EE 419/519: Industrial Control Systems

Lecture 7: Observability and Dynamic Feedback

Dr. Luis Herrera Dept. of Electrical Engineering University at Buffalo

Fall 2021

Topic Outline

Observability

- Observability Definition
- Unobservable Subspace
- Luenberger Observer
- Detectability
- Dynamic Feedback

State Feedback Controller

• We will now consider a more complete LTI state space model:

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

 $y = Cx, \qquad y \in \mathbb{R}^p$

- If the system is **controllable**, then a state feedback u = Kx can asymptotically stabilize the system (we can place the closed loop eigenvalues freely)
- What if we cannot measure/obtain all of the states x?

Dynamic Feedback Controller

• We will now consider a more complete LTI state space model:

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

 $y = Cx, \qquad y \in \mathbb{R}^p$

- If the system is **controllable**, then a state feedback u = Kx can asymptotically stabilize the system (we can place the closed loop eigenvalues freely)
- Can we develop an "observer" to obtain an estimate of x, defined as \hat{x} ?
- When is this possible?

Observability Definition

• Without loss of generality, let's consider a system without inputs

$$\dot{x} = Ax, \quad x \in \mathbb{R}^n,$$

 $y = Cx, \quad y \in \mathbb{R}^p$ $x(0) = x_0$

- **Definition:** The pair (C, A) is **observable** for any $t \in [0, T]$ where $T < \infty$, we can find x(0) from y(t)
- Main idea: If x(0) can be obtained, then we can **reconstruct** the states x(t) for any $t \in [0, T]$ using only the outputs y(t)

Observability Definition (cont'd)

• Without loss of generality, let's consider a system without inputs

$$\dot{x} = Ax, \quad x \in \mathbb{R}^n,$$

 $y = Cx, \quad y \in \mathbb{R}^p$ $x(0) = x_0$

- **Definition:** The pair (C, A) is **observable** for any $t \in [0, T]$ where $T < \infty$, we can find x(0) from y(t)
- How can we obtain x(0)? We can differentiate the output (n-1) times (Cayley Hamilton):

Observability Matrix

• Without loss of generality, let's consider a system without inputs

$$\dot{x} = Ax, \quad x \in \mathbb{R}^n,$$
 $y = Cx, \quad y \in \mathbb{R}^p$
 $x(0) = x_0$

- **Definition:** The pair (C, A) is **observable** for any $t \in [0, T]$ where $T < \infty$, we can find x(0) from y(t)
- The pair (C, A) is **observable** if and only if the observability matrix has full rank:

$$\operatorname{rank} \{\mathcal{O}\} = \operatorname{rank} \left\{ \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix} \right\} = n$$

Observability Matrix – Unobservable Subspace

• Without loss of generality, let's consider a system without inputs

$$\dot{x} = Ax, \quad x \in \mathbb{R}^n,$$

 $y = Cx, \quad y \in \mathbb{R}^p$ $x(0) = x_0$

• The **unobservable subspace** is given by:

$$\mathcal{N}\left\{\mathcal{O}\right\} = \mathcal{N}\left\{ egin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix}
ight\}$$

- The unobservable subspace is the **largest** A-invariant subspace contained in the $\mathcal{N}\{C\}$
- The rank $\{\mathcal{O}\}$ + dim $\{\mathcal{N}\{\mathcal{O}\}\}$ = n (rank-nullity theorem)

Decomposition w.r.t. Unobservable Subspace

• Let's consider a general state space model:

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

 $y = Cx, \qquad y \in \mathbb{R}^p$

- Assume the dim $\{\mathcal{N} \{\mathcal{O}\}\} p \geq 1$ (the system is unobservable) and define a basis for $\mathcal{N} \{\mathcal{O}\} = \operatorname{span} \{v_1, \dots, v_p\}$
- Find a complementary subspace for $\mathbb{R}^n = \mathcal{N} \{\mathcal{O}\} \oplus \mathcal{W}$
- What is the system structure w.r.t. basis given by $T = \underbrace{(v_1 \cdots v_p)}_{\mathcal{N}\{\mathcal{O}\}} \underbrace{w_1 \cdots w_{n-p}}_{\mathcal{W}}$

