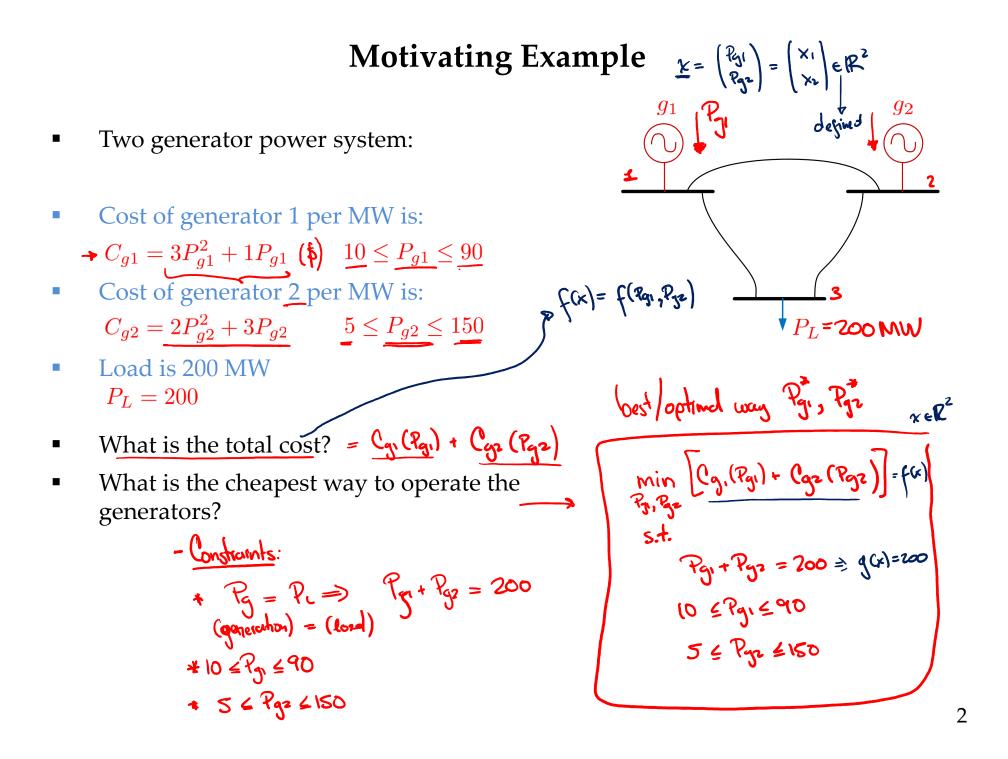
EE 459/611: Smart Grid Economics, Policy, and Engineering

Lecture 3: Linear Algebra and Multi-Variable Calculus Review

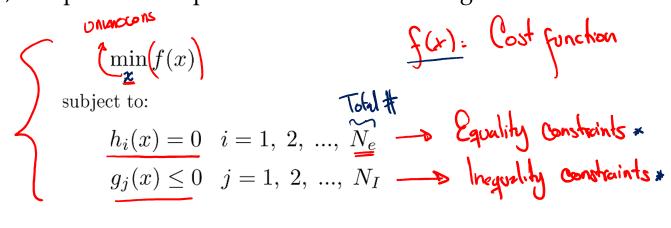
Luis Herrera Dept. of Electrical Engineering University at Buffalo

Fall 2020

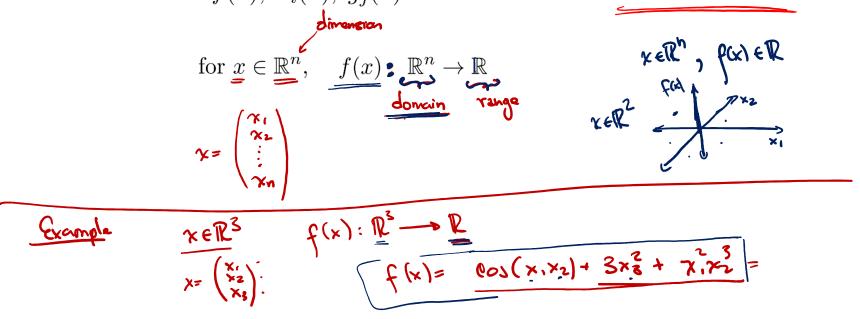


Motivating Example

In general, an optimization problem has the following form:

