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Small Power Inverters

Small power inverters

▪ Small power inverters

o Take dc power supplied by a battery, such 

as a 12 V car battery

o Transform it to a 120 V ac power source t 60 

Hz

o Emulate the power available at an ordinary 

household electrical outlet

▪ Applications of small power 

inverters

o Camping vehicles, boats

o Power appliances in a car: cell phones, 

radios and televisions

▪ Pure sine wave inverter

o More expensive due to added circuitry

o Can provide power to all ac electronic 

devices

o Reduce audible and electric noise

Square, Modified, and Pure Sine Wave
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Uninterruptible Power Supply (UPS)

▪ An electrical apparatus that provides emergency power to a load 

when the input power source or mains power fails

o Instantaneous protection from input power interruptions

o The on-battery runtime of most UPS is relatively short: a few minutes

o Used to protect computers, data centers, telecommunication equipment, etc
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Uninterruptible Power Supply (UPS)

▪ Example: the largest UPS

o Fairbanks, Alaska

o Powers the entire city and nearby rural 

communities during outages

o Built by ABB and commissioned in 2003

o Battery is made up of almost 14,000 nickel-

cadmium batteries that can provide 26 MW 

of power for 15 mins, or up to 40 MW for 7 

mins. 

o Facility covers an area bigger than a soccer 

field.
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Motor Drive

▪ Electric motor speed control

o Control and feedback circuitry to adjust the final output of the inverter

o The inverter output determine the speed of the motor

▪ Applications

o Industrial motor driven equipment

o Electric vehicles

o Rail transport system

o Power tools

o Inverter compressors

6



HVDC
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PV Inverters
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PV Inverter Controller Example
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Single Phase: Half Bridge Converter and Sine PWM

10



Single Phase: Full Bridge Converter and Sine PWM

11



Three Phase Inverter
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Balanced Three Phase System

▪ Let’s look at a balanced three phase system:

o Three voltage sources with equal magnitude but with phase shift of 120o

o Equal loads on each phase (a, b, c)

o Equal impedance on the lines
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Integral Control 
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▪ As we have seen before, integrator (e.g. in PI or integral + 

state feedback) can be used for tracking constant or step 

references

▪ However, in ac systems the signals are not constant

▪ An integrator cannot be directly use to track a

sine/ac reference

▪ What can we do?



Transformations

2 Dimension

▪ One particular type of transformation that we will use later is known as 

angle rotation

3 Dimensions

▪ In three dimensions, we can also define similar transformations
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Clarke and Park Transformation
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First female professor in Electrical 

Engineering in the country

Park’s 1929 paper is voted the second 
most important paper in Power 
Engineering (1900-1999)



Clarke Transformation
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▪ Clarke transformation (alpha-beta transformation)

o A transformation matrix to change three phase signals onto the 𝛼𝛽 axes



Inverse Clarke Transformation
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▪ The inverse Clarke transformation can then be used to obtain the abc values 

from the alpha/beta components



Summary of Clarke Transformation
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▪ Clarke transformation can be used to 

reduce a three phase system into 

orthogonal components (alpha, beta, 0)

▪ If the system is balanced, the V0

component is always 0



Park Transformation
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▪ Park transformation (direct-quadrature transformation (dq))

o The dq transformation changes a three phase system into dc values

o This can be done by first converting to alpha/beta/0 components, and then do an angle 

rotation matrix!



Park Transformation (2)
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▪ Park transformation (direct-quadrature transformation (dq))

o The dq transformation changes a three phase system into dc values



Inverse Park Transformation
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▪ The inverse park transformation converts the dq0 components back to abc



Summary of Park Transformation
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▪ Park transformation can be used to 

transform a three phase system into dc

components!

▪ If the system is balanced, the V0

component is always 0!



Clarke and Park Transformation for Balanced Systems
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▪ If the three phase system is known to be balanced, we can ignore the 0 component

▪ This simplifies the equations significantly
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Space Vector PWM: Switching Signals to Vabc-o
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▪ The alpha/beta transformation can be used to modulate a three phase inverter

▪ Let’s analyze all of the switching signals for a three phase inverter!



Space Vector PWM: Switching Signals to Alpha/Beta
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▪ We can then convert each possible switching combination (8) to alpha/beta component
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Space Vector PWM: Rotating Reference Signal
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▪ Rotating Reference: in the αβ plane formed by the Clark transformation of balanced 

three phase voltages (currents).
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SVPWM: Reference Synthesis with Switching Vectors
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▪ How can we approximate a rotating reference signal?
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SVPWM: Reference Synthesis with Switching Vectors
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▪ How can we approximate a rotating reference signal?
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SVPWM: Voltage Capability
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▪ How does SVPWM compare to Sine PWM?
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SVPWM: Summary
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▪ Steps to implement SVPWM
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Motivation for Inverter Control
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▪ The transformations we have learned can help us in controlling a three phase 

inverter to the grid

▪ Motivations for grid connections:

o Send power to the grid (renewable sources)

o Receive power from the grid (loads, batteries, etc.)

o Improve grid power quality

o Help with reactive power (power factor)

o ….



Active Power in Alpha/Beta and DQ Coordinates
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Complex Power: Active and Reactive Power 
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Three Phase Inverter State Space Modeling
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AC Side State Space Equations (abc)
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AC Side State Space Equations (Alpha/Beta)
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AC Side State Space Equations (dq)
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AC Side State Space Equations (dq)
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Summary of the Dynamic Equations in DQ Frame
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Controller Design – DQ Decoupling
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Controller Design – DQ Decoupling (cont’d)
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Controller Design – Current Controller Design
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Controller Design – Overall Controller Diagram
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Overview
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Energy Storage Application – Output Active/Reactive Power
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Active Rectification
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PV/Renewable Energy Example
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PV/Renewable Energy Example (cont’d)
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High Voltage DC Transmission
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PMSM Motor Drives

55Nam, Kwang Hee. AC motor control and electrical vehicle applications. CRC press, 2018.
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