EE 419/519: Industrial Control Systems

Lecture 2: Modeling of Dynamic Systems

Dr. Luis Herrera Dept. of Electrical Engineering University at Buffalo

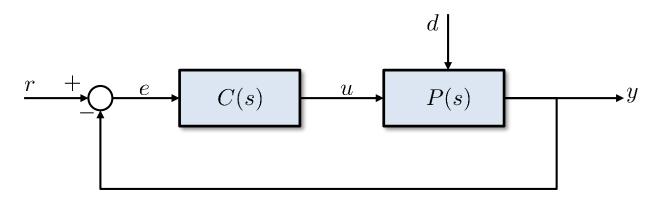
Fall 2021

Topic Outline

- Overview of Feedback Control Systems
- Dynamic Modeling Techniques
- State Space Methods
- Laplace/Frequency Domain Analysis

Review the Components of Feedback Control Systems

• A feedback control system is composed of a **dynamic system/plant**, **controller**, **sensors/outputs**, **actuators/inputs**, **reference**, and **disturbance**



- Main idea: Having an accurate description of how the dynamic system (plant) naturally behaves, we would like to design a controller to modify this behavior in a desired way
- First step: we need to have a dynamic model

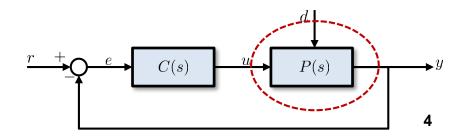
"Make everything as simple as possible, but not simpler." Albert Einstein

3

Types of Dynamic Models

- The first step is to obtain a **good** mathematical model of the system/plant
- How can we obtain a set of mathematic equations describing the behavior of the system?
- In this class, we will consider two types of mathematical models (commonly used for linear systems):
 - 1. Transfer-function/frequency domain approach

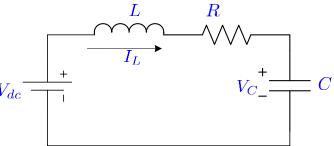
2. State-space time domain approach



Dynamic Model Example 1 (Time domain)

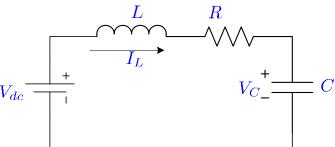
• How can we obtain a set of mathematic equations describing the behavior of the system?

• Depends on the application, let's consider a few



Dynamic Model Example 1 (Frequency domain)

- How can we obtain a set of mathematic equations describing the behavior of the system?
- Depends on the application, let's consider a few



Dynamic Model Example 2

- How can we obtain a set of mathematic equations describing the behavior of the system?
- Depends on the application, let's consider a few

Dynamic Systems Review

- In this class, we will consider two types of mathematical models (commonly used for linear systems):
 - 1. Transfer-function/frequency domain approach
 - 2. State-space time domain approach
- The path we will follow is:

State space modeling \rightarrow

Laplace domain modeling and controller design \rightarrow

State space analysis and controller design

Tentative Topics

- Overview of Feedback Control Systems
- Dynamic Modeling Techniques
- State Space Methods
- Laplace/Frequency Domain Analysis

Ordinary Differential Equations

• Many physical systems (plants), can be modeled by an n^{th} order differential equation:

$$F\left(t, \ x, \ \dot{x}, \ \ddot{x}, \ \cdots, \ x^{(n)}\right) = 0$$

- The **order** of the differential equation is decided by the highest derivative
- The ODE is **time varying** if the equation explicitly depends on time
- Otherwise is known as **time invariant**

LTV and LTI Differential Equations

- Two classes of ordinary differential equations (ODE) that we will use in this class are:
 - 1. Linear Time Varying (LTV):

$$a_n(t)x^{(n)} + \dots + a_2(t)\ddot{x} + a_1(t)\dot{x} + a_0(t)x = 0$$

2. Linear Time Invariant (LTI):

$$a_n x^{(n)} + \dots + a_2 \ddot{x} + a_1 \dot{x} + a_0 x = 0$$

Solving an ODE

- Consider a second order LTI ODE: $a_2 \frac{d^2x}{dt^2} + a_1 \frac{dx}{dt} + a_0 x = 0$
- If we wanted to solve this equation for x(t), what else is needed?

