EE 459/559: Control and Applications of Power Electronics

3ϕ
 Topic 4: DC/AC (AC/DC) Converters Analysis, Control, and Applications

Luis Herrera
Dept. of Electrical Engineering
University at Buffalo

Spring 2023

Reference reading:
[1] H. Akagi, E. Watanabe, and M. Aredes, "Instantaneous Power Theory and Applications to Power Conditioning", IEEE Press, 2007. Chapter 3.
[2] Y. Yang, W. Chen, and F. Blaabjerg, "Advanced Control of Photovoltaic and Wind Turbines Power Systems", Springer, 2014. Chapter 2.

Outline

- Review of dc/ac (ac/dc) converters
- abc to dq transformation - Clarke and Park Transformations
- Space vector PWM (SUPWM)
- Controller Design Overview 3ϕ
- Applications PV, HUDC, Motor Drives.

Small Power Inverters

Small power inverters

Square, Modified, and Pure Sine Wave

- Small power inverters
- Take dc power supplied by a battery, such as a 12 V car battery
- Transform it to a 120 V ac power source t 60 Hz
- Emulate the power available at an ordinary household electrical outlet
- Applications of small power inverters
- Camping vehicles, boats
- Power appliances in a car: cell phones, radios and televisions
- Pure sine wave inverter
- More expensive due to added circuitry
- Can provide power to all ac electronic devices
- Reduce audible and electric noise

Uninterruptible Power Supply (UPS)

- An electrical apparatus that provides emergency power to a load when the input power source or mains power fails
- Instantaneous protection from input power interruptions
- The on-battery runtime of most UPS is relatively short: a few minutes
- Used to protect computers, data centers, telecommunication equipment, etc

Over/Undervoltage; Loss of Power

Uninterruptible Power Supply (UPS)

- Example: the largest UPS

- Fairbanks, Alaska
- Powers the entire city and nearby rural communities during outages
- Built by ABB and commissioned in 2003
- Battery is made up of almost 14,000 nickelcadmium batteries that can provide 26 MW of power for 15 mins , or up to 40 MW for 7 mins.
- Facility covers an area bigger than a soccer field.

Motor Drive

- Electric motor speed control
- Control and feedback circuitry to adjust the final output of the inverter
- The inverter output determine the speed of the motor
- Applications
- Industrial motor driven equipment
- Electric vehicles
- Rail transport system
- Power tools
- Inverter compressors

4. Texas hatruments

HVDC

$$
\text { (fired) } P=\downarrow I V \uparrow \quad \downarrow P_{\text {less }}=I^{2} R
$$

DELIVERING RENEWABLE ENERGYWITH HVDC

PV Inverters

PV Inverter Controller Example

Single Phase: Half Bridge Converter and Sine PWM

- Let's first review the different types of dc/ac (ac/dc) converters and their modulation strategies

$\hat{V}_{A_{0}}$ (peas)
- What is $V_{A 0}$ when $S_{1=0 n}\left(S_{2=0 \mathrm{ff}}\right) ? \frac{\mathrm{Vd}}{2}$

- When $\hat{V}_{\text {control }} \leq \hat{V}_{\text {tri }}$ the modulation index can be defined as follows: $\min V d=170 \times 2$ a

$$
m_{a}=\frac{\hat{V}_{\text {cadet }}^{*} / \cdot o \mathrm{ol}}{\hat{V}_{\mathrm{ri}}}=\frac{\hat{V}_{A 0}}{\hat{V}_{d} / 2}, \quad 0 \leq m_{a} \leq 1
$$

$$
\begin{aligned}
&\left(P_{\text {ear }}\right) V_{A O}^{\Lambda}=m_{a} \cdot \frac{V_{d}}{2} \\
& m_{a} \in[0,1]
\end{aligned}
$$

if $m_{a}=1 \Rightarrow V_{A O}=\frac{V d}{2}$

Single Phase: Full Bridge Converter and Sine PWM
H bridge

- Review the operation of the full bridge converter

- Operation: - S_{1} and S_{4} operate at same time
- S_{2} and S_{3} operate at same time (complementary to $S_{1}^{1}: S_{u}$)
- What is $V_{A B}^{\wedge}$ when $S_{1}!S_{4}$ on? V_{d}
- " " " " $S_{2}!S_{3}$ on? Vd
\rightarrow Veantrol $>V_{\text {tui }} \Rightarrow S_{1} \varepsilon_{1}^{1} S_{4}$ on

- When $\hat{V}_{\text {control }} \leq \hat{V}_{\text {tri }}$ the modulation index can be defined as follows:

$$
\begin{aligned}
& m_{a}=\frac{\hat{V}_{\text {col trot }}}{\hat{V}_{\text {triP }}}=\frac{\hat{V}_{A B}}{\hat{V}_{d}}, \quad 0 \leq m_{a} \leq 1
\end{aligned} \quad \vdots m_{a}=\frac{120(\sqrt{2}) \cup}{300 \mathrm{~V}}=\frac{.56}{\wedge} \because \ddots m_{A B}=m_{d} \cdot V_{d}
$$

Three Phase Inverter

- A three phase inverter is a combination of three (half-bridge) 1 triangular $=$ carrier $=$ decides $F_{s \omega}$

Outline

- Review of dc/ac (ac/dc) converters

- abc to dq transformation - Clarke and Park Transformations $\alpha \beta 0$

- Space vector PWM
- Controller Design Overview
- Applications

Balanced Three Phase System

- Let's look at a balanced three phase system:
$\begin{cases}\circ & \text { Three voltage sources with equal magnitude but with phase shift of } 120^{\circ} \\ \circ & \text { Equal loads on each phase }(a, b, c) \\ \circ & \text { Equal impedance on the lines }\end{cases}$

$$
\begin{aligned}
& V_{a n}(t)=V_{L \omega}^{\hat{1}} \cos (\omega t) \sim \tilde{V}_{a n}=\frac{V_{\omega}}{\sqrt{2}} L 0^{\circ} \\
& V_{b n}(t)=V_{\omega \omega}^{\hat{n}} \cos \left(\omega t-\frac{2 \pi}{3}\right) \sim \tilde{V}_{b n}=\frac{V_{\omega \omega} \hat{\omega}}{\sqrt{2}}<-120^{\circ} \\
& V_{\text {en }}(t)=V_{\omega \omega}^{n} \cos \left(\omega t+\frac{2 \pi}{3}\right) \sim V_{\text {en }}=\frac{V_{\omega \omega}}{\sqrt{2}} L+120^{\circ} \\
& \quad P_{a}(t)=V_{\text {an }}(t) \cdot \dot{C}_{a}(t)
\end{aligned}
$$

Advantages of Balared 3ϕ systems

1) $i_{a}+i_{b}+i_{c}=0=i_{N}$

Zero neutral current
2) Rotating may field \Rightarrow easier motor start
3) Canst. Inst. Power: $P_{3 \phi}(t)=p_{a}(t)+\rho_{b}(t)+p_{e}^{(t)}$
\Rightarrow Canst. Toque (mote) $=\overline{P_{d c}}$

Integral Control

- As we have seen before, integrator (e.g. in PI or integral + state feedback) can be used for tracking constant or step references $\nu_{a t}^{*} t=r(t)$ \qquad
- However, in ac systems the signals are not constant $i_{a}^{*}(t)=r_{a}(t) \quad$ are sinusoids signal.