Decomposition w.r.t. Unobservable Subspace

• Let's consider a general state space model:

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

 $y = Cx, \qquad y \in \mathbb{R}^p$

- Assume the dim $\{\mathcal{N} \{\mathcal{O}\}\} p \ge 1$ (the system is unobservable)
- What is the system structure w.r.t. basis given by $T = \underbrace{(v_1 \cdots v_p)}_{\mathcal{N}\{\mathcal{O}\}} \underbrace{w_1 \cdots w_{n-p}}_{\mathcal{W}}$
- The system is transformed (x = Tz):

$$\begin{pmatrix} \dot{z}_1 \\ \dot{z}_2 \end{pmatrix} = \begin{pmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ 0 & \tilde{A}_{22} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} \tilde{B}_1 \\ \tilde{B}_2 \end{pmatrix} u, \qquad y = \begin{pmatrix} 0 & \tilde{C}_2 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

- The pair $(\tilde{A}_{22}, \tilde{C}_2)$ is **observable**
- The state z_1 / modes given by \tilde{A}_{11} are unobservable!
- The system is **detectable** if $\forall \lambda \in \sigma(\tilde{A}_{11})$ the $\text{Re}\{\lambda\} < 0$

Duality

• Let's consider a general state space model:

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

 $y = Cx, \qquad y \in \mathbb{R}^p$

- The controllability and observability matrices are related $\mathcal{O}\left(C,\ A\right)=\mathcal{W}\left(A^{T},\ C^{T}\right)^{T}$
- We can investigate observability of (C, A) by studying controllability of (A^T, C^T)
- (C, A) is observable if rank $\{W(A^T, C^T)\} = n$
- We can use this for observer design!

Observer Definition

• Let's consider a general state space model:

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

 $y = Cx, \qquad y \in \mathbb{R}^p$

• **Definition:** A state observer is a (dynamical) system that provides an estimate, $\hat{x}(t)$, of the internal state, x(t), of a real system using only the inputs, u(t), and the outputs, y(t).

- When can we design an observer? What should M, N, P, Q be?
- What are the dynamics of the error $e(t) = x(t) \hat{x}(t)$? (Goal: $e(t) \to 0$)

Luenberger Observer

• Let's consider a general state space model:

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

 $y = Cx, \qquad y \in \mathbb{R}^p$

• We will consider the following Luenberger observer:

$$\dot{z} = Az + Bu + L(y - Cz), \quad \hat{x} = z$$

• What are the error dynamics e(t) = x - z?

Luenberger Observer Conditions

• Let's consider a general state space model:

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

 $y = Cx, \qquad y \in \mathbb{R}^p$

• We will consider the following Luenberger observer:

$$\dot{z} = Az + Bu + L(y - Cz)
\hat{x} = z$$

$$\dot{z} = (A - LC)z + Bu + Ly
\hat{x} = z$$

- The error dynamics are given by $\dot{e} = (A LC)e$
 - The error will converge to zero, $e(t) \to 0$ or $\hat{x} \to x$, iff $\forall \lambda \in \sigma(A-LC)$ the Re $\{\lambda\} < 0$
 - The eigenvalues or $\sigma(A-LC)$ is freely assignable (by L) iff (C, A) is observable
 - By duality, we can use a similar procedure as state feedback design to obtain L:

```
1 %% Obtain feedback matrix using place
2 L = place(A', C', lam_des)';
```

• Let's consider the following circuit:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -\frac{r_1}{L_1} & \frac{-1}{L_1} \\ \frac{1}{C} & -\frac{1}{r_2C} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \frac{1}{L_1} \\ 0 \end{pmatrix} u$$

$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

- Assume that we can only measure the inductor current x_1 and $r_1 = 1$ m Ω , $L_1 = 10$ mH, $C_1 = 10$ mF, and $r_2 = 1$ Ω
- We would like to build an observer to estimate the capacitor voltage
- Is the system observable?

$$\mathcal{O} = \begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -0.1 & -100 \end{pmatrix} \Rightarrow \operatorname{Rank}(\mathcal{O}) = 2$$
 System is observable!