- While we will look at the general solution of a system of LTI ODE, this will **not** be the main focus of this course
- We will try to change the behavior of the system without obtaining a solution

Topic Outline

- Overview of Feedback Control Systems
- Dynamic Modeling Techniques
- State Space Methods
- Laplace/Frequency Domain Analysis

System of First Order ODE – State Space Form

• Any n^{th} order LTI/LTV ODE can be transformed into a **system** of first order equations (**HW problem**)

• **Example:** convert this second order ODE into a system of first order ODEs $a_2 \frac{d^2x}{dt^2} + a_1 \frac{dx}{dt} + a_0 x = 0$

State Space Representation of ODEs

- Any n^{th} order LTI/LTV ODE can be transformed into a **system** of **n** first order equations
- This will be known as the **state space system**

$$\dot{x}_1 = \frac{\mathrm{d}x_1}{\mathrm{d}t} = f_1(x_1, x_2, \dots, x_n, u_1, u_2, \dots, u_m, t) \qquad x_1(0) = x_{10}$$

$$\dot{x}_2 = \frac{\mathrm{d}x_2}{\mathrm{d}t} = f_2(x_1, x_2, \dots, x_n, u_1, u_2, \dots, u_m, t) \qquad x_2(0) = x_{20}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\dot{x}_n = \frac{\mathrm{d}x_n}{\mathrm{d}t} = f_n(x_1, x_2, \dots, x_n, u_1, u_2, \dots, u_m, t) \qquad x_n(0) = x_{n0}$$

• It will be typically written in vector form as follows:

$$\dot{x} = f(x, u, t),$$
 where $x \in \mathbb{R}^n, u \in \mathbb{R}^m, t \in \mathbb{R}$
 $x(0) = x_0$

Linear Time Invariant (LTI) State Space System

• Any n^{th} order LTI/LTV ODE can be transformed into a **system** of **n** first order equations

$$\dot{x} = f(x, u, t), \quad \text{where } x \in \mathbb{R}^n, u \in \mathbb{R}^m, t \in \mathbb{R}$$

 $x(0) = x_0$

• If the system of equations is **Linear Time Invariant**, the state space system is as follows:

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$
 where $x \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}$

LTI State Space System with Outputs

• An LTI State Space model with outputs is of the form:

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$
$$y = Cx + Du$$

- The vector $x \in \mathbb{R}^n$ are the **states**
- The vector $u \in \mathbb{R}^m$ are the **inputs**
- The vector $y \in \mathbb{R}^p$ are the **outputs**
- When m = 1 and p = 1, this is known as a _____ system

• When m > 1 and p > 1, this is known as a _____ system

LTI State Space System with Outputs

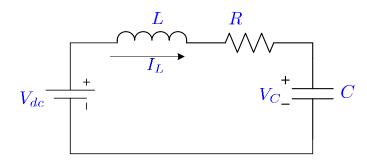
• An LTI State Space model with outputs is of the form:

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$
$$y = Cx$$

• Let's look at this system in our control diagram:

Dynamic Model Example 1 (Time domain)

• Place an RLC circuit in state space form:



Dynamic Model Example 2

• Place the spring and damper system in state space form

LTI Systems to Laplace/Frequency Domain

• An LTI State Space model with outputs is of the form:

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$
$$y = Cx$$

- The main motivation for using state space systems is the possibility of using **Linear**Algebra for the analysis
- Before we do this, we will first analyze **SISO** systems in frequency domain

Topic Outline

- Overview of Feedback Control Systems
- Dynamic Modeling Techniques
- State Space Methods
- Laplace/Frequency Domain Analysis

Laplace Transform (Review)

• The **Laplace Transform** $\mathcal{L}[f(t)]$ of f(t) is the function defined as follows:

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty e^{-st} f(t) dt, \ \forall s \in \mathbb{C} \text{ for which the integral exists}$$

- Find the Laplace Transform for the following functions
 - $f(t) = e^{at}$
 - $f(t) = \cos(\omega t)$
 - $f(t) = \sin(\omega t)$
 - $f(t) = e^{-at} \cos(\omega t)$
 - $f(t) = e^{-at} \sin(\omega t)$

f(t)	$F(s) = \mathcal{L}[f(t)]$	
f(t) = 1	$F(s) = \frac{1}{s}$	s > 0
$f(t) = e^{at}$	$F(s) = \frac{1}{(s-a)}$	s > a
$f(t)=t^n$	$F(s) = \frac{n!}{s^{(n+1)}}$	s > 0
$f(t) = \sin(at)$	$F(s) = \frac{a}{s^2 + a^2}$	s > 0
$f(t) = \cos(at)$	$F(s) = \frac{s}{s^2 + a^2}$	s > 0
$f(t)=\sinh(at)$	$F(s) = \frac{a}{s^2 - a^2}$	s > a
$f(t) = \cosh(at)$	$F(s) = \frac{s}{s^2 - a^2}$	s > a
$f(t) = t^n e^{at}$	$F(s) = \frac{n!}{(s-a)^{(n+1)}}$	s > a
$f(t) = e^{at}\sin(bt)$	$F(s) = \frac{b}{(s-a)^2 + b^2}$	s > a
$f(t) = e^{at}\cos(bt)$	$F(s) = \frac{(s-a)}{(s-a)^2 + b^2}$	s > a
$f(t) = e^{at} \sinh(bt)$	$F(s) = \frac{b}{(s-a)^2 - b^2}$	s-a> b
$f(t) = e^{at} \cosh(bt)$	$F(s) = \frac{(s-a)}{(s-a)^2 - b^2}$	s-a > b

Inverse Laplace Transform (Review)

• The inverse Laplace Transform $\mathcal{L}^{-1}[F(s)]$ of F(s) is defined as follows:

$$f(t) = \mathcal{L}^{-1} \left[F(s) \right](t) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + j\infty} F(s) e^{st} ds$$

• We typically use tables for both Laplace and inverse Laplace transforms:

$$\bullet \ F(s) = 10 \frac{1}{s+3}$$

•
$$F(s) = 4\frac{4}{s^2 + 16}$$

•
$$F(s) = \frac{10}{s^2 + 7s + 12}$$

f(t)	$F(s) = \mathcal{L}[f(t)]$	
f(t) = 1	$F(s) = \frac{1}{s}$	s > 0
$f(t)=e^{at}$	$F(s) = \frac{1}{(s-a)}$	s > a
$f(t)=t^n$	$F(s) = \frac{n!}{s^{(n+1)}}$	s > 0
$f(t) = \sin(at)$	$F(s) = \frac{a}{s^2 + a^2}$	s > 0
$f(t) = \cos(at)$	$F(s) = \frac{s}{s^2 + a^2}$	s > 0
$f(t) = \sinh(at)$	$F(s) = \frac{a}{s^2 - a^2}$	s > a
$f(t) = \cosh(at)$	$F(s) = \frac{s}{s^2 - a^2}$	s > a
$f(t)=t^ne^{at}$	$F(s) = \frac{n!}{(s-a)^{(n+1)}}$	s > a
$f(t) = e^{at}\sin(bt)$	$F(s) = \frac{b}{(s-a)^2 + b^2}$	s > a
$f(t) = e^{at}\cos(bt)$	$F(s) = \frac{(s-a)}{(s-a)^2 + b^2}$	s > a
$f(t)=e^{at}\sinh(bt)$	$F(s) = \frac{b}{(s-a)^2 - b^2}$	s-a > b
$f(t) = e^{at} \cosh(bt)$	$F(s) = \frac{(s-a)}{(s-a)^2 - b^2}$	s-a > b

