
Etomica: An API for Molecular
Simulation

David A. Kofke

Department of Chemical and
Biological Engineering

University at Buffalo, the State
University of New York

Object-Oriented Programming

•  Programming accomplished through the actions and
interactions of objects
–  everything is an object

•  Forces abstract thinking about the structure and activities
of a program

•  Promotes re-use of code and extension to new
applications

•  Good design is difficult to develop
–  requires thorough understanding of application
–  conversely, its use facilitates a better understanding of

application
•  presents a good vehicle for teaching

•  It’s fun!

What is an Object?
•  A fancy variable

–  stores data
–  can perform operations using the data

•  Every object has a type, or “class”
–  analogous to real, integer, etc.
–  you define types (classes) as needed to solve your problems
–  types differ in the data they hold and the actions they can perform on it
–  every object is an “instance of a class”

•  A class has an interface
–  what the object presents to enable its manipulation
–  implementation (how it accomplishes its operations) can be hidden
–  object is viewed in terms of its “actions” and not its “thoughts”

•  Inheritance
–  different classes can inherit the same interface, but implement it

differently to produce different behaviors

Makeup of an Object

•  Fields
–  primitive types (integer, float, double, boolean, etc.)
–  handles to other objects

•  complex objects are composed from simpler objects
(composition)

–  Fields are usually not part of the interface
•  “private”

•  Methods
–  “subroutines and functions”
–  may take arguments and return values
–  have complete access to all fields of object
–  methods are defined to set and get field values

Detailed Look: Molecule and Atom

•  Atom methods
–  Vector getPosition()

•  Returns an object that represents the atom’s coordinate

–  AtomType getType()
•  Returns an object that specifies important parametric features of

the atoms, such as its size, shape, mass, and how it is drawn

–  int getIndex()
•  Returns an integer used to store the Atom instance in an array

•  Molecule methods
–  AtomList getChildList()
–  Species getType()
–  int getIndex()

•  Click here for the complete API specification

6

Design Considerations

•  Goals
–  Extensible, broadly applicable
–  Computational efficiency
–  Suitable to run interactively or in batch

•  Guidelines
–  Highly granular pieces with convenience classes that assemble them
–  Separate components as much as possible

•  Graphics separate from other parts
•  Used objects don’t know about user

–  Try to re-use themes that guide design of data and other constructs
•  Agent model
•  Event model

Agent Model

7

Event Model

8

9

Simulation
•  Simulation

–  Organizes other elements
–  Common point of reference
–  Independent entity—no simulation knows about or interacts with

another Simulation instance
–  No graphical elements
–  Develop new simulations by extending Simulation

•  Assemble simulation in constructor
•  Most fields publicly accessible
•  Reusable in different contexts

–  SimulationContainer gives simulation an interface
•  Graphical elements
•  Remote access as a future consideration

–  Space is assigned to Simulation at construction

10

Space
•  Factory for objects that depend on or define the physical

space
–  Vector, Tensor, Orientation, Boundary

•  All object methods are implemented in a spatially-
independent manner
–  Vector methods defined for vector addition, scalar multiplication,

dot product, simple compound operations, etc.

•  Easy to convert from simulation in one dimension to another

Vector
•  Defines Cartesian vector and operations performed on it

•  Some methods
–  double squared()
–  double dot(Vector v)
–  void E(Vector v)
–  void PE(Vector v)
–  void Ea1Tv1(double a, Vector v)
–  Vector Mv1Squared(Vector y)
–  void normalize()
–  Etc.

