as a list of acronyms.  

Throughout the appendix, numbers in parentheses following variable definitions 

correspond to the values used in the study of Chapter 4 and brackets following 

these numbers define the associated units. In cases where two numbers are 

provided, the first number applies to the control problem, and the second to the 

complex problem. 

B.1    List Of Acronyms 

AEM  analytic element method 
 
APM  additive penalty method 
 
CG  conjugate gradient algorithm 
 
CG/AR conjugate gradient algorithm, with initial parameters values 

randomly assigned 
 

CG/EJ conjugate gradient algorithm, with initial parameter values assigned 
based on engineering judgment and a limited number of manual 
trial-and-error runs  
 

COPER cost function that considers operational costs only (such as energy, 
treatment, disposal and labor costs) 
 

COPER+ cost function that considers operational and capital (well installation 
and pump) costs 
 

CTOTQ   cost function that uses total pumping rate as a surrogate for cost 
 
EPM   exponential penalty method 
 
FD   finite difference 
 
FD/FE  finite difference and finite element 
 
FE   finite element 
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GA   genetic algorithm 
 
HGHA hydraulic gradient plume containment constraint formulation, using 

a high number of control points, distributed along the plume 
perimeter and computed analytically 

 
HGHN hydraulic gradient plume containment constraint formulation, using 

a high number of control points, distributed along the plume 
perimeter and computed numerically 

 
HGLA hydraulic gradient plume containment constraint formulation, using 

a low number of control points, distributed along the plume 
perimeter and computed analytically 

 
HGLN hydraulic gradient plume containment constraint formulation, using 

a low number of control points, distributed along the plume 
perimeter and computed numerically 

 
HGMA hydraulic gradient plume containment constraint formulation, using 

a medium number of control points, distributed along the plume 
perimeter and computed analytically 

 
HGMN hydraulic gradient plume containment constraint formulation, using 

a medium number of control points, distributed along the plume 
perimeter and computed numerically 

 
MPI  message passing interface 
 
MPM  multiplicative penalty method  
 
PAT  pump-and-treat 
 
PATO  pump-and-treat optimization 
 
PSO  particle swarm optimization algorithm 
 
PTHB particle tracking plume containment constraint formulation, using a 

high number of particles distributed throughout the plume body 
 
PTHP particle tracking plume containment constraint formulation, using a 

high number of particles distributed along the plume perimeter 
 
PTLB particle tracking plume containment constraint formulation, using a 

low number of particles distributed throughout the plume body 
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PTLP particle tracking plume containment constraint formulation, using a 
low number of particles distributed along the plume perimeter 

 
PTMB particle tracking plume containment constraint formulation, using a 

medium number of particles distributed throughout the plume body 
 
PTMP particle tracking plume containment constraint formulation, using a 

medium number of particles distributed along the plume perimeter 
 
PTOTAL a penalty function that accounts for the cost of various constraint 

violations (drawdown, capacity and plume containment) 
 
RND random search algorithm 
 
SA  simulated annealing algorithm 
 
ZONE  zone outflux plume containment constraint formulation 

 
B.2    System Cost  

Three cost functions were considered in this study: i) total pumping rate 

(CTOTQ), ii) operational costs only (COPER), and iii) both operational and capital 

costs (COPER+). The equations for these costs are derived from the formulations 

provided in Mayer et al (2002) and RS Means ECHOS (2004). 

B.2.1    Total pumping rate 

Minimization of the total pumping rate is often used as a surrogate for a 

rigorous cost minimization objective. For problems in which the system will be 

operated in the long term, this approximation is often adequate because 

operational costs (which are largely a function of pumping rate) will dominate 

capital costs.  

∑∑
==

+=
injext n

i
injiinj

n

i
extiextTOTQ QQC

1
,

1
, αα       (B.1) 

where CTOTQ is the cost as a function of total pumping rate; αext is a cost 

conversion factor for the total extraction rate (10.59, 53.98) [$-day/m3]; αinj is a 
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cost conversion factor for the total injection rate  (0.26, 1.59) [$-day/m3]; next is 

the number of extraction wells; ninj is the number of injection wells; Qi,ext is the 

rate of extraction of the ith extraction well; and Qi,inj is the rate of injection of the 

ith injection well. 

