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State Space System Solution in Different Basis

e Let’s consider again an unforced state space system

= Az, x(0)=xg
where r € R" (A € R™"*"),

e What if the system is analyzed in a new basis, e.g. V ={vy, -+, v,}7
= VYo eR" z=Vzorz=V"lg

= :=V"1AV 2= Az, 2(0) = 29 = V" lay
————
A

e Which has a solution as follows:

2(t) =Mz = z(t) = VeV 2(0)

e At

This gives us another formula for computing et = VelAty—!
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Jordan Canonical Form Solution

e From the previous slides/lectures, we have discussed the existence of a basis given by

the columns of V' = [ful e vn} € R**" such that A = V1AV is a Jordan matrix:
Jn (A1) 0 . 0

t=Ar = Z=Az, A=

where each Jordan block is as follows:

e To compute the matrix exponential in the standard basis: et = VeMV ! we need
to know e’
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Jordan Canonical Form Solution (2)

e The matrix exponential of a matrix in Jordan form is:

/ejnl()‘l)t 0 P O \
0 edng (A2)t 0
t=Az = 2z(t) =eMzy, where e =
\ O 0 P ejnq ()\Q)t)
where each block is in the following form:

()\ 1 0 0) (X ML et (;;kll),\

0O M 1 0 0 e)\t e)\tt e)\t (:Lk:;)'

Tr(A) = = M= 0 0 M M

0 0 A1

\0 0 0 A \ 0 0 0 M)
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Modal Analysis — General Jordan Form Summary

e Consider the LTI unforced system & = Ax, x(0) = xg, and z € R"
e Assume o(A) = {A1, A2, ---, A\;} C C (the eigenvalues of A) may be repeated and
degencrate

Solution to the original system is as follows:

z(t) = eMtay = VeV lzy = Velly,

where A is in Jordan form

The solution can then be given in terms of the modes of the system

q n; i—1
_ At
z(t) =V E g e G 1)!Wij

i=1 j=1
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Example: RLC Circuit (1)

e Consider an RLC circuit:
O(A) = {)\1, )\2} — {—456.15, —43.85}

-7 —1
_|Z T ] |™ ) 09158\ 0.2141
. V1 = , Uy =
- L0 - 0.4015 —0.9768

o Characterize the solutions for any initial condition, z(0) = xg € R?, andr =5Q, L =
0.0lH, C=0.006F

e Form a new basis given by the columns of V = (vl ’Ug)

e [n the new basis, the system becomes:

SV AV, z.:l _ —456.15 0 z1
Z9 0 —43.85 Z9

e The solution of this system is easier to find:

Zl(t) _ e —496.15¢ 0 21(0)
Zg(t) 0 e~ 15851 22(0)

Luis Herrera, University at Buffalo, 2021



Example: RLC Circuit (2)

e Consider an RLC circuit:

. —r —1
Yy _ (T T [*™®
i) % 0 X2

e Characterize the solutions for any initial condition, z(0) = 7o € R, and r =5, L =

0.01, C = 0.005

e Back in the original coordinates (standard basis), the solution is:

o a:l(t) o —456.15¢ 0 21(0)
w(t) =VeMVTlz(0) = (:cg(t)) - (Ul Ul) ( 0 643'85t) (Zz(o))

z(0)

zi(t)) _ vy~ 4561582 (0) 4 rge= 4385 1 (0)
2 (1)
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Internal Stability - Definitions

e Consider the LTT unforced system & = Ax, 2(0) = xg, and z € R"

o Assume o(A) = {A1, A2, -, Ay} C C (the eigenvalues of A) may be repeated and
degenerate

e Solution to the original system is as follows:
z(t) = eMyy = VeVl = Vellz,
where A is in Jordan form

e The solution can then be given in terms of the modes of the system

ti—1

z(t) =V ZZ@A” G- 1)!W2'j

i=1 j=1

e As opposed to SISO systems, now we have an n-dimensional vector z(t) which carac-
terizes the solution of the system

e How can we define stability for this system?

e How can we assign a number (metric) for z(¢)?

