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Topic Outline

=  Observability
o Observability Definition
o Unobservable Subspace
o Luenberger Observer

o Detectability

=  Dynamic Feedback
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State Feedback Controller

e We will now consider a more complete L'TT state space model:

*=Ax+ Bu, x€R", ueR™
y=Cr, y € RP

e If the system is controllable, then a state feedback © = Kz can asymptotically stabilize
the system (we can place the closed loop eigenvalues freely)

e What if we cannot measure/obtain all of the states z7
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Dynamic Feedback Controller

We will now consider a more complete L'TT state space model:

= Ax+ Bu, xze€R" uveR™
y = Cux, y € RP

If the system is controllable, then a state feedback © = Kz can asymptotically stabilize
the system (we can place the closed loop eigenvalues freely)

Can we develop an “observer” to obtain an estimate of x, defined as 27

When is this possible?
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Observability Definition

e Without loss of generality, let’s consider a system without inputs

r=Ax, x € R",

y=Cx, yeRP 7(0) = 2o

e Definition: The pair (C, A) is observable for any t € [0, T| where T < oo, we can find
x(0) from y(t)

e Main idea: If x(0) can be obtained, then we can reconstruct the states x(¢) for any
t € [0, T using only the outputs y(t)
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Observability Definition (cont’d)

e Without loss of generality, let’s consider a system without inputs

r=Ax, x € R",

y=Cz, yeclRP #(0) = o

e Definition: The pair (C, A) is observable for any ¢ € [0, T| where T' < oo, we can find
z(0) from y(t)

e How can we obtain z(0)? We can differentiate the output (n—1) times (Cayley Hamilton):
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Observability Matrix

e Without loss of generality, let’s consider a system without inputs

r=Ax, x € R",

y=Cz, yelRP #(0) ==

e Definition: The pair (C, A) is observable for any ¢ € [0, T| where T' < oo, we can find
x(0) from y(t)

e The pair (C, A) is observable if and only if the observability matrix has full rank:

¢ )

C

CA
rank {O} = rank ¢ _ > =n

CAn—l

/
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Observability Matrix — Unobservable Subspace

e Without loss of generality, let’s consider a system without inputs

r= Az, x€R",

0) =
y=Cz, yecRP #(0) =z
e The unobservable subspace is given by:
4 C )
CA
NA{O} =N ¢ )
OAn—l

\ /

— The unobservable subspace is the largest A—invariant subspace contained in the

NAC}
— The rank {O} + dim {N {O}} = n (rank-nullity theorem)
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Decomposition w.r.t. Unobservable Subspace

e Let’s consider a general state space model:

t=Axr+ Bu, xz€R" uveR™
y=Chr, y € RP

e Assume the dim{N {O}}p > 1 (the system is unobservable) and define a basis for
NA{O} =span{vy, -+, v}

e Find a complementary subspace for R” = N {0} & W

e What is the system structure w.r.t. basis given by 7T' = (’Ul Cee Up W v 'wn_p)

N A >

N{O} W
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Decomposition w.r.t. Unobservable Subspace

Let’s consider a general state space model:

t=Axr+ Bu, z€eR" uweR™

y = Cux, y € RP
e Assume the dim {NV {O}}p > 1 (the system is unobservable)
e What is the system structure w.r.t. basis given by T = (vl e Up WL v wn_p)
Ny w
e The system is transformed (z = Tz):

zZ1) A Ap) (=2 B B = z1
— The pair (Agg, 6’2) is observable

— The state z; / modes given by Ay are unobservable!
— The system is detectable if YA € o(A;;) the Re{A} < 0
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Duality

Let’s consider a general state space model:

t=Axr+ Bu, x€R" uweR™
y = Cux, y € RP

T

The controllability and observability matrices are related O (C, A) =W (A", CT)

We can investigate observability of (C, A) by studying controllability of (AT, CT)

