EE 459/611: Smart Grid Economics, Policy, and Engineering

Lecture 2: <u>Comm</u>on and R<u>enewable</u> Generation Basics and Costs, Market Economy

> Luis Herrera Dept. of Electrical Engineering University at Buffalo

> > Fall 2020

Goals

Hydroelectric Power Plants

- Hydro electric power is the largest renewable energy source
- Produces around <u>16 % of the world's electricity</u>
- 25 countries rely on hydro for 90% of their electricity (99.3% in Norway)
- Advantages
 - Good load following capability (minute level)
 - **\mathbf{a}** \circ Dams can be used to store energy for days to years, <u>how</u>?
 - Startup can be quickly (thermal plants/coal can take hours to start)

Niagara Power Plant*

Hydroelectric Power Plants

Disadvantages

- Emissions from the construction of hydropower, water sitting in reservoirs and the decomposition of materials
- o Spatial and visual footprint
- Important to take into account <u>environmental</u> and <u>social impacts</u>

Niagara Power Plant*

Hydroelectric Power Plant Operation

Water flow when pumping, generator turns into a motor to consume power (typically at night)

Luddington Pumped Storage Plant

Hydroelectric Power Plant Input/Output Characteristics

Hydroelectric Power Plant Operation

Hydroelectric Power Plant Costs

- What are the costs related to the operation of hydro power?
 - Investment cost
 - Maintenance costs
 - * O Fuel costs (coal, retural gas)
- Levelized Cost of Electricity (LCOE): net preset value of unit cost of electricity over lifetime of asset

Coal Power Plant (Thermal Plant)

- Coal power plants operate by burning coal to generate steam
- The **steam** is then used to rotate the turbines
- **Condenser** is needed to turn the steam back into water
- Similar to hydro, the turbine rotates a generator to produce electricity

Coal Power Plant – Thermal Stress

- Turning it off/on causes large thermal stress on the boiler, steam lines, and auxiliary components (damaging)

Coal Power Plant Input / Output Characteristics

- **Input** characteristics are typically given as BTU/h (heat/hour) or (\$/hour)
- **Output** is typically given as the **net electrical** power output

Coal Power Plant I/O Multiple Steam Valves

Solar Energy

- Solar energy: <u>therm</u>al and electrical
- Quick to install
- Modular
- Quiet and static
- No pollution
- Portable
- Match with daytime loads
- Solar energy in US: <u>3.0-7.0 kWh/(m²-day)</u>
- Solar energy in Arizona: 5.0-5.5 kWh/(m²day)
- Solar irradiance is measured in W/m²
- Integrate irradiance over a period of time→ solar irradiation (energy), in the unit of Wh/m²
- Efficiency of solar radiation to heat, vapor, then electricity: 50-74%
- Efficiency of solar light directly into electrical energy (Photovoltaic): 3~30%

Source: https://wiki.analog.com/university/courses/eps/photovoltaic

Dependence on Temperature and Irradiance

Current-Voltage characteristics of Photovoltaic Module KC170GT at various cell temperatures Current-Voltage characteristics of Photovoltaic Module KC170GT at various frradiance levels

Photovoltaic Power Plant Costs

- The majority of the costs are due to:
 - **Capital costs:** one time expenses including purchase and installation
 - **Operation and maintenance**

Table 1 – Costs for Electric Generating Technologies

Technology Type	Mean installed cost (\$/kW)	Installed cost <u>St</u> d. Dev. (+/- \$/kW)	Fixed O&M (\$/kW-yr)	Fixed O&M Std. Dev. (+/- \$/kW-yr)	Variable O&M (\$/kWh)	Variable O&M (+/- \$/kWh)	Lifetime (yr)	Lifetime Std. Dev. (yr)	Fuel and/or water cost (\$/kWh)	Eyel and/or water Std. Dev. (\$/kWh)
PV < 10 kW	\$3,897	\$889	\$21	\$20	n/a	n/a	33	11	n/a	n/a
PV 10-100 kW	\$3,463	\$947	\$19	\$18	n/a	n/a	33	11	n/a	n/a
PV 100- 1,000 kW	\$2,493	\$774	\$19	\$15	n/a	n/a 🤇	33	11	n/a	n/a
PV 1-10 MW	\$2,025	\$694	\$16	\$9	n/a	n/a	33	9	n/a	n/a

http://www.nrel.gov/analysis/tech_lcoe_re_cost_est.html

An ideal wind turbine cannot extract more than 0.593 of P_{air} . A real rotor extracts even smaller amount of power

Wind Power Generation

http://www.ecoplanetenergy.com/all-about-eco-energy/overview/wind/

Source: Power Electronics for Renewable and Distributed Energy Systems, by Chakraborty, Sudipta; Simões, Marcelo G.; Kramer, William E.