B.2.2    Operational costs 

Pump-and-treat operational costs reflect the ongoing cost of operating the 

pump-and-treat system. Like the total pumping rate cost, operational costs do not 

account for capital costs, making this an appropriate cost function for long-term 

operations-dominated systems. Unlike the CTOTQ formulation, the operational cost 

is a non-linear function of pumping rates (due to the additional consideration of 

lift), and may also be a function of the total number of wells (if maintenance, 

analytic and/or labor costs are included). 

[ ]TCCCCCC MDAELOPER ++++=      (B.2) 

where, COPER is the operational cost, CL, CE, CA, CD, and CM are the annual labor, 

energy, analytic, disposal and maintenance costs, respectively; and T is the 

remediation time frame (5 and 30 years for the control and complex problems, 

respectively). To be consistent with the community problems Mayer et al (2002), 

only energy costs are considered in this paper (i.e. CL=CA=CD=CM=0), and the 

formulation of CE is given in Equation B.3. 
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     (B.3)   

where β0 is the annualized energy cost conversion factor for extraction (0.11) [$-

day/year-m4], β1 is the annualized energy cost conversion factor for injection 
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(0.05) [$-day/year-m3], hi is the head at extraction well i, and Zgs,i is the ground 

surface elevation at the i-th extraction well. 

B.2.3    Operational and capital costs 

Operational and capital costs account for fixed (one-time) installation costs 

as well as ongoing operational costs. As such, the formulation of COPER+ adds 

capital cost terms to the operational cost defined previously. 

( ) )(32 extOPEROPER nNWCC ββ ++=+        (B.4) 

where, β2 is the per-well drilling cost (15258, 13511) [$/well]; NW is the number 

of active wells; β3 is the pump cost, assuming a design pumping rate of 553 

m3/day (4028, 3832) [$/pump]. 

B.3    Constraints 

The total constraint violation (PTOTAL) is computed as the sum of the 

violations of the three types of constraints considered in this study, namely 

capacity (PCPCY), drawdown (PDRAW) and plume containment (PPLUME). 

PTOTAL = PCPCY+PDRAW+PPLUME      (B.5) 

B.3.1    Capacity constraints 

Capacity constraints reflect a limit on the total pumping rate that can be 

handled by an existing treatment system. 
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where βCPCY is the cost-conversion factor (dollars per L3/T of excess) (100000) 

[$-day/m3];  Qtot is the net extraction rate (total extraction minus total injection); 

and Qmax is the maximum allowable extraction rate (2765, 3000) [m3/day]. 
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B.3.2    Drawdown constraints 

Drawdown constraints prevent the pump-and-treat system from 

dewatering the aquifer, and are assessed by examining the head near each well. 

If the head near a given well is reduced (via pumping) below some minimum 

allowable head level, a penalty is assessed. 

( )0,max min
1

i

NW

i
DRAWDRAW hhP −= ∑

=

β       (B.7) 

where βDRAW is the cost-conversion factor (dollars per length of excess) (100000) 

[$/m]; and hmin is the minimum allowable head (10, 1.5) [m]. 

B.3.3    Plume containment constraints 

Plume containment constraints use flow-model output to gauge the 

effectiveness of a given well-field design at controlling plume migration. Each 

experiment in this study considered one of three plume containment constraints: 

hydraulic gradient control, particle tracking, or zone outflux.  
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where, βHGRAD, βPTRK, and βZONE  arecost-conversion factors (100000) [$/m, $/m2, 

$-day/m3]; m is the number of gradient control constraints; n is the number of 

particle tracking constraints; PHGRAD,i is the penalty of the ith gradient control 

constraint; PPTRK,i is the penalty of the ith particle tracking constraint; and PZONE  is 

the zone outflux penalty. 

B.3.3.1    Gradient control constraints 

Gradient control constraints examine the head gradient at a given control 

location, and assess a penalty if the gradient is oriented away from the plume 
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interior. For numerical gradient computations, a pair of control points, one outside 

and one inside the plume is considered, and the constraint requires that the head 

outside the plume be greater than the head inside the plume, implying flow 

direction is towards the plume interior. 