- An integrator cannot be directly use to track a sine/ac reference
Internal Model Primiple: for whatever $r(t)$ you want to track, the
- What can we do?

One approach

$$
\frac{r(t)}{\sqrt[r]{r} \rightarrow}: \frac{R(s)}{\frac{r}{s}}(\text { integrator) }
$$

1) Resonant Controller WM: $\frac{\omega^{2}}{s^{2}+\omega^{2}}$ (resonant) (R)
Prop. + Resonant (PR)
** 2) Coordinate Transformation

$$
a c \rightarrow d e
$$

$$
(a b c-d q 0)
$$

Use PI, or State + Integer control

Transformations reel numbers
2 Dimension $\cong \mathbb{R}^{2}, \quad x \in \mathbb{R}^{2} \Rightarrow x=\binom{x_{1}}{x_{2}}, \quad T(x): \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \quad T_{x}=y \quad y \in \mathbb{R}^{2}$

- One particular type of transformation that we will use later is known as angle rotation

$V=\binom{1}{1} \quad T_{\theta}=\left(\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right)$
σ : specified
clocuvise rotation by o
$\tilde{V}=T_{\theta} \quad \tilde{V}=$ vector v rotated elocerwiseby θ (radians)
- Example Rotate V by $90^{\circ}\left(\frac{\pi}{2}\right)$ clocuwise

$$
\tilde{V}=T_{\frac{\pi x}{2}} V=\left[\begin{array}{cc}
0 & 1 \\
\cos (x / 2) & \sin (\pi / 2) \\
-\sin (\pi) & \cos (\pi / 2)
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

- In three dimensions, we can also define similar transformations

$$
v \in \mathbb{R}^{3} \Rightarrow v=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \quad T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \Rightarrow T_{v}=\tilde{v} \in \mathbb{R}^{3}
$$

- Rotate along the x-y plane (clockwise)

$$
T_{\theta_{x y}}=\left(\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Clarke and Park Transformation

First female professor in Electrical Engineering in the country

Receturpark
Robert H. Park (March 15, 1902 - February 18, 1994) was an American electrical engineer and inventor, best known for the Park's transformation, used to simplify the analysis of three-phase electric circuits. His related 1929 concept paper ranked second, when looking at the impact of all twentieth century power engineering papers. ${ }^{[1]}{ }^{[2]}$ Park was an IEEE Fellow and a member of the National Academy of Engineering. ${ }^{[3][4]}$

Park was born on March 15, 1902, in Strasbourg, when his father urban sociologist Robert E. Park was studying in Germany. Back in the United States Park lived in Wollaston, Massachusetts and earned in 1923 a degree in electrical engineering at the Massachusetts Institute of Technology. After this he went to the Royal Institute of Technology in Stockholm, Sweden to improve his knowledge on operational calculus. ${ }^{[31 / 4][5]}$

$$
\begin{aligned}
& \quad a b c-d q 0 \\
& * a b c \rightarrow \alpha \beta O \rightarrow d q 0
\end{aligned}
$$

Park's 1929 paper is voted the second most important paper in Power Engineering (1900-1999)

Milestone Acbievement Papers

The final four papers are:

- Charles L. Fortescue, "Method of Symmetrical Coordinates Applied to the Solution of Polyphase Networks," Transactions of the AIEE. vol. 37. pp. 1027-1140. 1918
- Robert Park, "Two Reaction Theory of Synchronous Machines," Transactions of the AIEE, vol. 48, pp. 716-730, 1929
- James Ward and Harry Hale, "Digital Computer Solution of Power Flow Problems," Transactions of the AIEE, vol. 75, Pt. iii, pp. 398-404, January 1956
- John R. Carson, "Wave Propagation in Overhead Wires with Ground Return," Bell System Technical Journal, vol. 5, pp. 539-554, October 1926.

Clarke Transformation

- Clarke transformation (alpha-beta transformation)
- A transformation matrix to change three phase signals onto the $\alpha \beta$ axes

$$
\begin{gathered}
V_{\alpha \beta 0}=K_{C} V_{a b c} \\
\text { - } V_{a b c}=\left(\begin{array}{l}
V_{a}(t) \\
V_{b}(t) \\
V_{c}(t)
\end{array}\right) \in \mathbb{R}^{3} \\
\text { - } V_{a b c}=\left(\begin{array}{l}
\hat{V}_{\cos }(\omega t) \\
\hat{V} \cos (\omega t-2 J / 3) \\
\hat{V} \cos \left(\omega t+\frac{2 \pi}{3}\right)
\end{array}\right)
\end{gathered}
$$

$\underbrace{K_{C}}_{\substack{\text { Clamés } \\ \text { Transfom. }}}=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$

Inverse Clarke Transformation

- The inverse Clarke transformation can then be used to obtain the abc values from the alpha/beta components Inverse Clare Transformation

$$
\begin{aligned}
& V_{a}(t)=V \cos (\theta(t)) \\
& V_{b}(t)=V \cos (\theta(t)-2 \pi / 3) \\
& V_{c}(t)=V \cos (\theta(t)+2 \pi / 3) \\
& V_{a b c}=\left(\begin{array}{c}
V_{a}(t) \\
V_{b}(t) \\
V_{c}(t)
\end{array}\right) \quad V_{\alpha \beta 0}=\left(\begin{array}{c}
V_{\alpha}(t) \\
V_{\beta}(t) \\
V_{0}(t)
\end{array}\right)
\end{aligned}
$$

3 cord. Clanis Transf.

$$
\eta
$$

$$
\overbrace{K_{C}^{-1}}=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & 0 & \frac{1}{\sqrt{2}} \\
-\frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} \\
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

$$
\alpha \beta O \rightarrow a b c^{L}
$$

$$
K_{c}^{-1} K_{c}=K_{c} K_{c}^{-1}=I
$$

2 cord

- Advantages: Design controller for 2 coordinates only (α, β)
- Disadvantage: ap components are still ac (Sinusoidal)

Summary of Clarke Transformation

- Clarke transformation can be used to reduce a three phase system into orthogonal components (alpha, beta, 0)

$$
\perp\left(\text { separcted by } 90^{\circ}\right)
$$

- If the system is balanced, the V_{0} component is always 0

$$
\begin{aligned}
& V_{a}(t)=V \cos (\theta(t)) \\
& V_{b}(t)=V \cos (\theta(t)-2 \pi / 3) \\
& V_{c}(t)=V \cos (\theta(t)+2 \pi / 3) \\
& V_{a b c}=\left(\begin{array}{c}
V_{a}(t) \\
V_{b}(t) \\
V_{c}(t)
\end{array}\right) \quad V_{\alpha \beta 0}=\left(\begin{array}{c}
V_{\alpha}(t) \\
V_{\beta}(t) \\
V_{0}(t)
\end{array}\right) \\
& V_{\alpha \beta 0}=K_{C} V_{a b c} \quad V_{a b c}=K_{C}^{-1} V_{\alpha \beta 0} \\
& K_{C}=\underbrace{\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]} \text { Power Invariant Clarce's Transfamation }
\end{aligned}
$$

