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Review the Components of Feedback Control Systems

e A feedback control system is composed of a dynamic system /plant, controller,
sensors/outputs, actuators/inputs, reference, and disturbance

e Main idea: Having an accurate description of how the dynamic system (plant) natu-
rally behaves, we would like to design a controller to modify this behavior in a desired
way

e First step: we need to have a dynamic model
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Types of Dynamic Models

e In this class, we will consider two types of mathematical models (commonly used for
linear systems):

1. Transfer-function/frequency domain approach

2. State-space time domain approach
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Motivation for Stability Analysis

e Consider the following open loop system

I e W

1. If an input is applied (e.g. constant), what will happen to the output?

2. (Assume u = 0) If the system is not at rest at t = 0, what will happen to the
output? will it reach a steady state value?
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Stability Definitions

e Consider the following open loop system

U(s) G(s) Y(s)

e In general, there are two categories of stability that we will be interesed in:

1. Stability around an equilibrium: If the system is moved away from the equi-
librium (e.g. x(0) # 0), will the system return to the same equilibrium (z. = 0)?

2. Bounded Input Bounded Output: If a bounded input (|u(t)| < @) is applied
to the system, will the output also be bounded?
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Bounded Input Bounded Output — Time Domain

e Consider the following open loop system U(s) G(s) Y(s )

e We can analyze the Bounded Input Bounded Output (BIBO) question
e First, review the open loop transfer function model

Y(s)
Ul(s)

=G(s) & Y(s)=G(s) U(s)

e We can use inverse Laplace transform to obtain y(t):

Y(s) = G(s) U(s)

e What is g(¢)7
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Bounded Input Bounded Output — Derivation

e Consider the following open loop system U(s) G(s) Y(s )

 ——

e We can analyze the Bounded Input Bounded Output (BIBO) question
-1 t
Y@ =GWUE g0 = [ glt-rundr
0

e If the input applied is bounded, |u(t)| < u Vi,
under what conditions will the output be bounded for all ¢7
t
< [ lgtt =)l lu(r)lar

(1)) = / gt — ryu(r)dr
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Bounded Input Bounded Output

e Consider the following open loop system U(L. Gs) Y(s)

e We can analyze the Bounded Input Bounded Output (BIBO) question
-1 t
Y(s) = G(s) U(s) £ y(t) = / g(t — 7)u(r)dr
0

e If the input applied is bounded, |u(t)| < u Vi,
under what conditions will the output be bounded for all ¢7

ly(t)] =

< / g(t — 7)) fu()|dr

/Otg(t — 7)u(T)dr

't
= Jy(t)] < ﬁ/ lg(t — 7)|dT where g(t) = a1eP'' + - 4+ a, el
0

e We can say the output is bounded |y(¢)| < g, V¢, including ¢ — oo, if the integral
term, fot |g(t — 7)|d7 is bounded as t — o

e This occurs if the exponential terms decay to 0 as t — oo
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Bounded Input Bounded Output

e Consider the following open loop system U(L. Gs) Y(s)

e We can analyze the Bounded Input Bounded Output (BIBO) question

-1 t
Y(s)=G(s)U(s)  —5 y(t) = / g(t — T)u(r)dr
0
e If the input applied is bounded, |u(t)| < u Vi,
under what conditions will the output be bounded for all ¢7

(1)) = fo gt — ryu(r)dr| < [0 9t — )| u(r)|dr

t
= ’y(tﬂ = ﬁ/ ‘g(t o T)‘dT where g(t) - aleplt + -t anepnt
0
e We can say the output is bounded |y(t)| < y, V¢, including ¢ — oo, if the integral
term, fot |g(t — 7)|d7 is bounded as t — o
e This occurs if the exponential terms decay to 0 as t — oo

e Essentially, we need Re{p;} < 0 Vi
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Asymptotic Stability -> Bounded Input Bounded Output

e Consider the following open loop system U(s) G(s) Y(s )

—_—

e We can analyze the Bounded Input Bounded Output (BIBO) question

Y(s) = G(s) U(s) ﬁ—_1> y(t) = /0 g(t — 7)u(r)dr

If the input applied is bounded, |u(t)| < u Vt,
under what conditions will the output be bounded for all ¢?

