Object Oriented Programming of Molecular Simulation

In this section we introduce concepts of object-oriented programming in the context of molecular simulation.  Object-oriented programming (OOP) is very different conceptually from the approach taken in procedural languages such as Fortran or C, and it takes a certain shift in one’s thinking to embrace and implement true OOP constructs.  We say “true” OOP constructs because any OOP language can be implemented in a procedural fashion; the most basic constructs and operations in OOP languages are the same as those in procedural languages:  loops, if-else statements, assignments, arithmetic operations, etc. OOP languages can be used to write procedural programs, but of course this is not object-oriented programming.  

Object-oriented programming presents several benefits, mostly related to the ease with which one can use and extend existing code to do new things.  Also, object oriented programs generally are easier to understand than procedural programs (assuming one is comfortable with the OOP concept itself), in part because the programs are forced to be structured well, but also because the mapping of the code onto the physical problem being modeled is more obvious.  There is often a performance price to pay for this clarity of code, in that a tightly constructed procedural code can complete a calculation more quickly than a comparable OOP code.  However, the performance advantage of procedural languages can be offset by the programming time needed to implement them.  One can even imagine situations where the ease of OOP coding permits a complex but efficient algorithm to be implemented in a situation where one would not want to take the trouble to do the same algorithm procedurally.

Regardless, our primary aim in this course is to teach molecular simulation concepts, with computational performance arising as an issue mainly via the structure of algorithms, not their implementation.  In this situation the benefits of OOP suit our needs perfectly:  we would like to permit the student to construct a wide variety of interesting molecular simulations, and we would like to make the programming constructs as clear as possible.  Thus we spend time now introducing some of the basic ideas of object-oriented programming, and how they can be applied to molecular simulation.  The two most popular OOP languages in present use are C++ and Java.  C++ is (in ways) a more powerful language, but it is more difficult to use than Java.  Java is a good language for our purposes because it is better designed, easier on the programmer, and lets us write programs (small applications, or applets) that we can make available to run via a Web browser.  All of the example simulations and other applets used in this course are written in Java.  

We anticipate that the reader does not have any background in Java, but it is not our aim to give a comprehensive presentation of the language.  Instead, will here present the most elementary terms and concepts, and teach the rest by example as we move on to molecular simulation.  This way the reader is guaranteed to learn only that which is relevant to the course, and will always see a direct example of the use of any new Java construct.  The novice student must wade through a seemingly endless set of new words and ideas, but eventually the new things are repeated enough that they become old and familiar.  It is worth taking the effort to get through this and see how powerful the language can be for you.

After a very brief introduction to OOP, we present an object-oriented framework for molecular simulation.  This framework has been partially implemented by us in Java, and this library of codes will be used as a basis for instruction and programming of simulation methods throughout the rest of this course.  In this chapter we therefore take some time to introduce this molecular simulation library, or Application Programming Interface (API).

Object-Oriented Programming

Object-oriented programming is computer programming accomplished through the actions and interactions of objects.  In OOP languages (or at least in Java), everything is an object.  Nothing is done, no data exist, in the absence of some object that defines the data and the action.  Usually objects are defined to correspond to some physical or conceptual element in the problem being modeled.  For example, a molecular simulation program will use Atom objects as part of its coding.  Such an object holds particular data, such as its position and momentum, and it performs (or can have performed on it) certain actions, such as being moved.  Once an Atom is designed and coded, it can be re-used in different situations, such as in molecular dynamics or Monte Carlo simulations.  In this way good OOP design promotes re-use of existing code.

There is no unique way to implement an OOP for a given problem, and it is a significant intellectual challenge to construct an OOP design that promotes its re-use and, more importantly, extension to unanticipated types of physical problems.  A good design requires a thorough understanding of the problem being modeled, so that the right decisions can be made about how to carve out the different objects and how they should interact.

What is an Object?

An object is a fancy variable.  It is a collection of data and actions that can be referred to and passed around as a complete entity, much as simple real or integer values can be assigned to variables or passed to subroutines in procedural languages.  By swapping in and out whole objects (as simply as assigning to a single variable), one can completely change the behavior of a simulation (changing it from molecular dynamics to Monte Carlo, for example).

