EE 419/519: Industrial Control Systems

Lecture 4: State Space Systems

Dr. Luis Herrera Dept. of Electrical Engineering University at Buffalo

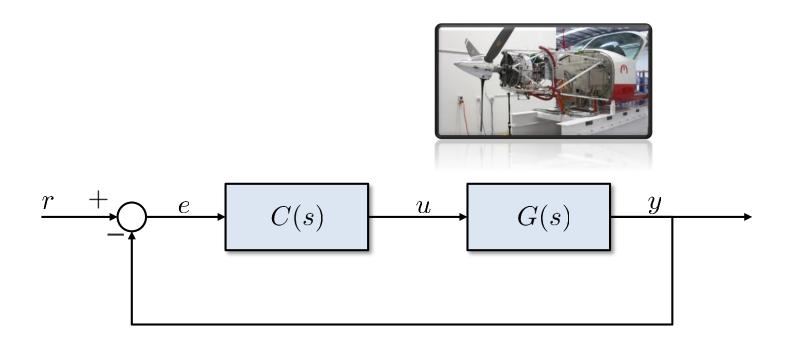
Fall 2021

Topic Outline

- Transfer Function vs State Space (Motivation)
- State Space Models and Examples
- From Nonlinear to Linear State Space Models
- Linear Algebra Review
- Jordan Canonical Form

Transfer Function (SISO) Drawbacks

• We have discussed the controller design for Single Input Single Output Systems (SISO)

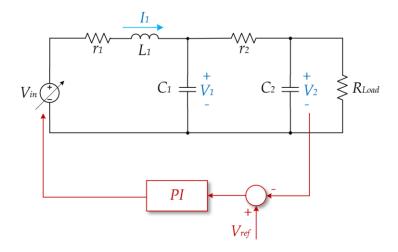


Observations

- What if we had more sensors/observations available?
- What if we had more "inputs"?
- Could these be used to improve the closed loop system?

Transfer Function (SISO) Drawbacks – Example 1

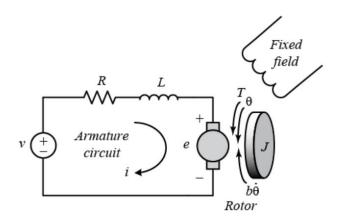
- In HW 2 problem 4, you will design a controller to regulate the C_2 voltage
- Assumptions: Single input (V_{in}) single output (V_2)



• What if we could also measure I_1 and V_1 ?

Transfer Function (SISO) Drawbacks – Example 2

• We have also designed a controller to track the speed of a dc motor



• What if we could also measure the current *i*?

From Transfer Function to State Space Models – Case 1

• Let's consider a strictly proper transfer function of the form:

$$\frac{Y(s)}{U(s)} = \frac{1}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

From Transfer Function to State Space Models – Case 2

• Let's consider a more general strictly proper transfer function

$$\frac{Y(s)}{U(s)} = \frac{b_1 s^{n-1} + \dots + b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

From Transfer Function to State Space Models – Case 2

• Let's consider a more general strictly proper transfer function

$$\frac{Y(s)}{U(s)} = \frac{b_1 s^{n-1} + \dots + b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

• We can also use the command tf2ss(num, den)

```
1 %% Write the transfer function first
2 num = [b1 b2 ... bn];
3 den = [1 a1 ... an];
4 [A, B, C, D] = tf2ss(num, den)
```

$$A = \begin{pmatrix} -a_1 & -a_2 & \cdots & \cdots & -a_n \\ 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad C = \begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix}$$

Example – Transfer Function to State Space

• Transform the following transfer function to state space:

$$\frac{Y(s)}{U(s)} = \frac{2s+1}{s^2+7s+10}$$

Topic Outline

- Transfer Function vs State Space (Motivation)
- State Space Models and Examples
- Linear Approximation of Nonlinear Systems
- Linear Algebra Review
- Jordan Canonical Form

Review: Nonlinear State Space System Definition

• A (nonlinear) State Space model with outputs is of the form:

$$\dot{x} = f(x, u)$$
$$y = h(x)$$

- The vector $x \in \mathbb{R}^n$ are the states
- The vector $u \in \mathbb{R}^m$ are the **inputs**
- The vector $y \in \mathbb{R}^p$ are the **outputs**