(1)) = / g(t — Tu(r)dr| < / 9t — )| [u(r)ldr < @ / gt — )|dr

e A system is asymmptotically stable if the real part of all of the poles are negative,
less than 0, Re{p;} < 0 Vi

If an LTT system is asymptotically stable, then it is also Bounded Input Bounded
Output (BIBO)
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Examples

e Decide whether the following transfer functions are asymptotically stable

U(s) G(s) Y(s)

3s+1
* G = 361
10
* Gls)= (s—3)(s+12)(s+4)
Hs + 2
A TPy TPy
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General Impulse Response and Stability Conditions

e Consider the following open loop system U(s) G(s) Y(s )
e For LTI systems, the stability of the system is defined by the poles of G(s)
Y (s) TT2, (s — 2;)
= G(s) G(s) = K ==l : where m < n
U(s) [Tizi (s = pi)

e Assume we have k < n distinct poles: {p1, p2, ..., Px}

e Using partial fraction decomposition:

G(s) = G1(8) + Ga(s) + -+ -+ Gi(s),

a1 @i2 div
where Gi(s) = (s — p;)? + (s — pi)? o m

The impulse response of the system is then as follows:
g(t) = L7HG(s)} = g1(t) + -+ + g (1)

where g;(t) = [ai1 + azit + - + at” "/ (v; — 1)!] €7
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General Impulse Response and Stability Conditions

e Consider the following open loop system U(s) G(s) Y(s )

e For LTI systems, the stability of the system is defined by the poles of G(s)

Y(s) I1;2, (s — 2)
= G(s) G(s) = K ==l : where m < n
e Assume we have k < n distinct poles: {pi, p2, ..., Px}

g(t) = L7HG($)} = q1(t) + - + gx (1)
where g;(t) = [aﬂ + agt + - + Clmtvi_l/(%' — 1)!] Bpit, Pi = 0; + Jw;
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General Impulse Response and Stability Conditions

e Assume we have k < n distinct poles: {pi, p2, ..., Px}
g(t) = L7HG(s)} = g1(t) + - + gr(t)
where g;(t) = [a;1 + agit + -+ + ayit” "/ (v; — D] P, pi = 0; + jw;

e We can then state the following stability conditions:

U
a) Asymptotically stable: Re{p;} <0, Vi=1, --- . k L G(s) V()
a) Marginally stable: If for all Re{p;} =0, v; =1, U(s) G(s) Y(s)
(all other poles must have negative real part)

a) Unstable: If there exists an i s.t. Re{p;} > 0 Or — o G Y(s)
If there exists an i s.t. Re{p;} =0, v; > 1

15
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Control Motivation

e We have now discussed some properties of G(s) U(s) Y(s
(Asymptotic Stability, BIBO) —1 G5 )

e What if G(s) is not asymptotically stable (or BIBO)?

e Can we design a controller, so that the closed loop system is BIBO or asymptotically
stable?

e Can we design a controller to track a reference?

16
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Topic Outline

=  Block Diagram Algebra
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Motivation — Closed Loop System

e Before we analyze the design of C(s), we need to know how how to write a mathe-
matical model for the closed loop system

e For example, we need to find a mathematical model/description for:

Y,
R(s)
B _,
R(s)
|
A = C(s) L, G(s) 4 >

18
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Block Diagram Algebra

e In order to find transfer functions for the closed loop system, we can first analyze
simpler interconnections:

N
> Hl(S)
U
— ¢
U N Yy
— Hy(s) »  Hy(s) —

19
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Block Diagram Algebra (cont’d)

e In order to find transfer functions for the closed loop system, we can first analyze
simpler interconnections:

=
—_
NP

v

&

—

N
A

20
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Transfer Function for a Simple Feedback Loop

e A simple feedback loop can be written as follows:

Y r Y

v

A

A\ 4

Ay
~—

¥
~—

_ H,(s)
a 1 —|— Hl(S)HQ(S)