10
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Internal Stability - Norm

e A norm on R"” is a generalization of length. Any norm on R" is a function/map
|- || : R™ — R such that
1. Non-negativity: Vo € R™, |[z|| >0
2. Positive definiteness: Vo € R™, ||x|| = 0 if and only if x = 0 (zero vector)
3. Absolute homogeneity: VA € R and z € R”, ||Az|| = |A] ||z]|
4. Triangle inequality: Va, y € R™, ||z + y|| < ||z]] + ||y

e The 2-norm on R" is defined as ||z||s = /27 + - + 22
e The 1-norm on R" (taxicab norm) is defined as ||z||; = |z1| + - -+ + |z,

, 1
e In general, the p-norm on R™ (p > 1) is defined as ||z||, = (|x1[P? + -+ + |z, |P)?

e Lastly, the infinity norm is ||z||s = max |x;]|

11
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Internal Stability - Stable

e Consider an unforced LTI system & = Az, x(0) = xg, and x € R
e Definition: The equilibrium point x* = 0 of & = Ax is said to be:

— Stable if for any € > 0, there exists a d(¢) > 0 such that

lz(0)ll2 <o = [lz(t)]l2 <¢, V=0

12
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Internal Stability — Asymptotically Stable

e Consider an unforced LTI system & = Az, x(0) = xo, and z € R"
e Definition: The equilibrium point z* = 0 of & = Ax is said to be:

— Asymptotically Stable if it is stable and a 0 > 0 can be chosen such that

12(0)[]2 <4 = lim [[z(t)|]2 =0

t— o0

13
Luis Herrera, University at Buffalo, 2021



Internal Stability — Unstable

e Consider an unforced LTI system & = Az, z(0) = zp, and x € R”
e Definition: The equilibrium point z* = 0 of £ = Ax is said to be:

— Unstable if it is not stable

14
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Internal Stability — LTI Systems - Stable

e Consider an unforced LTI system & = Ax, x(0) = xg, and z € R"

e The previous definitions of stability can be simplified for linear systems by analyzing
the eigenvalues of A

e For LTT systems, the equilibrium point #* = 0 of z = Ax is said to be:

— Stable if and only if all A; € o(A) satisfy Re{)\;} < 0 and for every eigenvalue
with Re{\;} = 0 its algebraic multiplicity = geometric multiplicity

e All eigenvalues of A must have real part less than or equal to 0, i.e. Re{\;} <0 for all ¢
e For the eigenvalues that have zero real part, they must be non-degenerate
e Therefore, using a Jordan canonical form, the Jordan blocks associated with the eigenvalues

with zero real part are still diagonalizable, i.e.

N 0 - 0 ot
A 0

<

e We don’t have any polynomial terms #” and each et = e(0+tiwilt — eiwit or 0 =1 if w; =0

15
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Internal Stability — LTI Systems — Asymptotically Stable

e Consider an unforced LTI system & = Az, x(0) = xg, and z € R"

The previous definitions of stability can be simplified for linear systems by analyzing
the eigenvalues of A

For LTT systems, the equilibrium point z* = 0 of £ = Az is said to be:

— Asymptotically stable if and only if all A\; € o(A) satisfy Re{\;} <0

All eigenvalues of A must have real part less than 0, i.e. Re {\;} <0 for all 4

16
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Internal Stability — LTI Systems —Unstable

e Consider an unforced LTT system & = Az, x(0) = xg, and = € R"

e The previous definitions of stability can be simplified for linear systems by analyzing
the eigenvalues of A

e For LTI systems, the equilibrium point x* = 0 of £ = Ax is said to be:
— Unstable if there exist at least one \; € o(A) which satisfies Re{\;} > 0 and/or
if any A; s.t. Re{\;} = 0 is degenerate

e Recall the general solution to a state space system: z(t) = V { =1 D e"it(;f%_ll)!wij}

e Unstable if there is at least one A; such that Re{\;} > 0

e Unstable if there is at least one A; with Re{)\;} = 0 and degenerate, i.e. geom. mult. < alg.
mult
For this particular eigenvalue, there will be polnomial terms

17
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Feedback Control Motivation

e Consider an unforced LTI system & = Az, z(0) = zg, and x € R”
e For physical systems, we would like the eq. point to be asymptotically stable or stable

e What if a LTI system is unstable?