Park Transformation

- Park transformation (direct-quadrature transformation (iq))
- The dq transformation changes a three phase system into dc values/signals. (PI, Integrictos)
- This can be done by first converting to alpha/beta/0 components, and then do an angle rotation matrix!

$$
\begin{aligned}
& \downarrow \\
& V_{d q 0}=K_{P C} V_{\alpha \beta 0} \\
& t=0 \quad V_{\alpha}(0)=\sqrt{\frac{2}{3}} \frac{3}{2} \hat{v}
\end{aligned}\left[\begin{array}{l}
V_{d} \\
V_{q} \\
V_{0}
\end{array}\right]=\left[\begin{array}{cc:c}
\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & \cos (\theta) & 0 \\
\hdashline 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
V_{\alpha} \\
V_{\beta} \\
V_{0}
\end{array}\right]
$$

$$
\begin{aligned}
& V_{a}(t)=V \cos (\theta(t)) \\
& V_{b}(t)=V \cos (\theta(t)-2 \pi / 3) \\
& V_{c}(t)=V \cos (\theta(t)+2 \pi / 3) \\
& V_{a b c}=\left(\begin{array}{l}
V_{a}(t) \\
V_{b}(t) \\
V_{c}(t)
\end{array}\right) \quad V_{d q 0}=\left(\begin{array}{l}
V_{d}(t) \\
V_{q}(t) \\
V_{0}(t)
\end{array}\right)
\end{aligned}
$$

$$
\alpha, \beta, 0 \text { first }
$$

$$
V_{\alpha}=\sqrt{\frac{2}{3}} \cdot \frac{3}{2} \hat{V} \cos (\omega t)
$$

$$
V_{\beta}=\sqrt{\frac{2}{3}} \frac{3}{2} \hat{V} \sin (\omega t)
$$

- Ignore V_{0} component (balanced systems) $\underset{\sim}{\phi} \quad \sim \sim \sim \sim \sim V V \sqrt{\frac{2}{3}} \cdot \frac{3}{2} \hat{V}$

$$
\longrightarrow\left[\begin{array}{l}
V_{d} \\
V_{q}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\omega t) & \sin (\omega t) \\
-\sin (\omega t) & \cos (\omega t)
\end{array}\right]\left[\begin{array}{c}
V_{\alpha}=\tilde{V_{c} \cos (\omega t)} \\
V_{\beta}=\tilde{V} \sin (\omega t) \\
\nu
\end{array}\right]=\left[\begin{array}{c}
\tilde{V} \\
0
\end{array}\right]
$$

- for this case, $\begin{aligned} & \bar{\phi}=0 V_{d} \\ &=\tilde{V} \\ & V_{q}=0\end{aligned}$

$$
V d=\tilde{V} \cos ^{2}(\omega t)+\tilde{V} \sin ^{2}(\omega t)=\tilde{V}
$$

- If $\phi \neq 0, V_{d} \neq 0 \quad V_{q} \neq 0$ (constant values)

Park Transformation (2)

- Park transformation (direct-quadrature transformation (dq))
- The dq transformation changes a three phase system into dc values

$$
\begin{aligned}
V_{a}(t) & =\hat{V} \cos (\theta(t))^{+\phi} \\
V_{b_{N}}(t) & =\hat{V_{\sim}} \cos (\theta(t)-2 \pi / 3) \\
V_{c}(t) & =\hat{V} \cos (\theta(t)+2 \pi / 3)^{\star} \phi
\end{aligned}
$$

$V_{a b c}=\left(\begin{array}{c}V_{a}(t) \\ V_{b}(t) \\ V_{c}(t)\end{array}\right) \quad V_{d q 0}=\left(\begin{array}{c}V_{d}(t) \\ V_{q}(t) \\ V_{0}(t)\end{array}\right)$

$$
\begin{aligned}
& V_{\text {daq }}=\frac{\overparen{K}_{p} V_{\text {abo }}}{} \text { (Skipo Clane's tuans Samation) } \\
& {\left[\begin{array}{l}
V_{d} \\
V_{q} \\
V_{0}
\end{array}\right]=\underbrace{\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
\cos (\theta) & \cos (\theta-2 \pi / 3) & \cos (\theta+2 \pi / 3) \\
-\sin (\theta) & -\sin (\theta-2 \pi / 3) & -\sin (\theta+2 \pi / 3) \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]} \underbrace{\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]}}
\end{aligned}
$$

$V_{0}=\sqrt{\frac{2}{3}} \cdot \frac{\sqrt{2}}{2}\left(V_{a}+V_{b}+V_{c}\right)=0$
When $\phi=0 \quad V_{d}=\sqrt{3} \cdot \frac{3}{2} \hat{V}, V_{q}=0$
When $\phi \neq 0 U_{d} \neq 0 V_{q} \neq 0$ Constant elencuats. (DC cancerverats)

Inverse Park Transformation

- The inverse park transformation converts the $d q 0$ components back to $a b c$

$$
\begin{gathered}
V_{a}(t)=V \cos (\theta(t)) \\
V_{b}(t)=V \cos (\theta(t)-2 \pi / 3) \\
V_{c}(t)=V \cos (\theta(t)+2 \pi / 3) \\
V_{a b c}=\left(\begin{array}{l}
V_{a}(t) \\
V_{b}(t) \\
V_{c}(t)
\end{array}\right) \quad V_{d q 0}=\left(\begin{array}{l}
V_{d}(t) \\
V_{q}(t) \\
V_{0}(t)
\end{array}\right)
\end{gathered}
$$

Summary of Park Transformation

- Park transformation can be used to transform a three phase system into dc components!
- If the system is balanced, the V_{0} component is always 0 !

$$
\begin{aligned}
V_{a}(t) & =V \cos (\theta(t)+\phi) \\
V_{b}(t) & =V \cos (\theta(t)-2 \pi / 3+\phi) \\
V_{c}(t) & =V \cos (\theta(t)+2 \pi / 3+\phi)
\end{aligned}
$$

$$
\begin{aligned}
& V_{a b c}=\left(\begin{array}{c}
V_{a}(t) \\
V_{b}(t) \\
V_{c}(t)
\end{array}\right) \quad V_{d q 0}=\left(\begin{array}{c}
V_{d}(t) \\
V_{q}(t) \\
V_{0}(t)
\end{array}\right) \quad X_{d q_{0}=}=K_{p} X_{a b c} \\
& \underbrace{X=V, I} \underbrace{V_{d q 0}=K_{P} V_{a b c}} \\
& V^{V_{a b c}=K_{P}^{-1} V_{d q 0}}
\end{aligned}
$$

$$
K_{P}=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
\cos (\theta) & \cos (\theta-2 \pi / 3) & \cos (\theta+2 \pi / 3) \\
-\sin (\theta) & -\sin (\theta-2 \pi / 3) & -\sin (\theta+2 \pi / 3) \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]
$$

