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Abstract

Critical infrastructures rely on cyber and physical components that are both subject to natural, incidental or intentional
degradations. Game theory has been used in studying the strategic interactions between attackers and defenders for
critical infrastructure protection, but has not been extensively used in complex cyber-physical networks. This paper
fills the gap by modeling the probabilities of successful attacks in both cyber and physical spaces as functions of the
number of components that are attacked and defended. The results show that the attack effort would first increase then
decrease in (a) defense effort, (b) the probability of successful attack on each component, (c) the number of minimum
required functioning resources, and (d) the maximum number of available resources. Comparing simultaneous and
sequential games, our results show that the defender performs better when she moves first. Our research provides
some novel insights into the survival of such infrastructures and optimal resource allocation under various costs and
target valuations that players may have.
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1. Introduction
Cyber-Physical Network Infrastructure (CPNI) consists of hardware, software, people, organizational policies and
procedures, all linked by high speed networks [4]. The successful functioning of CPNI requires that both cyber
and physical components run smoothly including the functionality after being attacked. CPNI could be viewed as a
subset of cyber-physical systems (CPS), which has been studied in the literature. For example, [13] discusses building
a trustworthy CPS for power grids at both device and protocol levels; [1] and [8] study both physical and cyber
components; [14] analyzes the risk of both cyber infrastructure and physical power controls within electric power grid
using a layered approach; [5] proposes a risk assessment methodology to account both physical and cyber security
withstanding attacks; [10] uses the dynamic detection method to identify attacks in power networks.

The functioning of CPNI depends on both the defensive resource deployment and the attack effort. Game theory
has been used to study the strategic interactions between attackers and defenders, both on a single target [6, 7, 17],
and on a network [2, 9, 12, 15, 16]. Within the CPNI field, [3] and [11] formulate the attack and defense as a
simultaneous matrix game and use first-order conditions to obtain the best response strategies. However, no previous
research studies the probability of system failure in such CPNI games. This paper fills the gap by modeling the
probabilities of successful attack in both cyber and physical spaces as functions of the number of components that are
attacked and defended. The rest of this paper is organized as follows. Section 2 introduces the probability of system
functioning. Section 3 models the interactions between attacker and defender in CPNI and present best responses.
Section 4 presents equilibria analysis for both simultaneous and sequential games. Section 5 concludes and provides
some future research directions.
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2. Probability of System Survival
Table 1 lists the notation that is used in the paper. For simplicity, this paper assumes that the defender and attacker
have complete information about each other, including costs, the target valuations, and the successful probability of
attack for each components.

Table 1: Notation that is used in this paper
Notation Explanation
Parameters:
i = c, p Cyber and physical spaces, respectively
ni Maximum number of available resources in cyber and physical spaces, respectively
ki ≥ 0, Parameter for operational resources requirement for space i
Yi = 0,1,2, · · · ,ni Random variable representing the number of successful attacks in space i
Pi Probability of system functions in space i
V ≥ 0 Defender’s target valuation
v≥ 0 Attacker’s target valuation
pi ∈ [0,1] Probability of successful attack on each component in space i
cD ≥ 0 Unit cost of defense effort
cA ≥ 0 Unit cost of attack effort
Decision variables:
xi = 0,1,2, · · · ,ni Defender’s resource deployment in space i
zi = 0,1,2, · · · ,ni Attacker’s attack attempts in space i
x̂i(zi) = 0,1,2, · · · ,ni Defender’s best response of resources deployment in space i
ẑi(xi) = 0,1,2, · · · ,ni Attacker’s best response of attack attempts in space i
Utilities:
UD(xi,zi) Defender’s utility
UA(xi,zi) Attacker’s utility

We assume that there are nc and np components in cyber and physical spaces, respectively. The attacker and defender
could attack and defend each component, respectively. We use the attack effort zi, i = c, p denote the number of
components that are attacked in cyber and physical spaces, respectively. Similarly, we use the defense effort xi,
i = c, p denote the number of components that are deployed by the defender in cyber and physical spaces, respectively.
Let the random variable Yi represent the number of components that are successfully attacked in space i, thus we must
have Yi ≤ zi. Let pi be a constant representing the conditional probability of a successful attack, given the component
is attacked, on each component in space i. Therefore, the probability of having Yi components that are successfully
attacked, given there are zi attacks, is given by

