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Abstract—A cloud computing infrastructure typically
consists of a number of sites that house servers and
are connected to the Internet. Its operation critically
depends both on cyber components, including servers and
routers, and physical components, including fiber and
power routes. Both types of components are subject to
attacks of different kinds and frequencies, which must
be accounted for the initial provisioning and subsequent
operation of the infrastructure. The cyber and physical
components may be individually attacked and defended,
and the infrastructure is required to provide an aggregate
computational capacity C. We present a game-theoretic
approach for the provisioning and operation of the infras-
tructure under uniform cost models. We first show that
the Nash Equilibrium under different formulations to be
computable in polynomial time, and derive provisioning
choices to ensure the capacity C with probability PS . Then,
we derive conditions for reinforcing the infrastructure, and
show that higher robustness levels are achieved by limiting
the disclosure of information about the infrastructure.

I. INTRODUCTION

A cloud computing infrastructure typically consists of
collections of computing servers deployed at multiple
sites distributed over the Internet. At a basic level of ab-
straction, the infrastructure is required to provide a spec-
ified computing capacity aggregated among the currently
available servers. A computational task may be executed
on these servers, typically at locations unknown to users.
The total computing power of all servers that are up and
connected to the Internet is the available capacity, and is
a primary performance measure. This infrastructure crit-
ically depends on the continued functioning of the cyber
components, including computers and routers, as well as
physical components, including fiber routes, cooling and
power systems. These components may be degraded by
deliberate cyber attacks on servers and routers as well
as physical attacks on fiber and power routes. While
cyber attacks on computing systems and networks seem
to get more public media attention, in many occasions
the infrastructure degradations have been due to physical
factors such as fiber back hoe incidents. Indeed, this
infrastructure can be compromised by attacking the
physical components such as Heating, Ventilation and
Air Conditioning (HVAC) systems, power-supply lines
and physical fiber connections. The complexity of such
physical attacks could be quite varied: attacks on HVAC

systems require physical proximity access to the sites,
whereas those on fiber and power routes can be anywhere
along the stretches of unprotected areas that they run
through. A physical disruption of the fiber or a cyber
disruption of the gateway router of a site makes all
servers unavailable, and a cyber attack on all servers of
a site will have the same effect on the available capacity.

An infrastructure provider has to account for both
cyber and physical attacks to ensure that the required
capacity is available, both in the initial provisioning and
also during the subsequent operation [4]. To account for
the changing profiles of attacks and degradations during
operation, the provider may reinforce the components:
(i) cyber parts by replicating the servers and deploying
fail-over gateway routers, and (ii) physical parts by using
redundant, diverse fiber and power connections, and
redundant HVAC systems. We present a game-theoretic
formulation of the initial provisioning and subsequent
operations of the infrastructure; the former deals with
determining the number of servers to be deployed at
different sites, and the latter deals with reinforcing se-
lected physical and cyber components, both to ensure the
required capacity. We consider the following conditions:
(a) knowledge about the number and physical locations

of sites is available to attacker, primarily from the
information provided to users;

(b) costs incurred by the provider and attacker are
private information, and not available to the other;

(c) strategies used by the provider, namely the choice
of servers to deploy at sites or components to
reinforce, and by the attacker in choosing which
parts to attack, are not revealed to the other.

Both provider and attacker consider that the other utilizes
a probabilistic strategy. We consider discrete models
consisting of servers, routers, sites and connections,
which are much simpler than models used for critical
infrastructures such as power distribution, transportation
and agriculture [2, 7].

We consider that the utility functions of the attacker
and provider are sums of cost and system terms, which
they attempt to minimize [5, 8]. The Nash Equilibrium
(NE) represents the attack and defense actions that min-
imize the utility of attacker and provider based on their



available information, respectively, from which neither
has a motivation to unilaterally deviate [1, 3]. If costs
depend only on the number of components, we show
that NE can be computed with polynomial complexity
in the number of components, from which the solutions
to the initial provisioning and subsequent operations
can be derived. We first derive sufficient conditions for
selecting the number of servers at sites to ensure the
capacity C with probability PS , based on first order
statistics of the attacker. We then derive NE conditions
for reinforcing the infrastructure based on estimates of
attack probabilities. The performance of infrastructure
at NE depends on further details of reinforcement and
attack strategies. We derive the expected capacity under
statistical independence conditions. We show that the
provider can hide and exploit the information about the
distribution of servers across the sites to improve the
expected capacity against the attacker.

In Section II, we describe a simplified cloud comput-
ing infrastructure model and solutions to infrastructure
provisioning problem. We consider the reinforcement
problem in Section III, and derive expected capacity
estimates in Section IV.