Review: Linear State Space System Definition

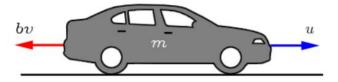
• An LTI State Space model with outputs is of the form:

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$
$$y = Cx$$

- The vector $x \in \mathbb{R}^n$ are the states
- The vector $u \in \mathbb{R}^m$ are the **inputs**
- The vector $y \in \mathbb{R}^p$ are the **outputs**

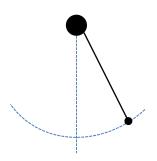
Example 1: Cruise Control

• Derive a state space model of a car as shown in the figure



Example 2: Pendulum

• Derive the state space differential equations for a pendulum



Equilibrium Point Definition

• Many systems can be characterized by a nonlinear syste space system

$$\dot{x} = f(x, u)$$

- An equilibrium point (x_e, u_e) is a point for which if the system starts there, it will remain there for all future time
- With respect to our state space model, this implies: $0 = f(x_e, u_e)$

Linear Approximation of Nonlinear Systems

• Many systems can be characterized by a nonlinear state space system

$$\dot{x} = f(x, u)$$

• However, close to an **equilibrium point**, many nonlinear systems can be **approximated** by a linear system

Linear Approximation of Nonlinear Systems (2)

• Many systems can be characterized by a nonlinear state space system

$$\dot{x} = f(x, u)$$

• How can we obtain the A and B matrices which approximate f(x, u) close to (x_e, u_e) ?

Linear Approximation of Nonlinear Systems (3)

• Many systems can be characterized by a nonlinear state space system

$$\dot{x} = f(x, u)$$

• A linear approximation of the system 'close' to an equilibrium point is given as follows

• Define $\tilde{x} = x - x_e$ and $\tilde{u} = u - u_e$

$$f(x, u) \approx \underbrace{\frac{\partial f}{\partial x}\Big|_{x_e, u_e}}_{\triangleq A} (x - x_e) + \underbrace{\frac{\partial f}{\partial u}\Big|_{x_e, u_e}}_{\triangleq B} (u - u_e)$$

• Then the behavior of the original nonlinear system close to the equilibrium point can be modeled by:

$$\dot{\tilde{x}} = A\tilde{x} + B\tilde{u}$$

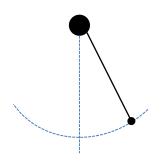
Example: Pendulum Linearization

• The nonlinear state space model of a pendulum is

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{l}\sin(x_1) - \frac{k}{m}x_2$$

• Obtain a linear approximation at
$$x_e = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$



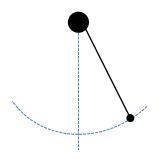
Example: Pendulum Linearization (2)

• The nonlinear state space model of a pendulum is

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{l}\sin(x_1) - \frac{k}{m}x_2$$

• Obtain a linear approximation at
$$x_e = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$



Topic Outline

- Transfer Function vs State Space (Motivation)
- State Space Models and Examples
- From Nonlinear to Linear State Space Models
- Linear Algebra Review
- Jordan Canonical Form

Motivation: Linear State Space Systems

• We will analyze linear time invariant (LTI) models in state space form:

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$

 $y = Cx$ $x \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ y \in \mathbb{R}^p$

- Let's consider for example n = 2, m = 1, p = 1
- When we say $x \in \mathbb{R}^2$, how can we visualize this? What **basis** are we referring to? What if we used a different basis?

Linear Vector Spaces

A Linear Vector Space is a set, \mathcal{V} , over a field, \mathbb{R} , in which having **two** operations:

Addition:

$$x, y \in \mathcal{V}, \ z = x + y \in \mathcal{V}$$

2. Scalar multiplication:

$$x \in \mathcal{V}, \ \alpha \in \mathbb{R}, \ z = \alpha x \in \mathcal{V}$$

- (cont'd) it satisfies the following properties (Axioms): $x, y, z \in \mathcal{V}$
- (Commutativity)

$$x + y = y + x$$

(Associativity)

$$(x+y) + z = x + (y+z)$$

3. (Zero vector)

$$\mathbf{0} + x = x, \ x, \mathbf{0} \in \mathcal{V}$$

(Additive inverse)

$$\forall x \in \mathcal{V} \text{ there exists } -x \in \mathcal{V} \text{ such that } x+(-x)=\mathbf{0}$$

Example: $\mathcal{V} = \mathbb{R}^2$

5. (Identity scalar)

$$1x = x \text{ for } 1 \in \mathbb{R}$$

(Compatibility of scalar mult.)