A

y(s) = H(s)r(s), H(s)

e The denominator of H(s), which is F(s) = 1 + Hi(s)H2(s) will be known as the
return difference or for a SISO as the characteristic equation

e The roots of F(s) =1+ Hi(s)H>(s) are the closed loop poles of the system
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Example: DC Motor

e Goal: we want to control the speed of the motor

e Problem: assume we use proportional feedback, write the closed loop reference/output
transfer function

22
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Example: DC Motor (cont’d)

e Goal: we want to control the speed of the motor

e Problem: assume we use proportional feedback, write the closed loop reference/output
transfer function

23
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Topic Outline

=  Proportional Control and Root Locus
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Proportional Control

e Some objectives of the controller will be:

a) Tracking: attempt to track a reference, y(t) — r(t)

b) Stability: achieve asymptotic stability

e As a first step, let’s consider proportional control

N(s)

C(s)=K, G(s)= D(s)
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Closed Loop System Derivation

e As a first step, let’s consider proportional control

N (s) Lo o) B ots)

D(s)

C(s) = K, G(s) =

e Derive the transfer function % £ Gal(s)

26
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Closed Loop System Derivation (cont’d)

A 4

v

e As a first step, let’s consider proportional control :TL C(s) a G(s) /
N (s
Cls) =K, Gls) = =)

D(s)
e The reference/output transfer function is Y(s) = G = KG(s)
R(s) 14+ KG(s)
N(s) . ..
o If G(s) = D(s)’ simplify Gi(s):

27
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Analyzing the Feedback Gain K

G(s) .

\ 4

r + e U
e As a first step, let’s consider proportional control AT— C(s)
N(s
Cls)— K, Gl(s) = 21

D(s)
KG(s) KN(s)

Y(s) _
1+ KG(s) D(s)+ KN(s)

e The reference/output transfer function is - \°/ _ Geal(s)

R(s)

e What happens to the poles of G¢(s) as K — 07 as K — oo?

28
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Analyzing the Feedback Gain K (cont’d)

e As a first step, let’s consider proportional control :TL C(s) “—  G(s) L
N(s
Co=K G6)= 50
e The reference/output transfer function is Y(s) = Gal(s) = KG(s) _ KN (s)
R(s) ¢ 14+ KG(s) D(s)+ KN(s)

e What happens to the poles of G¢(s) as K — 07 as K — oo?

29
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Root Locus Definition

e As a first step, let’s consider proportional control :TL C(s) “—  G(s) L
N(s
Cls)= K. Gls) = DES;
e The reference/output transfer function is Y(s) = Gal(s) = KG(s) _ KN (s)
R(s) ¢ 14+ KG(s) D(s)+ KN(s)

e What happens to the poles of G¢(s) as K — 07 as K — oo?

The Root Locus Method is a plot in the complex plane of how the poles of G¢(s)
vary as K is varied (from 0 to oco)

_ KG(s) KN(s)
Y T17KG(G) D(s)+EN(s)

30
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Root Locus Matlab

\ 4
D
~~
VA
~—
<

e The reference/output transfer function is :TL K -
Y (s KG(s KN (s
) s (5) (5

T 1+KG(s) D(s)+KN(s)

e The root locus plots the poles and zeros of G (s) as K — oo

e Matlab: Given G(s) (open loop transfer function), the root locus can be obtained
using the command rlocus(sys)

1 clc; clear all;close all;

2

3 % Define the system and plot the root locus

1+ Ns = [1 -2]; % Numerator: s-2

5 Ds = [1 6 25]; %» Denominator: s~ 2+6s+25b

s sysl = tf(Ns, Ds) % Creates the transfer function Gs = Ns/Ds
s rlocus(sysl);

31
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Root Locus Examples

T © K [N > G(s) Yy >
e Let’s look at a few cases: A T

s—2
G — Y(s) _ o — KG(s)
a) (S) s2 4 6s + 25 R(s) Gals) 1+ KG(s)
s+1 1
b) G(s) =
) G(s)= 3 Ty
10 A
G =
¢) G(s) s2 + 6s + 25
. . 32
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Root Locus Examples

e Let’s look at a few cases: s foot Loews | 50— « | o P
§— 2
G(s) — V() . KG(
) G = G = Gal) = T el