Pi(Yi = yi|zi) =
( zi

yi

)
pyi

i (1− pi)zi−yi (1)
Following [3], we assume that the system functions in space i if and only if the number of components survived from
attacks xi−Yi is strictly greater than the number of minimum operational resources requirement for space i, ki; that is,
xi−Yi ≥ ki +1. Therefore, the probability that the system functions in system i could be calculated as follows:

Pi({System Functions in Space i | Given the attack effort is zi in space i})
= Pi(xi,zi)
= Pi(xi−Yi ≥ ki +1)

=


0 if 0≤ xi < ki +1
xi−ki−1

∑
yi=0

( zi
yi

)
pyi

i (1− pi)zi−yi if ki +1≤ xi < zi + ki +1

1 if zi + ki +1≤ xi ≤ ni

(2)

Figure 1(a-d) illustrate the contours of Pi(xi,zi) in Equation (2) when (k = 2, p = 0.5), (k = 10, p = 0.5), (k = 2, p =
0.1), and (k = 10, p = 0.1), respectively. In particular, we observe that Pi(xi,zi) increases in xi and decreases in zi
for each of the four subfigures. Comparing between the subfigures, we observe that Pi decreases in the probability of
successful attack pi and decreases in the number of minimum required functioning servers ki.
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Figure 1: Contours of P(xi,zi) when Yi follows binomial distribution (xi, p)

3. The Model
3.1 Optimization Problems and Definition of Best Responses
We assume that the defender wants to minimize the cost and system loss; i.e., to maximize her utility as the following:

max
xc,xp

UD(xc,xp,zc,zp) = E[uD(xc,xp,zc,zp)]−CD(zc,zp) (3)

where E[uD] is the expected payoff of defender, and CD(xc,xp) is the cost of defense. We consider the expected utility
of defender as, E[uD(xc,xp,zc,zp)] = PcpV , where Pcp is the probability of system functions, and V is the defender’s
valuation of the system. Meanwhile the attacker attacks certain amount of components in the two spaces and wants to
maximize his utility as the following:

max
zc,zp

UA(xc,xp,zc,zp) = E[uA(xc,xp,zc,zp)]−CA(zc,zp) (4)

where E[uA] is the expected utility of attacker, and E[uA(xc,xp,yc,yp)] = Pcpv, where v is the attacker’s valuation of
the system. CA(zc,yp) is the cost of attack.

We define the players’ best responses as follows:

Definition 1. We call the strategy {x̂c, x̂p}(zc,zp) is a best response of defender to attacker’s attack strategy (zc,zp) if
{x̂c, x̂p}(zc,zp) = argmax

xc≥0,xp≥0
UD(xc,xp,zc,zp), ∀xc = 0,1,2, · · · ,nc;xp = 0,1,2, · · · ,np. (5)

and the strategy {ẑc, ẑp}(xc,xp) is a best response of attacker to defender’s defense strategy (xc,xp) if
{ẑc, ẑp}(xc,xp) = argmax

zc≥0,zp≥0
UA(xc,xp,zc,zp), ∀zc = 0,1,2, · · · ,nc;zp = 0,1,2, · · · ,np. (6)

In the rest of this paper, for simplicity we analyze cyber and physical spaces separately.

3.2 The Attacker’s Best response for ni = 2
This subsection studies the simple network containing only two maximum components; i.e., ni = 2. Based on Equation
(6), given ni = 2,ki = 0, the attacker’s best response in space i could be calculated as:

ẑi(xi) =


0 if xi = 0, or {xi = 1 and v≤ cA

pi
}, or {xi = 2, and v≤ 2cA

p2
i
}

1 if xi = 1, and cA
pi

< v≤ cA
pi−p2

i

2 if {xi = 1 and v > cA
pi−p2

i
} or {xi = 2 and v > 2cA

p2
i
}

(7)