$$(ab)x = a(bx)$$
 $a, b \in \mathbb{R}$

(Distributivity w.r.t addition) a(x+y) = ax + ay $a \in \mathbb{R}$ 7.

$$(x+y) = ax + ay$$
 $a \in \mathbb{R}$

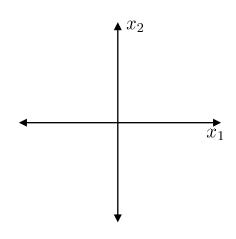
(Distributivity w.r.t scalar mult.) (a+b)x = ax + bx $a, b \in \mathbb{R}$

$$(a+b)x = ax + bx$$

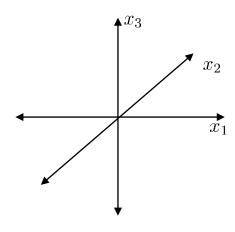
Linear Vector Spaces - Examples

- What are some familiar examples of **Vector Spaces?**
 - 1. The real numbers \mathbb{R}^1

2. The 2 dimensional space, \mathbb{R}^2 How to identify an element in \mathbb{R}^2 ?



3. The 3 dimensional space, \mathbb{R}^3 How to identify an element in \mathbb{R}^3 ?



Linear Vector Spaces – Examples (cont'd)

- Other not so common Linear Vector spaces:
 - \circ The set of **polynomials** of degree less than or equal to n, e.g. n=2

if
$$p, q \in \mathbb{P}_2 \implies p(x) = c_2 x^2 + c_1 x + c_0, \quad q(x) = d_2 x^2 + d_1 x + d_0$$

e.g. $h(x) = 3x^2 + 1 \qquad m(x) = 2x^2 + x - 3$

• Define addition and scalar multiplication:

$$p(x) + q(x) = (c_2 + d_2)x^2 + (c_1 + d_1)x + (c_0 + d_0)$$
$$h(x) + m(x) =$$

2. Scalar multiplication:

$$\alpha \in \mathbb{R}$$
 $\alpha p(x) = \alpha c_2 x^2 + \alpha c_1 x + \alpha c_0$

$$3h(x) =$$

 $\circ \quad \mathbb{P}_2$ and in general \mathbb{P}_n satisfy all the axioms for a vector space

Subspace of a Vector Space

- Vector spaces provide us with a field to conduct extensive analysis
- **Definition:** S is called a *subspace* of a vector space V if S is a subset of V and S satisfies:
 - (i) $\mathbf{0} \in \mathcal{S}$ (\mathcal{S} is non-empty)
 - (ii) For all $x, y \in \mathcal{S}$, $x + y \in \mathcal{S}$ (S is closed under addition)
 - (iii) For all $x \in \mathcal{S}$, $\alpha x \in \mathcal{S}$, where $\alpha \in \mathbb{R}$ (\mathcal{S} is closed under scalar multiplication)
- \circ To verify if a subset, \mathcal{S} , of a vector space, \mathcal{V} , is a subspace we need to check the three conditions above **Remember them!**

Subspace Example 1

• **Example:** Consider the following subset of \mathbb{R}^3 :

$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x = 3y, \ z = -2y \right\}$$

• Is it a subspace of \mathbb{R}^3 ?

Subspace Example 2

• **Example:** Consider the following subset of \mathbb{R}^2 :

$$\mathcal{S} = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_2 = 3x_1 \right\}$$

• Is it a subspace of \mathbb{R}^2 ?

Subspace Example 3

• **Example:** Consider the following subset of \mathbb{R}^2 :

$$\mathcal{S} = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 \ge 0, \ x_2 \ge 0 \right\}$$

• Is it a subspace of \mathbb{R}^2 ?