II. INFRASTRUCTURE PROVISIONING

We consider ns sites, each connected to the Internet
via fiber routes through a gateway router. Site i houses
nsi

servers each with a unit computing capacity. An
attacker can launch cyber attacks on servers and gateway
routers over the Internet, and physical attacks on fiber
connections and physical plants. A physical attack on the
fiber or physical plant, or a cyber attack on a gateway
router will have essentially the same effect, namely,
rendering all servers at the site unavailable. To simplify
the discussion we collectively refer to these attacks as
site or physical attacks. Let nc and SA, |SA| = ns

denote the randomly chosen number of cyber (server)
attacks and set of sites unavailable due to physical or
router attacks, respectively. Then the residual capacity is
given by

∑
si /∈SA

nsi
− nc, which is the sum of capacity

of all sites still connected to Internet minus number of
servers compromised by cyber attacks. For the provider,
the infrastructure provisioning problem is to determine
nsi

’s at different site to ensure a minimum capacity C
with probability PS . The probability that the capacity is
at least C is given by

P

8<: X
si /∈SA

nsi − nc ≥ C

9=;
= 1−P

8<:nc + C +
X

si∈SA

nsi >

nsX
i=1

nsi

9=;
≥ 1− 1

nt

0@C + E[nc] + E

24 X
si∈SA

nsi

351A ,

where nt =
ns∑
i=1

nsi
, and we have utilized the Markov’s

inequality, namely, P{x > ε} < E[x]
ε , for posi-

tive x. Notice the Markov’s inequality provides loose
but useful bound for the initial provisioning. Then

E

[ ∑
si∈SA

nsi

]
= n̄s is the expected number of servers

unavailable as a result of physical or router attacks.
Let pi denotes the probability of an attack on site i,

then we have the alternative expression n̄s =
ns∑
i=1

pinsi
.

Then, the capacity C can be assured with probability
PS by utilizing nsi

’s values satisfying the equation
PS = 1− 1

nt
(C + n̄c + n̄s) , which equals to,

(1− PS)
ns∑
i=1

nsi
= C + n̄s + n̄c. (2.1)

This solution depends on the expected number of servers
attacked, and the expected size of site subject to attack.
In the special case of all sites having the same number of
servers nsi

= ns we have a simpler formula ns = (C +
n̄c)/[(1−PS)ns−1] [6]. Since no conditions are needed
for the Markov’s bound, the resultant estimates could be
quite high. Furthermore, high values of PS could lead
to impractically high cost of the infrastructure based on
Eq (2.1) alone, which may not be met in certain cases.

Let NS = [nsi
] denote the vector of all nsi

’s. The cost
of the infrastructure can be incorporated by minimizing
the provider’s expected utility function

ŪP (n̄c, NS) = CP,S (nt) + CP,C(n̄c) +
C + n̄s + n̄c

ns∑
i=1

nsi

,

where the first and second terms on right hand side
correspond to the costs of servers and sites, respectively,
and third term is 1 − PS given by Eq (2.1). The PS

attained by the minimization of this utility function by
N∗

S = [n∗si
] is

PS = 1− (C + n̄s + n̄c)
n∗t

, (2.2)

where n∗t =
ns∑
i=1

n∗si
. This probability improves with total

number of servers deployed n∗t , and linearly degrades
with the expected size of cyber attack n̄c and expected
number of servers at an attacked site.

Let PA = [pi] denote the vector consisting of pi’s.
We consider the expected utility function of the attacker
given by sum as follows:

ŪA(n̄c, PA) = CA,C(n̄c) + CA,S (n̄s)

+ P

8<: X
si /∈SA

nsi − nc ≥ C

9=;
≤ CA,C(n̄c) + CA,S (n̄s) +

1

C2
(n̄s − n̄c)

2,



where first and second terms represent the costs of
attacking servers and site, respectively, under statistical
independence, and third term corresponds to PS . We
utilized the Markov’s inequality, namely, P{X > ε} ≤
E[X2]/ε2. The NE for this attacker is given by:

∂CA,C

∂n̄c
=

2

C2
(n̄s − n̄c),

∂CA,S

∂n̄s
= − 2

C2
(n̄s − n̄c).

The latter leads to a system of equations, which can be
solved for PA from which n̄a, a = c, s, can be estimated.
If the provider has the knowledge of these values, they
can be utilized in Eq (2.1)-(2.2).