Wind Power Grid Connection

Source 1: Power Electronics for Renewable and Distributed Energy Systems, by Chakraborty, Sudipta; Simões, Marcelo G.; Kramer, William E.

Source 2:http://www.intechopen.com/books/wind-farm-technical-regulationspotential-estimation-and-siting-assessment/technical-and-regulatory-exigencies-forgrid-connection-of-wind-generation

Wind Power Costs

- The majority of the costs are due to:
 - **Capital costs:** one time expenses including purchase and installation
 - **Operation and maintenance**

Table 1 – Costs for Electric Generating Technologies

Technology Type	Mean installed cost (\$/kW)	Installed cost Std. Dev. (+/- \$/kW)	Fixed O&M (\$/kW-yr)	Fixed O&M Std. Dev. (+/- \$/kW-yr)	Variable O&M (\$/kWh)	Variable O&M (+/- \$/kWh)	Lifetime (yr)	Lifetime Std. Dev. (yr)	Fuel and/or water cost (\$/kWh)	Fuel and/or water Std. Dev. (\$/kWh)
Wind $<10 \text{ kW}$	\$7,645	\$2,431	\$40	\$34	n/a	n/a	14	9	n/a	n/a
Wind 10-100 kW	\$6,118	\$2,101	\$35	\$12	n/a	n/a	19	5	n/a	n/a
Wind 100- 1000 kW	\$3,751	\$1,376	\$31	\$10	n/a	n/a	16	0	n/a	n/a
Wind 1–10 MW	\$2,346	\$770	\$33	\$16	n/a	n/a	20	7	n/a	n/a

http://www.nrel.gov/analysis/tech_lcoe_re_cost_est.html

Stochastic Opt. Problem

Outline

- Characteristics of Power Generation (Input/output)
 - o Hydro
 - o Coal
 - o Solar
 - \circ Wind
- Understand the cost associated with each of these sources
- Market Economy (History)

Market Economy Overview

- Introduction to the fundamental concepts of economics in power systems:
 - ⊘ Traditional regulated environments
 - De-regulated environments

Regulated Electric Companies

- The US was <u>originally</u> structured to have "regulated" electric companies (also known as microregulated)
- Managed by the state and the federal government at a micro-decision level

- Utility (with approval from <u>state</u> and government) controls all aspects of electricity supplied:
- o Generation
- 🔶 o Transmission
- o Distribution
- ----- o Retail/consumers

Regulated Environment

 The federal and state governments control the profit margin allowed by utility and its share holders

FIGURE 2.1 Regulated industry structure.

Regulated Environment

- Investor owned utilities (IOUs) are private for-profit companies granted
 monopoly franchise for a geographic region
 - Examples: American Electric Power, National Grid, Iberdrola, etc.
 - Tariffs is regulated (avoid overcharge)

Concerns of Regulated Environments

- Customers have little influence on the price
- Limited incentive to utility to minimize costs/rates

\geq 1990s

- State legislators and utility regulators are now letting consumers choose among a variety of energy suppliers on the basis of competitive prices
- Leads to **deregulation/restructuring** (primarily in Generation and Retail)

Deregulated/Competitive Environments

- Generation companies
 participate in the market to
 sell its power
- Loads/customers can also participate in market
 through Energy Service
 Company (ESCO) –
 customer is free to choose
 any ESCO
- This is done in the respective Independent
 System Operators (ISOs)

Independent System Operators

- Day ahead scheduling process is conducted based on bids from load entities and generator entities the day before
 - An optimization process is used (LP or MIP) to "clear" the market
- Real time market scheduling is also conducted to offset imbalances

Next Topic

Mathematical Review

- o Linear Algebra
- o Multivariable Calculus