( )
( ) analyticif,0max

numericalif,0max
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,,,

iiHGRAD

ioutiiniHGRAD

dhP

hhP
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−=
     (B.9) 

Where, hin,i and hout,i are the inside and outside head of the ith control pair and 

dhi is the analytically computed gradient at the ith control location (a positive 

value of dhi indicates flow away from the plume, and results in a constraint 

violation). 

B.3.3.2    Particle tracking constraints 

Particle tracking constraints advect a given particle from an initial location 

within the plume body or along the plume perimeter. If the particle is not within 

the plume boundary or captured by a well at the conclusion of the remediation 

time frame, then a penalty is assessed. 

⎩
⎨
⎧

=
plumeinsideparticle,0
plumeoutsideparticle,

i

i
2

,
i

iPCAP
dP       (B.10) 

Where di is the distance from the particle to the plume boundary. 

B.3.3.3    Zone outflux constraints 

The zone outflux constraint examines the total outflux ( +
ZFPF , as defined in 

Equation 4.3) across the perimeter of the plume and assigns a penalty if this 

outflux is non-zero. 

( )0,max += ZFPZONE FP         (B.11)  
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B.3.4    Objective functions 

The functional forms of the additive (FAPM), multiplicative (FMPM) and 

exponential (FEPM) penalty methods, as applied in this study, are given below. 

( ) TOTALAPM PCostYXQNWF +=,,,       (B.12) 

( ) ( )( )TOTALTOTALMPM PPCostYXQNWF += 1,max,,,     (B.13) 

( ) ( ) ( )TOTALTOTALEPM PPCostYXQNWF exp,max,,, =     (B.14) 

where T
NWQQQQ ],...,[ 21=  is a vector of pumping rates; T

NWxxxX ],...,[ 21=  is a 

vector of x-coordinates; T
NWyyyY ],...,[ 21=  is a vector of y-coordinates; and Cost 

is one of CTOTQ, COPER or COPER+. 

B.4    Parameter Bounds 

Tables B.1 and B.2 provide parameter bounds used in solving the PATO 
problems. 
 

 

Table B.1: Control Problem Parameter Bounds 
Parameter Min value Max value Units 

Qi -553 553 m3/day 
Xi 189 328 m 
Yi 495 769 m 

NW 1 5 n/a 
 

Table B.2: Complex Problem Parameter Bounds 
Parameter Min value Max value Units 

Qi 0 550 m3/day 
Xi 1112 1624 m 
Yi 1619 2031 m 

NW 1 19 n/a 
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APPENDIX C: SUPPORTING INFORMATION FOR CHAPTER 5 
 

C.1    Multi-Layer Sorptive Landfill Liner Optimization  

In general, landfill leachate is composed of one or more contaminants that 

have a range of sorptive and chemical properties. As shown in Figure C.1, 

leachate transport is mitigated by a sequence of one or more layers that form the 

landfill liner. The goal of liner design is to determine the liner configuration that 

minimizes leachate transport (preventing migration to human and/or animal 

receptors) at the lowest financial cost. In such problems, design variables include 

the number, ordering, and material composition of the layers; and in the 

considered problems, multiple sorptive layer amendments were considered.   

 
Figure C.1: Example multi-layered sorptive landfill liner design 

 
C.2    Taguchi DOE Method  

Figure C.2 contains example factor interaction plots. In Figure C.2a, 

factors A and B interact and the optimal factor-level settings would be A2 and B2, 

corresponding to the peak point of the four interaction lines. In Figure C.2b, none 
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of the lines intersect, suggesting that no interaction is occurring. In this case, the 

optimal factor-level settings for C and E would be assigned using main-effects 

analysis. 

 
Figure C.2: Illustrative factor interaction plots.  