III. REINFORCEMENT STRATEGIES

We consider that infrastructure has been operational
and the provider now is required to reinforce the cyber
and physical parts to withstand the degradations, which
may have changed since initial provisioning. Let xa ≥ 0,
a = c, s, be the number of components reinforced by the
provider, and ya ≥ 0 be the number of the components
attacked, where indexes a = c and a = s refer to server
and site, respectively. The operational capacity of the
infrastructure depends on the values of xa and ya, and
the infrastructure requires xa − ya ≥ ka, ka ≥ 0 to be
considered operational. The values for ka’s can be spec-
ified based on how strict the capacity requirement is. For

example, kc = C and k1
s given by the min

k

k∑
i=1

n(si) ≥ C

such that n(s1),≤ n(s2) ≤ · · · ≤ n(sns ), will ensure
that system has the capacity C when operational, and
a smaller ks may still provide capacity C. On the other

hand, kc = C and k2
s given by min

k

k∑
i=1

n(sns−i) ≥ C will

not guarantee the capacity C even if the infrastructure
is operational. To simplify the presentation, we consider
the more general formulation in terms of ka’s.

Our model is based on using (ncns +1)× (ncns +1)
gain matrices, where rows represent the attacker choices
and columns represent provider’s options such that
(i, j)th entry is interpreted as follows:
(a) For the attacker, bottom row i = ncns+1 represents

attacking neither servers or sites, and i ∈ [1, ncns]
represents attacking is = (i− 1)÷nc + 1 sites and
ic = (i− 1) mod nc + 1 servers.

(b) For the provider, right most column j = ncns + 1
represents defending neither servers nor sites, and
j ∈ [1, ncns] represents defending js = (j − 1) ÷
nc + 1 sites and jc = (j − 1) mod nc + 1 servers.

We also denote (i, j)th entry ai,j in a more explicit form
as aic:is,jc:js

. The state vectors are given by
PA = [p1:1 p1:2 . . . p1:ns . . . pnc:1 . . . pnc:ns p′] ,
QD = [q1:1 q1:2 . . . q1:ns . . . qnc:1 . . . qnc:ns q′] ,

where p′ = 1 −
nc∑

ic=1

ns∑
is=1

pic:is
and q′ = 1 −

nc∑
jc=1

ns∑
js=1

qjc:js
. For simplicity of notation, we also use

the alternative notation PA = [p1, p2, . . . , pncns+1] and
QD = [q1, q2, . . . , qncns+1], where the index j repre-
sents jc and js; qj is also denoted by qjc:js

. Let ci,j , di,j

and si,j denote the (i, j)th entry of cost the matrices of
the attacker CA, provider CD, and the system matrix
RA, respectively. The bottom row of CA consists of
0’s denoting the cost of no attack with probability p′,
that is cncns+1,j = 0 for j = 1, 2, . . . , ncns + 1.
And the right-most column of CD consists of 0’s de-
noting no reinforcement, that is di,ncns+1 = 0 for
i = 1, 2, . . . , ncns + 1.

Under the condition of uniform server and site costs,
the cost matrices may be specified as follows: (a) for
provider di,j = di,jc:js

= jcddc + jsdds, where ddc and
dds are costs of reinforcing server and site, respectively,
and (b) for attacker ci,j = iccac + iαs cas where cac and
cas are the costs of attacking server and site, respectively;
α could be higher than 1 indicating the higher cost
of coordinating multiple site attacks at geographically
separated locations.

We consider that the utility functions of the attacker
and provider consists of sum of cost and system matrices,
given by GA = CA + RA and GD = CD − RA,
respectively. The cost term for the attacker is PACAQT

D
where QT

D represents the attacker’s estimate of provider’s
probabilities of reinforcement. The system term utilized
by the attacker is PARAQT

D. At Nash Equilibrium,
attacker computes P ∗

A that minimizes PAGAQT
D, and

provider computes Q∗
D that minimizes PAGDQT

D. For
the attacker, the partial derivative with respect to pi is

∂PAGAQT
D

∂pi
= q′(si,ncns+1 − sncns+1,ncns+1)

+

ncX
jc=1

nsX
js=1

qjc:js (ci,jc:js + si,jc:js − sncns+1,jc:js) ,

Then NE is determined by computing all above partial
derivatives that are negative, and assigning probability
1 to the one that minimizes PAGAQT

D. Since each
of these terms is based on “fixed” elements of the
gain matrices and no limits are imposed on the cost,
the corresponding probability can be increased to 1.
However, if the elements depend on the probabilities, this
approach does not result in the minimization of utility
function. If all partial derivative are non-negative, then
attacker will not attack, i.e., p′ = 1, and the system
survives. The computational complexity of this step is
O
(
n2

cn
2
s

)
. This computation requires qj’s, which are

attacker’s estimates of the probabilities of components
being reinforced. Such information can be based on
public information and best practices.