The result in Equation (7) shows that the attacker’s best response ẑi increases in his target valuation v, increases in
probability of successful attack pi, and decreases in attack cost cAi . One interesting finding is that given the high
defense level (i.e., xi = 2), the attacker would either attack all targets (when v is high), or not attack at all (when v is
low), but he will not choose zi = 1. Figure 2 illustrates the sensitivity of attacker’s best responses ẑi(xi) when ni = 2
with baseline values ni = 2,k = 0, p = 0.5,cA = 0.2,v = 4. In particular, Figure 2(a) shows that under the baseline case,
the attacker starts to attack when xi = 1 and keeps attacking when xi = 2. Figure 2(b) shows that when k increases to
1, which means the system functionality requirement increases, the attacker does not have to attack when deployment
is less than two, but attacks two targets when the defender deploys two. Figure 2(c) shows that if the successful attack
probability decreases to 0.1, the attacker is deterred when the defender deploys two resources. Figure 2(d) shows that
when the unit cost of attack increases to 1.5, the attacker decreases attack effort to one when the deployment is one,
and is fully deterred when the deployment is two. Figure 2(e) presents that the attacker does not launch any attack
when his target valuation is as low as 0.4.
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Figure 2: Attacker’s best attempts ẑi given the defender’s resource deployment xi with baseline values ni = 2,k =
0, p = 0.5,cA = 0.2,v = 4; (a) Baseline; (b) when k = 1; (c) when p = 0.1; (d) when cA = 1.5; (e) when v = 0.4

3.3 The Attacker’s Best response for General ni
For large values of ni, it is almost impossible to calculate the analytical solution for the attacker’s best response.
Therefore, we use numerical solutions to illustrate. For example, Figure 3 shows the attacker’s best response given the
defender’s deployment of resources when nc(or np) = 20. Figure 3(a) shows that when the base line value case that the
attacker increases attack effort with the defense effort until the resources defender deploys reaches to 9. Afterwards the
attacker is fully deterred. Figure 3(b) presents that when k increases from 2 to 10, the attacker begins to attack when
the defender’s deployment is larger than 10, and is deterred when defender increases deployment to 17. Figure 3(c)
shows that when the probability of successful attack decreases to 0.1, the attacker is deterred when the defender just
defend more than 3 resources. Figure 3(d) illustrates that when the cost of attack increase from 0.1 to 0.5, the attacker
will only attack if the defender defends 3 or 4 resources. Figure 3(e) shows that when the attacker’s target valuation
increases from 4 to 10, the attack would like to attack more targets and he is deterred until the defender defends 12 or
more resources.
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Figure 3: Attacker’s best attempts ẑi given the defender’s resource deployment xi with baseline values ni = 20,k =
2, p = 0.5,cA = 0.2,v = 4; (a) Baseline; (b) when k = 10; (c) when p = 0.1; (d) when cA = 0.5; (e) when v = 10

3.4 The Defender’s Best Response for ni = 2
Similarly, when ni = 2, the defender’s best response in space i could be calculated as:

x̂i(zi) =


0 if {zi = 0, and V ≤ cD}, or {zi = 1 and V ≤min(2cD, cD

1−pi
)}, or {zi = 2, and V ≤min( cD

(1−pi)2 , 2cD
1−p2

i
)}

1 if {zi = 0, and V > cD}, or {zi = 1, and cD
1−pi

< V ≤ cD
pi
}, or {zi = 2, and cD

(1−pi)2 < V ≤ cD
2pi(1−pi)

}
2 if {zi = 1 and V > max(2cD, cD

pi
)} or {zi = 2 and V > max( 2cD

1−p2
i
, cD

2pi(1−pi)
)}

(8)