(a) plot showing interaction between Factors A and B,  
(b) plot showing no interaction between Factors C and E 

 
C.3    Views of the Design Space  

A primary justification for the use of heuristic (global search) algorithms to 

solve the considered multi-layer sorptive landfill liner problems is the presence of 

multiple local minima, as illustrated by the one-dimensional slices of design 

space plotted in Figure C.3. 
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Figure C.3: One dimensional slices of the design space,  
highlighting the non-linear and discrete-valued nature  

of the sorptive barrier problem, as formulated in this study. 

 
C.4    Solute Transport Model  

The movement of leachate through a multi-layered sorptive landfill liner 

can be modeled as transient one-dimensional solute transport through low-

permeability sorptive material(s). Assuming equilibrium sorption, the governing 

advective-dispersive-reactive (ADR) equation for transport of a single solute 

through a single layer is given in Equation C.1. 
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where C is the aqueous phase leachate (either TCE, Benzene, or 1,2-DCB, 

depending on liner problem) concentration [mg/L], t is time [s], z is the distance 

from the top of the layer [m], v is the fluid velocity [m/s], D is the dispersion 

coefficient, incorporating both hydrodynamic dispersion and molecular diffusion 

[m2/s], ρb is the bulk dry density of the layer material [kg/m3], n is the porosity of 

the layer material [dimensionless], and S is the sorbed phase leachate 

concentration [mg/kg]. As written, the ADR equation contains two unknowns 
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(aqueous and sorbed concentrations) and isotherm expressions describing the 

partitioning of solute between these two phases are used to close the system. 

For a given combination of sorptive amendment and solute, isotherm selection 

(e.g. Langmuir, Freundlich or Linear) and configuration of relevant isotherm 

parameters is accomplished by regression against experimental data, as 

reported in Bartelt-Hunt et al. (2005).  When multiple layers consisting of different 

sorptive material compositions are considered, the sorption isotherms and 

parameters are spatially variable and numerical solution of the ADR equations is 

required.  Therefore, leachate transport was solved numerically using a version 

of the MOUSER (Rabideau, 2003) software, modified to support multiple layers. 

The following boundary and initial conditions were applied: the top of the liner 

was treated as a constant 10 mg/L source of leachate while the concentration 

just below the liner and the initial concentration within the liner were set to 0 

mg/L. Usage of a zero concentration boundary below the liner induces a 

maximum diffusive gradient, corresponding to a worst-case transport scenario in 

a diffusion-dominated system, and results in conservative liner designs 

(Rabideau and Khandelwal, 1998). Due to differences in the material properties 

of their respective contaminants (benzene, 1,2-DCB or TCE), the three 

considered problems yielded different optimal liner configurations. Relevant 

characteristics of these contaminants are: sorption behavior with respect to each 

sorptive amendment (defined in terms of empirical isotherm parameters), 

solubility, and liquid diffusion coefficient. Assumed values for these 
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characteristics were taken from previously published studies (Bartelt-Hunt et al, 

2005 and in press). 

C.5    Overview of Experimental Setup 

Figure C.4 provides an overview of the numerical experiments performed 

in the study. As shown in the figure, a given heuristic algorithm searched for the 

optimal liner design by performing repeated executions of a solute transport 

model. Transport output was forwarded to a constraint-integration step that 

determined whether the given design violated constraints, in which case the 

design was considered infeasible and a penalty was assessed to the overall liner 

cost. Overarching the optimization process was a set of Taguchi DOE tuning 

experiments, where analysis of algorithm performance provided the optimal 

configuration of algorithm and penalty parameters. After completing the DOE 

experiments, tuned algorithms were utilized in a set of confirmation optimizations 

and these results facilitated a rigorous comparison and evaluation of the various 

algorithms with respect to each of the three organic solutes.  

