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Energy Storage in Aircraft Systems

= Energy storage is becoming an integral part in the advancements and electrification of
aircraft power system

" |t can provide several services:
o Absorb regenerative power from motor drives
o Improve power quality and stability
o Provide transient power to pulsed loads
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Battery Management Systems

= The number of cells in series/parallel increase with the energy and power required from
the battery

= Battery Management Systems are necessary to ensure the safe and efficient operation of
energy storage.

= |mprovement of the BMS to help reduce battery life cycle costs and increase battery
safety is needed
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BMS Capabilities

= Fault detection: high/low temperature,
over/under voltage, Volt. Sensor fault

= Estimation: State of Charge (coulomb counting,
Extended Kalman Filter, Unscented Kalman
Filter), State of Health

= Balancing: Passive cell balancing

» Charging: constant current/constant voltage

= Sensors (current, voltage, temperature) are
important for enabling these capabilities
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Types of Faults in Battery Packs

= Sensor fault detection and isolation (FDI) is important to guarantee the battery’s safety,

performance, and reliability

= A common capability of BMS systems is to detect and isolate*:
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Voltage sensor faults

= |n this paper, we focus on
voltage sensor faults

/FaulthMonitoring

MonitorCurrLim

{FaultPresent

t = false;
Fault_out.OverCurrent=false;}

[NOC urrLimFault

[duration{{{Dischar
(Pack_Current - Charge

geCurre

ntLimit - Pack_Current

| J=single(0.2) |
CurrentLimit) < single(0.2)) > timeou

8
tCurrent,sec)]

J‘ [MinCellTemp <= LowTempLimit]

LowTemperatureFault

en:
FaultPresen t = true;
Fault_out.LowTemp = true;

|

7 [Defta>=...
l single{SnsrEKThid)]

1 [MinCelVolt <=...

UnderCellvoltageLimit

‘OverCurrentFault
en:
FaultPresent = true;
Fault_out.OverCurmrent=true;
o
’ﬁ.v!nnitorCeIITemp I ”MonitorCeIIVoItage b
HighTemperatureFault OvervoltageFault
en: en:
® FaultPresent = true; {HaultP! 1 FaultPresent = true;
Fault_out.HighTemp = true; ault_o = false. | Fault_out.OverVolt = true;
{FaultPresent = false; ault_o alse; y.
Faull_out.HighTemp = false] 1\ ault_o alse T [MaxCellvolt ==
Fﬁv|;_0vi-L<"-‘f'T311L" = false:} 1 [MaxCellTemp == HighTempLimit] 'y 1 _overCellvoltageLimit]
- NoCellVoltFault
MoCellTempFault e:d:' el
en,du: =
SumOfvalt: = Cell_Volta: X
MaxCellTemp = max({Cell_Temperatures); D:II?a = :b:{bg::;sck .’;I{.:‘::ég: -_SL?rngf?s" -
MinCellTemp = min{Cell_Temperatures); T =

i
SensorFaut

en
FaultPresent = true;
Fault_out.VoltSensor = true;

ervoltageFault

Und

en:

FaultPresent = true;
Fault_out.UnderVolt = true;

|

M
Y

’




Outline

= Experimental testing and equivalent circuit model



Battery Testing for Model Identification

= Goal: Obtain an accurate Equivalent Circuit Model (ECM) of the battery cell to be
used for model-based fault detection

= Example experimental discharge at different temperatures and discharge rates™:
o Temperatures: 5, 20, 40 °C
o Discharge rates: 1C, 2C, 0.25C, and 0.5C

Experimental Results: T =5 °C, D. Rate: 2C

Experimental Results: T = 20 °C, D. Rate: 2C Experimental Results: T = 40 °C, D. Rate: 2C
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ECM Types — 1 to 3 RC pairs

= Goal: Obtain an accurate ECM model of the battery cell to be used in
simulation/testing

= Typical ECM consists of a resistance in series with parallel RC pairs:
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e The parameters of each ECM are functions of SoC and temperature,

1.€. RZ(SOC, T), CZ(SOC, T)
e Model complexity increases with higher number of RC pairs

e Goal: To utilize experimental data at different SoC and temperature to estimate best
parameters



Parameter Estimation

e We have developed a least squares approach for parameter identification

e We can then extract all of the parameters of an ECM as functions of SOC and temperature

Simulation Results
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= QObserver Design for Residual Generation