19
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Feedback Control Goals

e We will now consider an LTI system with input(s):

t=Ax+ Bu, xeR", ueR™

e We want to design a controller v = u(z) in order to:

20
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Feedback Control - Stabilization

e We will now consider an LTI system with input(s):
r=Ax+ Bu, xze€R" ueR™
e We want to design a controller u = p(z) in order to stabilize the system, i.e.
& = Az + Bu = Ax + Bu(x) be an asymptotically stable system
e We begin by finding a control law of the form u = p(x) = Kz, where K € R™*"
e This type of control is known as linear state feedback since the input is a linear com-
bination of the states:
£y
L2
forlinput,(mzl):u:Kx = u:(lﬁ ky - k:n) . = u = kix1+ kowo+ -+ knxn
Tn
I
: oo [ur ur\ (ki ki oo R} | 2 uy = k11x1 + k12z2 + -+ kinn
for 2 npuis, (m B 2)- (Uz) = ke = (Uz) B (k'zl koo - k?n) - g = ko111 + kooxo + - - + kopay,
Tn

21
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Feedback Control - Stabilization Summary

We will now consider an LTI system with input(s):

t=Ax+ Bu, x€R" uecR™

We want to design a controller u = p(x) in order to stabilize the system, i.c.
& = Az + Bu = Ax + Bu(z) be an asymptotically stable system

We begin by finding a control law of the form u = pu(z) = K«
(linear state feedback)

Our goal will be to find a feedback matrix K € R™*™ such that for u« = Kz, the closed
loop system:

t=Ax+ Bu=Ax+ BKz = (A+ BK)zx

is asymptotically stable, i.e. all A\; € (A + BK) satisfy Re{\;} <0

When is this possible?

22
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Cayley Hamilton Theorem

e Consider the LTI system @ = Ax + Bu

e The eigenvalues of the matrix A are the roots of its characteristic polynomial:
pa(t) =det(tI — A) =t" + ap_1t" '+ -+ art +ag =0

Cayley Hamilton Theorem: A matrix A € R™"*" satisfies its own characteristic polyno-

mial:
pa(A) =A"+a, 1A+ +a1A+agl =0
Applications
e Computing powers of A, since A" = —agl — a1 A —-- —a, A" 1
. . At - (At)ﬁ n—1
e Matrix exponential ¢”" = Z = colt) ] +c1()A+ -+ 1 (H)A"
i=0

23
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Reachable States

e We will now consider an LTI system with input(s):
t=Ax+ Bu, xze€R" uwecR™

which has solution z(t) = ez(0) + fot A=) Bu(T)dr

e Definition: A state zg € R™ is said to be reachable from z(0) = x( if there exists a
finite T' and input w(t) from 0 <t < T such that z(T) = xg

e How can we obtain u(t)?

e At a finite time ¢t = T, the solution satisfies:
T
z(T) = xg = e 2(0) +/ A=) Bu(r)dr
0
T T
= xg— e T2(0) = / e A=) Bu(7)dr, let u(r) = BTed (T=7)z, for some unknown vector z € R"
0
T - T
= zg—eT2(0) = f AT BT A (T=) 7 = f M(TYMT()dr z = X(1)z
0 0

e We can solve for z if X(7) is invertible, i.e. z = X"1(7) (zs — eT2(0))

e When is X (7) invertible?

24
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Reachable States

e We will now consider an LTI system with input(s):
t=Ax+ Bu, xze€R" uwecR™

which has solution z(t) = ez(0) + fot A=) Bu(T)dr

e Definition: A state zg € R™ is said to be reachable from z(0) = x( if there exists a
finite T' and input w(t) from 0 <t < T such that z(T) = xg

e How can we obtain u(t)?
e At a finite time ¢t = T, the solution satisfies:
T . T
= xg —eT(0) = / AT BRTeA (T=T)gry = / M(TYMT(r)dr 2= X(7)z
0 0
= 2=X"'(7) (ws — eATaj(()))

o X(7) is invertible iff M(7) = eA(T=7) B has full rank

Lastly, the rank (M (7)) = rank ([B AB A*B ... A”lBD

— Im {eA(T*T)B} = Im { {CD(T —T) + (T —1)A+ -+ (T — T)A”_l} B} by C.H.
~ I {AT 0B} = {[B AB ... aip|}

