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Boundary Conditions

O Impractical to contain system with a real boundary
* Enhances finite-size effects
* Artificial influence of boundary on system properties
O Instead surround with replicas of simulated system
« “Periodic Boundary Conditions” (PBC)

* Click here to view an applet demonstrating PBC




Issues with Periodic Boundary Conditions 1.

O Minimum image convention

* Consider only nearest image of a given particle when looking for
collision partners

Nearest images of colored sphere
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Issues with Periodic Boundary Conditions 2.

O Caution not to miss collisions

* click here for a bad simulation
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These two are checked...




[ssues with Periodic Boundary Conditions 3.
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* supressed long-range correlations | %o ee ®e

* new artificial correlations

O Other issues arise when dealing with longer-range potentials
* accounting for long-range interactions
* nearest image not always most energetic
- splitting of molecules (charges)
* discuss details later

O Other geometries possible

° any space-filling W'

hexagonal in 2D

truncated octahedron in 3D —_—

rhombic dodecahedron in 3D

* surface of a (hyper)sphere

* variable aspect ratio useful for solids

relieves artificial stresses




Implementing Cubic Periodic Boundaries 1.

O Details vary with representation of coordinates

* Box size

unit box, coordinates scaled by edge length
dr.x = dimensions.x * (rl.x - r2.x); //difference in x coordinates

full-size box, coordinates represent actual values 0.5 +0.5

o +0.5
* Box origin ‘ ‘ ‘

center of box, coordinates range from -L/2 to +L/2 ——,

corner of box, coordinates range from 0 to L (0, 0)

O Two approaches O ‘ O

-0.5
|

* decision based (“if” statements)
* function based (rounding (nint), truncation, modulo)

* relative speed of each approach may vary substantially from one
computer platform to another




Implementing Cubic Periodic Boundaries 2.
Central-image codes

O Involved in most time-consuming part of simulation

O (0,1) coordinates, decision based

r.x -= (r.x > 0.0) ? Math.floor(r.x) : Math.ceil(r.x-1.0); //Java syntax
examples: -0.2 2 +0.8; -1.4 2 +0.6; +0.4 2 +0.4, +0.6 2 +0.6; +1.5 2 +0.5

O (0,L) coordinates, decision based

r.x —-= dimensions.x * ((r.x > 0.0) ? Math.floor (r.x/dimensions.x)
Math.ceil (r.x/dimensions.x-1.0)) ;

O (-1/2, 1/2), decision based

if(r.x > 0.5) r.x -= 1.0; if(r.x < -0.5) r.x += 1.0; //only first shell
examples: -0.2 2 -0.2; -1.4 2 -0.4; +0.4 2 +0.4; +0.6 > -0.4; +1.5 2f+0.5

O (-1/2, 1/2), function based

r.x —-= Math.round(r.x);//nearest integer (r.x must be float, not double)

O (0,L), function based

r.x %= dimensions.x; 1if(r.x < 0.0) r.x += dimensions.x;//modulo operator

N.B. Most code segments are untested




Implementing Cubic Periodic Boundaries 3.

Nearest-image codes
O Simply apply (-1/2,1/2) central-image code to raw difference!

* dr.x = rl.x - r2.x; //unit box length

e 1f(dr.x > 0.5) dr.x —-= 1.0, ® ® ® ®
e 1f(dr.x < =-0.5) dr.x += 1.0, ® ®
® 060 ©
* dr.x *= dimensions.x; o0 Y
® o9 o
®¢ 0%0 o
O Or... oo o0
* dr.x = rl.x - r2.x; //true box length
* dr.x -= dimensions.x * Math.round(dr.x/dimensions.x) ;

O Take care not to lose correct sign, if doing force calculation

O Nearest image for non-cubic boundary not always given simply
in terms of a central-image algorithm




Structure of a Molecular Stmulation 1.
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Structure of a Molecular Stmulation 2.
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Confidence Limits on Simulation Averages 1.

O Given a set of measurements {m.}, for {0.01,0.1,0.9,0.06,0.5,0.3,0.02}
some property M I |

O There exists a distribution of values from (M)
which these measurements were sampled P

O We do not know, a priori, any details of
this distribution 4

O We wish to use our measurements {m.} to 0 I
estimate the mean of the true distribution——

M |
M =0.333
O Not surprisingly, the best estimate of the

mean of the true distribution 1s given by the
mean of the sample M =13 m; =<m> = (0.01+0.1+0.9+0.06+0.5+0.3+0.02)/7 = 0.27]

O We need to quantify our confidence inthe 752749
value of this estimate for the mean

O We must do this using only the sample data




Confidence Limits on Simulation Averages 2.

O Imagine repeating this experiment many (infinity)
times, each time taking a sample of size n.

O If we say “68% of all the sample means <m> lie p(<m>)
within [some value] of the true mean.” ...

O ...then [some value] serves as a confidence limit

O According to the Central Limit Theorem, the
distribution of observations of the sample mean

<m> will follow a gaussian, with I
- <m>
* mean (my=M s
. 2 1.2 (m)=0.333

* variance O(pm) =, 0m
O Our confidence limit is then O m)
O We can only estimate this using the sample variance

1 1/2_
O'<m>=ﬁO'Mz—n|: Zm ( Zm ) i| =0.12 ﬁO-M =0.09

(true value)




Confidence Limits on Simulation Averages 3.

O Expression for confidence limit (error bar) assumes independent
samples
* successive configurations in a simulation are (usually) not independent

* block averages are independent for “sufficiently large” blocks
O Often 20 is used for error bar (95% confidence interval)

* when reporting error bars it is good practice to state definition

O Confidence limits quantify only statistical errors. Sometimes
other sources of error are more significant

° systematic errors
poor sampling (non-ergodic)
finite-size effects

insufficient equilibration
© programming errors
* conceptual errors

* limitations of the molecular model




Simulation Initialization

O Need to establish initial values for atom positions and
momenta before simulation can begin
O Two options
* use values from end of another simulation
* generate configuration from scratch
O Often an equilibration period 1s warranted
« lets system “forget” artificial initial configuration

* length of period depends on relaxation time of system

5000 cycles typical
g N .
N Re-zero Y

Relaxation cycles simulation

Production cycles
Sums
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Generating an Initial Configuration

O Placement on a lattice is a common choice

- gives rise to “magic” numbers frequently seen in simulations
2D; N =2n?(8, 18, 32, 50, 72,98, 128, ...)
3D, face-center cubic (fcc);
N =4n’ (32, 128, 256, 500, 864, 1372, 2048,...)

O Other options involve “simulation”

 place at random, then move to remove overlaps
* randomize at low density, then compress

* other techniques invented as needed

O Orientations done similarly

hexagonal

* lattice or random, if possible

incompatible
with cubic PBC




Initial Velocities

O Random direction
* randomize each component independently

* randomize direction by choosing point on spherical surface

O Magnitude consistent with desired temperature. Choices:

* Maxwell-Boltzmann.: prob(v,) e exp(—%mv)% / kT )
* Uniform over (-1/2,+1/2), then scale so that %Z Vl-z, =kT/m
* Constant at v, =tNkT /m

* Same for y, z components
O Be sure to shift so center-of-mass momentum is zero
F x = %EPi,x
Pix — Pix _Px
O Unnecessary for Monte Carlo simulations (of course)
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Summary of Simulation Elements

O Specification of state

O Units and dimensions, scaling

O Initialization

O Generation of configurations

O Property measurement

O Confidence limits

O Cycles and blocks

O Periodic boundaries

O Organizing and cycling through atom lists