• Let's consider the following circuit:

dowing circuit:
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -\frac{r_1}{L_1} & \frac{-1}{L_1} \\ \frac{1}{C} & -\frac{1}{r_2C} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \frac{1}{L_1} \\ 0 \end{pmatrix} u$$

$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

- Assume that we can only measure the inductor current x_1 and $r_1=1$ m Ω , $L_1=10$ mH, $C_1=10$ mF, and $r_2=1$ Ω
- Build a Luenberger observer with eigenvalues at $\{-1000, -900\}$
 - -A, B, C are known, we need to design L!
 - -L = place(A', C', [-1000, -900])'

$$\dot{z} = (A - LC)z + Bu + Ly$$
 $\hat{x} = z$

$$L = \begin{pmatrix} 1799.9 \\ -7100 \end{pmatrix}$$
 $\sigma(A - LC) = \{-1000, -900\}$

• Let's consider the following circuit:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -\frac{r_1}{L_1} & \frac{-1}{L_1} \\ \frac{1}{C} & -\frac{1}{r_2C} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \frac{1}{L_1} \\ 0 \end{pmatrix} u$$
$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

• How does the observer work?

$$\dot{z} = (A - LC)z + Bu + Ly$$

$$\hat{x} = z$$

• Let's consider the following circuit:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -\frac{r_1}{L_1} & \frac{-1}{L_1} \\ \frac{1}{C} & -\frac{1}{r_2C} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \frac{1}{L_1} \\ 0 \end{pmatrix} u$$
$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

• Simulation results with u = 270 V and $i_1(0) = 5 \text{ A}$ and $v_1(0) = 80 \text{ V}$

Unobservable Systems

- Let's consider a general state space model: $\dot{x} = Ax + Bu$, y = Cx
- What if the pair (C, A) is not observable?
- There exists a basis matrix $T = \underbrace{(v_1 \cdots v_p)}_{\mathcal{N}\{\mathcal{O}\}} \underbrace{w_1 \cdots w_{n-p}}_{\mathcal{W}}$ such that the system can be transformed to:

$$\begin{pmatrix} \dot{\tilde{x}}_1 \\ \dot{\tilde{x}}_2 \end{pmatrix} = \begin{pmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ 0 & \tilde{A}_{22} \end{pmatrix} \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{pmatrix} + \begin{pmatrix} \tilde{B}_1 \\ \tilde{B}_2 \end{pmatrix} u, \qquad y = \begin{pmatrix} 0 & \tilde{C}_2 \end{pmatrix} \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{pmatrix}$$

• Design a Luenberger for the system in the new basis

Unobservable Systems

- Let's consider a general state space model: $\dot{x} = Ax + Bu$, y = Cx
- What if the pair (C, A) is not observable?
- There exists a basis matrix $T = \underbrace{(v_1 \cdots v_p)}_{\mathcal{N}\{\mathcal{O}\}} \underbrace{w_1 \cdots w_{n-p}}_{\mathcal{W}}$ such that the system can be transformed to:

$$\begin{pmatrix} \dot{\tilde{x}}_1 \\ \dot{\tilde{x}}_2 \end{pmatrix} = \begin{pmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ 0 & \tilde{A}_{22} \end{pmatrix} \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{pmatrix} + \begin{pmatrix} \tilde{B}_1 \\ \tilde{B}_2 \end{pmatrix} u, \qquad y = \begin{pmatrix} 0 & \tilde{C}_2 \end{pmatrix} \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{pmatrix}$$