Imaginary (seconds®{-1})
[=}

\ Root Locus

5 . ‘ 10 |
-10 -8 -6 -4 -2 0 2 4
Real (seconds™-1}) = ‘
T s \
[%2]
. 5 N
s+ g B
b) G(s) = °
s?(s+4) g /
2 5 «
é |
_10 L L 1 | L
Root Locus 4 3 2 1 0

n
o

Real (seconds™-1}H

—_
a

=y
o
T

&) G(s) = — Y

-
[%2]
o
2 § °
s 4 65 + 25 2
(%)
=
.10
E
A5F
20 : : . 33
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Root Locus Examples (Impact of Zeros)

e Let’s look at a few cases:

1
1
1
1
i
H Y(s) KG(s)
I J— JR—
| R(s) Gals) = 17 KG(s)
1

s—2 | s+ 2
a) G(s) = ! b) G(s) =
52 + 65 + 25 ! ) Glo) s2 + 6s + 25
i
1
1
1
1
1
1
1
1
1
1
i
Root Locus ! Root Locus
5 : 5

1
1
1

= 1 =

~ 1 ~

1 1 1

% ! %

o 1 o

c 1 c

o 1 o

] 1 5]

> i >

®© 1 ©

cC 1 cC

=) H =)

© H ©

E - E
I
1
1

_5 1 1 I ! 1 1 _5 I ! I 1 L
-10 -8 -6 -4 -2 0 2 4 : -12 -10 -8 -6 -4 -2 0 2

1
1

Real (seconds®{-1}) Real (seconds?-1}) 34
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Topic Outline

- Stability Definitions

=  Block Diagram Algebra

=  Proportional Control and Root Locus
=  PI Control

=  Bandwidth, Gain Margin, Phase Margin
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Reference Tracking

e We have looked at the case where C(s) = K proportional control, and how K
changes the closed loop poles of the system

e Assume K is chosen such that the closed loop poles have negative real part

e Will the output track the reference?, i.e. y(t) — r(t) or e(t) — 07

e What if the reference is a step response? a ramp? a polynomial? a sinusoid?

36
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Error Modeling

e To prove the output will converge to the reference (y(t) — r(¢)), we need to show:

lim e(t) =0

t—o0o

e What can we use to show this?

e We need a model for E(s) = L{e(t)}

37
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Error Modeling Derivation

E(S) r__+ e
R(s) N

e Derive the transfer function

38
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Error Transfer Function and Laplace Final Value Theorem

e Therefore, the error in frequency domain is:

z +7 < C(s) L G(s) Y
1
E(s) R(s) ‘

T 1+G(s)C(s)

e Given a “type” of reference, R(s), we can then show using Laplace Final Value The-
orem:

lim e(t) = lim sE(s) 0

t—00 s—0

e Example of typical references to track:

Time Domain Frequency Domain
r(t) R(s)
m1(t)
mit
m sin(wt + ¢)

39

Luis Herrera, University at Buffalo, 2021



Constant/Step Reference Tracking

e Therefore, the error in frequency domain is:

\ 4

r +7 e C(S)
E(s) L R(s) ‘

G(s)

1t G(s)C(s)
e Assume the reference is a step function r(t) = r1(t)

e Use Laplace Final Value theorem to find lim e(t) = lim sE(s) =0

t—00 s—0

Luis Herrera, University at Buffalo, 2021
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Constant/Step Reference Tracking

e Therefore, the error in frequency domain is:

L +7 < C(s) Ly G(s) 4 >
B(s) = 1+ RO ‘
s) = S
1+ G(s)C(s)
e Assume the reference is a step function r(t) =r1(t) = R(s)= L
s

e Use Laplace Final Value theorem to find lim e(t) = lim sE/(s) 20

t—o00 s—0

. s L r
A e(t) = iy sBls) =l =550

e Let’s consider two types of controllers C(s)

a) Proportional control C'(s) = K,

b) Integral control C(s) = &

s ?

