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Review

O Fundamentals
° units, properties, statistical mechanics
O Monte Carlo and molecular dynamics as applied to atomic
systems
* simulating in various ensembles
* biasing methods for MC
O Molecular models for realistic (multiatomic) systems
* inter- and intra- atomic potentials

« electrostatics

O Now examine differences between simulations of monatomic
and multiatomic molecules




Truncating the Potential

O Many molecular models employ point charges for electrostatic
interactions '

O Potential-truncation schemes must be careful not to split the
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O For a 9A truncation distance, using water-like charges, the

interaction energy for a molecule with bare charge 1s (huge)

O Always use cutoff based on molecule separation, not atom
* for large molecules, OK to split molecule but do not split subgroups




Volume-Scaling Moves

O Scaling atom displacements leads to

large strain on intramolecular bonds

O Instead perform volume scaling

mass (or something similar)
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* Acceptance based on change in —U + PV)+ N, InV (not atoms)




Rigid vs. Nonrigid Molecules

O MC and MD can be performed on molecules as already
described

* MD moves advance atom positions based on current forces
* MC moves translate atoms and accepts based on energy change

* both are done considering inter- and intra-molecular forces
* [limiting distribution has same form

_ Lded,,Ne—ﬁZp? 12m; ~BUG") N = Number of atoms

h3N

* if this is all that is done, there is nothing more to say

O Often it is much more efficient to use a rigid-bond model

* MD integration then doesn’t have to deal with fast intramolecular
dynamics, so a larger time step can be used

* MC can sample configurations more efficiently using rigid-body
moves (even if model does not have rigid bonds)

but much care 1s needed to do this properly




Molecule Coordinate Frame

O Molecule-frame coordinates are defined w.r.t. molecule
COM with molecule 1n a reference orientation

O Simulation-frame coordinate is determined by molecule
COM R and orientation ®

O For rigid molecules, the molecule-frame coordinates never
change




Orientation 1.

O Orientation described in terms of rotation of molecule frame
O Direction cosines can be used to describe rotation A
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O Relation between same point in two frames
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O Kinematics of rigid-molecule rotation described in terms of rotation
of the molecule coordinate frame (i.e. the direction cosines)

* r'never changes in a rigid molecule




Orientation 2.

O We also need to invert the relation

* get the simulation-frame coordinate from the molecule frame value

r=AW =4
O Direction cosines are not independent

* in 2D, all can be described by just one parameter

* use rotation angle 0 ¥
cos@ sinf 1 cos@ —sin@
A= , 4 =| .
—sin@ cosf@ sin@ cosé@

* inverse can be viewed as replacing 0 with -0
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Euler Angles

O The picture in 3D is similar: (X,y, z) 2 (X, V', z)
O Nine direction cosines

O Three independent coordinates specify orientation
O Euler angles are the conventional choice @ = @Oy

* three rotations give the simulation-frame orientation
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3D Rotation Matrix

O Rotation matrix expressed in terms of Euler angles r'=4r

cosycos@—cos@sin@siny  cosysin@g+cosfcos@siny  sinysind
A=| —sinycos@p—cos@singcosly —sinysing+cosfcos@cosy cosysiné

sin@sin @ —sinfcos @ cosf

O To get space-fixed coordinate, multiply molecule-fixed
vector by A-!

* again, A1 = AT r=Av




Transforming Coordinates 1.

O Consider a simple diatomic
* positions of two atoms described by

X1 V1521,X25 V2522

\

* can instead describe by molecule COM
and stretch/orientation coordinates

X,Y,Z,L,0,¢

* in molecule frame, each atom position is given by
r =Le,

’
l’2 - —LeZ
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Transforming Coordinates 2.

O To get space-fixed coordinates, use rotation

matrix g =R+ A7r R=(X.Y,7) t
r,=R+4'r) r=Le, 2L
’
= —Lez
° matrix
cos @ sin @ sin@sin ¢
Al = —cos@sing cos@cos@p —sinfcosg
0 sin @ cosd

° the result is o o
xy=X+Lsinfsingg x,=X—Lsinfsing

yi=Y—-Lsmmfcos¢ y, =Y+ LsinBcos¢
zy=Z+ Lcos@ zy =Z—LcosH
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Transforming Coordinates 3.

O The ensemble distribution for the transformed coordinates is
obtained via the Jacobian

= Qhﬁa’p]\]a’rNe_ﬁZp"2 [2m; = BU )
- ﬁde dg 3| e PEPi 2mi = BU ")

* the elements of J are the derivatives “op = %

XYZ L ¢ 0 g
x, | 1 0 0 sinBsing Lsinfcos¢p  LcosBsing %= X+ LsinOsing
Yi | 0 1 0 -sinfcos¢ LsinOsing —LcosOcosd yl: )—,_Zisinci:zw
Zi | 0 0 1  cos 0 ~Lsin6 ¢ = X~ Lsinfsing
X2/ 1 0 0 -—sinfsing —LsinBcos¢p —LcosOsing v, =Y+ LsinBcose
Y2101 0 sinfcos¢p —LsinOsing  LcosOsing z,=Z~Lcos@
20001 —cost 0 Lsin®

- For this transformation |J|=8L"sin6

O But we also need to transform the momenta
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Transforming Coordinates 4.

