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Transfer Function (SISO) Drawbacks

e We have discussed the controller design for Single Input Single Output Systems (SISO)

Observations

e What if we had more sensors/observations available?
e What if we had more “inputs”?

e Could these be used to improve the closed loop system?
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Transfer Function (SISO) Drawbacks — Example 1

e In HW 2 problem 4, you will design a controller to regulate the C5 voltage
e Assumptions: Single input (Vj,) single output (V)
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e What if we could also measure /7 and V47
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Transfer Function (SISO) Drawbacks — Example 2

e We have also designed a controller to track the speed of a dc motor
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e What if we could also measure the current 27
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From Transfer Function to State Space Models — Case 1

e Let’s consider a strictly proper transfer function of the form:

Y(s) 1
U(s) s"+a1s" 1+--4+an_15+an
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From Transfer Function to State Space Models — Case 2

e Let’s consider a more general strictly proper transfer function

Y(S) blsnil ‘|‘“‘—|‘bnf18—|—bn
U(s) s"+a1s" 1+ 4+an_15+an
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From Transfer Function to State Space Models — Case 2

e Let’s consider a more general strictly proper transfer function

Y(S) blsnil ‘|‘“‘+bnf18—|—bn
U(s) s"+a1s" 1+ 4+an_15+an

e We can also use the command tf2ss(num, den)

1 %% Write the transfer function first
> num = [bl b2 ... bnl];

= [1 a1l ... an];

+ [A, B, C, D] = tf2ss(num, den)

(—al Gy e e _an\ (1\

1 0 0 0
A=1 0 1 o --- 0 B=10 C:(bl by e ee bn)

o o 1 o o) D=
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Example — Transfer Function to State Space

e Transform the following transfer function to state space:

Y(s) 25 +1
U(s) s2+7s+10
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Topic Outline

=  State Space Models and Examples

= Linear Approximation of Nonlinear Systems
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Review: Nonlinear State Space System Definition

e A (nonlinear) State Space model with outputs is of the form:
T = f(x, u)
y = h(z)

The vector x € R™ are the states

The vector u € R™ are the inputs

The vector y € RP are the outputs
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Review: Linear State Space System Definition

e An LTI State Space model with outputs is of the form:

& = Ax + Bu, x(0)=xg
y=Cr

The vector x € R™ are the states

The vector u € R™ are the inputs

The vector y € RP are the outputs
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Example 1: Cruise Control

e Derive a state space model of a car as shown in the figure

Lidowree httpssidActmsioengin . umich. edu/CTMS/index . php?example=CruiseControl&section=SystemModeling 13



Example 2: Pendulum

e Derive the state space differential equations for a pendulum

~ -
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Equilibrium Point Definition

e Many systems can be characterized by a nonlinear syste space system

e An equilibrium point (z., u.) is a point for which if the system starts there, it will
remain there for all future time

e With respect to our state space model, this implies: 0 = f(xz., u.)
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Linear Approximation of Nonlinear Systems

e Many systems can be characterized by a nonlinear state space system

e However, close to an equilibrium point, many nonlinear systems can be approxi-
mated by a linear system
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Linear Approximation of Nonlinear Systems (2)

e Many systems can be characterized by a nonlinear state space system

e How can we obtain the A and B matrices which approximate f(x, u) close to (xe, u)?
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Linear Approximation of Nonlinear Systems (3)

e Many systems can be characterized by a nonlinear state space system
= f(x, u)

e A linear approximation of the system ‘close’ to an equilibrium point is given as follows

e Definez =z —x. and & = u — u,

f
f(x, u) = 55|y (x — xe) + 5 xe,ue(u Ue)
S—— S———
A4 £B

e Then the behavior of the original nonlinear system close to the equilibrium
point can be modeled by:
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Example: Pendulum Linearization

e The nonlinear state space model of a pendulum is

T1 = T2
k

. 9.
Ty = —=sin(zy) — —x9
m

l ~.
N N A
e Obtain a linear approximation at z. = (0)
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Example: Pendulum Linearization (2)

e The nonlinear state space model of a pendulum is

T1 = T2
k

. 9.
Ty = —=sin(zy) — —x9
m

l ~.
N N A
e Obtain a linear approximation at z. = (0)
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Motivation: Linear State Space Systems

e We will analyze linear time invariant (LTI) models in state space form:

&= Ax+ Bu, x(0)=x

reR" weR™, yeRP
y=Cux

e Let’s consider for example n =2, m=1, p=1

e When we say z € R?, how can we visualize this? What basis are we referring to?
What if we used a different basis?