• A Luenberger observer with feedback matrix $\tilde{L} = \begin{pmatrix} \tilde{L}_1 \\ \tilde{L}_2 \end{pmatrix}$ is of the form:

$$\begin{pmatrix} \dot{\tilde{z}}_1 \\ \dot{\tilde{z}}_2 \end{pmatrix} = \begin{pmatrix} \tilde{A}_{11} & \tilde{A}_{12} - \tilde{L}_1 \tilde{C}_2 \\ 0 & \tilde{A}_{22} - \tilde{L}_2 \tilde{C}_2 \end{pmatrix} \begin{pmatrix} \tilde{z}_1 \\ \tilde{z}_2 \end{pmatrix} + \begin{pmatrix} \tilde{B}_1 \\ \tilde{B}_2 \end{pmatrix} u + \begin{pmatrix} \tilde{L}_1 \\ \tilde{L}_2 \end{pmatrix} y$$

- Assume \tilde{L}_2 chosen such that $\sigma(\tilde{A}_{22} \tilde{L}_2\tilde{C}_2)$ have negative real part
- $-\dot{e}(t) = (A LC)e \quad \Rightarrow \quad \sigma(A LC) = \sigma(\tilde{A} \tilde{L}\tilde{C}) = \sigma(\tilde{A}_{11}) \cup \sigma(\tilde{A}_{22} \tilde{L}_2\tilde{C}_2)$
- The error $e(t) \to 0$ iff $\sigma(\tilde{A}_{11})$ have negative real part (system is detectable)
- We can compute $L = T\tilde{L}$, \tilde{L}_1 can be anything, e.g. $\tilde{L}_1 = 0$

Topic Outline

Observability

- Observability Definition
- Unobservable Subspace
- Luenberger Observer
- Detectability
- Dynamic Feedback

Motivation

• We will now consider a more complete LTI state space model:

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m$$

 $y = Cx, \qquad y \in \mathbb{R}^p$

- Goal: design a controller such that the closed loop system is asymptotically stable
- Approach: combine state observer with state feedback

Closed Loop Analysis

- We will now consider a more complete LTI state space model: $\dot{x} = Ax + Bu$, y = Cx
- Goal: design a controller such that the closed loop system is asymptotically stable
- The observer is of the form: $\dot{z} = (A LC)z + Bu + Ly$
- What are the closed loop system dynamics?

Closed Loop Analysis (cont'd)

- We will now consider a more complete LTI state space model: $\dot{x} = Ax + Bu$, y = Cx
- Goal: design a controller such that the closed loop system is asymptotically stable
- The observer is of the form: $\dot{z} = (A LC)z + Bu + Ly$
- The closed loop system is of the form:

$$\begin{pmatrix} \dot{x} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} A & BK \\ LC & A - LC + BK \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} \implies \dot{x}_{cl} = A_{cl} x_{cl}$$

- The closed loop system is asymp. stable iff $\forall \lambda \in \sigma(A_c l)$, Re $\{\lambda\}$ < 0
- What are the closed loop eigenvalues, i.e. $\sigma(A_{cl})$?

Closed Loop Analysis – New Basis

- We will now consider a more complete LTI state space model: $\dot{x} = Ax + Bu$, y = Cx
- The observer is of the form: $\dot{z} = (A LC)z + Bu + Ly$
- The closed loop system is of the form:

$$\begin{pmatrix} \dot{x} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} A & BK \\ LC & A - LC + BK \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} \Rightarrow \dot{x}_{cl} = A_{cl} x_{cl}$$

• What are the closed loop eigenvalues, i.e. $\sigma(A_{cl})$?

Separation Principle

- We will now consider a more complete LTI state space model: $\dot{x} = Ax + Bu$, y = Cx
- The observer is of the form: $\dot{z} = (A LC)z + Bu + Ly$
- The closed loop system is of the form:

$$\begin{pmatrix} \dot{x} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} A & BK \\ LC & A - LC + BK \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} \implies \dot{x}_{cl} = A_{cl} x_{cl}$$

• Analyzing the system in a basis defined by $\begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} I & 0 \\ I & -I \end{pmatrix} \begin{pmatrix} x \\ e \end{pmatrix}$:

$$\begin{pmatrix} \dot{x} \\ \dot{e} \end{pmatrix} = \begin{pmatrix} A + BK & -BK \\ 0 & A - LC \end{pmatrix} \begin{pmatrix} x \\ e \end{pmatrix} \quad \Rightarrow \quad \dot{\tilde{x}}_{cl} = \tilde{A}_{cl}\tilde{x}_{cl}$$