(C, A) is observable if rank {W(AT, CT)} =n

We can use this for observer design!
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Observer Definition

e Let’s consider a general state space model:

t=Axr+ Bu, ze€R" uecR™
y = Cux, y € RP

e Definition: A state observer is a (dynamical) system that provides an estimate, #(t),

of the internal state, z(t), of a real system using only the inputs, u(t), and the outputs,
y(t).

u(t) ‘ T = Ax + Bu y(t)
y=Cx

>

e When can we design an observer? What should M, N, P, () be?
e What are the dynamics of the error e(t) = x(t) — &(t)? (Goal: e(t) — 0)
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Luenberger Observer

e Let’s consider a general state space model:

t=Axr+ Bu, xz€eR" ueR™
y = Cax, y € RP

e We will consider the following Luenberger observer:
i=Az+Bu+Lly—Cz), T=z

e What are the error dynamics e(t) =z — 27
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Luenberger Observer Conditions

e Let’s consider a general state space model:

t=Axr+ Bu, x€R" ueR™
y = Cux, y € RP

e We will consider the following Luenberger observer:

Z=Az+ Bu+ L(y — C2z) N
T =z

z

A—LC)z+ Bu+ Ly
z

=>
|

e The error dynamics are given by é = (A — LC)e

— The error will converge to zero, e(t) — 0 or £ — z, iff VA € 6(A—LC) the Re {\} < 0
— The eigenvalues or o(A — LC) is freely assignable (by L) iff (C, A) is observable

— By duality, we can use a similar procedure as state feedback design to obtain L:

1 %% Obtain feedback matrix using place
2> L = place(A’, C’, lam_des) ’;
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Luenberger Observer Example

e Let’s consider the following circuit: L,
1 1 re L
Y _ (o | (™ 0 .
- 1 1 + O u Vi C = Vi1 -
x2 C e C L2 " - "
x
Yy = (1 0) ( 1)
Z2
e Assume that we can only measure the inductor current x1 and r1 = 1 mQ, L; =

10mH, 1 =10mF, andry =10

We would like to build an observer to estimate the capacitor voltage

Is the system observable?

1
O = (C?A) = (—0.1 —SOO) = Rank(O) =2 System is observable!
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Luenberger Observer Example

e Let’s consider the following circuit:

=1
11 — _E_ll Ly L1 + LLl U 1 L1
) % —T2lc 9 0 +
Vin C = % § 72
1 -
Y = (1 0) ( )
T

e Assume that we can only measure the inductor current z; and r = 1 mQ, L, =
10mH, C{ =10 mF, andrs =1 Q

e Build a Luenberger observer with eigenvalues at {—1000, —900}

— A, B, C are known, we need to design !
— L = place (4’, C’, [-1000, —900])'

¢=(A-LC)z+ Bu+ Ly I — (1799‘9) o(A - LC) = {-1000, —900}

~ \ =7100

=
I

zZ
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Luenberger Observer Example

e Let’s consider the following circuit:
1 — 1
) = _E_l L_11 . + L | u
i) e, To 0

e How does the observer work?

[
ANN—Y N
r1 L1
+
Vin C =— Vi 7

t=(A—-LC)z+ Bu+ Ly

7%= Z
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Luenberger Observer Example

e Let’s consider the following circuit:

LI
—
_T —1 1 71 L:
1 — Ly 1Ly 1 + Ly 1w
1 __1 0 +
L2 C roC L2 Vin C =W § 72
€Tl
€2
e Simulation results with « =270 V and ¢;(0) =5 A and v1(0) =80 V
Actual vs Estimates Actual vs Estimates
400 ‘ i 300 F i
= 200
~ 200 ~
s —n =100 — 1|
- =2 - =2
0 | ‘ : | 0 : : :
0 0.02 0.04 0.06 0.08 0.1 0 0.005 0.01 0.015 0.02
300 ‘ —— ‘ 200
g‘ 200 fa
— ~— 100
£ 100 —_ g — —_
/ - = 2 P - - -2
0 ‘ : . ‘ | Ohz . | | i
0 0.02 0.04 0.06 0.08 0.1 0 0.005 0.01 0.015 0.02
Time (s) Time (s)
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Unobservable Systems

Let’s consider a general state space model: & = Az + Bu, y=Cxzx

What if the pair (C, A) is not observable?