Every object in a program has a type or class associated with it.  This typing of objects is little different than the typing of primitives as real, integer, or boolean.  Unlike these primitives, new classes can be defined as needed to solve a particular problem.  Indeed most of OOP involves the defining of new classes.  Classes differ in the number and type of data they hold, and the actions they perform on these data.  Unlike primitive data types, objects must be constructed or instantiated before they can be used.  This is the process of setting aside the memory needed to hold the object’s data and initializing these data as appropriate.  Part of the definition of an object involves the specification of its “constructor”, which contain the instructions for how it is created.  

It is appropriate to think of an class in terms of its interface.  The interface of a class is the set of features available to manipulate an object of that class. The interface is independent of the implementation, and two classes may exhibit the same interface but implement very different actions.  The idea is that different classes can have the same interface, and thus one or the other can be used in a given spot to accomplish different outcomes.  A molecular dynamics and a Monte Carlo integrator, for example, both have an element of their interface that says “advance the system by one integration step”.  They will each generate a new configuration when told to do this, but how and what they generate is very different.  Nevertheless, another object that interacts with either of these integrators does not have to know which it is dealing with; it needs only know that it is talking to an integrator.  We make sure to define our all integrators so that they have the same interface; this way we can plug in the one we want without having to re-code things all over the place.  Inheritance is usual mechanism by which different classes end up with the same interface; a super class is defined, thereby establishing the interface.  Subclasses are then defined to inherit from the super class, and in doing so they each define their own implementation of the common inherited interface.

There are three basic elements to the makeup of an object:

· Fields are all the “variables” present in the object; they represent and hold all of the data associated with the object.  These fields may be simple data primitives (variables of type double, int, etc.), or they may themselves be handles to instances of other objects.  Normally an instance of an object is assigned to and manipulated via a variable of the same type, much as (say) the value 2.5 may be assigned to the real variable x; the variable is referred to as a handle on the object.  A given object may have more than one handle, that is, it may be assigned to and manipulated via more than one “variable”; this is a very convenient facility of Java but it requires some understanding to be used properly.

· Methods are the actions associated with an object.  They act very much like subroutines and functions familiar to procedural languages.  However, they are defined in connection to the fields of the object (that is, they have complete access to all the fields of the object), and they may be defined to behave differently depending upon the current values of the object’s fields.

· Constructor is a special method that is invoked only when the object is created.  Multiple constructors can be defined for a given class, differing in the number and types of arguments they take.  The job of the constructor is to ensure that the class is initialized and ready to use when it is created.

As an example, let’s have a quick look at a couple of the fields and methods that are included in the definition of the Atom class.  The fields include

· coordinate.  This is an object of type Coordinate.  It is responsible for holding and manipulating the position and momentum vectors of the atom.  Note that the name of this variable could have been chosen to be anything, coord for example.  It is sometimes conventional to name variables in a way that is reminiscent of its type.

· type.  This is an object of type Atom.Type.  It holds information regarding parametric features of the atom, such as its size, shape, mass, and how it is drawn.

· ia. This is an object of type Integrator.Agent.  It is designed by the integrator (whatever type might be in place, MC or MD), and it holds whatever information the integrator needs in each atom to advance the simulation.

It turns out that the Atom class has no fields that are simple primitives.  All of the data held in an Atom is carried in the objects it has as its fields.  At some point, of course, the data must be put into a primitive variable.  In this case, the Coordinate class has a Vector object as one of its fields, and the Vector in turn has two primitives (of type double) called x and y that hold these values.

Some of the methods defined in the Atom class are

· displaceBy(Vector u).  This method takes one argument and it returns no value.  The argument is a Vector object, and the method changes the atom position by adding the current u to the current position vector.  It also saves the previous position.

· translateBy(Vector u).  This does the same thing as displaceBy, but without saving the original position.

· replace()  This method takes no arguments.  It puts the atom back where it was before the last call to displaceBy.

There are many more methods associated with the Atom class.  A complete listing is available (and very nicely formatted as a standard feature of Java) at this link. 