- We can see the closed loop eigenvalues are $\sigma(A_{cl}) = \sigma(\tilde{A}_{cl}) = \sigma(A + BK) \cup \sigma(A LC)$
 - We can simply design the observer and state feedback separately!
 - This is known as the **Separation Principle**

Separation Principle – Design

- We will now consider a more complete LTI state space model: $\dot{x} = Ax + Bu$, y = Cx
- The observer is of the form: $\dot{z} = (A LC)z + Bu + Ly$
- The controller is of the form: u = Kz
- The closed loop eigenvalues are $\sigma(A_{cl}) = \sigma(\tilde{A}_{cl}) = \sigma(A + BK) \cup \sigma(A LC)$
- What location of the poles give us good performance?
 - Several ways to approach this
 - One technique is for the observer eigenvalues to be much faster (less than) the controller eigenvalues:

$$\lambda_{obs} \ll \lambda_{ctr}$$
 for all $\lambda_{obs} \in \sigma(A - LC)$, $\lambda_{ctr} \in \sigma(A + BK)$

Inverted Pendulum Example

• Let's consider an inverted pendulum pushed by a cart, the **linearized dynamics** are as follows:

$$\begin{pmatrix} \dot{x} \\ \dot{v} \\ \dot{\phi} \\ \dot{\omega} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & \frac{-(I+ml^2)b}{I(M+m)+Mml^2} & \frac{m^2gl^2}{I(M+m)+Mml^2} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{-mlb}{I(M+m)+Mml^2} & \frac{mgl(M+m)}{I(M+m)+Mml^2} & 0 \end{pmatrix} \begin{pmatrix} x \\ v \\ \phi \\ \omega \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{I+ml^2}{I(M+m)+Mml^2} \\ 0 \\ \frac{ml}{I(M+m)+Mml^2} \end{pmatrix} u$$

$$y = \begin{pmatrix} x \\ \phi \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ v \\ \phi \\ \omega \end{pmatrix}$$

M (cart mass)	$0.5~\mathrm{kg}$
b (cart friction)	$0.1~\mathrm{N/m/s}$
I (pendulum inertia)	0.006 kgm2

	m (pendulum mass)	$0.2 \mathrm{\ kg}$
	m (pendulum mass) l (pend. length to center)	$0.3 \mathrm{m}$
ı		

Inverted Pendulum Example – Obs. And Controllability

• Let's consider an inverted pendulum pushed by a cart, the **linearized dynamics** are as follows:

$$\begin{pmatrix} \dot{x} \\ \dot{v} \\ \dot{\phi} \\ \dot{\omega} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & -0.1818 & 2.6727 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -0.4545 & 31.182 & 0 \end{pmatrix} \begin{pmatrix} x \\ v \\ \phi \\ \omega \end{pmatrix} + \begin{pmatrix} 0 \\ 1.8182 \\ 0 \\ 4.5455 \end{pmatrix} u$$

$$y = \begin{pmatrix} x \\ \phi \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ v \\ \phi \\ \omega \end{pmatrix}$$

Inverted Pendulum Example – Controller Design

- Let's consider an inverted pendulum pushed by a cart
- The controller is composed of an observer and a regulator:

Inverted Pendulum Example – Open Loop Results

- Let's consider an inverted pendulum pushed by a cart
- The controller is composed of an observer and a regulator:

Inverted Pendulum Example – Closed Loop Results

- Let's consider an inverted pendulum pushed by a cart
- The controller is composed of an observer and a regulator:

Summary

- We have discussed state feedback design for state space systems with the goal of asymptotically stabilizing a system (controllability and stabilizability)
- When the states are not available for measurement, we can develop a state estimator/observer (observability and detectability)
- We can then combine the observer and controller to develop a dynamic feedback for asymptotic stabilization
- By the **separation principle** the observer and controller can be designed separately