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Assignment #3 Solution 

 
1. The isothermal-isobaric partition function is: 
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Using the bridge equation,   G = −kT lnΔ , show that the thermodynamic relation 
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yields an expression representing the average of volume in this ensemble. 
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2. For an ideal gas the intermolecular potential is zero for all configurations. As a 

consequence the partition function is greatly simplified, and can be evaluated 
analytically. Do this for the canonical (NVT), isothermal-isobaric (NPT), and grand-
canonical (mu-VT) ensembles, and for each derive the ideal-gas equation of state PV 
= nRT. 
As a bonus problem you might wish to do the same for the microcanonical (EVN) 
ensemble (Hint: you'll need the formula for the surface area of a hypersphere in 
arbitrary dimension to fully evaluate the partition function, but you don’t need this to 
get the equation of state). 
 
 
The canonical ensemble partition function is 
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For an ideal gas, the function ( )NU r  is identically zero, so the integrand is simply unity, 
and the integral corresponds to unweighted the movement of each particle over the entire 
system volume.  For each particle the integral evaluates to V, and for the collection of 
particles the full configurational integral is simply NV , so 
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The pressure is given as the derivative of the Helmholtz free energy, and with the bridge 
equation we have 
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where / Avogadron N N=  is the number of moles, and we recall that the gas constant and 
Boltzmann’s constant are related through Avogadro’s number: AvogadroR kN=  
 
For the isothermal-isobaric ensemble, the partition function is 
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With the result above for the ideal-gas canonical partition function Q, this becomes 
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The integral can be evaluated analytically, using the general formula 1
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We apply thermodynamics and the bridge equation to get the volume in terms of the 
pressure 
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This result is slightly different from the canonical-ensemble result (and the “true” ideal 
gas law), in that we have N+1 where we would normally have just N.  This is an example 
of how statistical mechanics gives slightly inconsistent results when dealing with small 
system sizes.  In the thermodynamic limit, N →∞ , the difference is completely 
negligible. 
 
For the grand-canonical ensemble, the partition function is 
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and with the ideal-gas canonical-ensemble partition function 
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The bridge equation gives the pressure directly 
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In the last equality the quantity on the right is known as the fugacity, and this formula 
shows that for an ideal gas it equals the pressure.  To get the ideal-gas equation of state, 
we need to do a derivative to get the number of molecules, thus 
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Comparing this with the equation for the pressure, we can eliminate / 3/kTeµ Λ , and get 
the ideal gas law, /P NkT V= . 
 
To get the ideal-gas partition function in the microcanonical ensemble, we have to return 
to its definition as the number of states of given energy E for N molecules in a volume V.  
We can write the partition function as 
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where δ is the Dirac delta function, and has the effect of allowing contributions to the 
integral only when its integrand is zero.  The atom positions rN don’t affect the energy, so 
the configurational integral can be done as before, giving a term VN.  Let’s rewrite the 
integral to take out the 2m term 
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This indicates we sum over all x such that their square equals a constant.  This constraint 
describes the surface of a sphere in 3N dimensions, of radius 1/ 2E .  So the integral is just 
the surface area of a 3N-dimensional hypersphere: 3 / 2 3 / 2(2 ) / (3 / 2)N N

NS E Nπ= Γ , and 
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We need the E-dependence to get the temperature 
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This gives the usual equipartition results 3

2E NkT= .  Likewise, the pressure is given by  
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Which gives the ideal-gas law without all the hypersphere stuff! 