Clarke and Park Transformation for Balanced Systems

- If the three phase system is known to be balanced, we can ignore the 0 component
- This simplifies the equations significantly

$$
\left[\begin{array}{c}
V_{\alpha} \\
V_{\beta}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
V_{d} \\
V_{q}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{cc}
1 & 0 \\
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{1}{2} & -\frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
V_{\alpha} \\
V_{\beta}
\end{array}\right]
$$

Outline

- Review of dc/ac (ac/dc) converters
- abc to dq transformation - Clarke and Park Transformations

Space vector PWM
Controller Design Overview *

- Applications

Max, pean Lime to nectrd voltage using five PUM is $\frac{V \mathrm{Udc}^{2}}{2}$

Space Vector PWM: Switching Signals to Vabc-o

- The alpha/beta transformation can be used to modulate a three phase inverter
- Let's analyze all of the switching signals for a three phase inverter! $S_{2}=\overline{S_{1}}$
- What are $V_{A O}, V_{B D}, V_{C O}$ as a function of S_{1}, S_{3}, S_{S} ? $\Rightarrow V_{\alpha i}, V_{\beta i}$
- $V_{a O}=f\left(s_{1}, s_{3}, s_{s}, V_{d c}\right)($ Not trivial $)$ if $\begin{aligned} & S_{1}=1 \Rightarrow V_{A N}=V_{d c} \\ & S_{1}=0 \rightarrow V_{A N}=0\end{aligned}$
- $V_{a N}=S_{1} V_{d c}, V_{B N}=S_{3} V_{d c}, V_{C N}=S_{s} V_{d c}$
- $V_{A B}=V_{A O}-V_{B C O}=V_{A N}^{\prime}-V_{B N}^{\prime}=\left(s_{1}-s_{B}\right) V_{d C}$
- $V_{B C}=V_{B D}-V_{C O}=V_{B N-}-V_{C N}=\left(S_{3}-S_{5}\right) V_{d C}$
$-V_{C A}=V_{C O}-V_{A O}=V_{C N}-V_{A N}=\left(S_{S}-S_{1}\right) U_{d C}$
$\Rightarrow 3 \phi$ balanced system: $\underbrace{}_{\text {Not }}+V_{\text {Rot }}+V_{\text {co }}=0$

$$
\begin{aligned}
& V_{B C}-V_{A B}=V_{B O}-\underbrace{}_{C O}-\left(V_{A O}-V_{B O}\right)=2 V_{B O}-V_{C O}-V_{A O} \\
& =2 V_{B O}-\left(V_{A O}+V_{C O}\right)=3 V_{B O} \\
& V_{B C}-V_{A B}=3 V_{B O}=\left[\left(S_{3}-S_{5}\right)-\left(S_{1}-S_{3}\right)\right] V V_{C}=\left[2 S_{3}-S_{1}-S_{5}\right] V_{d C} \\
& \Rightarrow V_{B D}=\frac{V_{d a t}^{3}}{3}\left(-s_{1}+2 S_{3}-S_{5}\right) \text {, Similalyy. }
\end{aligned}
$$

- How many switching combinations dove have?

$$
\begin{array}{lll}
\text { ave? } & & s_{0} \\
S_{5} & s_{3} & s_{1} \\
0 & 0 & 0 \\
0 & 0 & 2^{3}=8 \\
0 & 1 & 1
\end{array}
$$

What about $\underbrace{\left[\begin{array}{l}v_{\alpha} \\ v_{k} \\ v_{0}\end{array}\right]=[?]}_{x} \begin{array}{l}{\left[\begin{array}{l}s_{1} \\ s_{s} \\ s_{s}\end{array}\right]}\end{array}]$

Space Vector PWM: Switching Signals to Alpha/Beta

- We can then convert each possible switching combination (8) to alpha/beta component

Goal: Obtain $\binom{v_{\alpha}}{V_{\beta}}$ as a function of S_{1}, S_{3}, S_{s},

- We can use Clarke's transformation (Not Power hus.)

S_{1}	S_{3}	S_{S}	$V_{d i}$
0	$U_{R i}$		
0	0	0	0
0	0	1	$-1 / 3$
0	1	0	$-1 / \sqrt{3}$
0	1	1	$-2 / 3$
1	0	0	0
1	0	1	$1 / 3$
1	1	0	$1 / 3$
8	1	1	1

$$
\left[\begin{array}{l}
V_{\alpha i} \\
U_{p i}
\end{array}\right]=\frac{2}{3} \cdot \frac{U_{d c}}{3}\left[\begin{array}{ccc}
1 & \frac{-1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{2} & \frac{-\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
S_{1} \\
S_{3} \\
S_{s}
\end{array}\right]
$$ only 8 possible combinations!

$\frac{\text { Ting a fao cares }}{\text { for } s_{1} s_{3} s_{5}=001}$

$$
\left[\begin{array}{l}
v_{d i} \\
v_{p i}
\end{array}\right]=0=\left[\begin{array}{ccc}
V_{d c} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} \\
0 & \frac{\sqrt{3}}{3} & \frac{-\sqrt{3}}{3}
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{3} \\
s_{s}
\end{array}\right]=\left[\begin{array}{l}
\frac{2}{3} \\
0
\end{array}\right] V_{d d c}
$$

Space Vector PWM: Rotating Reference Signal

- Rotating Reference: in the $\alpha \beta$ plane formed by the Clark transformation of balanced three phase voltages (currents).

SVPWM: Reference Synthesis with Switching Vectors

- How can we approximate a rotating reference signal?

- Fix a switching period $T_{s w}$ and define 3 times t_{1}, t_{2}, t_{3} st. $t_{1}+t_{2}+t_{3}=T_{s w}$
- If $T_{s w}<\frac{1}{f}=T_{f}$ then $V_{\text {rep }}$ is approximately constant downy $T_{s o w} V_{d e c}\left(\begin{array}{l}\frac{2}{3} \\ 0 \\ 0\end{array}\right)=\frac{2 u c_{c}}{3}+j 0$

$\left.\left\lvert\, \begin{array}{l}\vdots \\ \vdots\end{array}\right.\right)$
(!)

- Unknowns: t_{1}, t_{2}, t_{3}, We can use the "law of sines"

$$
\frac{\left|V_{\text {ref }}^{\prime}\right|}{\sin \left(\frac{2 \pi}{3}\right)}=\frac{\left|V_{0}^{V}\right| \frac{t_{i}^{?}}{T \omega_{1}}}{\sin \left(\frac{\pi}{3}-\theta\right)}=\frac{\left|V_{1}\right| \frac{t_{i}^{?}}{T x_{0}}}{\sin (\theta)} \quad \frac{V_{\text {ref }} \mid=\sqrt{V_{v_{a i} i}^{2} V_{\beta i}^{2}}}{\theta=\tan ^{-1}\left(\frac{v_{p i}}{V_{k i}}\right)}
$$

SVPWM: Reference Synthesis with Switching Vectors

- How can we approximate a rotating reference signal?