Span of a Set of Vectors

- Suppose $v_1, v_2, ..., v_n$ are vectors defined in a vector space \mathcal{V}
- A Linear Combination of these is a vector:

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n \in \mathcal{V}$$
 $\alpha_1, \dots, \alpha_n \in \mathbb{R}$

- The set of all linear combinations of $v_1, v_2, ..., v_n$ is called **span** $\{v_1, v_2, \cdots, v_n\}$
- Example:

Span of a Set of Vectors - Example

• Determine if
$$v = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix} \in \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ -4 \\ 0 \end{pmatrix} \right\}$$

Span of a Set of Vectors - Subspace

• **Theorem:** if v_1, \dots, v_n are elements of a vector space \mathcal{V} , then the $\mathcal{S} = \operatorname{span} \{v_1, v_2, \dots, v_n\}$ is a subspace of \mathcal{V}

Proof:

Spanning Set for a Vector Space

- Let \mathcal{V} be a vector space
- For a certain set of vectors $v_1, \dots, v_n \in \mathcal{V}$, we know that span $\{v_1, \dots, v_n\} \subset \mathcal{V}$
- Is it possible that instead span $\{v_1, \dots, v_n\} = \mathcal{V}$

Spanning Set for a Vector Space (2)

- Let \mathcal{V} be a vector space
- For a certain set of vectors $v_1, \dots, v_n \in \mathcal{V}$, we know that span $\{v_1, \dots, v_n\} \subset \mathcal{V}$
- Is it possible that instead span $\{v_1, \dots, v_n\} = \mathcal{V}$
- **Definition:** The set $v_1, v_2, ..., v_n \in \mathcal{V}$ is a spanning set for \mathcal{V} if and only if every vector in \mathcal{V} can be written as a linear combination of $v_1, v_2, ..., v_n$

Spanning Set for a Vector Space - Example

o **Example:** Determine if span
$$\left\{ \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix}, \begin{pmatrix} 8 \\ 4 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} \right\} = \mathbb{R}^3$$

Spanning Set and Linearly Dependent Set of Vectors

• Consider two spanning sets for \mathbb{R}^2

- Let $\{v_1, v_2, \dots, v_n\}$ be a **linearly dependent** set of vectors \Rightarrow There is at least one vector, say v_1 , that can be written as a sum of the others
- Then, the span $\{v_1, v_2, \dots, v_n\} = \text{span}\{v_2, v_3, \dots, v_n\}$

Linearly Dependent Vectors

• In general, given $\{v_1, v_2, \cdots, v_n\}$, it is possible to write one of the vectors as a linear combination of the others n-1 vectors **if and only if** there exists $c_1, c_2, \cdots, c_n \in \mathbb{R}$ not all zero such that $c_1v_1 + c_2v_2 + \cdots + c_nv_n = 0$

Linear Independence

• The vectors v_1, v_2, \dots, v_n in a vector space \mathcal{V} are said to be Linearly Independent if

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = 0 \implies c_1 = c_2 = \dots = c_n = 0$$

- If $\{v_1, v_2, \dots, v_n\}$ is a minimal spanning set for \mathcal{V} then v_1, v_2, \dots, v_n are linearly independent!
- If $\{v_1, v_2, \dots, v_n\}$ is a linearly independent set of vectors, then span $\{v_1, v_2, \dots, v_n\} = \mathcal{V}$ is a minimal spanning set for \mathcal{V} !

 $Minimal\ Spanning\ Set \equiv Basis$

Linear Independence – Example 1

• Determine if
$$\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$
 are linearly independent

Linear Independence – Example 2

• Determine if
$$\left\{ \begin{pmatrix} 1\\2\\4 \end{pmatrix}, \begin{pmatrix} 2\\1\\3 \end{pmatrix}, \begin{pmatrix} 4\\-1\\1 \end{pmatrix} \right\}$$
 are linearly independent

Linear Independence – Example 3

• Determine if
$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\}$$
 are linearly independent

Basis of a Vector Space

• **Theorem:** Suppose v_1, v_2, \dots, v_n are linearly independent vectors in a vector space \mathcal{V} and let $v \in \text{span}\{v_1, v_2, ..., v_n\}$, then v can be written <u>uniquely</u> as a linear combination of v_1, v_2, \dots, v_n

- **Definition:** The vectors v_1, v_2, \cdots, v_n form a basis for a vector space \mathcal{V} iff:
 - 1. $\{v_1, v_2, \dots, v_n\}$ are linearly independent
 - 2. span $\{v_1, v_2, \dots, v_n\} = \mathcal{V}$

Basis of a Vector Space – Example 1

• In \mathbb{R}^3 the standard or natural basis set is

Basis of a Vector Space – Example 2

• Does the set
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ form a basis for \mathbb{R}^3 ?

Basis of a Vector Space – Example 3

• Does the set
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, $v_3 = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$ form a basis for \mathbb{R}^3 ?