From Equation (8) we observe that the defender’s best response increases in the target valuation V , decreases in the
successful attack probability pi, and decreases in the defense cost cDi . Figure 4 represents the defender’s best response
when ni = 2 with the baseline values k = 0, p = 0.8,cD = 0.2,V = 1. In particular, Figure 4(a) is the baseline case,
where the defender deploys one resource, increases to two resources when the attacker attacks one target, and gives
up deployment when attack effort is two, due to the defender’s relatively low target valuation and high defense cost.
Figure 4(b) shows that when k increases to 1, the defender will deploy two resources when no attack, but withdraw
defense when the attacker attacks. Figure 4(c) illustrates that when the successful attack probability decreases to 0.1,
defender only needs to deploy one resource when the attacker attacks one target, and increases to two resources when
he attacks two. Figure 4(d) presents when the unit deployment cost deceases to 0.1, the defender will keep deployment
of two resources when the attacker attacks two. Figure 4(e) displays when the defender’s target valuation is decreased
to 0.1, she will not deploy any resource.
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Figure 4: Defender’s best deployment x̂i given the attacker’s attack effort zi with baseline values k = 0, p = 0.8,cD =
0.2,V = 1; (a) Baseline; (b) when k = 1; (c) when p = 0.2; (d) when cD = 0.1; (e) when V = 0.1

3.5 The Defender’s Best Response for General ni
Figure 5 represents the defender’s best response when ni = 50,k = 2, p = 0.5,cD = 0.2,V = 10. Figure 5 (a) shows the
defender increases the deployment when the attacker increases the attack effort until the attack effort is large enough
as zi = 33 here. Figure 5 (b) shows that when k increases from 2 to 10, the defender begins to deploy with 10 resources
and gives up defense when zi = 20. Figure 5 (c) presents when the probability of successful attack deceases to 0.3,
the defender keeps defense until attack effort is high enough, which is zi = 42. Figure 5 (d) shows that when the unit
cost of deployment increases to 0.5, the defender gives up defense when the attack effort is as small as zi = 12. Figure
5 (e) shows that when the defender’s target valuation decreases to 2, the defender gives up defense when the attacker
effort is as low as zi = 12.
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Figure 5: Defender’s best deployment x̂i given the attacker’s attack effort zi with baseline values ni = 50,k = 2, p =
0.5,cD = 0.2,V = 10; (a) Baseline; (b) when k = 10; (c) when p = 0.4; (d) when cD = 0.5; (e) when V = 2

4. Equilibrium Analysis
4.1 Simultaneous Game
For simultaneous-move game, we define the equilibrium as follows:

Definition 2. We call a collection of strategy (x∗c ,x
∗
p,z
∗
c ,y
∗
p) a Nash equilibrium, or “equilibrium”, if and only if both

Equations (9) and (10) are satisfied:
UD(x∗c ,x

∗
p,y
∗
c ,y
∗
p)≥UD(xc,xp,y∗c ,y

∗
p), ∀xc,xp = 0,1,2, · · · (9)

UA(x∗c ,x
∗
p,z
∗
c ,y
∗
p)≥UA(x∗c ,x

∗
p,zc,yp), ∀yc,yp = 0,1,2, · · · . (10)

Figure 6 illustrates the equilibrium dynamics with baseline values ni = 20,k = 2, p = 0.5,cD = 0.1,cA = 1,V = 10,v =
2. In particular, Figure 6(a) shows that the attack effort decreases in the unit cost of attack, while the defense will
decrease consequently. Figure 6(b) shows that the both the attacker’s and defender’s utility decrease in the defender’s
unit cost of attack. Figure 6(c) shows that when k increases, both attacker and defender efforts will first increase
then decrease to zero. Figure 6(d) shows the defender’s utility increases in V . Figure 6(e) shows the attacker’s utility
increases in v. Figure 6(f) shows that both the defense and attack first increase then decrease in the component’s
successful attack probability. Finally Figure 6(g) shows that both the attacker and defender effort will first increase
and then decrease in ni.