25
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Reachable Subspace

e We will now consider an LTT system with input(s):
t=Ar+ Bu, zeR" ueR™
which has solution z(t) = e“fz(0) + fg A7) Bu(r)dr

e Fact: The set of all reachable states, Rg = {x € R" | z(0) = 0, 3T, u(t) s.t. z(T) = z}
(from from x(0) = 0), is a linear subspace of R"

26
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Reachable Subspace — Computation

e We will now consider an LTT system with input(s):
t=Ar+ Bu, xeR", ueR™
which has solution z(t) = e“fz(0) + fg A7) Bu(r)dr

e How can we find Ry?

e The reachable subspace can be obtained as follows:

Ro=2(A|B)=Im|B AB A2B A" 'B

27
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Controllability

e Consider an LTI system with input(s):
t=Axr+ Bu, xe€R" ueR™

e Controllability: An LTI system is said to be controllable if and only if the rank of the
matrix

W=|B AB ... A"'B

is n, i.e. it has n linearly independent columns

28
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Controllability Canonical Form

e Consider an LTT system with input(s) & = Az + Bu, x € R", ue R™

e If a system is controllable (Rank (W) = n) with m = 1, there exists a change of basis
matrix 1" (x = T'z) such that:

5=T1AT2+ T 'Bu= A,z + B.u

where A, and B, are of the form:

(O 1 0 g \ (0\

o 0 0 - 1 0
\—040 —Qy —aQz - —OJn—1) \1}

where «; are the coefficients of pa(t) = t" + a1t 1 + - + a1t + ag

29
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Controllability Canonical Form — Transformation Matrix

e Consider an LTT system with input(s) & = Az + Bu, x € R", ue R™

e If a system is controllable (Rank (W) = n) with m = 1, there exists a change of basis
matrix 1" (x = T'z) such that:

=T 'AT2+ T 'Bu=A.z+ B.u
where A, and B, are in controllability canonical form

e The transformation matrix is given by:

( o 0% 3 o T 1\
%) a3 : 1 0
T=(B AB -.-- A"7N)T,, T,=| @ C apg - 00
v C ape1 1 I I E
Op—1 1 0 0 0
1 0 0 0 0/

where «; are the coefficients of pa(t) = t" + a 1t" "1 + - + a1t + ag

30
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Implications for Full State Feedback

e Consider an LTT system with input(s) & = Az + Bu, x € R", ue R™

e Assume m = 1, the eigenvalues of the closed loop matrix (A+ BK) are freely assignable
if and only if (A, B) is controllable

Proof (<)

e Simply find K such that ¢(A + BK) is any desired set of eigenvalues

e If (A, B) is controllable, then there exists a change of coordinates 1" such that:

BT R T

0
=T 1AT2+4+ T 'Buy = = 2+ |u

0 0o - 1 0

\—@0 —ap o~ \1/
<1
- - - - Z2
oletu—Kz—(kl ko - kn) :
Zn

31
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Implications for Full State Feedback

e Consider an LTT system with input(s) & = Az + Bu, x € R", ue R™

e Assume m = 1, the eigenvalues of the closed loop matrix (A+ BK) are freely assignable
if and only if (A, B) is controllable

Proof (cont’d)

e what is the closed loop system?

0 1 0
- 0 0 e 0
= (A + B.K)z = _ _ _ _ 2
— + l~6‘1 — + ]22 s —Cl{n_llgn

e The characteristic polynomial of (A, + B.K) is:

Pia iy () ="+ Bt 71+ 4 Bit + By

32
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Example: RLC Circuit with Input

e Consider an RLC circuit with input: I
—
4\/\/\,_{\/\/\_
— —1 1 r L
L1 = = X1 T
o o I Ee C V.
T2 voi 0 To 0 |

e Let » =0.005, L =0.01, C = 0.005, is the system controllable?