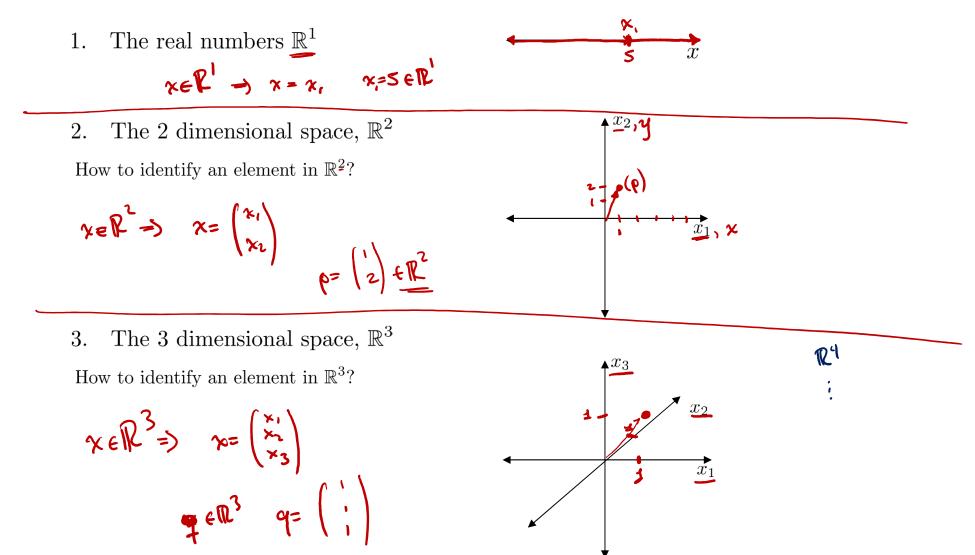


• The functions f(x), $h_i(x)$, $g_j(x)$ can be functions of several variables!



Real Vector Spaces

Consider some examples of vector spaces and their notations:



Addition, Subtraction, and Scalar Multiplication

• Assume that we are in \mathbb{R}^3 , consider the following operations: $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \begin{pmatrix} y_1 \\ x_1 \end{pmatrix} \overset{(y_1)}{x_1} \overset{(y_2)}{x_1} \overset{(y_1)}{x_2} \overset{(y_2)}{x_1} \overset{(y_2)}{x_2} \overset{(y_2)}{x_2}$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \qquad y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

• Addition:

$$\underline{x, y \in \mathbb{R}^3} \qquad \underline{x+y} = \begin{pmatrix} \underline{x_1 + y_1} \\ x_2 + y_2 \\ \underline{x_3 + y_3} \end{pmatrix} = \begin{pmatrix} \underline{z_1} \\ z_1 \\ \underline{z_3} \end{pmatrix} = \underline{z \in \mathbb{R}^3}$$

• Scalar Mult.:

$$\underline{\alpha \in \mathbb{R}, \ x \in \mathbb{R}^3} \quad \alpha x = \alpha \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \\ \alpha x_3 \end{pmatrix}$$

• Subtraction:

$$x, y \in \mathbb{R}^3 \qquad x - y = \begin{pmatrix} x_1 - y_1 \\ x_2 - y_2 \\ x_3 - y_3 \end{pmatrix} = \times + (-iy) - z \in \mathbb{R}^3$$

Inner Product in Rⁿ

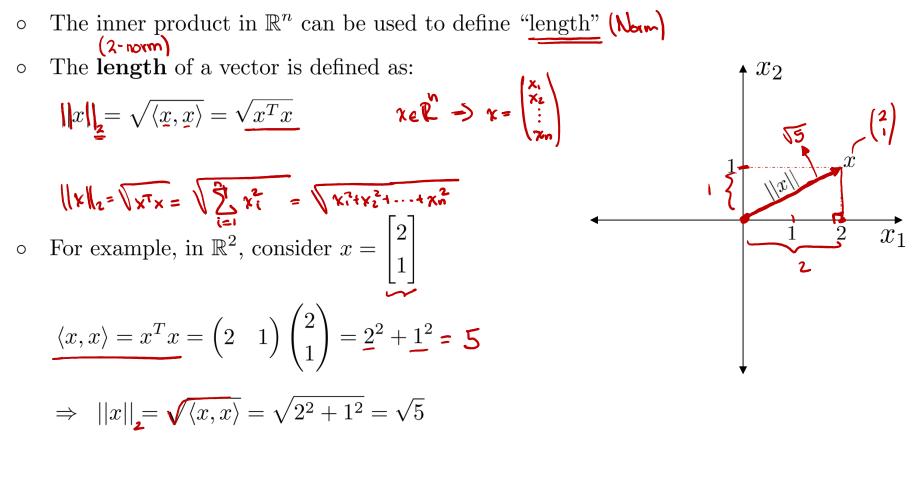
• Consider two vectors
$$x, y \in \mathbb{R}^n$$
, the inner product is:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \quad \langle \dot{x}, \dot{y} \rangle = x^T y = (x_1 \quad x_2 \quad \cdots \quad x_n) \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
• Example
• Example