C.6    Summary of Numerical Experiments  

Transport simulation was performed using an explicit finite-difference time-

step formulation coupled with an operator splitting technique, and in which each 

layer is spatially discretized into 10 grid cells. Equilibrium sorption was assumed 

in all simulations, and a typical simulation of 100 years of leachate transport 

required 0.8 seconds of computation time and had a mass balance error of less 

than 5%.  All optimizations were performed using OSTRICH (Matott, 2005) and 

experiment samples were run in parallel on Linux-based computing clusters 
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maintained by the University at Buffalo Center for Computational Research 

(CCR).  Access to the CCR clusters is via a Portable Batch System (PBS) 

resource manager and Maui scheduler, and programs are parallelized using the 

industry standard Message Passing Interface (MPI) specification (Gropp et al, 

1999). The utilized clusters consist of 32 1-GHz Intel Pentium III processors with 

256-kB cache and 1-GB of 32-bit wide RAM, and 24 3.2-GHz Intel Pentium IV 

processors with 1-MB cache and 4-GB of 64-bit wide RAM. All processors run 

version 7.3 of the Red Hat Linux operating system. These parallel clusters were 

also utilized to perform an exhaustive search of the design space of all three 

problems, a process that established ‘true’ optimality for each of the considered 

problems. 

 
Figure C.4: Overview of the Experimental Setup. 

(DOE = design of experiments, BGA = binary-coded 
genetic algorithm, RGA = real-coded genetic  

algorithm, PSO = particle swarm optimization,  
SA = simulated annealing, TCE = trichloroethylene,  

DCB = dichlorobenzene, APM = additive penalty method,  
MPM = multiplicative penalty method) 
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C.7    Results  

Table C.1 summarizes the optimal parameter settings and corresponding 

optimal performance for each algorithm and solute type. 

Table C.1: Summary of tuned parameter settings 
Binary-Coded Genetic Algorithm 

Solute 
Penalty 
Method 

Penalty 
Weight 

Pop. 
Size 

Number of 
Generations 

Number 
of 

Elites 
Mutation Rate Perform-

ance 

System
Cost 

($/m2) 
MOUSER

Runs 
Benzene MPM $1/ug 100 100 3 15% 95.00 $34.27 10,100 
1,2-DCB APM $1/ug 50 20 3 15% 99.38 $16.66 1,050 

TCE APM $1/ug 50 50 3 15% 98.55 $8.66 2,550 

Real-Coded Genetic Algorithm 

Solute 
Penalty 
Method 

Penalty 
Weight 

Population 
Size 

Number of 
Generations 

Number 
of 

Elites 
Mutation Rate Perform-

ance 
System

Cost 
MOUSER

Runs 
Benzene MPM $1/ug 50 50 3 15% 89.68 $41.86 2,550 
1,2-DCB MPM $1/ug 100 50 3 15% 97.37 $16.66 5,100 

TCE MPM $1/ug 50 50 3 15% 87.16 $16.26 2,550 

Particle Swarm Optimization 

Solute 
Penalty 
Method 

Penalty 
Weight 

Swarm 
Size 

Number of 
Generations 

Inertia
Weight 

Cognitive
Weight 

Social
Weight Perform-

ance 
System

Cost 
MOUSER

Runs 
Benzene APM $1/ug 100 100 2 4 1 90.55 $38.00 10,100 
1,2-DCB MPM $1/ug 50 20 2 1 4 99.48 $16.66 1,050 

TCE APM $1/ug 100 50 2 4 4 97.39 $8.66 5,100 

Simulated Annealing 

Solute 
Penalty 
Method 

Penalty 
Weight 

Equilibration 
Steps 

Temperature
Reductions 

Melting
Trials 

Cooling Rate Perform-
ance 

System
Cost 

MOUSER
Runs 

Benzene MPM $10/ug 50 100 20 20% 88.27 $41.98 5,120 
1,2-DCB APM $10/ug 50 100 20 20% 97.36 $16.66 5,120 

TCE APM $1/ug 20 100 50 50% 87.36 $16.26 2,150 
 

Table C.2 compares the tuning and main-effects confirmation runs against 

ANOVA-generated lower confidence limits on predicted performance.  Figure C.5 

compares the number of feasible designs having 4, 5, and 6 active layers, for 

each of the landfill liner design problems (distinguished by the type of organic 

solute).   
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Table C.2: Comparison of tuning results against lower confidence limit on predicted 
performance. Ymain and Yinter are the confirmation performances of the main-effects and 
interaction tuning procedures, respectively, and YLCL is the lower confidence limit of the 
tuned performance. 