100 —50
4 ( ) (0 20000) = Rank (W)

e Find T such that x = Tz the system is in controllability canonical form

0.5 1 0 100
= 2 = 2 . T: B AB —
pa(t) =1t° 4+ aqt + ap = t“ 4 0.5¢ 4+ 20000 ( ) (1 O) (20000 0 )

= =T 'ATz+T 'Bu = ?1 — 0 ! S 0 u
Z9 —20000 —05 9 1

33
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Example: RLC Circuit with Input (2)

e Consider an RLC circuit with input:

—7T

T1

Q=

T2

o Let 7 = 0.005, L =
{—1000, —2000}

()= (oo 05) (2)+(0)
- (1) Coome &

Desired eigenvalues imply = paipkl(

0.01, C =

= K, = 20000 — 2000000 -
) = K =
= Ko = 0.5 — 3000

Luis Herrera, University at Buffalo, 2021

1
I L1

0 T9

_M)( )

(t -+ 1000) (¢ + 2000) = £ + 3000 + 2000000

(—1980000 —2999.5)

o ==

— Ve

W K= R7T = (—29.995 —99)
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Example: RLC Circuit with Input (3)

e Consider an RLC circuit with input: I
4\/\/\,_%
: —r -1 1 ro L
N A N e N e Y wO cLy,
Qo & 0/ \a 0 :
o Let » = 0.005, L = 0.01, C = 0.005, find v = Kz such that ¢(A + BK) =
{—=1000, —2000}
35
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Example: RLC Circuit with Input (4)

e Consider an RLC circuit with input:
—
4\/\/\,_{\/\/\_
1 1 ' k
-~ =£ =
chl = L L :Ijl —+— L U Ll(:;> C ::::tjg
To % 0 o 0

Let » = 0.005, L = 0.01, C' = 0.005, find v = Kz such that o(A + BK) =
{—=1000, —2000}

Open loop response Closed loop response

o(A) = {—0.25 + j141.4, —0.25 — j141.4} o(A + BEK) = {—1000, —2000}

Response to Initial Conditions Response to Initial Conditions

200 0
100
c = -200
S o S
= © -400
-100
8 &
= =200 = -600
£ 200 2 200
wn 2]
100 150
™ N
3 0 S 100
o o
[ [
-100 50
_200 1 L 1 0 1 1 L 1
0 5 10 15 20 0 0.002 0.004 0.006 0.008 0.01

Time (seconds)

36

Time (seconds)
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Example: RLC Circuit - Matlab code

e Consider an RLC circuit with input:

2 %% RLC Circuit P —r =1 " 1
s T = 0.005; C = 5e-3; L = 1e-2; Yy _ | L L 1 2Ty
1 . 1

5 % Write the system matrix Ui C 0 X2 0
¢ A = [-r/L -1/L; 1/C 0];

7 B = [1/L; 01; I

8 — >

o %% Build the controllability matrix ____JNgAr__JiZPL___

10 We = [B Ax*B]; % System is controllable

11 rank(We); ™ +

- ”(—) C—ve
15 %% Build the change of basis matrix -

14 % First obtain the char polynomial of A

-

. syms t
16 pA = det(t*xeye(2)-4);

18 % Extract the coefficients and build the matrix

19 CoeffsA = fliplr(coeffs(phd)); % Coefficients
20 Talph = [CoeffsA(2) 1; 1 0];

21 % Change of coordinate matrix

22 T = Wecx*Talph;

24 % Change coordinates
o5 Anew = inv (T)=*A*T;
26 Bnew = inv(T)*B;

28 %% Do pole placement using T
20 % Desired eigenvalues

50 laml = -1000; lam2 = -2000;
pAnew = (t-lamil)*(t-lam2)

33 CoeffsAnew = fliplr(coeffs (pAnew));

5 Ktil_all = fliplr(CoeffsA-CoeffsAnew)
36 Ktil = Ktil_all(1:2);

38 K = Ktilx*inv(T);
50 double (K) ;

10

41 %% Check the closed loop eigenvalues

v Acl = double (A+Bx*K);