ιP

$$\underline{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \underline{y} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \implies \qquad (x_1 y) = x^T y = (1 \ 2 \ 5) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \qquad (x_1 y) = x^T y = (1 \ 2 \ 5) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \qquad (4) + 2(5) = 7 \ (32)$$

2-Norm in Rⁿ



$$\|\chi\|_2^2 = \chi^T \chi = \langle \chi, \chi \rangle$$

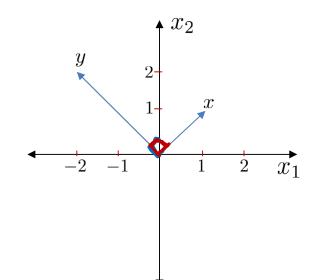
Geometry/Angle Between Vectors

• We can also compute the "**angle**" between two vectors
$$x, y \in \mathbb{R}^{n}$$

 $\mathbf{x} \mathbf{y} = ||\mathbf{x}||_{2} ||\mathbf{y}||_{2} \cos(\theta) = \mathbf{x} \mathbf{y}^{T} \mathbf{y}$
 $\Rightarrow \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}||_{2} ||\mathbf{y}||_{2}} = \cos(\theta) \Rightarrow \cos^{-1}\left(\frac{\mathbf{x}^{T} \mathbf{y}}{||\mathbf{x}||_{2} ||\mathbf{y}||_{2}}\right) = \theta *$
• Example, find the angle between $x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, y = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
 $(\mathbf{x}, \mathbf{y}) = x^{T} \mathbf{y} = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \underline{6}$
 $||\mathbf{x}||_{\mathbf{z}} = \sqrt{x^{T} \mathbf{x}} = \sqrt{5}$
 $||\mathbf{y}||_{\mathbf{z}} = \sqrt{y^{T} \mathbf{y}} = \sqrt{y^{T} \mathbf{y}} = \sqrt{8}$
 $\Rightarrow \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}||\mathbf{y}||} = \frac{6}{\sqrt{5\sqrt{8}}} = \cos(\theta)$
 $\Rightarrow \theta = \cos^{-1}\left(\frac{6}{\sqrt{5\sqrt{8}}}\right) \approx \underline{18}^{0}$

Geometry/Angle Between Vectors

• Show that
$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $y = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ are orthogonal
 $x^{T}y = (1 \quad 1) \begin{pmatrix} -2 \\ 2 \end{pmatrix} = -2+2 = 0$
 $\Rightarrow \quad x \perp y$



Matrices

• **Definition:** A *matrix* is an *m* by *n* array of scalars from a field \mathbf{F} (e.g. \mathbb{R})

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \qquad A \in \mathbb{F}^{m \times n}$$

• A can also be written as
$$A = [a_{ij}]$$

• The element a_{ij} is located in the *i*th row and *j*th column
• first row

- If *m=n* the matrix is said to be *square*
- That is, the number of rows and columns are equal
- Example, a 3x3 matrix

$$A = \begin{pmatrix} 2 & 3 & 9 \\ -9 & 6 & 1 \\ 2 & 5 & 3 \end{pmatrix} \qquad A \in \mathbb{R}^{3 \times 3}$$

Matrix Transpose

Transpose: The transpose of a matrix is obtained by interchanging the rows and columns of it.
 ○ If matrix A ∈ ℝ^{m×n}, the transpose A^T ∈ ℝ^{n×m}

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad \Rightarrow \quad A^T = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

Examples:

• Let
$$A_1 = \begin{pmatrix} 7 & 2 \\ -1 & 4 \end{pmatrix}$$
, $A_1^T = \begin{pmatrix} 7 & -1 \\ 2 & 4 \end{pmatrix}$

