The electric field phasor of a uniform plane is given by $\tilde{E} = \hat{y} 10e^{j0.2z}$ (V/m).

1. Find the magnetic field phasor \widetilde{H} .

$$\widetilde{\mathbf{H}} = \frac{1}{\eta} (-\hat{\mathbf{z}}) \times \widetilde{\mathbf{E}} = \frac{1}{\eta} (-\hat{\mathbf{z}}) \times \hat{\mathbf{y}} \mathbf{10} e^{j\mathbf{0}.2z}$$

2. Find the magnetic field \vec{H} .

$$\vec{H}(z,t) = \hat{x} \frac{10}{\eta} e^{j0.2z}$$

For a wave characterized by the electric field $\vec{E}(z,t) = \hat{x}3\cos(\omega t - kz) + \hat{y}4\cos(\omega t - kz - 135^{\circ})$

- 1. Identify the polarization state
- 2. Sketch the locusof E(0,t).

$$\begin{split} \psi_0 &= \tan^{-1} \left(a_y / a_x \right), \\ \tan 2\gamma &= \left(\tan 2\psi_0 \right) \cos \delta \\ \sin 2\chi &= \left(\sin 2\psi_0 \right) \sin \delta \end{split}$$

∂_X	a_y	δ	Ψo	γ	χ	Polarization State
3	4	-135°	53.13°	-56.2°	-21.37°	Right elliptical

Right elliptical