13. eig(ACl) 37
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Pole Placement/Feedback Matrix Using Matlab

e Consider an LTT system with input(s) 2 = Az + Bu, x € R", ue R™

e If the system is controllable, we can place the poles in Matlab using the place command:

1 %% Obtain feedback matrix using place
> K = -place(A, B, lam_des);

e OR the acker command, which uses Ackermann’s formula

1 %% Obtain feedback matrix using acker
> K = —-acker (A, B, lam_des)

38
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What if the system is not controllable?

e Consider an LTT system with input(s) & = Az + Bu, x € R", ue R™

e The system defined by (A, B) is controllable iff Rank (W) =n

e Assume Rank (W) = p < n, what does this imply? will it be possible asymptoticaly
stabilize an unstable open loop system?

39
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Reachable Subspace — A Invariance

e Consider an LTT system with input(s) & = Az + Bu, x € R", ue R™

e The reachable subspace Ry = (A | B) = Im [B AB A®B A”—lB] is the smallest

A-invariant subspace containing the Im[B]

e Assume Rank (W) = p < n, A-invariance of Ry implies the following:

40
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Reachable Subspace — A Invariance (cont’d)

e Consider an LTT system with input(s) & = Az + Bu, x € R", ue R™

e The reachable subspace Ry = (A | B) = Im [B AB A®B A”—lB] is the smallest

A-invariant subspace containing the Im[B]

e Assume Rank (W) = p < n, A-invariance of Ry implies the following:

41
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Decomposition w.r.t. Reachable Subspace

e Consider an LTT system with input(s) & = Az + Bu, z € R", ue R™
e Assume that the dimension of Ry = dim {Im (W)} =p <n
e Find a complementary subspace W (e.g. Ré), such that R" =Ry & W

e Form a basis for R" s.t. T:[vl Sev U Wy v wn_p]

A o~

"

Ro W
e Analyzing the system in the new basis, i.e. x = 7'z, we can obtain:
3=Az+Bu, A=T'AT, B=T"'B

where A and B are of the form:

N A, A By B
A 11 IQ,B 1

0 Ao 0

1. The eigenvalues of A are o(A) = o(A) = 0(A11) U o (Ass)
2. The pair (AH, Bl) is controllable
3. The system is stabilizable if the eigenvalues of A5, have negative real part

42
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Feedback Design for Stabilizable Systems

Consider an LTI system with input(s) © = Az + Bu, x € R", ue R™

Assume that the dimension of Ry = dim{Im (W)} =p <n

Form a basis for R" s.t. T = [’Ul e Uy Wy 'wn_p}

N o

~

Ro w

Analyzing the system in the new basis, i.e. x = Tz, we can obtain:

z An 42112 z1 By
— -+ U

0 14122 <9 0

—

Z

bo

43
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Feedback Design for Stabilizable Systems

e Consider an LTT system with input(s) & = Az + Bu, x € R", ue R™
e Assume that the dimension of Ry = dim {Im (W)} =p <n

e Form a basis for R” s.t. T:[’Ul cee Up wWpoe e wn_p]

. o

—~

Ro w
e Analyzing the system in the new basis, i.e. x =Tz, we can obtain:

Z le f‘i12 21 By
= N + U
22 0 A22 Z9 0

o Lot K = (f(l 0) s.t. the eigenvalues of Ay + B, K, are as desired (e.g. pole placement)

e In the standard basis, K = f(T_l, s.t. u = Kz and the closed loop poles are 0 (A+BK) =
O-(All + BlKl) U O'(AQQ)
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Final Thoughts

e Consider an LTT system with input(s) & = Az + Bu, x € R", ue R™

e We have discussed the concepts of internal stability (without inputs) and characterize
them in terms of the eigenvealues of A

e When the system is controllable, a state feedback controller of the form u = Kx can be
used to modify/place all of the closed loop eigenvalues (i.e. (A + BK))

e When the system is not controllable, we can still use a feedback controller u = Kz to
alter the controllable modes only

e The system is stabilizable if the uncontrollable modes have negative real part

e So far we have assume that all of the states are available for measurement, what if this is
not possible? What if we only have the outputs y = C'xz available to design our controller?
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