For the provider we have cost term PACDQT
D

and combining with the system term PARDQT
D =

−PARAQT
D, we have

∂PAGDQT
D

∂qj
=

ncX
i=1

pi(di,j − si,j + si,ncns+1)

+ p′(dncns+1,j − sncns+1,j + sncns+1,ncns+1).



Here PA represents the provider’s estimate of the at-
tacker’s probabilities. Then, we compute all the resultant
terms that are negative, and pick the one that gives
the lowest cost for PAGDQT

D. If no negative partial
derivatives exist, no components will be reinforced, i.e.
q′ = 1, and the system may not be operational after the
attack. Thus at NE, the system’s operational status is
deterministic as follows:

system state

=

8>>>>>><>>>>>>:

operational if [(xc ≥ kc) ∧ (xs ≥ ks)]

∨[(yc < nc − kc) ∧ (ys < ns − ks)]

not else if
[(xc < kc) ∧ (yc > nc + xc − kc)]

∨[(xs < ks) ∧ (ys > ns + xs − ks)]

either else

The system status in the third case depends on which
components are attacked and reinforced. For a = c, s,
there are less than ka components reinforced, and no
more than na−ya components not attacked, since xa <
ka and na − ka ≥ ya ≤ na + xa − ka Thus, there is
set Sna−ya

with at least na − ya ≤ ka components not
attacked, and there is a set Sxa

with xa < ka components
that are reinforced. The system will remain operational
if and only if there are ka, for a = c, s, components each
of which is either not attacked or has been reinforced,
that is |Sna−ya

∪Sxa
| ≥ ka, for a = c, s. If the system is

operational, its performance level in terms of the residual
reinforcements is determined by xa, ya, na and ka, for
a = c, s, and also the precise strategies used by the
attacker and provider as illustrated in the next section.

IV. OPERATIONAL CAPACITY ESTIMATION

Let ic = yc and is = ys denote the number of server
and sites attacked, respectively, and xc = jc = (j − 1)
mod nc + 1 and xs = js = (j − 1) ÷ nc + 1 denote
the number of cyber and physical components reinforced
by the provider, respectively. We consider two ways of
computing element si,j of the system matrix RA, which
in turn determines the values of xa and ya. We first
consider that system terms given by
sI

i,j

=

8>>>>>>>>><>>>>>>>>>:

2S if [(yc = 0) ∧ (ys = 0)]

−2S else if
[(xc < kc)

∧ (yc > nc + xc − kc)]

∨[(xs < ks)

∧ (ys > ns + xs − ks)]

S [1 + (xc−kc)(xs−ks)
(xc−kc+yc)(xs−ks+ys)

i
else

In the first case, there is no attack hence the system
survives at the reinforced level. In the next case, the
system will not survive since the required number of
cyber and physical components are not available. In the
last case, the system operates with a degraded capacity,
and the residual capacity is proportional to 1

ya
, ya =

1, 2, . . . , na, a = c, s, reflecting the probability of attack
under statistical independence condition.

We consider another way to specify the system terms,
where residual capacity is proportional to −ya: the last
case above is given by

sII
i,j = S

[
1 +

(xc − kc − yc)(xs − ks − ys)
(xc − kc)(xs − ks)

]
,

and the other cases are identical to sI
i,j .

NE conditions specify only the values of xa and ya,
a = c, s, and the actual choice of which components to
attack and reinforce depends on the strategies used by
the provider and attacker. We now estimate the expected
residual capacity when the attacker and provider pick the
components to attack and reinforce, respectively, inde-
pendently using uniform distribution, and the attack and
reinforcement probabilities are statistically independent.
A cyber or physical component will survive if it is not
attacked or has been reinforced when attack occurs; for
a = c, s, these probabilities are given by (1 − 1/na)ya

and [1− (1− 1/na)xa ][1− (1− 1/na)ya ], respectively,

where nc =
ns∑
i=1

nsi
. The probability that a component

will survive an attack is given by, for a = c, s,

1 + (1− 1/na)xa(1− 1/na)ya − (1− 1/na)xa .

The attacker will attack yc servers distributed among the
sites. On the other hand, each physical attack is on a
single site, which will disconnect all the servers at the
site.