O Begin with the Lagrangian

* in the original coordinate system
L=K-U

12 22 L2, 22
assume m=

=132 +U(r)
* transform to new coordinates
X =%X+ax1Y+ale+ax1L+ax19+ax1q5
box™ 9y 9z~ 9L 96 0
y, = etc.
. . o,
* ingeneral 7=, 5 4, % X
o 99 Y Y
Jor. dr. z, , 7
r Z aqaaqﬁ r= N r=q= g
—d.o. y
=q-8,q 2 0

2 =G4
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Transforming Coordinates 5.

O Derive momenta

L=5q-G-q-U(q)

pP=Gq
. 1 Uses G and thus G!
oL q-= G P are symmetric

=g, % ol 4:G-d=p -G p
O The Hamiltonian is
H=K(p,q)+U(q)
=1p-Gp+U(q)
O The Jacobian for the momentum transformation is the
reciprocal of the Jacobian for the coordinate transformation

w= L dp, Vg I &P P

* we don’t have to worry about the Jacobian with the full transform




Integrating Over Momenta

O If we integrate out the momentum coordinates, the Jacobian
again arises

-plpG”!
0.9 =y dp"dgNe PP P UG

- 1 UGNy [, N —BipGp
Q)= 5w vdq'e Idp

=1 _qgVe -BU(q" )‘G‘W

Qh3N
O For the diatomic, this term is

‘ ‘1/2 _ ‘J‘ — c[*sin® ¢ = constant

O In MC simulation, the terms must be included in the
construction of the transition-probability matrix
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Averages with Constraints 1.

O Very stiff coordinates are sometimes treated as rigidly
constrained

* e.g., the bond length L in the diatomic may be held at a constant
value

O MC and MD have different ways to enforce this constraint

O Regardless of simulation technique, the constrained-system
ensemble average may differ from the unconstrained value
* even when compared to the limit of an infinitely stiff bond!

O Why the difference?

A rigid constraint implies no kinetic energy in vibration

Jr, o,
%>

el
B#Lo#L aqa aqﬁ
s = “soft” coordinate = %qS -G*-q° -U(q°; L)

* Examine the Lagrangian

994 ~U(Q; 1)
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Averages with Constraints 2.

O The Jacobian for the coordinate transform is the same as for
the unconstrained average

O But the momentum Jacobian no longer has the term for the
constrained coordinate

O Thus, in general, the distribution of unconstrained

coordinates differs
g ﬂzps'Gs_l'Pse—ﬁU(qu)

ﬂ-(psaqs;l’)_ Qh3N ldps
ﬁlpG p
N-1 ,~BU (4 1/2
= A dal e G,
O The difference is
7(q,) _ |Gy

7(g:l) \ |G




Averages with Constraints 3.

O To get correct (unconstrained-system) averages from a
simulation using constraints, averages should be multiplied
by this factor

M) nconstained = <M\/%>

O Evaluating this quantity could be tedious

constrained

* but there is a simplification
* the ratio of determinants (of N-by-N and (N-1)-by-(N-I) matrices)
can be given in terms of the determinant of an [-by-I matrix

(A do, 905
:H H —_— a
G M2t

* for the diatomic with L constrained, H = 1
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Rotational Dynamics

O For completely rigid molecules, only translation and rotation
are performed

O Translational dynamics uses methods described previously,
but now applied to the COM

O Rotational dynamics must consider angular velocities and
accelerations

O Can treat via rotation of the molecule-frame coordinates in
the spaced-fixed frame

e =mxe’
\ Angular velocity

* changes in angular velocity are given via torque on molecule

20
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Quaternions

O Rate of change of the Euler angles looks like this

. sin®cosO cosocosf
o=-w) —</) + o] <p +o;
sin@ Y sin@

O A problem arises when 0 is near 0

* no physical significance, but very inconvenient to integration of
equations of motion

O Quaternions can be used to circumvent the problem

* describe orientation with 4 (non-independent) variables

9 P+y

° rotation matrix, equations of motion simply  qy = cos> cos*—"

2 2
expressed in terms of these quantities ¢ =sin® cos =¥
=
2., 2, 2, 2 2 2
* note: 4y tqi 4> +q3 =1 6. -y
g3 =sinZsin-—-
e O i OV
g4 =COS T SIN"—~




Monte Carlo Rotations

O MC simulations of molecules include rotation moves
* must do this to sample orientations of rigid molecules
* not strictly necessary for non-rigid molecules, but very helpful

* very easy to do this incorrectly
O Trial rotation of a linear molecule
* Let present orientation be given by vector u

*  Generate a unit vector v with random orientation

* Let new trial orientation be given by

new

u =u01d+7/v

where Y is a fixed scale factor that sets the size of the perturbation

O Nonlinear molecule

* same procedure, but do perturbation on the 4-dimensional vector of
quaternions
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Random Vector on a Sphere

O Acceptance-rejection method of von Neumann
O Iterate

(a) Generate 3 uniform random variates, r;, r,, r; on (0,1)

(b) Calculate z; = 1-2r, i=1,3, so that the vector z is distributed
uniformly in a cube of side 2, centered on the origin

(c) Form the sum z> = z? + z,° + z2
(d) If z> < 1, take the random vector as (z,/z, z,/z, zy/z) and quit
(e) Otherwise, reject the vector and return to (a)

O Alternative algorithms are possible
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