" Quickest Change Detection
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Baseline Sensor Fault Detection

e Baseline voltage sensor fault detection relies sensor redundancy (ETE T
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Model of a Single Cell

e Consider a 1-RC equivalent circuit model shown in the figure

e The dynamics of the network and the SOC can be given as follows:
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Model of a Single Cell (cont’d)

e Consider a 1-RC equivalent circuit model shown in the figur0 2 /\53\}\/
0
e To simplify the analysis, we can modify the equations as follows: —— VWV (lflz "
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Model for N-series Connected Cells

e Assume that we have N cells connected in series

-
e The state space model for this pack can be written as follows: I +
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e The main advantage is that the pack can be modeled of the form: © = Az 4+ Bu, y=Cx

e Goal: Detect a fault in a voltage sensor V;; for: =1, ---, N 14



Observer and Residual Generation

Now we have a state space model of the battery pack of the form:

r = Ax + Bu
y=Cx

Problem formulation: Use the measurements y to estimate the states

Traditional Luenberger observer:

z=Az+ Bu+ Ly — C=) z2=(A—-LC)z+ Bu+ Ly
,\ ~
’y:OZ CZ

<>
|

The residual can then be defined as follows:
r(t) =y(t) —9(t) = y(t) — Cz(t) = C (x(t) — 2(t)) = Ce(t)

Main idea: When there are no faults the r(¢) — 0 and r(¢) # 0 during a fault
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Sensor Fault Detection

e Each residual r; is tuned to ignore a fault from V}; as follows:
:=(A—-LCY)z+ Bu+ Ly
ri — yi _ Cig
e where 1’ is the output vector without the i*" cell voltage,
_ T
Le. y' = (th o Viieny Vi o Vi V) I)

e When there is a fault in the Vj; sensor, ||r¢||3 < T while ||77||3 > T for all j # i

.
—_—
I + 0.04
+ Ve — > rl oo Load Change Fault—> Load Change
Vi v, f Observer 1 —_ £ 002
I —
0 . M‘
+ Vi ———— . 0 2 4 6 8 10
Viz v, — Observer 2 >
Vp [ ———>
° 0.04 1 pad Change Load Change
° Rl
. o = \ Fault—>
Vit ———f =002f
N Vv e Observer N L,
Vn v, ——> 0 | . | |
I ——> 0 2 ) 6 8 10

16




Overall View of Model Based FDI

e Typical strategies for Fault Detection and Identification (FDI) using residual generation are
shown below

— Step 1 corresponds to generating a residual (we begin with model based tools)
— Step 2 utilizes these residuals to make a decision, generally statistical tests can be used

— Step 3 focuses on reconfiguration, i.e. what to do after the fault is cleared
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Hwang, Inseok, et al. "A survey of fault detection, isolation, and reconfiguration methods." IEEE transactions on control systems technology 18.3 (
2009): 636-653. 17



Error Analysis and Change Detection

e The residual can be thought of as a random variable:

T 3
r=Ce (without fault) ~ N(0, %) +
r=Ce+ Pf  (with fault) ~N(us, Xp) v
e Covariance X during normal operation can be the normal sensor noise -
Vi
e We can use Hypothesis testing or Change Detection theory to compute a statistic to - Ve
detect when a fault occurs 4
e A well known statistic from Quickest Change Detection (QCD) theory is the Cumu- .
lative Sum (CUSUM) [1]: Vv
fr(re) .
Wi 1:max{(Wk+lo , 0
" ® Fo(re)

exp(— 3 (re—p) S (r—p))

V (27)F det(X)

where f(ry) =
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Outline

= Simulation Results

= Summary and Future Work
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Overall Algorithm Setup

e The overall algorithm is now composed of two steps:

1. Observer/residual generation r*(t)
2. CUSUM based change detection to generate statistic W*(k)

e The statistic has a positive drift during a fault
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Overall Algorithm Setup

. . . . Step 1 Step 2
e We can now consider a model with 7 cells in series .
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Summary and Future Work

= Presented a method for the detection and identification of voltage sensor faults in battery packs

= The first step relies in developing an observer to estimate internal states of the cells and generate
a residual

= During a fault, changes in the residual are very small, complicating the detection

" Proposed a change detection method to generate a statistic which increases during a fault
and allows for easier detection of sensor malfunctions

= Future work will investigate data based approaches for QCD where the statistics after the fault are
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