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Review the Components of Feedback Control Systems

e A feedback control system is composed of a dynamic system /plant, controller,
sensors/outputs, actuators/inputs, reference, and disturbance

|
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e Main idea: Having an accurate description of how the dynamic system (plant) natu-
rally behaves, we would like to design a controller to modify this behavior in a desired
way

e First step: we need to have a dynamic model

“Make everything as simple as possible, but not simpler.” Albert Einstein
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Types of Dynamic Models

e The first step is to obtain a good mathematical model of the system/plant

e How can we obtain a set of mathematic equations describing the behavior of the
system?

e In this class, we will consider two types of mathematical models (commonly used for
linear systems):

1. Transfer-function/frequency domain approach

2. State-space time domain approach
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Dynamic Model Example 1 (Time domain)

e How can we obtain a set of mathematic equations describing the behavior of the

system? I B
e Depends on the application, let’s consider a few A VAVAV
Iy,
+ + |
Vie 1 Vo ——C
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Dynamic Model Example 1 (Frequency domain)

e How can we obtain a set of mathematic equations describing the behavior of the

system?
L R
e Depends on the application, let’s consider a few — YL ANAAN—
—
Iy,
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Vi, —— Vo ——C
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Dynamic Model Example 2

e How can we obtain a set of mathematic equations describing the behavior of the
system?

e Depends on the application, let’s consider a few
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Dynamic Systems Review

e In this class, we will consider two types of mathematical models (commonly used for
linear systems):

1. Transfer-function/frequency domain approach

2. State-space time domain approach

e The path we will follow is:

State space modeling —
Laplace domain modeling and controller design —

State space analysis and controller design
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Tentative Topics

=  Overview of Feedback Control Systems
=  Dynamic Modeling Techniques
=  State Space Methods

= Laplace/Frequency Domain Analysis
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Ordinary Differential Equations

e Many physical systems (plants), can be modeled by an n'® order differential equation:

F(t, x, T, I, ---,af:(n))z()

e The order of the differential equation is decided by the highest derivative

e The ODE is time varying if the equation explicitly depends on time

e Otherwise is known as time invariant

10
Luis Herrera, University at Buffalo, 2021



LTV and LTI Differential Equations

e Two classes of ordinary differential equations (ODE) that we will use in this class are:

1. Linear Time Varying (LTV):

an(t)z™ + -+ as ()i + a1 ()i + ag(t)z = 0

2. Linear Time Invariant (LTI):

anz'™ + - 4 3@ + a1& + agxr = 0
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Solving an ODE

e Consider a second order LTI ODE: agchg‘? + ali—f + apx = 0

e If we wanted to solve this equation for z(t), what else is needed?

e While we will look at the general solution of a system of LTT ODE, this will not be
the main focus of this course

e We will try to change the behavior of the system without obtaining a
solution
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Topic Outline

=  Overview of Feedback Control Systems
=  Dynamic Modeling Techniques
=  State Space Methods

= Laplace/Frequency Domain Analysis
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System of First Order ODE - State Space Form

e Any n'" order LTI/LTV ODE can be transformed into a system of first order equa-
tions (HW problem)

e Example: convert this second order ODE into a system of first order ODEs
2
GQZT;C +a,1fi—f +agr =0
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State Space Representation of ODEs

e Any n'" order LTI/LTV ODE can be transformed into a system of n first order
equations

e This will be known as the state space system

d.il?l

T = dr fi(z1, T2, ooy Ty, ur, U2, ooy Uy, 1) 21(0) = 210
. dao
2= T fa(z1, T2, ooy Ty, UL, Uz, ony Uy, 1) 2(0) = @20
_ dx
Ln = dtn - fn(ﬂfla L2y weey Ty ULy U2, wevy Uy, t) iUn(O) — Tn0

e [t will be typically written in vector form as follows:

&= f(x, u, t), where z e R", u ¢ R™, t € R
ZC(O) )
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Linear Time Invariant (LTI) State Space System

e Any n'"" order LTI/LTV ODE can be transformed into a system of n first order

equations
= f(x, u, t), where z e R", ue R™, te R
x(0) = zq
e If the system of equations is Linear Time Invariant, the state space system is as
follows:
= Ax + Bu, x(0) =z where z € R", u e R™, A e R"*", Be R"*™
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LTI State Space System with Outputs

e An LTI State Space model with outputs is of the form:
& = Ax + Bu, x(0)=xg
y=Cz + Du

e The vector x € R" are the states

e The vector u € R™ are the inputs

e The vector y € RP are the outputs

e When m =1 and p = 1, this is known as a system

e When m > 1 and p > 1, this is known as a system
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LTI State Space System with Outputs

e An LTI State Space model with outputs is of the form:

&= Ax + Bu, x(0)=xg
y=Cux

e Let’s look at this system in our control diagram:
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Dynamic Model Example 1 (Time domain)

L R
e Place an RLC circuit in state space form: YL AAA——
—
It
+ +
Ve — Vo ——C
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Dynamic Model Example 2

e Place the spring and damper system in state space form
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LTI Systems to Laplace/Frequency Domain

e An LTI State Space model with outputs is of the form:

&= Ax + Bu, x(0)=xg
y=Cux

e The main motivation for using state space systems is the possibility of using Linear
Algebra for the analysis

e Before we do this, we will first analyze SISO systems in frequency domain
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=  Overview of Feedback Control Systems
=  Dynamic Modeling Techniques
=  State Space Methods

= Laplace/Frequency Domain Analysis

22
Luis Herrera, University at Buffalo, 2021



Laplace Transform (Review)

e The Laplace Transform L [f(¢)] of f(¢) is the function defined as follows:

L[f(t)]=F(s)= / e *' f(t)dt, Vs € C for which the integral exists
0

e Find the Laplace Transform for the following functions

5(t) [ (s) = £lr)]
[ f(t) = eat fiy=1 F(x):;l; 5>0
f(t) =e™ F(s) = G i ) s>a
ft) =i F(s) = s[%:” 5>0
o f(t) = cos(wt) . @ .
J(t) = sin(at) F(s) = e s>0
f(t) = cos(at) F(s) = ﬁ 5>0
® f (t) — SiIl (wt) f(t) = sinh(at) F(s) = 82%{12 s> |a
f(t) = cosh(at) F(s) = r“az 5> |a|
n_at - n!
f(t)=1t"e F(H)—m s>a
_ ,—at
L f (t) =€ COS(wt) f(t) = e* sin(bt) F(s)= m s>a
e oy (s—a)
f(t) = e* cos(bt) ’(H)_(.‘!—ﬂ)?+b2 s>a
b
. . F(t) = e* sinh(bt) F(s) = P s—a>|b|
o f(t)=e *sin(wt) e
1(t) = e cosh(bt) FO) = (a1 s—a> b
23
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Inverse Laplace Transform (Review)

e The inverse Laplace Transform £ ! [F(s)] of F(s) is defined as follows:

y+joo
() = LV F(s)] (8) = — / F(s)e"tds

271-3 —joo

e We typically use tables for both Laplace and inverse Laplace transforms:

[ 1(t) [ Fes) = £lro)
o F(s)=10 1
S _|_ 3 flty=1 F(.w):; 5>0
f(t) =e™ F(s) = G i ) s>a
ft) =i F(s) = s[%:” 5>0
. N a
4 J(t) = sin(at) F(s) = e s>0
— = cos(a (8) = 8 8
o F(s)= 2116 J(t) = cos(at) F() = s >0
£(t) = sinh(at) F(s) = %ﬂz s> la]
f(t) = cosh(at) F(s) = r“az 5> |a|
f(t) = t"e™ F(s) = ﬁl)r(“m s>a
10 f(t) = e* sin(bt) F(s)= o ﬂ?z e s>a
A F(S) - 2 £(t) = e cos(bt) Fls)= —8=0) s>a
s+ 7s+ 12 (s—a)? + 7
F(t) = e* sinh(bt) F(s) = o u!))2 —5 s—a>|b|
F(t) = e cosh(bt) F(s) = % s—a>|b|

24
Luis Herrera, University at Buffalo, 2021



Properties of the Laplace Transform

The Laplace Transform of L [h(t)] as defined above has an easier representa-
tion:

LIn@)] = LIf(t)xgt)] = LIFB)]LIg(t)] = F(s)G(s)

Convolution in time domain is multiplication in Laplace form

The Laplace Transform of a time derivative is £ [dfd—(tﬂ] = sF(s) — f(0)

S

The Laplace Transform of an integral is £ [f; f(T)dT:| = £l

25
Luis Herrera, University at Buffalo, 2021



From State Space to Laplace Transform

e An LTI State Space model is of the form:

& = Ax + Bu, x(0)=xg
y=Cux

e Assume m = p = 1 (SISO), apply Laplace transform to this system

26
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From State Space to Laplace Transform

e An LTI State Space model with outputs is of the form:

t=Ax + Bu, x(0)=uxg
y=Cux

e Assume m = p = 1 (SISO), apply Laplace transform to this system

e The output of the system in frequency domain is:

Y(s) = C(sI — A) "o+ C(sI — A)"'BU(s)

= "

natural response forced response
e If xp = 0, we can obtain the input/output transfer function

Y(s)
U(s)

=C(s[ - A)™'B

27
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Input/Output Transfer Function

e If xo = 0, we can obtain the input/output transfer function & = Az + Bu, x(0) =z
=Cux
Y (s) ’
=C(sI—A)'B

e How can we compute (sI — A)~'?