Consider that provider will adopt a strategy of as-
signing higher reinforcement probabilities to sites with
higher number of servers, namely probability nsi

nsP
j=1

nsj

for

a site with nsi
servers. On the other hand, consider that

attacker will adopt a uniform strategy being unaware
of the number of servers at different sites. Then, the
probability that any node will be selected for reinforce-

ment and attack are given by 1 −

1− nsi
nsP

j=1
nsj

xa

and 1 − (1 − 1/na)ya , respectively. Then the expected
operational capacity ĈL for this linear strategy is

nsX
i=1

0BB@nsi

26641−
X

a=c,s

0BB@1− nsi
nsP

j=1

nsj

1CCA
xa»

1−
„

1− 1

na

«ya
–3775
1CCA .

The expected capacity ĈU for the uniform strategy is
nsX
i=1

 
nsi

"
1−

X
a=c,s

„
1− 1

nsi

«xa
»
1−

„
1− 1

na

«ya
–#!

.

The inequality

(
ns∑

j=1

nsj

)2

≤ ns

ns∑
i=1

n2
si

, is sufficient

to ensure that ĈL > ĈU . Thus this provider’s approach
ensures a higher expected capacity compared to a uni-



Parameters Simulation Results
Case kc kp cac cas ddc dds attack defense survival residual capacity
A. 5 3 1 1 1 1 30 (c), 5(s) 5(c), 3(s) 100% (both) 9.82 (prop), 8.35(uni)
B. 5 3 100 1 1 1 1 (c), 5(s) 5(c), 3(s) 100% (both) 22.78 (prop), 18.75(uni)
C. 5 3 100 1 1 100 1(c), 5(s) 1(c), 0(s) 0% (both) 0 (both)
A’. 5 3 1 1 1 1 30 (c), 5(s) 5(c), 3(s) 100% (both) 5.21 (uni)
B’. 5 3 100 1 1 1 1 (c), 5(s) 5(c), 3(s) 100% (both) 18.9(uni)

TABLE I
SIMULATION OF 30 SERVER CLOUD COMPUTING INFRASTRUCTURE; C AND P DENOTE CYBER AND PHYSICAL PARTS, AND PROP AND UNI

DENOTE PROPORTIONAL AND UNIFORM STRATEGIES FOR THE DEFENDER.

form strategy. However, if the provider discloses nsi
’s,

then the attacker might adopt a less uniform strategy.
Thus by not disclosing this information, the provider
gains a definite advantage as the attacker is made to
adopt a less informed strategy.

We simulated a cloud computing infrastructure with
30 servers distributed at 5 sites with various parameters
using the system term sI

i,j (results are qualitatively
quite similar under sII

i,j). Given the set of parameters,
kc, kp, cac, cas, ddc, dds, the equilibria of reinforcement
and attack are obtained based on formula in Section
III. Then, the survival probability and residual capacity
are calculated using the above formulae. At NE, we
compute the system status and the available capacity by
simulating 1000 instances of the attacker and provider
strategies; for the latter, we consider both uniform and
proportional methods. The salient features of the simula-
tions are summarized in Table I. We consider two server
distributions of 15, 10, 3, 1 and 1, and all 6 servers across
the sites. In cases A-C, we consider non-uniform server
distribution. In case A, the attacker attacks both servers
and sites since their costs are the same, and the defender
defends both, and hence the system survives. In case B,
the cyber attack cost is much higher leading a smaller
number of server attacks, and consequently, the residual
capacity is much higher. In both cases A and B, the
proportional defense strategy yields a higher expected
capacity. In case C, the cost of site defense is much
higher and consequently the defender does not choose
to defend the sites; as a result, the physical attacks bring
the system down completely. These cases illustrate that
dominant costs strongly influence not only the capacity
of the infrastructure but also its very survival. Cases A’
and B’ are identical to A and B, respectively, except they
use the uniform server distribution. The defender has
no particular advantage over the attacker in this case,
and as a result the capacity is lower compared to the
corresponding cases A and B.

V. CONCLUSIONS

We presented a game-theoretic approach to the prob-
lem of provisioning and reinforcing cloud computing
infrastructures, which provided insights into the quali-
tative effects of costs and strategies. We consider this
work to be an initial step that can be extended in several
ways. The basic results of this paper can be extended to
account for incidental degradations and probabilities of

successful attacks and reinforcements by suitably aug-
menting the state vectors [6]. Clearly, these models can
be extended by considering servers of different capacities
and sites with limitations on connectivity and physical
space. The simple Internet connectivity model can be
expanded to consider complex network topologies with
LAN switches and core routers in the WAN. It would be
interesting to study sequential game formulations of this
problem, and cases where different levels of knowledge
are available to the other party. More detailed simulations
with system-specific details would be future interest.
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