Properties of the Laplace Transform

• The **convolution** h(t) = f(t) * g(t) of two signals f(t) and g(t) is given by:

$$h(t) = \int_0^t f(\tau)g(t-\tau)d\tau$$

• The Laplace Transform of $\mathcal{L}[h(t)]$ as defined above has an easier representation:

$$\mathcal{L}\left[h(t)\right] = \mathcal{L}\left[f(t) * g(t)\right] = \mathcal{L}\left[f(t)\right] \mathcal{L}\left[g(t)\right] = F(s)G(s)$$

- Convolution in time domain is multiplication in Laplace form
- The Laplace Transform of a **time derivative** is $\mathcal{L}\left[\frac{df(t)}{dt}\right] = sF(s) f(0)$
- The Laplace Transform of an **integral** is $\mathcal{L}\left[\int_0^t f(\tau)d\tau\right] = \frac{F(s)}{s}$

From State Space to Laplace Transform

• An LTI State Space model is of the form:

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$
$$y = Cx$$

• Assume m = p = 1 (SISO), apply Laplace transform to this system

From State Space to Laplace Transform

• An LTI State Space model with outputs is of the form:

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$
$$y = Cx$$

• Assume m = p = 1 (SISO), apply Laplace transform to this system

• The output of the system in frequency domain is:

$$Y(s) = \underbrace{C(sI - A)^{-1}x_0}_{\text{natural response}} + \underbrace{C(sI - A)^{-1}BU(s)}_{\text{forced response}}$$

• If $x_0 = 0$, we can obtain the input/output transfer function

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B$$

Input/Output Transfer Function

• If $x_0 = 0$, we can obtain the input/output transfer function

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$
$$y = Cx$$

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B$$

• How can we compute $(sI - A)^{-1}$?

$$(sI - A)^{-1} = \frac{\operatorname{adj}(sI - A)}{\det(sI - A)} = \frac{\operatorname{adj}(sI - A)}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$

Input/Output Transfer Function and Solution

• If $x_0 = 0$, we can obtain the input/output transfer function

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$
$$y = Cx$$

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B = C\frac{\text{adj }(sI - A)}{\det(sI - A)}B = \frac{N(s)}{D(s)}$$

Proper and Strictly Proper Transfer Functions

• If $x_0 = 0$, we can obtain the input/output transfer function

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B = C\frac{\text{adj }(sI - A)}{\det(sI - A)}B = \frac{N(s)}{D(s)}$$

• In the most general form, we can write this as follows:

$$\frac{Y(s)}{U(s)} = \frac{N(s)}{D(s)} = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$

- A proper transfer function satisfies the following: $deg(N(s)) \leq deg(D(s))$
- A <u>strictly</u> proper transfer function satisfies the following: deg(N(s)) < deg(D(s))

Poles and Zeros of the System/Transfer Function

• If $x_0 = 0$, we can obtain the input/output transfer function

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B = C\frac{\text{adj }(sI - A)}{\det(sI - A)}B = \frac{N(s)}{D(s)}$$

• In the most general form, we can write this as follows:

$$\frac{Y(s)}{U(s)} = \frac{N(s)}{D(s)} = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$

• The roots of the denominator, D(s), are called the **poles** of the system

• The roots of the numerator, N(s), are called the **zeros** of the system

Partial Fraction Decomposition (no repeated poles)

• Consider the following **strictly proper** Input/Output transfer function

$$\frac{Y(s)}{U(s)} = \frac{N(s)}{D(s)} = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} = G(s)$$

• This transfer function can be placed in the following form:

$$\frac{Y(s)}{U(s)} = K \frac{(s - z_1)(s - z_2) \cdots (s - z_m)}{(s - p_1)(s - p_2) \cdots (s - p_n)}, \qquad m < n$$

• This transfer function can be expanded using partial fraction decomposition:

$$\frac{Y(s)}{U(s)} = \frac{a_1}{s - p_1} + \dots + \frac{a_n}{s - p_n}, \quad \text{where } a_i = \lim_{s \to p_i} (s - p_i)G(s)$$

