EE 459/559: Control and Applications of Power Electronics

Lecture 5: Advanced Concepts in Control of Power Electronics

Luis Herrera Dept. of Electrical Engineering University at Buffalo

Spring 2023

Outline

- HVDC Overview
- Real Time Simulation and Hardware in the Loop (HIL)
- Digital/Discrete Implementation of Controllers

High Voltage DC Transmission • P=IV if power is fixed => Increasing UP => reduce It

Motivation

- Voltago levels ≥ 100 eV $P_{\text{line}} = I^2 R$ For large power transmission, higher voltages reduce line losses: losses.
- Power transmission between two long distance areas
- A vast majority of renewables such as offshore wind farms are built long distances away from the consumers + Multiterminal HUDC
- In general, power transfer between two or more zones

Maritime Link - Canada

Offshore Windfarms

ABB Dolwin 1 – HVDC Light

HVDC vs HVAC

AC Transmission

- For ac transmission, the maximum power transfer between two areas depends on the line inductance
- The losses are increased if we take into account the resistance of the ac line (larger than dc due to skin effect)

DC Transmission

- Does not depend on inductance for power flow, only resistance
- Resistance is lower than ac cables (due to sum effect.)
- Veed to take into account the cost of power converters

[1] K. Meah and S. Ula, "Comparative evaluation of HVDC and HVAC transmission systems," in IEEE PES, 2007

Point to Point HVDC $(P_{\alpha s^{\dagger}})$

- HVDCs have generally been used for point to point power transmission
- Due to the high voltage stress on the power devices (> 400 kV), thyristor based HVDC were implemented

Point to Point Waveforms

Drawbacks of Thyristor Based HVDC

Thyristor Based HVDC

- Large harmonic distortion at the ac sides need ac filters (increases cost)
- We cannot control reactive power at the ac side (x)
 - Important for weak ac systems where the ac side voltage is not very stable

Solutions:

- Voltage Source Converter (VSC) based HVDC
- Control both active and reactive power

Voltage Source Converter (VSC) Based HVDC

- Control of I_d implies control of active power:
 - \circ I_d is used in the inverter to control V_{dc}

 $P = V_d I_d$ $Q = -V_d I_q$

- \circ I_d is used in the rectifier to control the active power transmitted
- Control of I_q implies control of reactive power

Example VSC HVDC

Challenges in VSC HVDC Implementation

Outline

- **HVDC** Overview
- Real Time Simulation and Hardware in the Loop (HIL) Typhoon HIL Digital/Discrete Implementation of Controllers

What is Real Time Simulation?

- Simulation of a model that executes at the same rate as an actual "wall clock" time. How does it compare to offline simulation?
- Example:

Why Real Time?

- Why is real-time simulation important?
 - Provide hardware-in-the-loop functions
- Hardware-in-the-loop methodologies:
 - Control Hardware-in-the-Loop (CHIL)
 - Validation of control strategies, e.g. electric machine drive speed / flux control
 - Power Hardware-in-the-Loop (PHIL)
 - Validation of both electrical equipment and associat control strategies
 - System-in-the-loop (SITL)
 - Validation of communication strategies, e.g. cyber security

Applications

- Renewable energy resources
- Smart grid / Microgrid
- Different types of land, sea, aerial vehicles

Method 1: State Space Model

- For *N* switches, there will be 2^{*N*} different systems of the form:
- Discretize the system and solve *
- Advantages: model can be very accurate
- Disadvantages: Large number of matrices to be stored, instability problems

Explicit Integration Methods

Explicit Integration Methods

Explicit Integration Methods

Explicit Integration Stability

If cont. system is stable, will the Forward Euler approximation always be stable?

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

20

Forward Euler Example

Implicit Integration Methods

Implicit Integration Methods

Method 2: Modified Nodal Analysis

- Uses implicit integration: BE, Trapezoidal, etc.
- Represent passive components as:
- Represent a switch by a resistor in parallel with a current source.

$$\frac{i_{s}}{+} \longrightarrow V_{s}^{n+1} \neq G_{s} \longrightarrow J_{s}^{n+1}$$

$$V_{s} \longrightarrow V_{s}^{n+1} \neq G_{s} \longrightarrow J_{s}^{n+1}$$

$$V_{t} = U_{dt} \rightarrow BE \quad i(u_{t}) = (i_{t}) + i_{t} \vee (u_{t})$$
Inductor
$$i_{L}^{n+1} \approx \frac{T_{s}}{L} v_{L}^{n+1} + i_{L}^{n} = G_{L} v_{L}^{n+1} - j_{L}^{n+1}$$

$$j_{s}^{n+1} = \begin{cases} -i_{s}^{n} & \text{if } s^{n+1} = 1 \\ G_{s}V^{n} & \text{if } s^{n+1} = 0 \end{cases}$$

Capacitor

$$i_{C}^{n+1} \approx \frac{C}{T_{s}} v_{C}^{n+1} - \frac{C}{T_{s}} v_{C}^{n} = G_{C} v_{C}^{n+1} - \frac{j_{C}^{n+1}}{I_{c}}$$

P. Pejovic and D. Maksimovic, "A method for fast time-domain simulation of networks and switches," *IEEE Trans. On Power Electronics*, vol. 9, no. 4, pp. 449-456, Jul. 1994

Modified Nodal Analysis (cont'd)

Example of a boost converter in MNA:

Limitations of CPU based Simulation

 Regular CPU based real time simulation of power electronic circuits has a minimum time step of ~10 us which is not enough to model power converters operating at >10 kHz