• Let
$$B = \begin{pmatrix} 7 \\ 2 \\ 3 \\ 4 \\ -1 \end{pmatrix}$$
, $B^T = (7 ? \cdots)$
 $B \in \mathbb{R}^{5 \times 1}$

Matrix Algebra: Addition and Subtraction

• Matrix addition and subtraction: let $A = [a_{ij}], B = [b_{ij}]$ be matrices of the same size

$$C = A \pm B \Rightarrow c_{ij} = a_{ij} \pm b_{ij}$$

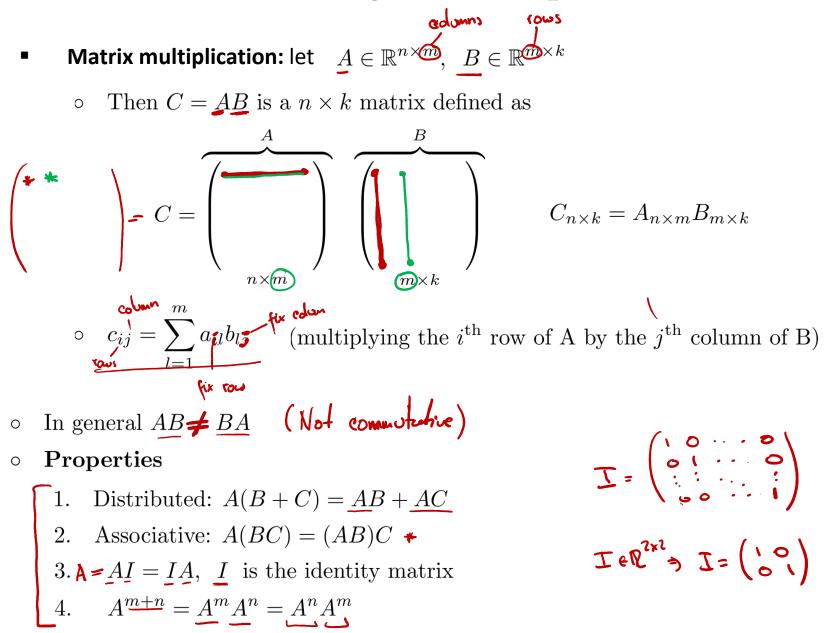
 \circ **Properties**

• **Example:**
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 8 & 9 & 10 \\ 11 & 12 & 13 \end{pmatrix}$$

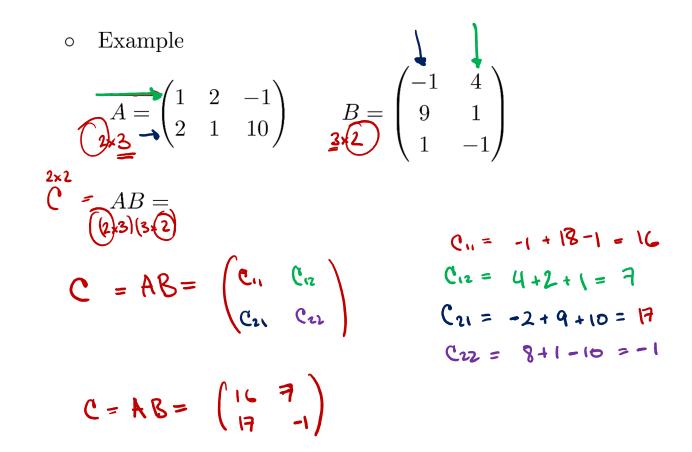
$$\circ \quad C_1 = \underline{A + B} = \begin{pmatrix} |+8 & 2+9 & 3+10 \\ |+11 & 5+12 & 6+15 \end{pmatrix} = \begin{pmatrix} 9 & 11 & 13 \\ |5 & 17 & 19 \end{pmatrix}$$

$$\circ \underbrace{C_2 = B - A =}_{(A - A)} \left(\begin{array}{c} \overleftarrow{A} & \cdots & \overleftarrow{A} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{array} \right)$$