Leachate 
Composition Algorithm Penalty 

Method Ymain Yinter YLCL Ymain > YLCL? Yinter > YLCL? 

APM 90.00 95.00 92.95 no yes BGA MPM 90.00 95.00 90.19 no yes 
APM 90.00 90.55 73.53 yes yes PSO MPM 86.09 90.09 82.70 yes yes 
APM 81.02 88.73 84.49 no yes RGA MPM 80.77 89.68 83.38 no yes 
APM 88.42 88.88 93.68 no no 

Benzene 
 

SA MPM 83.99 88.27 81.61 yes yes 
APM 98.66 99.38 83.16 yes yes BGA MPM 97.45 99.18 92.08 yes yes 
APM 97.48 98.95 87.73 yes yes PSO MPM 98.68 99.48 89.36 yes yes 
APM 94.84 97.27 91.38 yes yes RGA MPM 94.84 97.37 90.95 yes yes 
APM 97.05 97.36 95.34 yes yes 

1,2-DCB 

SA MPM 89.94 97.20 91.53 no yes 
APM 97.83 98.55 95.96 yes yes BGA MPM 87.80 99.10 100.68 no no 
APM 94.95 97.39 92.12 yes yes PSO MPM 94.65 97.30 83.77 yes yes 
APM 85.72 87.16 84.08 yes yes RGA MPM 85.71 87.16 87.01 no yes 
APM 83.41 87.36 82.75 yes yes 

TCE 

SA MPM 83.37 87.72 82.06 yes yes 
16 22  Total 

Within 67% 92% 

 

 
Figure C.5: Feasible solutions as a function of the number of active layers 
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APPENDIX D: SUPPORTING INFORMATION FOR CHAPTER 6 

For the fully-kinetic reaction formulation considered in Chapter 6, the 

expressions that make up the system of ordinary differential equations take the 

form given in Equation D.1: 
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where, a is 0 if species Ci is a reactant in reaction Rj, or 1 if Ci is a product in Rj, b 

is the stoichiometric coefficient of Ci in Rj (or 0 if Ci does not appear in Rj), and Rj 

corresponds to the rate expression of the j-th reaction, numbered in accordance 

with the reaction network given in Table 6.1.  In Equation D.1, Ci is an element of 

C, a vector of up to 65 rate-dependent species concentrations: 
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Note that in the transport model, only the following 12 species were considered: 

H+, OH-, CO2, HCO3
-,  CO3

-2, DOC,  O2, NO3
-, N2, Ca+2,  Mg+2, and Cl-. 
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D.1    Microbially-mediated Reactions 

Rate expressions for the microbially-mediated reactions (R1 through R5), 

depend on the level of model complexity and are of the form: 
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or,][ jjjj EkR φ=         (D.3c) 

jjj kR 'φ=          (D.3d) 

where, Rj is a rate expression for the j-th microbial reaction using a dual-Monod 

(D.3a), single-Monod (D.3b), first-order (D.3c), or zero-order formulation (D.3d), 

[Ej] is the electron acceptor concentration, such that 

[ ]][)],()([)],([],[],[ 2
43232

−−= SOsOHFesMnONOOTE , jkmax , j
Sk , and j

Ek  are multiple-

Monod parameters, jk '
max and j

Ek '  are single Monod-parameters, kj is a first order 

biodegradation rate, k’j is a zero-order biodegradation rate, and φj is an inhibition 

function which enforces a sequential utilization of electron acceptors. The 

inhibition functions are given below: 
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D.2    Inorganic Redox Reactions  

Complex rate expressions for the inorganic redox reactions (R6 through 

R12) are of the form given in Equation 6.15 of the manuscript. A full elaboration of 

the resulting equations is given below: 
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]][[ 2299 SHOkR =         (D.11) 

)](][[ 21010 sFeSOkR =        (D.12) 

)](][[ 221111 sMnOSHkR =        (D.13) 

)]()(][[ 321212 sOHFeSHkR =        (D.14) 

D.3    Aqueous Equilibrium Chemistry 

Rate expressions for aqueous equilibrium chemistry (R13 through R37), are 

of the form given in Equation D.15: 
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where, f
jk and b

jk are the respective forward and backward rate constants for the 

j-th reaction, LHSj and RHSj are the respective number of species on the left-

hand and right-hand sides of reaction j, as written in Table 6.1, [Al,j] is the 

concentration of the l-th left-hand side species in Rj, which has stoichiometric 



 

 157

coefficient cl,j, and [Ar,j] is the concentration of the r-th right-hand side species in 

Rj, which has stoichiometric coefficient cr,j. 