41
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Constant/Step Reference Tracking — Proportional Control

\ 4

G(s) L

v

e Assume the reference is a step function 50— C(s) =
r(t) =rl(t) = R(s)= -
S

e Assumptions: G(s) has only left hand poles, G(0) = go # 0 is finite,
C(s) = K,

e What is the steady state error under these conditions?

. s L r
A e(t) = iy sE(s) = Iy =6

42
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Constant/Step Reference Tracking — Integral Control

\ 4

G(s) 4

v

e Assume the reference is a step function 50— C(s) =
r(t) =rl(t) = R(s)= -
S

e What is the steady state error under these conditions?

. L L r
M e(t) = lim s E(s) = lim 7— G(5)C(s)

43
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Constant/Step Reference Tracking — Integral Control

G(s) L

\ 4

v

e Assume the reference is a step function 50— C(s) =
r(t) =rl(t) = R(s)= -
S

e Assumptions: G(s) has only left hand poles, G(0) = go # 0 is finite

e Integral control is sufficient to ensure perfect tracking of a step function

e However, having only integral gain typically makes the closed loop system less damped
(large oscillation, slow convergence)

_ ! K;
)= G Ol = = Bl =y +G(13)C(s) B(s)

o e
| - Y= e

o = Y(s)= C(S)(f(S) R(s)

" 14+ K; —G(s)

5 S

;. -

Real (seconds™-11 44
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Constant/Step Reference Tracking — PI Control

\ 4

G(s) L

v

e Assume the reference is a step function 50— C(s) =
r(t) =rl(t) = R(s)= -
S

e Assumptions: G(s) has only left hand poles, G(0) = go # 0 is finite

e To improve the performance, Integral control is typically combined with a proportional
gain = Proportional Integral (PI) control

o BB a3
_ Y0 C(s)G(s) _ N(s)N,,(s)

R(s)  1+C(5)G(s)  De(5)Dp(s) + Ne(5) Ny (s)

e Now we have two parameters to optimize/play with: K, and K;!

45
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Constant/Step Reference Tracking — PI Control

e Assume the reference is a step function O e eIty Ll G(s)
r(t) =r1(t) = R(s)=-

S

_ 1 K; Kps+K; Y(s)  C(s)G(s)
G = Grineris  CE =K+ — =" R(s) 1+C(s)G(s)

Fixed K, =1, vary K; Vary K,, fixed K; = 10

15 T ‘ 40
30 r
1071 / 7
20
5 L
10+
¥ ¥
B £
. -10 -
5t g
""._‘ =20
-10 1 b
\ '30 [
_15 1 Il 1 1 Il L _40 1 1 1 L Il Il 1
-30 -25 -20 -15 -10 -5 0 5 -6 14 12 10 -8 -6 -4 -2 0
Real Real
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Matlab PI Tuner!

e Matlab has a command that can help you optimally “tune” the K, and K; gains

T+
o ] e — Y(s) _C(s)G(s)
R(s) 1+C(s)G(s)
Step Response
12 T T T
1 % Define the numerator and denominator of the plant
2 Gp = zpk([l, [-10 -15], 1); % Zero, pole, gain form
zpk (zeros, poles, gain) !
3
1 % PI Tune 0sh |
5 [C_pi,info] = pidtune(Gp,’PI’); '
6 Cs = tf([C_pi.Kp C_pi.Kil, [1 0]1); % Obtain the transfer 3
function for the controller 20.6 |
a
7 E
5 G_cl2 = (Cs#*Gp)/(1+Cs*Gp); <
o G_cl2 = minreal(G_cl2); % Cancel any =zeros and 04+ 1
poles that may occur
10
11 figure, 02 7
12 step(G_cl2) % Plot the step response
O Il Il 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7

Time (seconds)
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Example: DC Motor Speed Control

e The transfer function for the dc motor is: _—
field
Y |44 a A~ A
~ Ugsg a V((S)) - .BJL Br+r2 Armatur g {(
) VO T e (548) s+ (25 QT ) {}\
LY W)

k 0.01 Nm/A or Vs/rad

J 0.01 kgm?