Molecular Simulation API

An API (Application Programming Interface) is any collection of classes that can be used to aid in a programming task.  Usually an API collects classes within a common theme, such as classes involved in the construction of a graphical user interface, or classes that organize objects into sets or lists.  The Java specification in fact has two principal components:  (a) the language, which consists of the syntax involved in doing loops, if-else blocks, defining and instantiating classes, and so on, and (b) the API, which is an enormous collection of classes, organized into many different categories, that can be used to perform a variety of very useful tasks (such as sorting, generating random numbers, drawing a button to the screen, setting up tables, making network connections, and on and on).  The language and the API are considered together as “Java,” because they are both known and understood by the compiler and by the run-time system that executes any Java program.  One can write additional classes that, collected together, form a new, home-made API, to facilitate construction of particular types of programs.  We have constructed such an API for the creation of molecular simulations, and we provide here an overview of this API.  Much practical detail is omitted, and instead we focus on the general design of the API and its component classes.  The details needed to use the API in a Java program are contained in its complete, on-line documentation, which describes all the fields, methods and constructors of each and every class in the API.
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A schematic of the API structure is presented in Illustration 1. This illustration shows the principal classes that would be used by someone merely trying to construct a molecular simulation in Java.  There are many more classes not shown here (Atom, for example) that would have to be understood and accessed if one were attempting to extend the functionality of the API.  We will get to that point later, but right now our aim is familiarize the reader with the class structure enough to enable construction of a simple simulation in Java.

The API is arranged as a small hierarchy.  We point out (to those familiar already with OOP concepts) that this does not describe an inheritance hierarchy, rather it describes an inclusion hierarchy; classes lower down the hierarchy are used to form those classes higher in the hierarchy.  Thus, for example, the class Phase has among its fields a Meter, a Boundary, and a Configuration.  We will now discuss each of these general classes, describing the basic function they play in constructing a molecular simulation.

Simulation

The first step in assembling a molecular simulation is to create an instance of a Simulation class. The job of the Simulation class is to collect the other classes and organize their interactions.  Each of the other classes are added to the simulation by calling the add method of the instance of Simulation, passing to it as an argument a handle to the object being added.  Here’s a snippet of Java code demonstrating this process  (note that anything following a double slash (//) is a comment)

Simulation simulation;            //declare a variable of type Simulation
simulation = new Simulation2D();  //create an instance of Simulation and
                                  //   assign it to the new variable
Phase phase1;                     //declare a variable of type Phase
phase1 = new Phase();             //create an instance of a Phase
                                  //   and assign it to phase1
simulation.add(phase1);           //add the Phase to the Simulation

Note that the variable names (simulation and phase1) used here are completely arbitrary (note also that Java is case-sensitive, so Simulation and simulation are interpreted differently).  See also how the declaration of the variables differs from their assignment.  We declare variables of type Simulation and of type Phase.  At another point, we create instances of these classes (objects) using the “new” keyword as shown.  These objects are immediately assigned to the declared variables.  This is completely analogous to declaring a variable named x and then assigning it a value (2.5, for example) in another statement.  The difference is that we must construct the object first.  When we assign it to a variable, that variable becomes a handle to that object.

When the Phase is added to the Simulation via the add method shown above, simulation executes some code that tries to connect the Phase to other objects that may (or may not) have already been added to the Simulation.  This is all the Simulation class is designed to do:  organize the interactions of the other component objects.  Each new element of the simulation is added to the Simulation object in the manner just described.

Space

The Space class establishes the nature of the physical space in which the simulation is performed.  Whether the simulation is performed in a 1-, 2-, or 3-dimensional space, in a continuum or on a lattice, are all matters that are established by the Space class.  Note that Space describes an abstract class, or a pure interface.  There is no implementation associated with the Space class.  Instead, there are several classes that inherit from Space (and thus have the Space interface), and which implement the interface in different ways to make the various types of space just described (e.g., a 2-dimensional space).  Subclasses of Space include Space1D, Space2D which (obviously) implement 1- and 2-dimensional spaces respectively.  The can be only one Space in a Simulation.

In the present design of the API, the choice of Space for a simulation is made by invoking different Simulation classes.  Thus we have Simulation1D and Simulation2D, which inherit from simulation, and which create and add the appropriate Space class upon their construction.