22
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Linear Vector Spaces

o A Linear Vector Space is a set, V,

1. Addition :
iU,yEV, Zzil?-l-yEV

over a field, R, in which having two operations:

Example: V = R?

2. Scalar multiplication :

reV, aeR, z=azxeV

O

(Commutativity)
(Associativity)

(Zero vector)

(Additive inverse)

(Identity scalar)
(Compatibility of scalar mult.)
(Distributivity w.r.t addition)
(

© N o o W=

Distributivity w.r.t scalar mult.)
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(cont’d) it satisfies the following properties (Axioms): z,y,z €V

r+y=y+x

(x+y)+z=x+ (y+2)

O+x=2, z,0€V

Vx € V there exists — x € V such that z + (—z) =0
lr=xfor1 eR

(ab)x = a(bx) a,beR

a(r+y) = ax + ay a€R

(a+b)x = azx + bx a,beR
23



Linear Vector Spaces - Examples

o What are some familiar examples of Vector Spaces?

1. The real numbers R! <

T
. . A Lo
2. The 2 dimensional space, R?
How to identify an element in R??
< :ﬂ:l
v
3. The 3 dimensional space, R?
AL3
How to identify an element in R3?
/ o
< :C>1
v
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Linear Vector Spaces — Examples (cont’d)

o Other not so common Linear Vector spaces:
o The set of polynomials of degree less than or equal to n, e.g. n = 2
if pgePy = p(x) =cex® +ciaz+co, q(x)=dox? +dix+dy
e.g. h(z) =32 +1 m(z) =22% + 2 —3

o Define addition and scalar multiplication:

2. Scalar multiplication:

a€R ap(x) = acr? + aci1z + acg
3h(zx) =
o [Py and in general P, satisfy all the axioms for a vector space
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Subspace of a Vector Space

o Vector spaces provide us with a field to conduct extensive analysis

o Definition: S is called a subspace of a vector space V if § is a subset of V' and
S satisfies:

(i) 0 € S (S is non-empty)
(ii)) For all z,y € S, x +y € S (S is closed under addition)

(iii) For all x € S, ax € S, where o € R (S is closed under scalar multiplication)

o To verify if a subset, S, of a vector space, V, is a subspace

we need to check the three conditions above Remember them!

26
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Subspace Example 1

o Example: Consider the following subset of R?:

X
S = y| R |2 =3y, 2=—-2y

VA

o Is it a subspace of R3?
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Subspace Example 2

o Example: Consider the following subset of R?:

S = {(371) ER2 ZL‘2:3$1}
X2

o Is it a subspace of R??

28
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Subspace Example 3

o Example: Consider the following subset of R?:

{0

o Is it a subspace of R??

x1 > 0, 27220}

29
Luis Herrera, University at Buffalo, 2021



Span of a Set of Vectors

e Suppose vy, v, ..., U, are vectors defined in a vector space V

o A Linear Combination of these is a vector:

a1v] + asvy + - - -+ v, €V aq, ..., a, € R

e The set of all linear combinations of vy, va, ..., v, is called span{vy, va, -+, v,}

o Example:

30
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Span of a Set of Vectors - Example

2 1 2 5
e Determine if v= | —2 | € span o, 1-31].1]-4
—1 —1 1 0

31
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Span of a Set of Vectors - Subspace

e Theorem: if vy, ---, v, are elements of a vector space V, then the
S = span {vy, vy, --+, v,} is a subspace of V
Proof:

32
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Spanning Set for a Vector Space

e Let V be a vector space
e For a certain set of vectors vy, ---, v, € V, we know that span{vy, ---, v,} CV

e Is it possible that instead span{vy, -+, v,} =V

33
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Spanning Set for a Vector Space (2)

e Let V be a vector space

e For a certain set of vectors vy, ---, v, € V, we know that span{vy, ---, v,} CV

e Is it possible that instead span{vy, -+, v,} =V

e Definition: The set vy, vo, ..., v, € V is a spanning set for )V if and only if every
vector in )V can be written as a linear combination of vy, vs, ..., v,