There exists a basis matrix T = (vy -+ v, w1 = Wy_p)

N vy

N{O} W
such that the system can be transformed to:

) -Co () () -0 e (3)

Design a Luenberger for the system in the new basis
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Unobservable Systems

Let’s consider a general state space model: & = Az + Bu, y=Cux

What if the pair (C, A) is not observable?

There exists a basis matrix 7= (v1 ==+ vy w1 -+ Wn_p)

7 N\ vy

N{O} W
such that the system can be transformed to:

I B Ay A\ (i B B ~ T1

~

- L
A Luenberger observer with feedback matrix L = (IN/I) is of the form:

2

2?1 _ Ay 1{112—1}1@2 Z1 n 1?1 "t él
22 0 Agp — L0y ) \ 25 By Lo Y

— Assume Ly chosen such that O'(JZiQQ — Egég) have negative real part
—ét)=(A—LC)e = c(A—LC)=0(A—LC)=0(A11)U0c(Az — LC5)
— The error e(t) — 0 iff o(A;1) have negative real part (system is detectable)
— We can compute L = T'L, Ly can be anything, e.g. L; =0
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Topic Outline

=  Dynamic Feedback
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Motivation

e We will now consider a more complete L'TT state space model:

t=Ax+ Bu, xe€R" uecR™
y = Cux, y € RP

e Goal: design a controller such that the closed loop system is asymptotically stable

e Approach: combine state observer with state feedback

S
|
9
\
i

z2(t) i=(A-LCO)z+Bu+Ly

&
<

=z
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Closed Loop Analysis

e We will now consider a more complete LTI state

space model: © = Az + Bu, y=Cx ut) | &=Az+ Bu y(t)

u=Kz —

v

y=Cx

e Goal: design a controller such that the closed loop
system is asymptotically stable

e The observer is of the form: z = (A—LC)z+ Bu+ Ly A ;z(f D

e What are the closed loop system dynamics?
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Closed Loop Analysis (cont’d)

e We will now consider a more complete LTI state

space model: © = Az + Bu, y=Cx ut) | &=Az+ Bu y(t)

u=Kz —

v

m=Cn

e Goal: design a controller such that the closed loop
system is asymptotically stable

e The observer is of the form: 2 = (A—LC)z+Bu+ Ly

=(t) t=(A—LC)z+Bu+ Ly ‘J

T=2z —

e The closed loop system is of the form:

A A BK T A
;] \LC A-LC+BK]\: ch — Helbel

e The closed loop system is asymp. stable iff VA € o0(A.l), Re {\} <0

e What are the closed loop eigenvalues, i.e. o(Ay)?
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Closed Loop Analysis — New Basis

e We will now consider a more complete LTI state space model: # = Ax + Bu, y=Cx
e The observer is of the form: 2 = (A — LC)z + Bu+ Ly

e The closed loop system is of the form:

iy [ A BK A N
;] \rtc A-rc+BK]|\: ol — Helbe

e What are the closed loop cigenvalues, i.e. o(Ay)?
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Separation Principle

e We will now consider a more complete LTI state space model: # = Ax + Bu, y=Cx

e The observer is of the form: 2 = (A — LC)z + Bu+ Ly

e The closed loop system is of the form:

iy [ A BK A
;] \Lc A—-LC+BK]/\:z ol — Helbel

I
Analyzing the system in a basis defined by (a:) = (I OI) (JE) ;
z — e

¢) "\ 0o A-rc)\e el T St

We can see the closed loop eigenvalues are o(Ay) = 0(Ay) = 0(A+ BK)Uo(A — LC)

— We can simply design the observer and state feedback separately!