 $F_{sw} = 100 \text{ kHz} \Rightarrow T_{sw} = 10 \ \mu \text{s}$

Simulation time step should be: $T_s < 1 \ \mu s$

Possible Solutions:

o **GPU:** Typical time steps $T_s \approx 1 \mu s$

 \circ **FPGA:** Typical time steps $T_s < 1\mu s$

FPGA based Simulation

EMT, RTDS

- Types of power converter modeling
 - State space methods: small on resistance, large off resistance
 - State machine (logic) for modeling switches
 - Modified nodal analysis

Challenges with FPGA based simulation

- Complex low level programming is needed
- No mature software is available for FPGA based implementation of numerical integration techniques

Modified Nodal Analysis (cont'd)

Example of an inverter in MNA:

- Derive the equations for each node in the circuit based on an admittance matrix.
- The main advantage is that A matrix is constant, only terms in b (vector) change.

$$Ax^{n+1} = b^n \qquad \longrightarrow \qquad x^{n+1} = (A)^{-1}b^n$$

A is constant

Example: Boost Converter

Model of the boost converter using the proposed method:

Example: Induction Machine Drive

 In order to control the EV motor speed, torque, etc. A typical three phase converter system is added to the system:

- In order to increase efficiency and minimize losses, several aspects can be improved:
 - ✓ *Offline:* Structural, design, factory set
 - ✓ **Online:** Model based control

Induction Machine Modeling

 A typical *direct* and *quadrature* (dq) model for an induction motor is in the following form:

$$v(t) = \mathbf{R}i(t) + \omega_r \mathbf{L}_r i(t) + \mathbf{L} rac{di(t)}{dt}$$

$$\mathbf{L}_{r} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & L_{m} & 0 & (L_{lr} + L_{m}) \\ -L_{m} & 0 & -(L_{lr} + L_{m}) & 0 \end{pmatrix} \mathbf{L} = \begin{pmatrix} L_{ls} + L_{dd} & L_{dq} & L_{dd} & L_{dq} \\ L_{dq} & L_{ls} + L_{qq} & L_{dq} & L_{qq} \\ L_{dd} & L_{dq} & L_{lr} + L_{dd} & L_{dq} \\ L_{dq} & L_{qq} & L_{dq} & L_{lr} + L_{qq} \end{pmatrix}$$

Example and Simulation Results

Implemented the following machine model with three phase inverter.

R_s	$1.97~\Omega$	R_r	$2.82~\Omega$	J	$0.11 \ \mathrm{kgm^2}$
L_{ls}	10.23 mH	L_{lr}	8 mH		0.01
V _{abc}	465 V	f_{abc}	[30 70] Hz	P	2

Control Hardware-in-the-loop

 Controller hardware-in-the-loop: the plant is simulated with the real time platform to test an External Control Unit (ECU)

Advantages:

- Close to real evaluation of control algorithms
- Flexibility in testing all normal operations and failure modes
- Reduced product development time and cost

Main challenges

- Fidelity of the real-time model
- Interfacing issues, speed of DAC, ADC, and DIO
- For high switching frequency power converters, small time steps are required ps to ns range

System-in-the-loop for Communication Network

- System-in-the-loop based real-time simulation of communication can be used in parallel with an actual electric power system or a RT model
- Commercially available network simulators offer great flexibility in the modeling of the network:
 - Cyber attacks
 - Packet losses, latency, etc.
- One of the main challenges is interfacing the real system or electrical RT model, with the communication network, e.g.

Power Hardware-in-the-loop

- Flexible and reconfigurable <u>electric power network</u> with real-time simulation based Power Hardware-in-the-Loop (PHIL) unit
 - Simulate one or several subsystems of a mircogrid; or
 - Simulate a scaled-down utility grid, and study the interaction between microgrid and the utility grid; or
 - Simulate one or more scaled-down microgrids, and study the interaction between different microgrids

PHIL Challenges

- The "link" connecting the real system and the virtual model is defined by the power amplifier dynamics
- The complete system can be described by the figure
- Ideally $G_{PA}(s) = 1$
- Realistically, the PA unit adds:
 - Latency delays
 - o Bandwidth limitation
 - o External dynamics

 These external dynamics deteriorate the fidelity of the system and can drive an otherwise stable system to instable

Typical specification of the power amplifier:

- 5 30 kHz Large signal bandwidth
- Slew rate 52 V / μs

Not fast enough for load dynamics in aircraft and other types of vehicle applications.

PHIL Challenges (cont'd)

- Another challenge which arises in using power amplifiers, is finding the best (robustness, accuracy, stability) interconnection techniques:
- Two techniques shown are:
- Ideal transformer model: Straightforward, good accuracy but poor stability performance
- Damping impedance method: Good accuracy and stability performance but depends on impedance z^{*} choice.

Although only two methods are presented, other methods exists or can be discovered to improve accuracy, stability and robustness

Damping Impedance Method

HIL Methods

- There is a need for developing multi-time-scale real time simulation systems
- Challenges of HIL methodologies are listed as follows

HIL Methodologies	Challenges	
	Fidelity of the real-time models	
CHIL	Interfacing issues by ADC, DAC, and DIO	
	Small time step models with paralleled FPGAs	
SITL	Latency in the interconnecting links	
	Fidelity of the real time model	
PHIL	Added power amplifier dynamics	
	Interconnection methods	

Outline

- HVDC Overview
- Real Time Simulation and Hardware in the Loop (HIL)
- Digital/Discrete Implementation of Controllers