34
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Spanning Set for a Vector Space - Example

3 8 0
o Example: Determine if span 51,141, |3 SE
2 1 0

35
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Spanning Set and Linearly Dependent Set of Vectors

e Consider two spanning sets for R?

o Let {v1, va,---,v,} be a linearly dependent set of vectors

= There is at least one vector, say vy, that can be written as a sum of the others

o Then, the span{vy, va, -+, v,} = span{va, vs, -+, v, }

36

Luis Herrera, University at Buffalo, 2021



Linearly Dependent Vectors

e In general, given {vy, vy, ---, wv,}, it is possible to write one of the vectors
as a linear combination of the others n — 1 vectors if and only if there exists
c1, Co, -+, cn € R not all zero such that cyv1 + covo + -+ c,v, =0

37
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Linear Independence

e The vectors vy, vo, - -+, v, in a vector space ) are said to be Linearly Independent
if
civ1 +cvg+ -4+, =0 = g =co=---=¢,=0
o If {vy, vo, -+, vy} is a minimal spanning set for V then vy, vy, ---, v, are

linearly independent!

o If {vy, vo, ---, v,} is a linearly independent set of vectors, then
span {vy, v, -+, v, } =V is a minimal spanning set for V!

Minimal Spanning Set = Basis

38
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Linear Independence — Example 1

1 1
e Determine if { (1) , (2) } are linearly independent

39
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Linear Independence — Example 2

1 4
e Determine if 21,111, | -1 are linearly independent
4 3 1

40
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Linear Independence — Example 3

1 0 1
e Determine if O, |1}, ]0], ]2 are linearly independent
0 0 1 3

41
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Basis of a Vector Space

e Theorem: Suppose vy, v2, ---, v, are linearly independent vectors in a vector
space V and let v € span {v1, va, ..., v, }, then v can be written uniquely as a
linear combination of vy, vo, ---, v,

e Definition: The vectors vy, vy, ---, v, form a basis for a vector space V iff:

1. {v1, va, -+, v,} are linearly independent
2. spanqvy, vg, -+, v} =V
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Basis of a Vector Space — Example 1

e In R3 the standard or natural basis set is

43
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Basis of a Vector Space — Example 2

0 2
e Doesthesetvy=|1|,vy=1]1], v3=|0] form a basis for R3?
1 1

44
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Basis of a Vector Space — Example 3

0 0
e Doesthesetvy=|1]|,vao=|1], v3=]2] form a basis for R3?
2 4
1. Are they linearly independent?
1 0 0 c1 0 1 0 O c1 0
RREF
c1v1 + cova +c3vg3 =0 = 1 1 2 caol =10 — |0 1 2 co|l =10
1 2 4 c3 0 0 0 0 C3 0
T
2. Do they span R3? can any vector x = | xo | € R? be written as a combination of vy, v, v3?
U1 + U2 + azvz = x 3
1 0 0 (05) I 1 0 0O
= (11 2 |a| =] S [0 1 2] = det(4)=0
1 2 4 o3 T3 0 0 0
—A
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Dimension of a Vector Space and Basis Summary

o Theorem: Let V is a vector space of dimension n > 0. Then:

1. Any set of n linearly independent vectors span V

2. Any set of n vectors that span V are linearly independent

3. No set of less than n vectors can span V

4. Any subset of less than n linearly indep. vectors can be extended to form a basis for V

5. Any spanning set of > n vectors can be parted down to form a basis for V

o R3is a vector space with dimension 3 since any basis must have 3 vectors, e.g. {e1, e, es}

No set of less than 3 vectors can span R?!