Matrix Algebra: Multiplication



Matrix Algebra: Multiplication



Matrix Determinant

- It is useful to characterize matrices by a single number such as the **determinant**
- Denote A_{ij} the submatrix defined by eliminating the *i* row and *j* column

$$det(A) = \sum_{\substack{j=1\\j=1}}^{n} (-1)^{i+j} a_{ij}^{ij} det(A_{ij}) = \sum_{\substack{j=1\\j=1}}^{n} (-1)^{i+j} a_{jj}^{ij} det(A_{ji}) \quad \forall i \text{ (pick any row or column!)}$$

$$\circ \quad det[a_{11}] = \bigcup_{\substack{j=1\\j=1}}^{l} (-1)^{i+j} a_{ij}^{ij} = (-1)^{i+j} a_{ij}^{ij} det(A_{ji}) \quad \forall i \text{ (pick any row or column!)}$$

$$\circ \quad det[a_{11}] = \bigcup_{\substack{j=1\\a_{21}\a_{22}\a_{23}\\a_{31}\a_{32}\a_{33}\a$$

Nonsingular Matrices

A matrix is said to be *nonsingular* if it produces the output 0, only for the input 0 Ael nxn xel Ax=0 iff x=0 if A is nonsingular Ax = 0 iff x = 00 For $A \in \mathbb{R}^{n \times n}$, the inverse is defined as $A^{-1} \Rightarrow A^{-1}A = AA^{-1} = I$ If a matrix is *nonsingular* then it is *invertible* Ο System of Lineov Equetions Equivalent conditions for non-singularity: A'(Ax = b)Unknowns if A is nonsingular = det(A) = 0 X = A'Ax = A'bT A is nonsingular Ο Ax = 0 iff x = 0Ο A^{-1} exists Ο $\det(A) \neq 0 \quad (\clubsuit$ 0 • Let $A \in \mathbb{F}^{n \times n}$ (square matrix). If det(A) = 0 then A is singular is A doesn't exist. > \rightarrow Ax= b but det (A) = 0 > A' doent exist >? 16

Matrix Inversion

• Let A be an $n \times n$ matrix. The inverse of A denoted as A^{-1} also $n \times n$ satisfies:

$$A^{-1}A = AA^{-1} = I$$

• If A^{-1} exists, then A is nonsingular and $\underline{\det(A) \neq 0}$ adjoint Matrix • A^{-1} can be computed as follows: $A^{-1} = \underbrace{\frac{\operatorname{adj}(A)}{\det(A)}}_{\operatorname{det}(A)}$ Nothab: inulA) adj $(A) = \begin{pmatrix} \underline{C_{11}} & \underline{C_{12}} & \cdots & \underline{C_{1n}} \\ \underline{C_{21}} & \underline{C_{22}} & \cdots & \underline{C_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \underline{C_{n1}} & \underline{C_{n2}} & \cdots & \underline{C_{nn}} \end{pmatrix}^T$ where $C_{ij} = (-1)^{i+j} \det(A_{ij})$ it row and it is a column

• Note that $(\operatorname{adj}(A))A = A(\operatorname{adj}(A)) = \operatorname{det}(A)I$

Matrix Inversion

• If A is a 2 × 2 matrix then
$$A = \begin{pmatrix} a & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

 $A^{-1} = \frac{\operatorname{adj}(A)}{\operatorname{det}(A)} = \frac{1}{\begin{bmatrix} a_{11}a_{22} - a_{21}a_{22} \\ b & det(A) \end{bmatrix}} \begin{pmatrix} \boxed{a_{22}} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$
 $A^{-1} = \frac{\operatorname{adj}(A)}{\operatorname{det}(A)} = \frac{1}{\begin{bmatrix} a_{11}a_{22} - a_{21}a_{22} \\ b & det(A) \end{bmatrix}} \begin{pmatrix} \boxed{a_{22}} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$
 $C_{11} = (-1)^2 \operatorname{d} \mathcal{L}(A_{11})$

• If A is an
$$n \times n$$
 diagonal matrix then

$$A = \begin{pmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{pmatrix} \quad \Rightarrow A^{-1} = \begin{pmatrix} \frac{1}{d_{11}} & 0 & \cdots & 0 \\ 0 & \frac{1}{d_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{d_{nn}} \end{pmatrix}$$

_

Eigenvalues and Eigenvectors

- Eigenvalues are very important in many applications
 - Optimization (positive definite, semi-definite matrices)
 - Linear differential equations

• Let
$$A \in \mathbb{R}^{n \times n}$$
. If a scalar $\lambda \in \mathbb{C}$ and a nonzero vector $\underline{x} \in \mathbb{R}^n$ satisfy the equation:
 $\underline{Ax} = \underline{\lambda x}$.