Controller

The Controller specifies and implements the general plan of action for the simulation.  For example, the simulation may be configured to start when the user presses a button, and to suspend or resume upon subsequent clicks of the button.  Thus we have a ControllerButton class defined as a subclass (inheriting from) Controller, and which implements this simulation protocol.  Other subclasses of Controller will, for example, run a fixed number of relaxation and production cycles of the simulation, write out the results, and quit.  Yet another will run a sequence of simulations over a range of state conditions, recording averages and using the results to compute a free energy difference between the initial and final states (of these at present ControllerButton is the only defined subclass of Controller).  This is only one Controller in a simulation.

The Controller oversees the activities of the Integrator, which is discussed next.  The Integrator is added to the Controller in the same way that the Controller is added to the Simulation.  The Controller makes the appropriate connections between the Integrator and the other elements of the simulation.  The Controller turns the Integrator on and off to implement the plan of action it is designed to execute. 

Integrator

The Integrator contains the algorithm for generating configurations of the molecules, using (in most cases) molecular dynamics or Monte Carlo methods. One can implement different integration schemes by creating an instance of the corresponding subclass of Integrator and adding that instance to the Controller.  

Note the distinction between the Integrator and the Controller.  The Controller contains no knowledge of the physics of the system, it merely tells the Integrator when to start and stop generating new configurations.  The Controller does not need to know how or on what physical basis these configurations are being generated.

Occasionally the Integrator “fires an event” to broadcast that it has made a certain amount of progress in advancing the system.  The interval between these events is tunable, but it will typically be after one or a few molecular dynamics time steps or Monte Carlo cycles.  Other classes register themselves as listeners for these events, and when they are notified of the event firing, they take some action such as updating a simulation average or redrawing the screen.  The Integrator does not know or care what these actions are; it just moves on once each listener has completed its activity.

In the Integrator class, as with almost all of the other classes discussed here, there are fields that can be adjusted during setup of the simulation to direct or tune the behavior of the simulation.  Most of these adjustments are made via method calls to the instance of the class.  For example, part of the interface of the Integrator class is a method named setIsothermal, which takes a boolean argument.  This method can be called with a true or false value to cause the simulation to be conducted isothermally or isoenergetically.  The Java code looks like this:

Controller controller;                //declare a Controller variable
controller = new ControllerButton();  //assign it an instance
Integrator integrator;                //declare an Integrator variable
integrator = new IntegratorHard();    //assign it an instance
simulation.add(controller);           //add the controller to the simulation
controller.add(integrator);           //add the integrator to the controller
integrator.setIsothermal(true);       //set up integrator to be isothermal
integrator.setTemperature(250.);      //set the temperature to 250K

Phase

A Phase object collects all of the variables needed to define the microscopic state of a system.  In particular it holds objects (of class Molecule) that describe the configuration, that is, the coordinates of all particles at any instant.  If appropriate, it also maintains the current values of the volume, number of molecules, and species composition (if a mixture).  There may be more than one Phase object present in a simulation; molecules in different Phases do not interact with one another.  A Phase object maintains various Iterator objects whose function is to loop over atoms and atom pairs. 

A Phase object has associated with it a Boundary object that is constructed by the instance of Space held by the Simulation.  The Boundary object defines the type of boundary conditions applied in the simulation.  Phase also holds a Configuration object that specifies how the initial configuration of molecules in the Phase is determined, and Phase can also house any number of Meter objects, which are described next.

Meter

An object of type Meter measures some physical property (e.g., the total potential or kinetic energy, the density, etc.) from the configuration of the molecules in a phase, and maintains sums needed to compute simulation averages and confidence limits for the measured quantity.  Each Meter is registered automatically as a listener for events from the Integrator; each time the Meter is alerted to this event it can take a measurement on the Phase.   Each Phase has by default kinetic and potential energy meters that may be useful for purposes other than simulation averaging, such as decisions by a Monte Carlo Integrator regarding whether to accept a new configuration.