- for t. : $\frac{\left|V_{\text {rep }}\right|}{\sin \left(\frac{2 \pi}{3}\right)}=\frac{\left|V_{0}\right| \cdot \frac{t_{1}}{T_{s i 0}}}{\sin \left(\frac{\pi}{3}-\theta\right)}=\frac{\frac{2}{3} \cdot V_{d l} \cdot \frac{t_{1}}{T_{5}}}{\sin \left(\frac{\pi}{3}-\theta\right)} \Longrightarrow$ \square
$\left.t_{1}=\frac{3}{2} \cdot \frac{T_{s 0}}{v_{d x}} \cdot \frac{\sin (5 / 3-\theta)}{\sin (2 \pi / 3)} \cdot V_{\text {reg }} \right\rvert\,$
- for t_{2} :

$$
\frac{\left|U_{\text {ref }}\right|}{\sin (2 \pi / 3)}=\frac{\left|V_{1}\right| \cdot \frac{t_{2}}{T s \omega}}{\sin (\theta \mid}=\frac{\frac{2}{3} \cdot V_{d c} \cdot \frac{t_{2}}{T_{s i c}}}{\sin (\theta)} \Longrightarrow t_{2}=\frac{3}{2} \cdot \frac{T_{s c o}}{V_{d c}} \cdot \frac{\sin (\theta \mathrm{res})}{\sin \left(\frac{2 \pi}{3}\right)} \cdot\left|V_{\text {reg }}\right|
$$

- What about t_{3} ?

$$
T_{s w}=t_{1}+t_{21} t_{3} \Rightarrow t_{3}=T_{S O}-t_{1}-t_{2}
$$

SVPWM: Voltage Capability

- How does SVPWM compare to Sine PWM?

$\{$. Suecom hos a better dol bos Voltaye utilizotion factor

$$
\begin{aligned}
& .577>.5 \\
& . \text { SP7 Vdc }>. \text { SVdc } \\
& \text { SPUWM }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sine-PWM } \\
& \hat{V}_{i}=\hat{m}_{i} \cdot \frac{V_{d c}}{2} \quad i=a, b_{i} e \\
& \hat{m}_{i} \in[0,1] \rightarrow \text { max peare } V_{0} H \cdot \text { is } \frac{V_{d c}}{2}
\end{aligned}
$$

SUPWM

- max year voltage is $\hat{V}_{i}=\frac{2}{3} \cdot \operatorname{Vdc} \cdot \cos \left(30^{\circ}\right)$

$$
\hat{V}_{1}=.577 V_{d c}
$$

SVPWM: Summary

- Steps to implement SVPWM

1) Obtain desired inverter voltage in α / β frame, $V_{\text {ar }}, V_{p i}$
2) Comate $\left|V_{\text {rep }}\right|=\sqrt{V_{\alpha i}^{2}+V_{\beta i}^{2}} \quad \theta=\tan ^{-1}\left(\frac{V_{B i}}{V_{a i}}\right)$
3) Decide which sector you are on (I, II, ..., II) and switching combivectoons to use:

$$
\begin{aligned}
& \text { I: } V_{0}=\binom{!}{0}, V_{1}=(!), \\
& \text { II: } V_{1}, V_{2} \\
& \text { III: } V_{2}, V_{3}
\end{aligned}
$$

4) Compute the times t_{1}, t_{2}, t_{3} given fixed $T_{s w}$.

Outline

- Review of dc/ac (ac/dc) converters
- abc to dq transformation - Clarke and Park Transformations
- Space vector PWM
- Controller Design Overview
- Applications

Motivation for Inverter Control

- The transformations we have learned can help us in controlling a three phase inverter to the grid
- Motivations for grid connections:
- Send power to the grid (renewable sources)
- Receive power from the grid (loads, batteries, etc.)
- Improve grid power quality

Active Power filter

- Help with reactive power (power factor)

DER (PV, wind)
 -

Active Power in Alpha/Beta and DQ Coordinates

- The instantaneous power of a three phase system can be computed as follows:

$$
\begin{aligned}
& P_{3 \phi}(t)=P_{3 \phi}=V_{a_{n}} I_{a}+V_{b_{n}} I_{b}+V_{e_{n}} I_{c}=\underline{\text { Constant }}+\quad K_{C}=\sqrt{\frac{2}{3}}\left[\begin{array}{cccc}
\text { Pacer livcricnt } \\
\operatorname{Van}(t) I_{a}(t)+\ldots+\ldots & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

- Derive this power in terms of α / β and $d q$ coordinates
- Instantaneous Power $=P_{3 \phi}(t)=V_{\text {an }}(t) I_{a}(t)+U_{\text {bn }}(t) I b(t)+V_{c n}(t) I_{c}(t)$

$$
\Rightarrow P_{\partial \phi}(t)=\left\langle V_{a b c}, I_{a b c}\right\rangle=V_{a b c}^{\top} I_{a b c}=\left(\begin{array}{lll}
R_{c a} & V_{b a} & V_{c n}
\end{array}\right)\left|\begin{array}{l}
I_{n} \\
I_{b} \\
I_{e}
\end{array}\right|
$$

$$
V_{a b e}=\left(\begin{array}{l}
V_{\text {an }}(t) \\
V_{b n}(t) \\
V_{\text {an }}(t)
\end{array}\right), I_{\text {able }}=\left(\begin{array}{l}
I_{a}(t) \\
I_{b}(t) \\
I_{c}(t)
\end{array}\right)
$$

$V_{a b c} \in \mathbb{R}^{3} \quad T_{a b c} \in \mathbb{R}^{3}$

- In apo frame: $P_{3 \phi}(t)=\left(K_{e}^{-1} V_{\alpha \beta O}\right)^{\top}\left(K_{c}^{-1} I_{\alpha \beta O}\right)$

$$
=V_{\alpha \beta 0}^{\top} \underbrace{\left(K_{c}^{-1}\right)^{\top} K_{c}^{-1} I_{\alpha \beta o}}_{I_{3 \times 3}}
$$

$$
\begin{aligned}
& V_{\alpha \beta o}=\left(\begin{array}{l}
V_{\alpha} \\
V_{p} \\
V_{0}
\end{array}\right)^{\prime}=K_{c} V_{a b e} \Leftrightarrow V_{a b c}=K_{c}^{-1} V_{\alpha \beta o} \\
& (A B)^{\top}=B^{\top} A^{\top} \\
& K_{c}^{-1}=K_{c}^{-1} \quad I_{\alpha \beta o} \quad \text { (Power Invariant) }
\end{aligned}
$$