•  Different implementations done for different dimensions

11

12

Data Structures: Atom
•  Atom

–  Represents physical atom being simulated

•  Some Important fields
–  position

•  class that holds and manipulates position vectors

–  type
•  class that specifies important parametric features of the atoms, such as

its size, shape, mass, and how it is drawn

–  index
•  an integer used to store the Atom instance in an array

13

Data Structures: AtomFactory
•  AtomFactory

–  Builds a molecule according to a specification
–  “Atom” is defined generally

•  “Leaf” atom corresponds to a physical atom
•  Group of atoms, even molecules, are represented by instances of Atom
•  Molecule is represented by a tree structure, using AtomTreeNode

•  AtomFactoryMono, AtomFactoryHomo, AtomFactoryHetero
–  Hierarchical: Large molecules built from factories that comprise other

factories that build the molecule subunits

•  Each factory attaches a unique AtomType to all the Atoms it
builds

•  Factory has a Conformation that arranges atoms

14

Data Structures: Box
•  Box

–  Collects all atoms that interact with each other

•  A single Simulation may employ multiple Box instances
–  Parallel tempering, Gibbs ensemble
–  No atoms in one Box interact with atoms in another Box

•  Box holds a Boundary instance
–  Constructed by Space
–  Implements (or not) periodic boundary conditions

•  Manages addition/removal of molecules
•  Additional information associated with Box via

BoxAgentManager

15

Data Structures: Species
•  Species classes collect information needed to construct and

manage molecules

•  Subclasses defined for specific molecules

•  Serves as a “molecule type” for doing potential calculations

16

Data Structures: AtomsetIterator
•  AtomSet

–  Interface for a set of atoms
•  Atom, AtomPair most often used

•  Many types of atom-set iterators
–  Iterate atoms or atom pairs at a particular level in hierarchy
–  Iterate pairs formed with a particular atom
–  Iterate in one or both directions from a given atom
–  Many interfaces defined

•  AtomsetIteratorPhaseDependent
•  AtomsetIteratorBasisDependent
•  AtomsetIteratorDirectable
•  AtomsetIteratorTargetable
•  AtomsetIteratorListDependent
•  etc.

17

Models: Potential
•  Potential

–  Defines manner of interaction of atoms
–  public void energy(AtomSet atoms)

•  Subclasses specific to 1-body, 2-body, etc. forms

•  Interfaces for hard and soft potentials
–  PotentialSoft

•  energy, virial, hypervirial, gradient

–  PotentialHard
•  energy, collisionTime, bump

•  PotentialMaster class collects potentials and manages
iterators

18

Models: PotentialGroup
•  PotentialGroup

–  Collects several potentials that all interact on a single AtomSet

•  1-body PotentialGroup
–  acts on a single Atom (which typically is a group of atoms)
–  collects intramolecular interactions

•  2-body PotentialGroup
–  acts between two Atom instance
–  collects intermolecular interactions

19

Flow Control: Action and Activity
•  Action

–  interface for abstract, elementary action that does something
–  public void actionPerformed()
–  can be grouped for series implementation
–  for example

•  AtomActionRandomizeVelocity
•  AtomActionTranslateBy
•  IntegratorReset
•  PhaseInflate

•  Activity
–  more complex, time-consuming extension of Action
–  can be started, stopped, paused, resumed
–  can be grouped for series or parallel implementation
–  for example

•  ActivityIntegrate
•  EquilibrationProduction

20

Flow Control: Controller
•  Two ways to conduct simulation

–  interactively
–  batch
–  (or hybrid of both)

•  Specification of actions must be mutable
–  even while simulation proceeds

•  Controller
–  schedules actions to be performed
–  single instance constructed for each Simulation
–  actions/activities can be added to queue
–  urgentAction can be requested for immediate implementation

•  all GUI-driven changes follow this path

–  carefully synchronized

21

Flow Control: Integrator
•  Integrator

–  repeatedly changes configuration to follow a sampling algorithm
–  public void doStep()
–  deploys subclass-specific agent to each atom
–  only one integrator acts on a given box
–  some integrators act on multiple boxes

•  IntegratorGEMC (Gibbs ensemble Monte Carlo)
•  IntegratorPT (Parallel tempering)

•  IntegratorMD
–  IntegratorVelocityVerlet
–  IntegratorHard

•  discontinuous molecular dynamics

•  IntegratorMC

22

Flow Control: IntegratorMC
•  IntegratorMC

–  Monte Carlo sampling
–  Selects trial move, performs trial, decides acceptance, notifies move and

other listeners

•  MCMove
–  Performs Monte Carlo trial
–  Reports information needed to determine acceptance