Partial Fraction Decomposition (repeated poles)

• This transfer function can be placed in the following form:

$$\frac{Y(s)}{U(s)} = K \frac{(s - z_1)(s - z_2) \cdots (s - z_m)}{(s - p_1)(s - p_2) \cdots (s - p_n)}, \qquad m < n$$

• If a pole is repeated (multiplicity of k > 1), its partial fraction is as follows:

Impulse Response of the System

- The poles and partial fraction decomposition allows us to obtain the impulse response of the system
- If $u(t) = \delta(t)$, what happens to the output y(t)?

Impulse Response of the System Solution

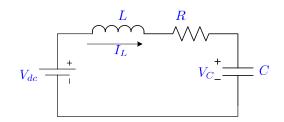
- If $u(t) = \delta(t) \Rightarrow U(s) = 1$ (Laplace transform!)
- The output then becomes:

$$\frac{Y(s)}{U(s)} = Y(s) = K \frac{(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)} = \frac{a_1}{s-p_1} + \cdots + \frac{a_n}{s-p_n}$$

• The output in time domain, y(t), can be obtained by the inverse Laplace transform (no repeated poles):

Example 1 – RLC circuit Input/Output Transfer Function

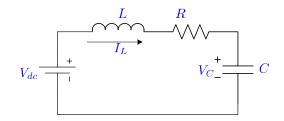
• The state space equations for an RLC circuit are as follows:



• Find the input/output transfer function, assuming x(0) = 0

Example 1 – RLC circuit Input/Output Transfer Function

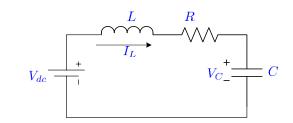
• The state space equations for an RLC circuit are as follows:



• Find the input/output transfer function, assuming x(0) = 0

Example 1 – RLC circuit Impulse Response of the System

• The state space equations for an RLC circuit are as follows:



• Find the impulse response of the system, assuming $R = 1 \Omega$, L = 1/15 H, C = $1/10 \; F$

$$G(s) = \frac{I(s)}{V_{dc}(s)} = \frac{\frac{1}{L}s}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

Steady State Solution

• Let's again consider the transfer function for a SISO system

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B \quad \Leftrightarrow \qquad Y(s) = \underbrace{C(sI - A)^{-1}B}_{G(s)} \quad U(s)$$

- If the input is now **constant**, $u(t) = u_c$, what will be the steady state value of the output?
- ullet Essentially, we are interested in $\lim_{t\to\infty}y(t)$
- Laplace Final Value Theorem

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$

Steady State Solution (cont'd)

• Let's again consider the transfer function for a SISO system

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B \quad \Leftrightarrow \qquad Y(s) = \underbrace{C(sI - A)^{-1}B}_{G(s)} \quad U(s)$$

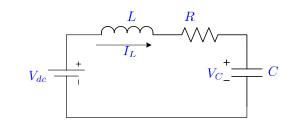
- If the input is now **constant**, $u(t) = u_c$, what will be the steady state value of the output?
- Essentially, we are interested in $\lim_{t \to \infty} y(t)$ $u(t) = \begin{cases} 0 & t < 0 \\ u_c & t \ge 0 \end{cases}$ $\xrightarrow{\mathcal{L}} U(s) = \frac{u_c}{s}$

$$\Rightarrow \lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) = \lim_{s \to 0} sG(s)U(s) = G(0)u_c = -CA^{-1}B \ u_c$$

• The term $-CA^{-1}B$ is known as the **dc gain** of the system

DC Gain of RLC Circuit

• The state space equations for an RLC circuit are as follows:



• Assuming $R = 1 \Omega$, L = 1/15 H, C = 1/10 F, if we applied $V_{dc} = 10$, what is the steady state output? $G(s) = \frac{I(s)}{V_{dc}(s)} = \frac{\frac{1}{L}s}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$ **Next:** Controller analysis in frequency domain