- In dqO frame:

$$
P_{3 \phi}(t)=V_{d} I_{d}+V_{q} I_{q} \text { (Balanced) }
$$

Complex Power: Active and Reactive Power

- For ac systems, we can also define the complex/apparent power as follows:

$$
\begin{aligned}
&\binom{\text { Apparent }}{\text { Power }} \xlongequal{S_{3 \phi}}=3 \tilde{V} \tilde{I}^{*}(\text { phasors })=\left(\tilde{V}_{a} \tilde{I}_{a}+\tilde{V}_{b} \tilde{I}_{b}+\tilde{V}_{c} \tilde{I}_{c}\right) \\
&=\underbrace{P_{3 \phi}}_{\text {Real }}+\underbrace{}_{\text {Image. }^{j Q_{3 \phi}}}
\end{aligned}
$$

- When we transform a set of three phase signals into α / β or $d q$, we can also think of complex numbers (why? α, β and d, q ave separated by 90° or orthogonal components)
- Apparent Power in $\alpha \beta: S_{3 \phi}=\left(V_{\alpha \beta}\right)\left(I_{\alpha \beta}\right)^{*}$

$$
S_{3 \phi}=\left(V_{\alpha}+j V_{\beta}\right)\left(I_{\alpha}-j I_{\beta}\right)
$$

$$
=\left(V_{\alpha} I_{\alpha}-j V_{\alpha} I_{\beta}+j V_{\beta} I_{\alpha}-j V_{\beta} I_{\beta}\right)
$$

$$
\begin{aligned}
\Rightarrow V_{\alpha \beta} & =V_{\alpha}+j V_{\beta} \\
V_{d q} & =V_{d}+j V_{q} \\
I_{\alpha \beta} & =I_{\alpha}+j I_{\beta}
\end{aligned}
$$

$$
\begin{gathered}
S_{3 \phi}=\underbrace{\left(V_{\alpha} I_{\alpha}+V_{\beta} I_{\beta}\right)}_{\text {Active Power }}+j \underbrace{\left(V_{\beta} I_{\alpha}-V_{\alpha} I_{\beta}\right)}_{\text {Reactive Power }} \\
P_{3 \phi}=V_{\alpha} I_{\alpha}+V_{\beta} I_{\beta}=V_{d} I_{d}+V_{q} I_{q} \\
Q_{3 \phi}=V_{\beta} I_{\alpha}-V_{\alpha} I_{\beta}=V_{q} I_{d}-V_{d} I_{q}
\end{gathered}
$$

Three Phase Inverter State Space Modeling

- Analyze a grid connected three phase inverter
- Simplify the model by adding voltage and current sources
- Derive a"dynamic model of 3ϕ-inverter

Linear: $: \dot{x}=A_{x}+B_{u}$
nonlinear: $\dot{x}=f(x, u)$

AC Side State Space Equations (abc)

- Derive the state space equations in ${ }^{\prime \prime} a b c^{\prime \prime}$

- Derive the current equation foo phase a, b, c.

a: $\quad-V_{a-i}+\frac{l_{d i a}}{d t}+R i_{a}+V_{a-y}=0$
 $3^{\text {rod }}$ order Linear Time Imarient system
$\dot{x}=A_{x}+B_{u}+P_{V g}$. The system of equations are decoupled \Rightarrow " "a dost affect" $B^{\prime \prime}, "$ "

$$
+=\left[\begin{array}{ccc}
-\frac{1}{c} & 0 & 0 \\
0 & -\frac{1}{c} & 0 \\
0 & 0 & -1 \\
\hline
\end{array}\right] \underbrace{\left[\begin{array}{c}
\text { U ably } \\
V_{a-y} \\
V_{b-y} \\
v_{c y}
\end{array}\right]}_{\text {Valley }}
$$

- Disadvantages i) 3 states, ii) Nag, Ub-g, Very ave sinusoidal

AC Side State Space Equations (Alpha/Beta)

- Derive the state space equations in $\underline{\underline{\alpha / \beta}}$ frame.
- Assumption: The 3 phase system is "balaved" $\rightarrow V_{0}$ (zero component)

- The State Seance model in abe can be written as:"

$$
L \frac{d^{\prime}(a b c}{d t}=-R_{l a b c}+V_{a b c-i}-V_{a b c y}
$$

- In apO frame, the system becomes as follows:

$$
\begin{aligned}
& X_{a b c}=K_{c}^{-1} X_{\alpha \beta o} \quad V_{\alpha \beta 0}=K_{C} V_{a b c} \\
& \frac{\text { Constant }}{\text { Transfam. }}\left[K_{C}=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\right.
\end{aligned}
$$

$$
i_{a b c}=\left(\begin{array}{l}
i a \\
i b \\
i a
\end{array}\right) \quad V_{a b c i}=\left(\begin{array}{l}
V_{a-i} \\
V_{b-i} \\
V_{e}-i
\end{array}\right)
$$

$$
V_{a b c-y}=\left(\begin{array}{c}
V_{a-g} \\
V_{b}-g \\
V_{c-g}
\end{array}\right)
$$

\rightarrow Second Order system Drawback: ac, sinusoidal signals.
$\rightarrow L_{01}=-R l_{0}+V_{0} \quad V_{0-y}=O$ (ignore for batared systems)

$$
\begin{aligned}
& L \frac{d\left(K_{e}^{-1} i_{\alpha \beta O}\right)}{d t}=-R K_{c}^{-1} i_{\alpha \beta O}+K_{c}^{-1} V_{\alpha \beta-i}-K_{c}^{-1} V_{\alpha \beta 0-y} \\
& \Rightarrow K_{c}\left[L K_{e}^{-1} \frac{d i_{\alpha \beta \delta}}{d t}=-R K_{e}^{-1} i_{\alpha \beta 0}+K_{e}^{-1} V_{\alpha \beta 0-i}-K_{e}^{-1} V_{\alpha \beta 0-y}\right] \\
& \rightarrow \quad L_{\frac{d i_{\alpha \beta O}}{d t}}=-R i_{\alpha \beta O}+V_{\alpha \beta O-i}-V_{\alpha \beta O-y} \\
& \left.\rightarrow \frac{L^{d} i_{\alpha}}{d t}=-R i_{\alpha}+V_{\alpha-i}-V_{\alpha-y}\right\} \\
& \left.\rightarrow L \frac{d i_{\beta}}{d^{1}}=-R i_{\beta}+U_{\beta-i}-U_{\beta}-g\right\}
\end{aligned}
$$

AC Side State Space Equations (dq)
"Product Rove"

- Transform the equations from α / β to $d q$
- The state space equation for the inverter in $\alpha \beta$ frame con be wortten as:

$$
\left.\frac{d}{d t} f(t) g(t)=\frac{d f(t)}{d t} \cdot g^{n}\right)+f(1) \cdot \frac{d g(t)}{d t}
$$

$$
\underline{L} \frac{d i_{\alpha \beta}}{d t}=-R i_{\alpha \beta}+V_{\alpha p-i}-V_{\alpha p-g} \quad V_{\alpha \beta}=\left(i_{p}\right)
$$