•  ln(pnew/pold), ln(tij/tji)
•  Holds fields needed for evaluation

–  Does appropriate update for acceptance or rejection
–  For example

•  MCMoveAtom
•  MCMoveInsertDelete
•  MCMoveRotateMolecule
•  MCMoveVolume

–  Sampled ensemble is determined by set of MCMoves added to integrator

23

Flow Control: IntegratorEvent
•  IntegratorEvent

–  integrator fires event to registered listeners to notify of progress
with simulation

•  IntegratorListener
–  IntegratorIntervalListener

•  receives repeated events reporting progress

–  IntegratorNonintervalListener
•  receives only events indicating initialization, start, end, etc.

–  For example
•  objects pushing data measurement and processing
•  cell- and neighborlist-updating

24

Data Processing: DataSource, DataSink
•  DataSource

–  interface for class that can provide data
–  data is generally represented by array of double
–  public double[] getData();
–  Meter is a DataSource that acts on a Box
–  for example

•  MeterDensity, MeterEnergy, MeterRDF, MeterTemperature
•  DataSourceCountCollisions, DataSourceCountTime

•  DataSink
–  interface for class that can receive data
–  public void putData(double[] data);
–  for example

•  DisplayBox, DataSinkConsole, DataBin
•  DataPipe

25

Data Processing: Pipelines
•  Data is pushed from a source to a sink

–  It may pass through other elements along the way
–  Each pushes data on to the next element

•  DataPipe
–  Abstract, implements DataSink
–  Takes data given to it, does something to it, and pushes new data
–  DataAccumulator

•  Collects statistics on data it receives, and pushes it on at intervals
•  e.g. AccumulatorAverage, AccumulatorHistory, AccumulatorHistogram

–  DataTransformer
•  Modifies data and immediately pushes it downstream

26

Data Processing: DataPump
•  DataPump

–  Extends DataProcessor
–  Holds a DataSource, and moves data from it to the sinks
–  Provides the impetus for moving the data from a source into a pipe
–  Implements Action

•  Typically activated via Integrator IntervalEvent, or GUI action

Data Flows in Etomica

28

I/O and Graphics: Display
•  Display

–  Object to present data in graphical interface

•  Boxes, plots, tables, etc.

•  All are treated as implementing DataSink

•  Logging capabilities still not well developed

•  Units
–  Internally, all data are represented in a common unit system

•  picosecond, Angstrom, Dalton

–  Unit classes are defined to handle conversions
–  All I/O and graphics classes hold a Unit instance
–  Classes can declare Dimension for fields so that appropriate units

are offered

29

I/O and Graphics: Device
•  Device

–  Widget that allows user to interact with simulation

•  Examples
–  DeviceButton

•  Connects to an action, performs action when button is pressed
–  DeviceSlider

•  Changes value of some quantity with movement of a slider

–  DeviceThermoController
•  ComboBox that permits selection from several temperatures

–  DeviceCheckBox
•  Toggles a boolean value using a checkbox

–  DeviceControllerButton
•  Start/stop/pause/resume simulation

•  Acts via Controller
–  Invokes urgentAction
–  Controller handles Action request ASAP

•  Pauses current Activity, or finishes current Action
•  then attends to requested Action

–  Prevents collision between user and integrator threads

30

Utilities
•  Utility classes developed as needed

–  versatile lattice capabilities
–  Polytope for defining shapes
–  very small set of math classes

•  linear algebra
•  special functions
•  permutations/combinations

31

Supporting Tools
•  CVS

•  JUnit
–  facility for developing unit tests

•  javadoc
–  facility to generate hyperlinked documentation from comments

•  bugzilla
–  bug tracking

•  tinderbox
–  performance tracking

32

Supporting Tools: Tinderbox

33

Supporting Tools: Tinderbox