g 0.1 Nms

L 0.5 H

r 1 Q)
https://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed&section=SystemModeling 48
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https://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed&section=SystemModeling

Example: DC Motor Speed Control (cont’d)

e The transfer function for the dc motor is:

Fixed
field
Y(s) Wi(s) 2 TR r
S S ANN—
= = =G(s) = — B {9
U(s) V(s s2 +12s + 20.02 O A,mm,.e> Q @
— circuit %
K; KpS + K; 1 - \ _
C(S) = Kp + S — s Roth;l")
Y (s) C'(s)G(s) k£ 0.01 Nm/A or Vs/rad
:} —
R(s) 1+ C(s)G(s) J 0.01 kgm?
g 0.1 Nms
n L 0.5 H
- (O—= C(s) Ll G(s) > o1 0
https://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeedé&section=SystemModeling 49
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https://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed&section=SystemModeling

Example: DC Motor Speed Control (cont’d)

e The transfer function for the dc motor is: —
field
R L
ANN— Te
T U, {
O(S) ] G(S) " . <+ Armature
= circuit \
Rotor
PI Control with Kp = 50.00, Ki = 0.00 PI Control with Kp = 50.00, Ki = 20.00 PI Control with Kp = 50.00, Ki = 100.00
. ‘ - - Poles: -5.83+(9.06);. -5.83+(-9.06)j, -0.34-+(0.00); Poles: -5.00+(8.66)j. -5.00-+(-8.66)j, -2.00-+{0.00)j
1ol i (o ‘ . ; i
]
A pmmACT T Tmmmmemmmmmsmmseseocesoooooooooooooog 1E-4--A
o 08 )
E % 0.8 % 0.8
208 206 = 06|
= : :
- -
04 04t 04+
02 w(t) 0.2 7 w(t) 0.2 wit)
----- r(t) A U] AU
0 L 0 - L 0 L
9] 4 5 0 2 4 0 1 3 4
time (s) time (s)

https://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed&section=SystemModeling 50
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https://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed&section=SystemModeling

Final Thoughts

e The error in frequency domain is:

r +7 e C(S) U > G(S) Y >
1
E(s) R(s) ‘

T 1+ G(s)0(s)

e Given a “type” of reference, R(s), we can then show using Laplace Final Value The-
orem:

lim e(t) = lim sE(s) 0

t—00 s—0

e We discussed that an integrator is needed to track a constant/step reference

What if we needed to track a ramp reference?

What if we needed to track a polynomial signal of higher order?
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Topic Outline

=  Bandwidth, Gain Margin, Phase Margin
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Transfer Functions and Complex Numbers

e Let’s consider a feedback system as shown in the figure

e Open loop system transfer function ggzg = G(s)

r + e C(s) U
e Controller transfer function % = C(s) |

e Closed loop transfer function EEZ% = 15((;()5()7((;()3) = Gal(s)

\ 4
!
—
V)
SN—r
<
\ 4

e The return difference is defined as T'(s) £ 1 + G(5)C(s)

e For each of these transfer functions, we can consider s = jw, where w is the frequency

e Therefore, each transfer function can be considered a complex value, i.e.

G(s) = G(jw) = |G(jw)|e’?

e Magnitude |G(jw)|
e Phase ¢
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Decibels

e For each of these transfer functions, we can consider s = jw, where w is the frequency

e Therefore, each transfer function can be considered a complex value, i.e.

G(s) = G(jw) = |G(jw)|e’?

e However, rather than looking at the magnitude directly, it helps™ if we instead consider
the following;:

D(w) = 201log, |G (jw)| (dB)
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Zero, Pole, Gain Form and Amplitude

e For each of these transfer functions, we can consider s = jw, where w is the frequency
m W
17 (& +1)

G(jw) = Go o (;_w . 1)

e What is the amplitude in dB?
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Zero, Pole, Gain Form and Phase

e For each of these transfer functions, we can consider s = jw, where w is the frequency
m W
17 (& +1)

G(jw) = Go o (;_w . 1)

e What is the phase?
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Summary

e For each of these transfer functions, we can consider s = jw, where w is the frequency
m W
[T (&2 +1)

G(jw) = Go . (;—w . 1)

e What is the amplitude and dB?
o\ 2
- (2)
21
W\ 2
I+ (—) ] —---—10log
P1

D(w) = 20log |Go| 4+ 101log +---+10log

— 10log

e What is the phase?