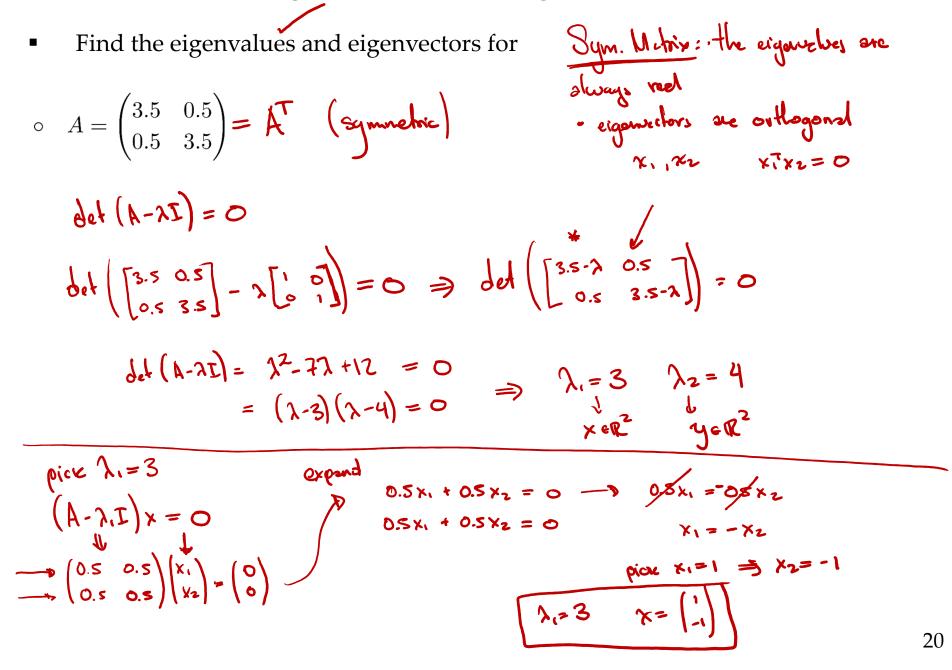
then λ is called an **eigenvalue** and x an **eigenvector** associated with λ

• How can we find the eigenvalue/eigenvector pair?
• for an nxn matrix, you have at most n distinct eigenvectors/aigenvectors.

$$x \neq 0$$

• $A_{X} = A_{X} \rightarrow A_{X} - A_{X} = 0 \rightarrow (A - \lambda I)_{X} = 0$
• T_{0} find eigenvalues
 $det (A - \lambda I) = 0$
• T_{0} find eigenvalues
 $det (A - \lambda I) = 0$
• T_{0} find eigenvalues
 $det (A - \lambda I) = 0$
• T_{0} find eigenvalues
 $det (A - \lambda I) = 0$
• T_{0} find eigenvalues
 $det (A - \lambda I) = 0$
• T_{0} find eigenvalues
 $det (A - \lambda I) = 0$
• T_{0} find eigenvalues
 $det (A - \lambda I) = 0$
• T_{0} find eigenvalues
 $det (A - \lambda I) = 0$
• T_{0} find eigenvalues
 $det (A - \lambda I) = 0$
• T_{0} find eigenvalues
 $det (A - \lambda I) = 0$
• T_{0} find eigenvalues
 T_{0} find roots
19

Eigenvalues and Eigenvectors



Functions of Several Variables

- One of the reasons for defining this concept of vector spaces, is that now it makes sense to write: $\underline{x \in \mathbb{R}^2}, \quad \underline{f(x)} : \mathbb{R}^2 \to \mathbb{R}$ Finite of some examples:
 f(x) = $\exists x, \pm 2x_2 \pm 10x, x_2$ f(x) = $\exists cos(x, x_2)$ $f(x) = \forall cos(x, x_2)$
- How about linear functions? Can we write them in vector form?

$$\chi \in \mathbb{R}^{3} \quad \chi = \begin{pmatrix} \chi_{1} \\ \chi_{2} \\ \chi_{3} \end{pmatrix} \qquad f(\chi) : \mathbb{R}^{3} \longrightarrow \mathbb{R} \qquad f(\chi) = [0\chi_{1} + 5\chi_{2} + 7\chi_{3} + 5]$$

$$\frac{\chi \in \mathbb{R}^{n}}{\lim \text{ lineor fixedion } f(\chi) = \underline{C_{1}\chi_{1}} + \underline{C_{1}\chi_{2}} + \dots + \underline{C_{n}\chi_{n}} + d$$

$$\frac{\int_{\mathbb{C}^{n}} (2\pi) \int_{\mathbb{C}^{n}} (2\pi) \int_{\mathbb{C}^{n$$