D.4    Mineral Precipitation and Dissolution 

Rate expressions for mineral precipitation and dissolution (R38 through 

R42), are of the form given in Equation D.16: 
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where, f
jk and b

jk are the respective forward and backward rate constants for the 

j-th reaction, RHSj is the number of dissolution species for reaction j, [Ar,j] is the 

concentration of the r-th dissolution species in Rj, and φj is an inhibition term that 

disables the reaction if conditions are unsaturated and the solid phase material of 

Rj is not present. 

D.5    Linear Partitioning 

The rate expression for organic carbon partitioning (R43) is given in 

Equation D.17. 

][)]([ 24324343 OCHkadsOCHkR bf −=       (D.17) 

D.6    Surface Complexation 

Rate expressions for surface complexation reactions (R44 through R52), 

are of the form given in Equation D.18: 
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where, f
jk and b

jk are the respective forward and backward rate constants for the 

j-th reaction, ψ  is the activity of the surface potential (computed using Equation 
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D.21), dzj is the net change in surface charge resulting from reaction j as it 

proceeds from left-to-right, as expressed in Table 6.1, LHSj and RHSj are the 

respective number of species on the left-hand and right-hand sides of reaction j, 

as written in Table 6.1, {Al,j} is the activity of the l-th left-hand side species in Rj, 

and {Ar,j} is the activity of the r-th right-hand side species in Rj. If a given Al,j or Ar,j 

is an aqueous-phase constituent, then the activity equals the concentration ({A} = 

[A]), otherwise, for surface components, the activity is the mole fraction of the 

given surface site-type that is occupied (e.g. ]/[][ ww HFOTOTOHHFO ≡≡ , 

]/[][ ss HFOTOTOHFO ≡≡ − , etc., where expressions for ][ wHFOTOT ≡  and 

][ sHFOTOT ≡  are given in Equations D.19 and D.20).  Note that the exponents of 

the ψ  terms are such that positive values of dz match 1/ψ  with f
jk , while 

negative values match 1/ψ  with b
jk . 
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For surface complexation reactions, the activity of the surface potential (ψ) is 

computed using Equation D.21 and is a function of solution temperature (T, 

degrees Kelvin), the ionic strength of the solution (I), and the charge density of 

the surface (σ). 
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where, e is the dielectric constant of water (78.5), e0 is the permittivity of free 

space (8.854×10-12 C2/m-J), R is the gas constant (8.314 J/mol-K), and σ is 

computed using Equation D.22: 
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where, F is the Faraday constant (96493.5 C/mol), and SAHFO is the surface area 

of the surface complex material (m2), and the term in parentheses is the net 

charge of the surface material, summed over both the weak and strong surface 

sites. 

D.7    Ion Exchange 

Rate expressions for ion exchange reactions (R52 through R58), are of the 

form given in Equation D.23: 
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where, f
jk and b

jk are the respective forward and backward rate constants for the 

j-th reaction, LHSj and RHSj are the respective number of species on the left-

hand and right-hand sides of reaction j, as written in Table 6.1, {Al,j} is the activity 

of the l-th left-hand side species in Rj, which has stoichiometric coefficient cl,j, and 

{Ar,j} is the activity of the r-th right-hand side species in Rj, which has 

stoichiometric coefficient cr,j.  If a given Al,j or Ar,j species is an aqueous-phase 

constituent, then activity equals concentration ({A} = [A]), otherwise, for exchange 

components, activity is the equivalent fraction of the given exchange species 



 

 160

(e.g. ]/[][ CECNaX , ]/[][ CECKX , ]/[][2 2 CECCaX× , or ]/[][2 2 CECMgX× , where 

[CEC] is computed using Equation D.24. 