- Transform to de frame:

$$
V_{a p-g}=\binom{V_{k-g}}{V_{p-g}}
$$

$$
X_{d q}=K_{e c}(t) X_{\alpha \beta}
$$

$$
X_{\alpha \beta}=K_{\rho c}^{-1}(t) X_{d q}
$$

$$
x_{d q}=\binom{x_{d}}{x_{q}}, x_{2 p}=\binom{x_{\alpha}}{x_{p}}
$$

$$
\begin{aligned}
& L \frac{d\left(\widetilde{K_{p}^{-1}(t) i_{d q}(t)}\right)}{d t}=-R K_{e c}^{-1}(t) i_{d_{q}}+K_{p c}^{-1}(t) V_{d_{q}-i}-K_{p e}^{-1}(t) V_{d q-g} \\
& K_{x x}[\underbrace{\left[\frac{?}{d K_{p e t}^{-1}} d t\right.}_{\text {new/extra }}{ }_{d d_{q}}^{d t}+L K_{p o}^{-1}(t) \cdot \frac{d i d q}{d t}=\text { sAME }] \\
& \frac{d}{d t} K_{c c}^{-1}(t)=\frac{d}{d t}\left(\begin{array}{cc}
\cos (\omega t) & -\sin (\omega t) \\
\sin (\omega t) & \cos (\omega+1)
\end{array}\right)=\omega\left(\begin{array}{cc}
-\sin (\omega t) & -\cos (\omega t) \\
\cos (\omega t) & -\sin (\omega t)
\end{array}\right) \\
& \Rightarrow\{L_{\frac{d_{i d q}}{d t}}=-R i_{d_{q}}+V_{d q-i}-V_{d_{q}-y}-\underbrace{}_{\underbrace{\text { Keceveling term }^{*} \cdot \frac{d K_{e}^{-1}}{d t}} \cdot i d_{q}}
\end{aligned}
$$

AC Side State Space Equations (Aq) (0 cemenenen is is inured $(b$ beloved $))$

- Transform the equations from α / β to $d q$, Keen $\frac{d K_{p c}^{-1}}{d t}$

$$
\left\{\begin{array}{l}
\frac{d i_{\underline{d}}}{d t}=\frac{-R}{L} i_{d}+\frac{1}{L} \underbrace{V_{d-i}}_{\square=}-\frac{1}{L} V_{d-g}+\omega \underline{i_{q}} \\
\frac{d \underline{i_{q}}}{d t}=\frac{-R}{L} i_{q}+\frac{1}{L} \underbrace{V_{q-i}-\frac{1}{L} V_{q-g}-\omega i_{d}}
\end{array}\right\}
$$

- Advantages: $2^{\text {nd }}$ order system, in steady state, we have de signals.
- Disadvantage: The two equations ave now coupled.

$$
\left[\begin{array}{c}
V_{\alpha} \\
V_{\beta}
\end{array}\right]=\left[\begin{array}{cc}
\cos (\omega t) & -\sin (\omega t) \\
\sin (\omega t) & \cos (\omega t)
\end{array}\right]\left[\begin{array}{l}
V_{d} \\
V_{q}
\end{array}\right]
$$

- Can we decouple the two equations? yes, by changing our inputs. $V_{d q}=\binom{V_{d-i}}{V_{q-i}}$
- Want to use V_{d-i}, V_{q-i} to cancel our coupling terms. For example:

$$
\begin{aligned}
& V_{d-i}=\underbrace{-L \cdot w i q}_{\text {cancel cove. }}+\underbrace{V_{q-i}}_{\overbrace{\text { controller design }} \quad u_{d-i}}=+\overbrace{\text { wide }}+\overbrace{u_{q}-i}
\end{aligned}
$$

Summary of the Dynamic Equations in DQ Frame

- The state space equations for a three phase inverter can be summarized as follows:

$$
\left\{\frac{d I_{a b c}}{d t}=\frac{-R}{L} I_{\underline{a b c}}+\frac{1}{L} V_{a b c}-\frac{1}{L} V_{g-a b c}\right.
$$

- In $d q$ reference frame, the equations become:

$$
\left\{\begin{aligned}
\frac{d I_{d}}{d t} & =-\frac{R}{L} I_{d}+\frac{1}{L} V_{d}-\frac{1}{L} V_{g-d}+\omega I_{q} \text { covelingterms } \\
\frac{d I_{q}}{d t} & =-\frac{R}{L} I_{q}+\frac{1}{L} V_{q}-\frac{1}{L} V_{g-q}-\omega I_{d}
\end{aligned}\right.
$$

- The cross-coupling terms will become important in the controller design!

Controller Design - DQ Decoupling

- In $d q$ reference frame, the equations become:

$$
\begin{aligned}
\frac{d I_{d}}{d t} & =-\frac{R}{L} I_{d}+\frac{1}{L} V_{d-\tau}-\frac{1}{L} V_{d-g}+\omega I_{q} \\
\frac{d I_{q}}{d t} & =-\frac{R}{L} I_{q}+\frac{1}{L} V_{q-i}-\frac{1}{L} V_{q-g}-\omega I_{d}
\end{aligned}
$$

- Is it possible to separate the equations?

- Want to use Vd-i, V_{q-i} to cancel our coupling terms. For example:

$$
\begin{aligned}
& V_{d-i}=\underbrace{-L \underbrace{L}_{\text {controller design }}+\overbrace{1}^{u_{d-i}}}_{\text {cancel cove. }} \\
& V_{q-i}=+\overbrace{\text { Lid }}+\overbrace{u_{q}-i}
\end{aligned}
$$

- Simplify the system by adding the new inputs.

$$
\left.\begin{array}{l}
\text { simplify the system by adding the new inputs. } \\
\frac{d i d}{d t}=\frac{-R}{L} i_{d}+\frac{1}{2}\left(-L 6 i_{q}+U_{d-i}\right)-\frac{1}{L} U_{d-g}+\Delta \cdot I_{q}=\frac{R}{L} i_{d}+\frac{1}{L} U_{d-i}-\frac{1}{L} U_{d-g} \\
\frac{d i q}{d t}=\frac{-R}{L} i_{q}+\frac{1}{L}\left(L_{\sigma} i_{d}+U_{q i}\right)-\frac{1}{L} U_{q-y}-c o r d=\frac{R}{L} i_{q}+\frac{1}{L} U_{q i}-\frac{1}{L} U_{q-y}
\end{array}\right\}
$$

Controller Design - DQ Decoupling (cont'd)

- In $d q$ reference frame, the equations become:
* $\frac{d I_{d}}{d t}=-\frac{R}{L} I_{d}+\frac{1}{L} U_{d-i} \frac{1}{L} V_{d-\mathrm{g}}$, where $U_{U_{i}=V_{d}+L \omega I_{q}} \quad$ (New inert)
* $\frac{d I_{q}}{d t}=-\frac{R}{L} I_{q}+\frac{1}{L} U_{q-}-\frac{1}{L} V_{q-\boldsymbol{g}}$, where $U_{q \mathbf{i}}=V_{q}-L \omega I_{d}$ (New (nest)
- Axis

Goal: Design a controller to regulate the "id"

- The reference is is a constant or step function
$\Rightarrow A_{n}$ integrator term is sufficient to ensure $i d \rightarrow i d$