1. Are they linearly independent?

$$c_1 v_1 + c_2 v_2 + c_3 v_3 = 0 \implies \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

2. Do they span \mathbb{R}^3 ? can any vector $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$ be written as a combination of v_1, v_2, v_3 ? $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = x$

$$\Rightarrow \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix}}_{} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \det(A) = 0$$

Dimension of a Vector Space and Basis Summary

- \circ **Theorem:** Let \mathcal{V} is a vector space of dimension n > 0. Then:
 - 1. Any set of n linearly independent vectors span \mathcal{V}
 - 2. Any set of n vectors that span \mathcal{V} are linearly independent
 - 3. No set of less than n vectors can span \mathcal{V}
 - 4. Any subset of less than n linearly indep. vectors can be extended to form a basis for \mathcal{V}
 - 5. Any spanning set of > n vectors can be parted down to form a basis for \mathcal{V}
- \circ \mathbb{R}^3 is a vector space with dimension 3 since any basis must have 3 vectors, e.g. $\{e_1, e_2, e_3\}$

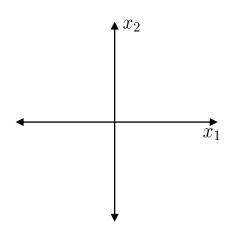
No set of less than 3 vectors can span \mathbb{R}^3 !

Change of Basis - Motivation

Motivation:

- Many applied problems can be simplified by changing from one coordinate system to another, e.g. when integrating the volume of a solid is better to use spherical coordinates, $\{r, \theta, \phi\}$, rather than rectangular, $\{x, y, z\}$
- When we specify a vector, we typically assume it is with respect to the standard basis
- For example in \mathbb{R}^2 , a vector $x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ is implied to be $x = \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Standard basis for $\mathbb{R}^2 = \text{span}\{e_1, e_2\}$



Change of Basis – General Basis

Definition:

- Let \mathcal{V} be a finite dimensional vector space, and let $\mathscr{B} = \{b_1, b_2, ..., b_k\}$ be a basis for \mathcal{V} . Then any $v \in \mathcal{V}$, can be written uniquely as: $v = \alpha_1 b_1 + \alpha_2 b_2 + \cdots \alpha_k b_k$
- The elements $\alpha_1, \alpha_2, \cdots, \alpha_k$ are called the **coordinates of** v **w.r.t. to** \mathscr{B}

•
$$v_{\mathscr{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{bmatrix}$$
 is called the **coordinate vector of** v **w.r.t.** \mathscr{B}

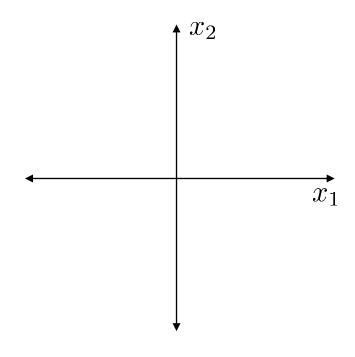
•
$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_k \end{bmatrix}$$
 is called the **coordinate vector of** v **w.r.t. the standard basis**

Change of Basis – Coordinate Vector

- Given a vector $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ (w.r.t standard basis), we would like to find the coordinates w.r.t another basis \mathscr{B}
- For example, $\mathscr{B} = \left\{ \begin{bmatrix} 3 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$, then $x_{\mathscr{B}} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ implies that

Change of Basis – Example (1)

• Example, given
$$x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 find its coordinates w.r.t $\mathscr{B} = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$, i.e. $x_{\mathscr{B}}$



Change of Basis – Example (2)

• Given two basis for
$$\mathbb{R}^2$$
: $\mathscr{B} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} \quad \mathscr{C} = \left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\}$

• Let
$$x_{\mathscr{B}} = \begin{bmatrix} -1\\2 \end{bmatrix}$$
, find $x_{\mathscr{C}} = \begin{bmatrix} \alpha_1\\\alpha_2 \end{bmatrix}$

Change of Basis – Transition Matrix

- For \mathbb{R}^n , let $B = \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix}$ be a matrix whose columns form a basis for \mathbb{R}^n . Let $v \in \mathbb{R}^n$, $v = \alpha_1 b_1 + \dots + \alpha_n b_n$
- Similarly, let $C = \begin{bmatrix} c_1 & \cdots & c_n \end{bmatrix}$ be a matrix whose columns form a basis for \mathbb{R}^n , then $v = \gamma_1 c_1 + \cdots + \gamma_n c_n$