][][][2][2][ 22 KXNaXCaXMgXCEC +++=     (D.24) 

D.8    Equilibrium Reaction Rates 

Forward and backward reaction rates (in log10 units) for all equilibrium 

reactions (R13-R58) are given in Table D.1. 

 

Table D.1: Equilibrium Reaction Rates 

Rate Value 
(log10) 

Rate Value 
(log10) 

Rate Value 
(log10) 

Rate Value 
(log10) 

fk13  0.000 * 
fk25  3.224

fk37  9.252
fk49  2.518 

bk13  14.000 * 
bk25  0.000

bk37  0.000
bk49  -4.772 

fk14  10.329 * 
fk26  11.435

fk38  0.000 *
fk50  -4.772 

bk14  0.000 * 
bk26  0.000

bk38  8.480 *
bk50  4.158 

fk15  6.352 * 
fk27  2.980

fk39  0.000
fk51  0.228 

bk15  0.000 * 
bk27  0.000

bk39  11.130
bk51  1.178 

fk16  0.000 
fk28  11.399

fk40  0.000
fk52  0.228 

bk16  6.994 
bk28  0.000

bk40  10.890
bk52  0.628 

fk17  0.000 
fk29  1.270

fk41  0.000
fk53  0.700 

bk17  12.918 
bk29  0.000

bk41  16.833
bk53  0.000 

fk18  1.988 
fk30  0.250

fk42  0.000
fk54  0.800 

bk18  0.000 
bk30  0.000

bk42  4.580
bk54  0.000 

fk19  2.300 
fk31  0.000

fk43  0.000
fk55  0.600 

bk19  0.000 
bk31  9.500

bk43  2.019
bk55  0.000 

fk20  2.370 
fk32  4.380

fk44  4.120
fk56  0.600 

bk20  0.000 
bk32  0.000

bk44  -3.170
bk56  0.000 

fk21  0.700 
fk33  2.000

fk45  -2.170
fk57  0.800 

bk21  0.000 
bk33  0.000

bk45  0.810
bk57  0.000 

fk22  0.850 
fk34  0.610

fk46  -3.170
fk58  0.200 

bk22  0.000 
bk34  0.000

bk46  5.760
bk58  0.000 
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Rate Value 
(log10) 

Rate Value 
(log10) 

Rate Value 
(log10) 

Rate Value 
(log10) 

fk23  2.250 
fk35  4.900

fk47  -3.170
bk23  0.000 

bk35  0.000
bk47  5.400

fk24  2.250 
fk36  1.950

fk48  -3.170
bk24  0.000 

bk36  0.000
bk48  0.330

 

Rates were assigned such that Kf/Kb are consistent with Parkhurst and Appelo 
(1999) 
* - reaction and corresponding rate were used in the transport model 

 

D.9    “True” Kinetic Reaction Rates 

Reaction rates of the kinetic terms (R1-R12) that were assigned to the 

“true” model and utilized to generate synthetic observation data are given in 

Table D.2.  

Table D.2: Kinetic Reaction Rates of the "True" Models 
(only the first column of rates applies to the transport model) 

Rate Value 
(log10) 

Rate Value 
(log10) 

Rate Value 
(log10) 

Rate Value 
(log10) 

1
maxk  -10.638 a 

3
maxk  -10.437 a

5
maxk  -10.823 b k9 -2.295 c 

1
Sk  -5.000  a 

3
Sk  -5.000 a

5
Sk  -3.699 b k10 -2.721 c 

1
Ek  -4.801 a 

3
Ek  -6.400 a

5
Ek  -3.495 b k11 -3.198 c 

2
maxk  -10.738 a 

4
maxk  -10.437 a k6 -0.499 c k12 -3.596 c 

2
Sk  -5.000 a 

4
Sk  -5.000 a k7 -0.499 c

2
Ek  -4.801 a 

4
Ek  -4.801 a k8 -4.499 c

 

Literature sources 
 a – Abrams and Loague (2000), b – Watson et al. (2003) , c – Hunter et al. 
(1998) 
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