— This is known as the Separation Principle
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Separation Principle — Design

We will now consider a more complete LTI state space model: & = Az + Bu, y=Cxz

The observer is of the form: z = (A — LC)z + Bu + Ly

The controller is of the form: v = Kz

The closed loop eigenvalues are 0(A.) = 0(Ay) =0(A+ BK)Uo(A— LC)

What location of the poles give us good performance?

— Several ways to approach this

— One technique is for the observer eigenvalues to be much faster (less than) the
controller eigenvalues:
Aobs K Aegr Tor all Agps € 0(A — LC), Aoty € 0(A+ BK)

=
I
3
|
l
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Inverted Pendulum Example

e Let’s consider an inverted pendulum pushed by a cart, the linearized dynamics are as

follows:
4 0 1 0 0\ [z 0
. 0 —(I+ml®)b m?gl? 0 I+ml®
1'] — I(M+m)+Mml?  I(M+m)+Mmli? v + I(M+m)+Mml? U
¢ 0 0 0 1| | ¢ 0
w 0 —mlb mgl(M-+m) 0 W ml
I(M+m)+Mmlil2  [(M+m)+Mmli? I(M+m)+Mmli?
x
x 1 0 0 0 v
y _ _
0, 0O 0 1 0 0}
w
P
A
mg
N N
F 0 friction
— . T M (cart mass) 0.5 kg m (pendulum mass) 0.2 kg
e b (cart friction) 0.1 N/m/s || [ (pend. length to center) 0.3 m
@) O | . I (pendulum inertia) 0.006 kgm?2
https://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulumé&section=SystemModeling 28
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Inverted Pendulum Example — Obs. And Controllability

e Let’s consider an inverted pendulum pushed by a cart, the linearized dynamics are as

follows:
T 0 1 0 0 T 0
) 0 —0.1818 2.6727 0O v 1.8182
. p— u
) 0 0 0 1 0) 0
W 0 —0.4545 31.182 0 W 4.5455

10 0 0 i\
y‘(i)_(o 0 1 0) é

) v

( C ) F friction
cA P = bi
e The system is observable, i.e. rank {O} = rank < O A2 > =4 O OL_..
C A3

e The system is controllable, i.e. rank {W} = rank { (B AB A®’B A3B)} =4

https://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulumé&section=SystemModeling 29
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Inverted Pendulum Example — Controller Design

e Let’s consider an inverted pendulum pushed by a cart

e The controller is composed of an observer and a regulator:

F B friction

https://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulumé&section=SystemModeling 30
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Inverted Pendulum Example — Open Loop Results

e Let’s consider an inverted pendulum pushed by a cart

e The controller is composed of an observer and a regulator:

Position and Speed

0.2 0.4 0.6 0.8
A
—)
______-/ I 0
0 0.2 0.4 0.6 0.8 1
Time (s)

P
A
mg

N N
F B friction
R—— AR

iz = bx
O OL_,.

Ang. Position and Ang. Speed

600
g 4007 /
=200 — ]
/—-—-Jﬁ
0 L 1
0.2 0.4 06 0.8
3000 .

—/
= 2000 il A8
g
3 1000 1

0 T I 1
0 0.2 0.4 06 0.8 1
Time (s)
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Inverted Pendulum Example — Closed Loop Results

e Let’s consider an inverted pendulum pushed by a cart

e The controller is composed of an observer and a regulator: P
A
mg
N N
F B friction
— AN
P = bi

O Ol _,.,

1 Position and Speed Ang. Position and Ang. Speed
2
— 0 L
[ —
= E oo
8 1 — = E—
—— 2 —_—
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
2000 —_—w|
— 200F N —_—
_-C:.)\ b
3 {1000 |
E 9 1 L
® —_— Col
-200 | , , : i i | ‘ , |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 08 1
Time (s) Time (s)
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Summary

e We have discussed state feedback design for state space systems with the goal of asymp-
totically stabilizing a system (controllability and stabilizability)

e When the states are not available for measurement, we can develop a state estima-
tor/observer (observability and detectability)

e We can then combine the observer and controller to develop a dynamic feedback for
asymptotic stabilization

e By the separation principle the observer and controller can be designed separately
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