46
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Change of Basis - Motivation

Motivation:

e Many applied problems can be simplified by changing from one coordinate system
to another, e.g. when integrating the volume of a solid is better to use spherical
coordinates, {r, 0, ¢}, rather than rectangular, {z, y, z}

e When we specify a vector, we typically assume it is with respect to the standard

basis
: 5 ol . . , 1 0
e For example in R*, a vector z = is implied to be r = « 0 + ]
Standard basis for R? = span {e;, es} o

A
A

47
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Change of Basis — General Basis

Definition:

e Let V be a finite dimensional vector space, and let & = {by, by, ..., by} be a basis
for V. Then any v € V, can be written uniquely as: v = a1b; + agbs + - - - apbi

e The elements aq, as, ---, ap are called the coordinates of v w.r.t. to 4
-al-
e vz = | - | is called the coordinate vector of v w.r.t. %4
Ok
_Ul_
e v = | . | is called the coordinate vector of v w.r.t. the standard basis
Vg

48
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Change of Basis — Coordinate Vector

x
e Given a vector x = [ 1] (w.r.t standard basis), we would like to find the coordi-
)

nates w.r.t another basis %4

1
e For example, & = { [g] , [ 1] }, then x4 = [g] implies that

49
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Change of Basis — Example (1)

1 1 1
e Example, given x = [2] find its coordinates w.r.t & = { ( 1) , (1) }, i.e. vy

A
N

50
Luis Herrera, University at Buffalo, 2021



Change of Basis — Example (2)

oo 2=l |4} {4

—1
o Let x4 = [2],ﬁnd:ﬁcg: [Oq]
185

51
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Change of Basis — Transition Matrix

e For R”, let B = {bl by ... bn] be a matrix whose columns form a basis for R™.
Let v € R™, v = anby + - - + o, by,

e Similarly, let C' = [cl cn] be a matrix whose columns form a basis for R",

then v = vic1 4+ - -+ + ey

e Therefore, we can find the following transition matrices:

—N—
Cvg = Bvg = fchZC_lB’U@

= Vg = B_lc’l)cg

52
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Linear Maps

e Let V be a vector space of dimension n
e and VW be a vector space of dimension m over the field of R
e Definition: A function T : )V — W is called linear if

Tu+v)=Tw)+T(w) VY u vey
T(av) = aT(v) VaeR, veV

53
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Linear Mapping Examples

e Show whether the transformation, L : R? — R3, is linear or not

2x
xr
xr
? 3z + 4y

54
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Linear Mapping Examples

e Show whether the transformation, L : R? — R?, is linear or not

55
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Matrix as a Linear Map

e Theorem: Let A € R™*". The mapping L(x) : R® — R™ defined by:
LA(IJC) — Az, VzxeR"

is a linear transformation.

56
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Matrix of a Linear Map

e Theorem: If L is a linear transformation from R™ to R™, then there is an m X n
matrix A such that :

L(z) = Az
for all € R™. The j* column of A is given by:
aj =L(e;), forj=1,---,n

That is L = L 4:

A=|L(er) Lles) -+ L(en)]

The matrix A is called the standard matrix of a linear transformation L.
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Linear Mapping — Matrix Examples

e Find the standard matrix of the following linear transformation:

2x
xr
xT
° 3z + 4y
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Linear Mapping — Different Basis

e We now know a linear transformation from two finite dimensional vector spaces,
ie. L:R" — R™, has a standard matrix representation

e What if we were to use a different (not standard) basis for R™ and R™? What is
the matrix representation of L w.r.t. these different basis?
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Null Space of a Linear Map

e Definition: Let A € R™*" ie. A:R" — R™, then the set
N(A)={z eR"| Az =0}

is a subspace of R™ and is called the null space of A

60
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Range/Column Space of a Linear Map

e Definition: Let A € R™*" je. A:R"™ — R", then the set
R(A)={yeR™| JzeR", Axz=y}={y=Ax e R™| xz € R"}

is a subspace of R™ and is called the range/column space of A

e The range space for this matrix is also called the column space of A since:

R(A) = span{ai, as, -+, ap}

where a; are the columns of A
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Null/Range Space Example

e Find a basis for the null and column space of the following matrix:

A:1110]
2 1 0 1
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Null/Range Space Example

e Find a basis for the null and column space of the following matrix:

A:1110]
2 1 0 1

63
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Topic Outline

»  Jordan Canonical Form (LN5 Slides)
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