Functions of Several Variables – Quadratic Functions

 Many of the cost functions we will use are quadratic, i.e. they are polynomial functions of degree at most 2:

 $f(x): \mathbb{R}^n \to \mathbb{R}$ xell $f(x) = ax^2 + bx + c$

deque = 2 Example: $f(x) : \mathbb{R}^3 \to \mathbb{R}$ 0 Quadratic functions can be written in the form: $f(x) = x^T H x + \underline{c}^T x + \underline{d}$ 0 HER^{nen} ceR^h Symmetric $x \in \mathbb{R}^2$ $f(x): \mathbb{R}^2 \longrightarrow \mathbb{R}$ $f(x) = (x_1 \ x_2) \begin{pmatrix} H_{11} & H_{12} \\ H_{12} & H_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + (e_1 \ e_2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + d$ Symmetric \rightarrow f(x) = H₁x² + 2H₁₂x₁x₂ + H₂₂x₂² + C₁x₁ + C₂x₂ + d

Positivity of Quadratic Functions

• Consider quadratic functions with only second degree terms:

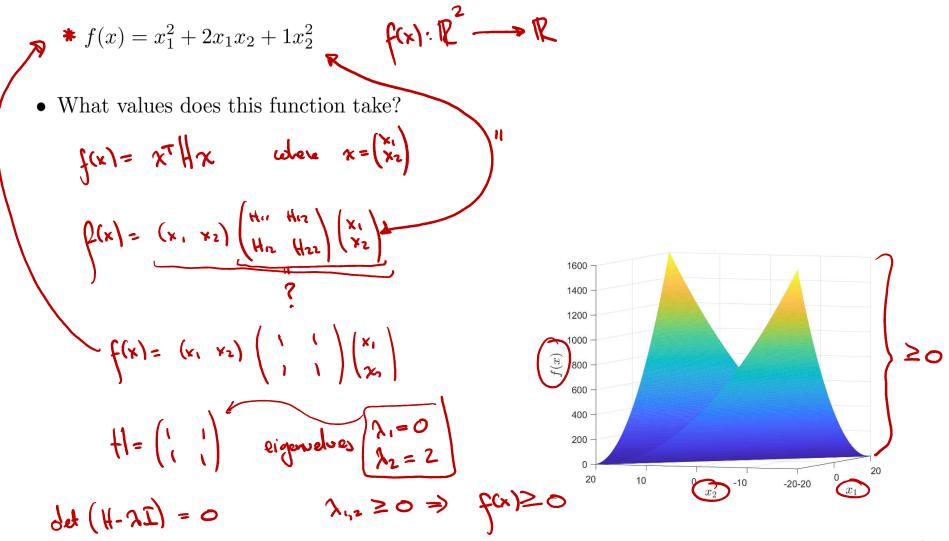
$$\underline{x} \in \mathbb{R}^{n}, \quad f(x) = x^{T} H x \qquad \text{Heh}^{n \times n}, \quad \text{H symmetric}$$

(range)
• We can know what values $\underline{f(x)}$ will take by simply analyzing \underline{H} :
 $1. \quad \underline{f(x) \ge 0}$ if and only if $\underline{H \ge 0}$ (nonnegative eigenvalues) $\underline{f(x)} \in [0, \infty)$
 $2. \quad \underline{f(x) > 0}$ if and only if $\underline{H \ge 0}$ (positive eigenvalues) $\underline{f(x)} \in [0, \infty)$
 $3. \quad \underline{f(x) \le 0}$ if and only if $\underline{H \ge 0}$ (nonpositive eigenvalues) $\underline{f(x) \ge 0}$ for $x \ne 0$
 $3. \quad \underline{f(x) \le 0}$ if and only if $\underline{H \ge 0}$ (nonpositive eigenvalues) $\underline{f(x) \ge 0}$ for $x \ne 0$