¢(w) = tan™ (ﬁ) +---+tan ! (i) —tan~ ! (£> — ... —tan ! (ﬁ)
. “m P1 Pn
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Impact of Zeros and Poles to D(w)

e What is the impact of poles and zeros to the magnitude D(w)?

e For a zero, as frequency is increased it gains around ) = 2010g |G| + 1010g
20 dB per decade

+---+10log

w 2
1+<—)
21
w 2
1+<—) ] —---—10log
p1

— 10log

e For a pole, as frequency is increased it decreases
around 20 dB per decade
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Impact of Zeros and Poles to Phase

e What is the impact of poles and zeros to the magnitude D(w)?

e For a zero, the phase shift at w = z; is 45°

e For a zero, the phase shift at w = p; is —45°
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Bode Plot Example

e Let’s look at the bode plot of the following transfer function

(1+s)(1+§)
L+35) (1+55) (L + 55)

G(s) = (
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Bode Plot Example

e Let’s look at the bode plot of the following transfer function

(1+s)(1—|—§)
L+35) (1+55) (L + 55)

G(s) = (

40

Magnitude (dB)
Phase (rad)

25 ' : *
107 10° 10" 102 10°
w (rad/s) w (rad/s)
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Bode Plot Example (Matlab Code)

(1+s)(1+%)

e The following is an example Matlab code to get the bode plot G(s) = Y
2 10 20

clc;clear all;close all;

1
3 %% Figure properties
!

subplot (2,1,1);

& semilogx (wout, 20*log(mag)./log(10),’LineWidth’,1w); grid omn;

o set(gca,’FontSize’,gs);

xlabel (’$\omega$ (rad/s)’,’interpreter’,’latex’,’FontSize’,fs);
ylabel (’Magnitude (dB)’,’interpreter’,’latex’,’FontSize’,fs);

fs = 15; % Font Size a; ‘ 1 I
5 gs = 12; Y% Axis size = _________-“”,——*”'— |
6 1w = 2; % Line Width _% 0
7 =
s %% Define the transfer function ;E -107 1
98 = tf(’s?); %
0 sys = (s+1)*(s/5+1)/((s/2+1)*(s/10+1) *(s/20+1)) = -20¢ x . : :
11 107" 10° 10 102 10°
12 [mag, phase, wout] = bode(sys); u)(rad/s)
13 mag = squeeze (mag) ;
14+ phase = squeeze (phase);
-
16 figure (1) ;
1
1
1

w (rad/s)

3 subplot(2,1,2);
semilogx (wout, phase,’LineWidth’,1lw); grid on;
set(gca,’FontSize’,gs);

26 xlabel (’$\omega$ (rad/s)’,’interpreter’,’latex’,’FontSize’,fs);
27 ylabel (?Phase (rad)’,’interpreter’,’latex’,’FontSize’,fs);
28 print(gcf,’bodesystem.png’, ’-dpng’, ’-r300°);
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Stability Review and Robustness

e Let’s consider a feedback system as shown in the figure

. s s s r_4 € U_g Y >

e Closed loop transfer function 28 = 1fé()§é()s) = Ga(s) #f_' o) GO >
e The return difference is defined as T'(s) 2 1 + G(5)C(s)

Ge(s)

\ 4
\ 4

e The closed loop system G (s) is asymptotically stable if the poles of the transfer
function have all negative real parts

GCI(S) —

G(s)C(s)
1+ G(s)C(s)

e How robust is the system to parameter changes?

e How robust is the system to delays in the control loop?

e We can answer some of these questions by analyzing the closed loop transfer function
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Closed Loop Frequency Domain Analysis

e Analyze the bode plot for the following closed loop system:

— LS50 <) TN O =
Guls) = —4.1 (s +15.47)(s — 2) .
(s + 15.22)(s% + 5.725 + 8.25)

v

A
)
%,
—
V]
~—
v

e Looking at the Bode plot, what does it mean to have
a high gain at a certain frequency/frequencies?

o

-
o
T

Magnitude (dB)

e Looking at the Bode plot, what does it mean to have
a low gain at a certain frequency /frequencies?