Species

A Species object gives a specification for constructing a molecule.  This includes basic features of the molecule, such as how many atoms it has, and of which type.  It also specifies a nominal arrangement of the atoms in the molecule (e.g. tetrahedral, chain, etc.).  The Species object then provides a method for the construction of a molecule.  This method is not usually called directly, but instead is invoked when specifying how many molecules of the Species are to be placed in a particular Phase; this is done via the setNMolecules method of Species.  

There may be more than one Species object added to a Simulation.  Each Species is identified by a species index, which should be numbered sequentially from zero for each new species added to a simulation.  Corresponding indices are included as fields of the potential classes (described next).  The primary function of these indices is to match up species and potentials that describe their molecular interactions.

It is important to emphasize that the Species does not include any sort of definition of the intermolecular potential.  There is, for example, no “LennardJones Species” or “HardSphere Species.”  Species main purpose is to specify the basic geometry and composition of a molecule, and provide methods for managing the molecules in a phase.

Potential

A Potential defines how atoms interact, principally their potential energy as a function of separation.  For hard potentials this includes also the collision kinetics and dynamics, while for soft potentials it describes the force law.  

The user of the API typically works not with a Potential directly, but instead with two classes related to the Potential class.  These classes describe how molecules interact, and they are composed of all the potentials for all atom pairs formed from the molecules.  A Potential1 class describes intra-molecular interactions (i.e., interactions between atoms in the same molecule), and a Potential2 class describes inter-molecular interactions (between atoms on different molecules).  A Potential1 class has associated with it a single species index, which indicates that molecules of that species have intra-molecular interactions given by that instance of the Potential1 class; likewise, Potential2 classes have two species indices, indicating that two molecules—one from each of the two species specified by the indices—interact according to the Potentials composing that Potential2 instance.

Display

A Display object is responsible for presenting information about the simulation to the user.  DisplayConfiguration is a commonly used display object, and it (unsurprisingly) displays a picture of the current configuration.  Other displays present simulation data in tabular and graphical form.  Display gets its data from one or more Meters.  It listens for events from the integrator indicating that it is time to do a display update, and polls the Meter for its current value.  The Display may be configured to perform the update only after receiving some number of such events.

Device

The Device object is used to manipulate the simulation interactively.  It might be a slider that adjusts the temperature, or a button the toggles between adiabatic and isothermal models, or many other things.  Presently no Device objects have been implemented.

Example

The following code creates a simple Java applet that performs a hard-disk molecular dynamics simulation, with a button-type controller to suspend and resume the action.

//Import required Java libraries

import java.awt.*;

import java.applet.*;

import simulate.*;

public class Applet1 extends Applet  //name “Applet1”, inherit from Applet
{

public void init() {          //a method named init
 setSize(600,300);      //set display size, in pixels
    //Instantiate all classes
 simulation2D1 = new Simulation2D();

 displayConfiguration1 = 


new DisplayConfiguration();

 controllerButton1 = new ControllerButton();

 integratorHard1 = new IntegratorHard();

 P2HardDisk1 = new P2HardDisk();

 speciesDisks1 = new SpeciesDisks();

 phase1 = new Phase();

 //Add simulation to applet
 simulation2D1.setBounds(0,0,600,300);

 simulation2D1.setLayout(null);

 add(simulation2D1);

 //Add controller to simulation

 //   first set its position and size

 //    setBounds(x, y, width, height)
 controllerButton1.setBounds(50,0,100,40);

 simulation2D1.add(controllerButton1); 

//Add display to simulation
simulation2D1.add(displayConfiguration1);

displayConfiguration1.setBounds(150,0,300,300);

//Add integrator to controller
controllerButton1.add(integratorHard1);

//Add phase to simulation
simulation2D1.add(phase1);

//Add potential to simulation
simulation2D1.add(P2HardDisk1);

//Add species to simulation
simulation2D1.add(speciesDisks1);

}  //end of init method
//Declare fields


Simulation2D simulation2D1;

DisplayConfiguration displayConfiguration1;

ControllerButton controllerButton1;

IntegratorHard integratorHard1;

P2HardDisk P2HardDisk1;

SpeciesDisks speciesDisks1;

Phase phase1;

} //end of Applet1 class
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