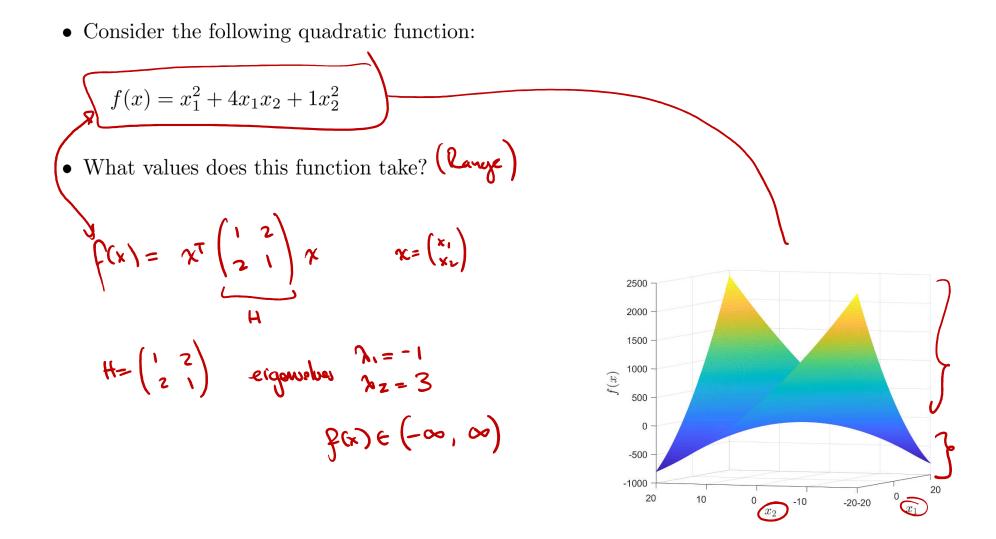
- 4. f(x) < 0 if and only if $H \prec 0$ (negative eigenvalues)
- 5. What if H contains both positive and negative eigenvalues? $f(x) \in (-\infty, \infty)$

Positivity of Quadratic Functions – Example 1

• Consider the following quadratic function:



Positivity of Quadratic Functions – Example 2



Gradient Definition

• For a function of one variable, the derivative signifies the rate of change at a certain point

$$\underbrace{f(x)}: \mathbb{R}' \to \mathbb{R}' \qquad \frac{df(x)}{dx} \text{ rate of change of } f \text{ w.r.t } x \qquad f(x) = 3x^2 \qquad \text{df } = 6x$$
• For a function of several variables, this is analogous to the gradient (vector)
$$\underbrace{f(x)}: \mathbb{R}^n \to \mathbb{R} \qquad x \in \mathbb{R}' \implies x = \binom{x_1}{x_n} \qquad f(x) = f(x_1, \dots, x_n) \qquad p(y) \neq f(x)$$

$$\underbrace{f(x)}_{i}: \mathbb{R}^n \to \mathbb{R} \qquad x \in \mathbb{R}' \implies x = \binom{x_1}{x_n} \qquad f(x) = f(x_1, \dots, x_n) \qquad p(y) \neq f(x)$$

$$\underbrace{f(x)}_{i}: \mathbb{R}^n \to \mathbb{R} \qquad x \in \mathbb{R}' \implies x = \binom{x_1}{x_n} \qquad f(x) = f(x_1, \dots, x_n) \qquad p(y) \neq f(x)$$

$$\underbrace{f(x)}_{i}: \mathbb{R}^n \to \mathbb{R} \qquad x \in \mathbb{R}' \implies x = \binom{x_1}{x_n} \qquad f(x) = f(x_1, \dots, x_n) \qquad p(y) \neq f(x)$$

$$\underbrace{f(x)}_{i}: \mathbb{R}^n \to \mathbb{R} \qquad x \in \mathbb{R} \qquad x$$

• Notice that the gradient is a vector!

Gradient Example

• Consider again a quadratic function:

$$f(x) = 3x_{1}^{2} + 10x_{1}x_{2} + 5x_{1} + 10 \qquad x = \begin{pmatrix} x_{1} \\ y_{2} \end{pmatrix} \qquad f(x): \mathbb{R}^{2} \longrightarrow \mathbb{R}$$

$$\nabla_{x} f = \begin{pmatrix} \partial f \\ \partial x_{1} \\ \partial f \end{pmatrix} = \begin{pmatrix} G_{x_{1}} + 10x_{2} + 5 \\ 10x_{1} \end{pmatrix} \qquad Integrating the formula of the formula of$$

Next

Introduction to optimization with power systems applications