Phase (rad)

-100 ‘ : ‘
107 10° 10" 102 10°
w (rad/s)
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Closed Loop Frequency Domain Analysis

e Is it possible for the closed loop system at some frequency to have
infinite gain? What would that imply?

Luis Herrera, University at Buffalo, 2021

GCI(S) —

G(s)C(s)

1+ G(s)C(s)

C(s)
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Gain Margin

e Assume we have a closed loop system with proportional feedback

G(s)K

G“@_1+G@K

C(s)

G(s)

v

e Gain Margin: The amount that the loop gain (K') can be changed, at the frequency
at which the phase shift is 180°, without reducing the return difference to zero

Luis Herrera, University at Buffalo, 2021
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Phase Margin

e Assume we have a closed loop system with proportional feedback

B G(s)K L 30—« C(s) Lyl G(s) :
Gals) = T 6K T

e Phase Margin: The amount of phase lag that can be added to the open loop transfer
function, at the frequency at which its magnitude is unity, without making the return
difference zero

v
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Gain and Phase Margins — Matlab Code

e Assume we have a closed loop system with proportional feedback

G l(s) — G(S)K C(s) Lyl  G(s) ] > , y
¢ 1+ G(s)K — Gals) —
Bode Diagram
1 %%h DC Motor example Gm = Inf dB (at Inf rad/s), Pm = 56.4 deg (at 9.99 rad/s)
> J = 0.01; 20 ‘ ‘ ‘
3 b 0.1; = 0
1 K 0.01; %_20
5 R = 1; 3
6 L = 0.5; %.40
78 = tf(’s’?); = 60|
& P_motor = K/((J*s+b)*(L*s+R)+K~2); .80 :
10 %% Assume proportional feedback = 45
11 Cs = 72; % Kp g
o -90
12 %
13 %#h Plot the margins for the new system & 135
14+ margin(Cs*P_motor) 180 ‘ T—
15 print (gcf, ’margins.png’, ’-dpng’, ’-r300’); 107" 10° 10’ 102 10°

Frequency (rad/s)
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Types of Response: Overshoot, Rise Time

e Assume we have designed a closed loop system to track a certain step reference

+

e Let’s look more closely at the step response - 'T g OB muny BICOH o

PI Control with Kp = 50.00, Ki = 80.00
Poles: -5.23-+(8.75)j, -5.234(-8.75)j, -1.54+(0.00)j
12} ‘ | ' |

v

_O
[s]
T

<
(=}
T

w(t) (rad/sec)

04r

0.2

Time (s)
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Rise Time and Bandwidth

e To track step references, we need a fast rise time r o—] oo N ey EREEEN
e A step reference is a signal that has high frequency |
components

e Therefore, we can characterize the frequencies a sys-
tem can track by analyzing the bode plot

e Bandwidth: The first frequency where the gain drops below 70.79% (-3 dB) of its

DC value
bandwidth(Gcl) = BW = 12.53 rad/s
PI Control with Kp = 50.00, Ki = 80.00 =
Poles: -5.23+(8.75)], -5.23-+(-8.75)j, -1.54+(0.00)] =8
12} ' ‘ ] o
= 50
-+~
A pmmmm e N ‘g
o0
<
— = 100 : : :
553\0'8’ 1 107" 100 10 102 103
= w (rad/s)
206
= 0
ExY E
2 -100
02r —w(t) ‘:é
77777 r(#) ¥
0 . | -200
0 0.5 1 15 2 107 10° 10" 102 10°
Time (s) w (rad/s) 70
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