(sT— A)-! adj (sI — A) _ adj (sI — A)
det (sI —A) s+ ap_18" 1+ -+ a1s+ ag

28
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Input/Output Transfer Function and Solution

&= Az + Bu, x(0) =z

e If xo = 0, we can obtain the input/output transfer function p
y==uvx

1y ~adj(sI—A) o N(s)
= C(sI — A) B_Cdet(sI—A)B_D(S)
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Proper and Strictly Proper Transfer Functions

If g = 0, we can obtain the input/output transfer function

B 1y ~adj(sI—A) o N(s)
= Ol = A B =0 Gr=a” = Dis)

e In the most general form, we can write this as follows:

Y(S) N(S) bn_lsn_l + bn_zsn_z + -+ b1s+ by
U(s) D(s) S 4 ap_15" -+ ars + ag

e A proper transfer function satisfies the following: deg (N(s)) < deg (D(s))

A strictly proper transfer function satisfies the following: deg (N(s)) < deg (D(s))

30
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Poles and Zeros of the System/Transfer Function

If g = 0, we can obtain the input/output transfer function

Y(s)
Ul(s)

1y adj(sI—A) N(s)
=l =) B =00 GI— A" = Dis)

e In the most general form, we can write this as follows:

Y(S) N(S) bn_lsn_l + bn_zsn_z + -+ b1s+ by
U(s) D(s) S 4 ap_15" -+ ars + ag

e The roots of the denominator, D(s), are called the poles of the system

The roots of the numerator, N(s), are called the zeros of the system
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Partial Fraction Decomposition (no repeated poles)

e Consider the following strictly proper Input/Output transfer function

Y(S) B N(S) o bnflSn_l —|—bn723”_2 + “"I‘bls—Fb{) o G(S)
U(s) D(s)  s"+ap_ 18" 1 +---4+as+ay

e This transfer function can be placed in the following form:

V() (s—zm)(s— ) (5 — zm)
U(s) (s —p0)(s—p2) (5 — )

: m <n

e This transfer function can be expanded using partial fraction decomposition:

Y (s) __w L Cn where a; = lim (s — p;)G(s)

U(s) s—p1 S —Dn S7Pi

32
Luis Herrera, University at Buffalo, 2021



Partial Fraction Decomposition (repeated poles)

e This transfer function can be placed in the following form:

o (s—2n)(s—22) (5 2m)
Us) ~ " (5—p1)(s —p2) - (5 — pn)

: m<n

e If a pole is repeated (multiplicity of & > 1), its partial fraction is as follows:

33
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Impulse Response of the System

e The poles and partial fraction decomposition allows us to obtain the impulse response
of the system

e If u(t) = §(t), what happens to the output y(t)?

34
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Impulse Response of the System Solution

o Ifu(t)=40(t) = U(s)=1 (Laplace transform!)
e The output then becomes:

—V(s) — (s—21)(s=22) - (s—2m) _ @™ ap
I R [ Eey P B VUM T

e The output in time domain, y(¢), can be obtained by the inverse Laplace transform
(no repeated poles):

35
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Example 1 — RLC circuit Input/Output Transfer Function

e The state space equations for an RLC circuit are as follows: L f

; R =1\ [; 1 - e P
(T ) e (D = o) () w e

e Find the input/output transfer function, assuming x(0) = 0

36
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Example 1 — RLC circuit Input/Output Transfer Function

e The state space equations for an RLC circuit are as follows: L f

; R =1\ [; 1 - e P
(T ) e (D = o) () w e

e Find the input/output transfer function, assuming x(0) = 0
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Example 1 — RLC circuit Impulse Response of the System

e The state space equations for an RLC circuit are as follows: L R

ir —r -1\ [; 1 ir . N
=7 T (L) Ve  y=in= (1 0) e vel==¢
e} rol 0 (e} 0 Ve

e Find the impulse respone of the system, assuming R=1€Q, L =1/15H, C =
1/10 F

_I(s) 15
Vac(s) 82+%8+%

G(s)

38
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Steady State Solution

e Let’s again consider the transfer function for a SISO system

—C(s[—A)'B & Y(s):g(sI—A)—lBJ Ul(s)

G(s)

If the input is now constant, u(t) = u., what will be the steady state value of the
output?

e Essentially, we are interested in lim y(t)
t—00

Laplace Final Value Theorem

lim f(¢t) = lim sF'(s)

t—o0 s—0

39
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Steady State Solution (cont’d)

e Let’s again consider the transfer function for a SISO system

—C(s[—A)'B & Y(s):g(sI—A)—lBJ Ul(s)

G(s)

e If the input is now constant, u(t) = u., what will be the steady state value of the
output?

—— U(s) = —

e Essentially, we are interested in lim y(t) w(t) =
U. t=>0 s

t—o0

{0 t <0 C U

= lim y(t) = lim sY(S) = lim sG(s)U(s) = G(0)u. = —CA ' B u,

t—o00 s—0 s—0

e The term —C'A~1'B is known as the dc gain of the system

40
Luis Herrera, University at Buffalo, 2021



DC Gain of RLC Circuit

e The state space equations for an RLC circuit are as follows: L R

'iL R =1 i 1 i . I, .
=% r + | L] Vac y=ir = (1 0) Vie T Voo—=¢
e} rol 0 (e} 0 Ve

e Assuming R=1Q, L=1/15H, C =1/10 F, if we applied V4. = 10,

what is the steady state output? I(s)
G(s)

S

&=

B Vic(s) - 32—|—%8—|—%
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Next: Controller analysis in frequency domain
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