Controller Design - Current Controller Design

- In $d q$ reference frame, the equations become:

$$
\begin{aligned}
& \frac{d I_{d}}{d t}=-\frac{R}{L} I_{d}+\frac{1}{L} U_{d}-\frac{1}{L} V_{d-q}, \text { where } U_{d}=V_{d}+L \omega I_{q} \\
& \frac{d I_{q}}{d t}=-\frac{R}{L} I_{q}+\frac{1}{L} U_{q}-\frac{1}{L} V_{q-\boldsymbol{q}}, \text { where } U_{q}=V_{q}-L \omega I_{d}
\end{aligned}
$$

- We can regulate each current independently! PI Controller for each current (id, iq)
- How to obtain our Proportional (k_{e}) + Integral (k_{i}) gains?
- Derive the model for d-axis current (q-axis andysis is similar)

1) Manual tuning try different
2) Manual tuning $\lambda k_{p} k_{i}$
(Small kp, larger ki)

$$
\left\{\begin{array} { l }
{ 2 ^ { \text { nd id } } \text { sycee } } \\
{ \text { system } }
\end{array} \left\{\begin{array}{l}
\frac{d^{c}(d)}{d t}=-\frac{R}{L} i d+\frac{1}{L} U_{d i}-\frac{1}{L} V d g \\
\dot{e}_{i d}=i d^{r}-i d
\end{array}\right.\right.
$$

Model Based good settling time

* 2) Pole placement for a store fecdbace tintegiol control

> Goal

$$
\longrightarrow e_{I}=\int\left(i i^{r}-i d\right) d t
$$

3) $L Q R+$ integral
4):

Controller Design - Overall Controller Diagram

- In $d q$ reference frame, the equations become:

$$
\frac{d I_{d}}{d t}=-\frac{R}{L} I_{d}+\frac{1}{L} U_{d}-\frac{1}{L} V_{g-d}, \text { where } U_{d}=V_{d}+L \omega I_{q}^{*}
$$

$$
\frac{d I_{q}}{d t}=-\frac{R}{L} I_{q}+\frac{1}{L} U_{q}-\frac{1}{L} V_{g-q}, \text { where } U_{q}=V_{q}-L \omega I_{d}
$$

$$
V_{q i}=U_{q} i+w L i d
$$

- We can regulate each current independently!

I reenter cottages dy

Outline

- Review of dc/ac (ac/dc) converters
- abc to dq transformation - Clarke and Park Transformations
- Space vector PWM
- Controller Design Overview
- Applications

Overview

- A fast current regulator is crucial for many applications (Ufilly, Motor drives $\underset{\rightarrow}{\rightarrow}$ Actrotionsen ,)
- Once it has been designed, many slower outer controllers can be developed to suit the application

Energy Storage Application - Output Active/Reactive Power

- A fast current regulator is crucial for many applications
- Once it has been designed, many slower outer controllers can be developed to suit the application
- Let's consider having a source with a well defined dc voltage
- Design a controller to track the output active/reactive power!

- What is $P_{\text {and }}$ and $Q_{\text {st j }}$ al grid ste?

$$
\begin{aligned}
& \begin{array}{l}
\text { What is } P_{3 \phi g} \text { and } Q_{3+g} \text { at grid side. } \\
P_{3 \phi g}=V_{d g} i_{d}+V_{g g} O_{g} t_{q}=V_{d g} I_{d} \Rightarrow i_{d} \alpha P_{3 \phi g} \quad V_{d g} \text { is typeicelly fixed } \quad \Rightarrow \begin{array}{l}
P_{3 q} g=V_{d g} \cdot I_{d} \\
Q_{3 \phi g}=-V_{d g} I_{q}
\end{array}
\end{array} \\
& Q_{3 \phi g}=-V d_{y} I_{q} \\
& Q_{3 \phi}=V_{0 g} i \delta_{0}=V_{d g} i q=-V d g i q \Rightarrow i q \alpha Q_{3 \phi} g
\end{aligned}
$$

- If the Grid voltage is cor regosence

$$
\begin{aligned}
& \begin{array}{l}
\text { boos }_{\Rightarrow} \rightarrow \begin{array}{l}
V_{d g}=V_{d g \neq 0}=? \\
V_{q g}=0
\end{array} \begin{array}{l}
\text { (refer to } \\
\text { abc } / d q \\
\text { slides) }
\end{array}
\end{array} \\
& \text { fixed } \Rightarrow \begin{array}{l}
P_{3 \phi}=V_{d g} \cdot I_{d} \\
Q_{3 \phi g}=-V_{d y} I_{q}
\end{array}
\end{aligned}
$$

- We will use id d to control Active power sent/received to/from grid
-" " "iq" "Reactive power "

Active Rectification

- Let's consider now an active rectifier
- At the dc side, only active power is consumed
- The dc bus voltage can therefore be controlled by the d axis current
- The reactive power at the $a c$ side can still be regulated

PV/Renewable Energy Example

- For PV applications, the power electronics are generally composed of a dc/dc $+\mathrm{dc} / \mathrm{ac}$ converter
- The dc/ac converter controls the dc bus voltage, V_{dc}
- The dc/dc converter controls the PV's output current (MPPT)
\rightarrow Inverter regulates the de bus Voltage \Rightarrow active rectifier through
 active power to send to grid.
 Controller for investor same prev. slide
Boost converter regoletes

PV/Renewable Energy Example (contd)

- For PV applications, the power electronics are generally composed of a dc $/ \mathrm{dc}+\mathrm{dc} / \mathrm{ac}$ converter
- The dc/ac converter controls the dc bus voltage, V_{dc}
- The dc/dc converter controls the PV's output current (MPPT)

MP

for Bast Center

- PU Pants Power from PU camels to send to grind.

MPPT: Max. Power Point fracking - Perturb and Obsave

High Voltage DC Transmission

$$
P=V I=I^{2} R \quad \text { if } V \uparrow I \downarrow \Rightarrow \begin{aligned}
& \text { line losses are } \\
& \text { reduce. }
\end{aligned}
$$ Point - to - Point.

- In High Voltage DC Transmission (HVDC), we typically need back-to-back converters!

- This control strategy where one station regales lode end another the P is referto as Master/Slave control.

Master: Regulates Vide (active rectifier)
Slave: Regaletes P (inverter)

- Other types of strategies include Droop control
 Dynamic (nonsenses) Cequires communiartion)

PMSM Motor Drives

- Suppose that we would like to control the speed of a Permanent Magnet Synchronous Machine (PMSM)
- For speed tracking, torque control, etc. An inner current regulator is very important!

Slate fere model fy PMSM
$\omega_{\mathrm{s}:}$ rotor speed (not constant!)
P: \# of Poles.
λ_{m} : motor flow doe to magnets (fixed)
Ldilq: inductance on d, 9 frame.
In some cases (Surface Moonted PMSM)

$$
L d \approx L_{q}
$$

Outline

- Review of dc/ac (ac/dc) converters
- abc to dq transformation - Clarke and Park Transformations

Space vector PWM

- Controller Design Overview
- Applications