• Therefore, we can find the following transition matrices:

$$Cv_{\mathscr{C}} = Bv_{\mathscr{B}} \quad \Rightarrow \quad v_{\mathscr{C}} = \overbrace{C^{-1}B} v_{\mathscr{B}}$$

$$\Rightarrow \quad v_{\mathscr{B}} = \underbrace{B^{-1}C} v_{\mathscr{C}}$$

Linear Maps

- Let \mathcal{V} be a vector space of dimension n
- and \mathcal{W} be a vector space of dimension m over the field of \mathbb{R}
- **Definition:** A function $T: \mathcal{V} \to \mathcal{W}$ is called *linear* if

$$T(u+v) = T(u) + T(v) \quad \forall u, v \in \mathcal{V}$$

 $T(\alpha v) = \alpha T(v) \quad \forall \alpha \in \mathbb{R}, v \in \mathcal{V}$

Linear Mapping Examples

• Show whether the transformation, $L: \mathbb{R}^2 \to \mathbb{R}^3$, is linear or not

$$L\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x \\ x - 2y \\ 3x + 4y \end{bmatrix}$$

Linear Mapping Examples

• Show whether the transformation, $L: \mathbb{R}^2 \to \mathbb{R}^2$, is linear or not

$$L\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x \\ xy \end{bmatrix}$$

Matrix as a Linear Map

• **Theorem:** Let $A \in \mathbb{R}^{m \times n}$. The mapping $L_A(x) : \mathbb{R}^n \to \mathbb{R}^m$ defined by:

$$L_A(x) = Ax, \quad \forall x \in \mathbb{R}^n$$

is a linear transformation.

Matrix of a Linear Map

• **Theorem:** If L is a *linear* transformation from \mathbb{R}^n to \mathbb{R}^m , then there is an $m \times n$ matrix A such that:

$$L(x) = Ax$$

for all $x \in \mathbb{R}^n$. The j^{th} column of A is given by:

$$a_j = L(e_j), \text{ for } j = 1, \dots, n$$

That is $L = L_A$:

$$A = \begin{bmatrix} L(e_1) & L(e_2) & \cdots & L(e_n) \end{bmatrix}$$

The matrix A is called the **standard** matrix of a linear transformation L.

Linear Mapping – Matrix Examples

• Find the standard matrix of the following linear transformation:

$$L\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x \\ x - 2y \\ 3x + 4y \end{bmatrix}$$

Linear Mapping – Different Basis

• We now know a linear transformation from two finite dimensional vector spaces, i.e. $L: \mathbb{R}^n \to \mathbb{R}^m$, has a **standard** matrix representation

• What if we were to use a different (not standard) basis for \mathbb{R}^n and \mathbb{R}^m ? What is the matrix representation of L w.r.t. these different basis?

Null Space of a Linear Map

• **Definition:** Let $A \in \mathbb{R}^{m \times n}$, i.e. $A : \mathbb{R}^n \to \mathbb{R}^m$, then the set

$$\mathcal{N}(A) = \{ x \in \mathbb{R}^n \mid Ax = 0 \}$$

is a subspace of \mathbb{R}^n and is called the **null space** of A

Range/Column Space of a Linear Map

• **Definition:** Let $A \in \mathbb{R}^{m \times n}$, i.e. $A : \mathbb{R}^n \to \mathbb{R}^m$, then the set

$$\mathcal{R}(A) = \{ y \in \mathbb{R}^m \mid \exists x \in \mathbb{R}^n, \ Ax = y \} = \{ y = Ax \in \mathbb{R}^m \mid x \in \mathbb{R}^n \}$$

is a subspace of R^m and is called the range/column space of A

• The range space for this matrix is also called the **column** space of A since:

$$\mathcal{R}(A) = \operatorname{span} \left\{ a_1, \ a_2, \ \cdots, \ a_n \right\}$$

where a_i are the columns of A

Null/Range Space Example

• Find a basis for the null and column space of the following matrix:

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix}$$

Null/Range Space Example

• Find a basis for the null and column space of the following matrix:

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix}$$

Topic Outline

- Transfer Function vs State Space (Motivation)
- State Space Models and Examples
- From Nonlinear to Linear State Space Models
- Linear Algebra Review
- Jordan Canonical Form (LN5 Slides)