4.2 Sequential Game
The interaction between the defender and attacker can be considered as a sequential game, in which case, the defender
moves first to deploy the cyber and physical components, then the attacker observes and decides the attack effort. The
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Figure 6: Sensitivity of Nash Equilibrium in a simultaneous game with baseline values ni = 5,k = 2, p = 0.5,cD =
0.1,cA = 0.1,V = 5,v = 5

defender and attacker’s utility functions are presented as Equation (3) and (4), respectively. We define the equilibrium
as follows:

Definition 3. We call a collection of strategy (xc
∗,xp

∗,zc
∗,zp

∗) a subgame perfect Nash equilibrium, or “equilibrium”,
if and only if Equations (11), (12) and (13) are satisfied:

{ẑc(xc,xp), ẑp(xc,xp)} = argmax
zc,zp≥0

UA(xc,xp,zc,zp), (11)

{x∗c ,x∗p} = argmax
xc,xp≥0

UD(xc,xp, ẑc(xc,xp), ẑp(xc,xp)) (12)

{z∗c ,z∗p} = {ẑc(x∗c ,x
∗
p), ẑp(x∗c ,x

∗
p)} (13)

where {ẑc(xc,xp), ẑp(xc,xp)} is the attacker’s best response.

When ni = 2, based on the attacker’s best response ẑi(xi) in Equation (7), we are able to solve for the subgame perfect
Nash equilibrium and obtain the following equilibrium results:

{̂x∗i ,z∗i }=


{0,0} if {V ≤ cD}
{1,0} if {V > cD and v > cA

pi
}

{1,1} if { cD
1−pi
≤V ≤ cD

pi
and cA

pi
< v≤ cA

pi−p2
i
}

{2,2} if {V > 2cD
1−p2

i
and v > 2cA

p2
i
}

(14)

For general ni, we use simulation to illustrate. Figure 7 shows the equilibrium dynamics of xi
∗, zi

∗, UD
∗ and UA

∗ when
one of the parameter varies. Figure 7(a) shows that when the cost of attack increases, the attack effort decreases, as
well as the attacker’s utility. The defender will use positive defensive investment to deter the attack. After the attacker
is deterred, the defender will decrease the defense effort and the her utility increases. Figure 7(b) illustrates that
when the cost of deployment increases, the defender will decrease the defensive investment and the system does not
function when the resources the defender defends are less than k +1. The defender’s utility decreases and the attacker
gains from the system not functioning. Figure 7(c) shows that when the requirement of resources for the system
functioning increases, the defender increases his defensive investment, while the attacker is deterred, then the defender
would decrease the defense effort, which makes the system disfunction and benefit the attacker. Figure 7(d) presents
that when the defender’s target valuation increases, the defender increases the defensive investment and her utility
decreases; while the attacker gains when the defender does not defend but he is fully deterred when defender defends.
Figure 7(e) shows that when the attacker’s target valuation increases, the defender increases defensive investment then
decreases to zero due to the high cost. Figure 7(f) illustrates that when the probability of successful attack increases,
the attacker first increases the attack effort to destroy the system, and then decreases attack effort when the system
becomes so vulnerable that there is no need to attack. Figure 7(g) illustrates that when the maximum number of
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available resources increases, the attack effort would first increase then decrease when it becomes too costly for the
attacker to succeed. Finally, comparing Figure 6 with Figure 7, we observe that the defender gains (weakly) higher
utility by moving first in a sequential game for all ranges of parameter values.
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Figure 7: Sensitivity of NE in a sequential game, when yi follows binomial distribution and ni = 5,k = 2, p = 0.5,cD =
0.1,cA = 0.1,V = 5,v = 5

5. Conclusion and Future Research Directions
In this paper we use game theory to model and analyze the attack and defense in CPNI. Critical infrastructures rely on
cyber and physical components that are both subject to natural, incidental or intentional degradations. Game theory has
been used in studying the strategic interactions between attackers and defenders for critical infrastructure protection,
but has not been extensively used in complex cyber-physical networks. This paper fills the gap by modeling the
probabilities of successful attack in both cyber and physical spaces as functions of the number of components that are
attacked and defended. The results show that the attack effort would first increase then decrease in (a) defense effort,
(b) the probability of successful attack on each component, (c) the number of minimum required functioning resources,
and (d) the maximum number of available resources. Comparing between simultaneous and sequential games, our
results show that the defender performs better when moving first. Our research provides some novel insights into the
survival of such infrastructures and optimal resource allocation under various costs and target valuations that players
may have.

Future research directions include the study of interdependent coupling effect between the cyber and physical compo-
nents in the CPNI, as well as the game with incomplete information.
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