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Preface 
 
MCEER was originally established by the National Science Foundation in 1986 at the 
University at Buffalo, The State University of New York, as the first National Center for 
Earthquake Engineering Research (NCEER). In 1998, it became known as the 
Multidisciplinary Center for Earthquake Engineering Research (MCEER), from which the 
current name, MCEER, evolved.  
 
Comprising a consortium of researchers and industry partners from numerous disciplines 
and institutions throughout the United States, MCEER’s mission expanded in the early 
2000s from its original focus on earthquake engineering to one which addresses the 
technical and socioeconomic impacts of a variety of hazards, both natural and man-made, 
on critical infrastructure, facilities, and society. 
 
This report describes earthquake-simulator experiments of a scaled model of a prototype 
fluoride-salt cooled high-temperature nuclear reactor. The components of the prototype 
reactor addressed in the experiments include an outer vessel, a concentric core barrel, 
positively buoyant reflector blocks that act as a moderator, positively-buoyant spherical 
fuel pebbles, and a molten-salt coolant. A detailed scaling analysis was carried out to 
support the design of the test specimen. Multi-component seismic inputs were used for 
testing. Two types of friction pendulum seismic isolation bearings were utilized for the 
experiments: Single concave Friction Pendulum (SFP) and Triple Friction Pendulum 
(TFP). The earthquake response of such a reactor model involves multiple non-linear 
interactions, and the physical test results described in this report provided valuable 
insights into these behaviors and enabled formulation of analysis and modelling 
recommendations. 
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ABSTRACT 

 

Kairos Power is developing an advanced reactor that uses a fluoride salt as a coolant, graphite reflector 

blocks as a moderator, and circulating buoyant TRISO pebbles as nuclear fuel. To characterize the behavior 

of reactor components under earthquake shaking, validate numerical models for seismic analysis, and 

develop recommendations for seismic design, a set of earthquake-simulator experiments on a scaled model 

of the reactor vessel and internals was executed on a six-degree-of-freedom earthquake simulator. The 

model was seismically isolated at its base using two types of spherical sliding bearings. The scaled model 

involved representations of prototype reactor vessel, core barrel, reflector blocks, coolant, and spherical 

fuel pebbles. The material and geometric properties of different test components were selected based on a 

dynamic similitude scaling analysis and an approximate length scale of 2.5. Three recorded earthquake 

motions and one synthetically generated motion, all triplets, were used as inputs for testing. The recorded 

earthquake motions were time scaled for consistency with the chosen length scale of the model. 

Instrumentation on the test specimen was focused on recording dynamic responses of the outer vessel, core 

barrel, and reflector-block assembly, hydrodynamic responses (sloshing and hydrodynamic pressure) of the 

liquid coolant, pebble consolidation under earthquake shaking, and the behavior of the isolation systems. 

Test results and numerical studies, building on the data generated in the tests and leading to 

recommendations for analysis and modelling, are presented in this report.  
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SECTION 1  

INTRODUCTION 

1.1 Introduction 

Kairos Power (https://kairospower.com/) is developing an advanced (Generation IV) reactor: the Kairos 

Power Fluoride salt-cooled High temperature Reactor (KP-FHR). The KP-FHR uses a low-pressure, 

fluoride salt as the coolant, positively buoyant graphite reflector blocks as the moderator, and circulating 

(positively buoyant) graphite pebbles filled with TRISO (DOE 2019) particles as fuel. The use of a low-

pressure, molten salt coolant avoids the need for specialized, high-pressure vessels and piping systems. The 

molten salt coolant is also advantageous owing to its high volumetric heat capacity and low chemical 

reactivity (Bardet and Peterson 2008). 

Seismic isolation is a design solution for the KP-FHR. Recent studies have shown that seismic isolation 

can significantly reduce the overnight capital cost of advanced reactors and support deployment of 

standardized reactor designs at sites of varying seismicity (Lal et al. 2022; Parsi et al. 2022). 

Kairos Power has adopted an iterative approach of rapid development and testing to build an operating 

power reactor, including the construction and operation of a non-power test reactor named Hermes (NRC 

2021). The earthquake-simulator experiments described in this report will inform the seismic design of this 

molten salt reactor (MSR).  

The components of the prototype reactor addressed in the experiments described in this report include an 

outer vessel, a concentric core barrel, positively-buoyant reflector blocks that act as a moderator, positively-

buoyant spherical fuel pebbles, and molten-salt coolant.1  Figure 1.1 presents the tested components at the 

model scale. In operation (and for testing), the fuel pebbles are buoyant and not supported at the base of the 

vessel. The reflector-block assembly comprises stacked individual blocks connected using shear pins and 

keys. Two types of spherical sliding bearings were utilized to base isolate the vessel in the experiments: 

Single concave Friction Pendulum (SFP) bearings and Triple Friction Pendulum (TFP) bearings. The 

bearings were installed below the base of the vessel and separate tests were performed for each bearing 

type. The dynamic response of such a reactor model involves multiple non-linear interactions, and the 

physical test results provide valuable insights into these behaviors.   

                                                      

1Head mounted equipment in the prototype reactor (e.g., pumps, pebble circulation equipment, and control rod drive mechanism 

housings) were also tested in a separate test program. Some details are available in Mir et al. (2022a). 
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a. outer vessel and concentric core barrel 
b. reflector blocks and fuel pebbles (green), 

cutaway view, before the addition of coolant 

Figure 1.1. Test components 

 

1.2 Overview of related past work available in literature  

Although the KP-FHR is a novel design, some of the reactor’s components are similar to those used in other 

designs. As an example, many high temperature gas-cooled reactor (HTGR) designs use graphite reflector 

block assemblies similar to KP-FHR; the difference being that in KP-FHR, the blocks float in the liquid 

coolant.  

Experimental studies on the seismic behavior of graphite reflector blocks, block-type fuel assemblies, and 

their supporting structures in HTGRs have been published, although none at the scale and level of 

complexity described in this report. Most of the studies focused on generation of test data that could be 

used to describe impact phenomenon in analytical models and to characterize the seismic integrity of the 

connections between blocks. 

The Japan Atomic Energy Research Institute (JAERI) studied the seismic response of graphite reflector 

blocks and fuel block assembly (core) in an HTGR (Ikushima et al. 1982). The experimental part of the 

study involved impact tests using two graphite blocks followed by seismic tests of a single column of 

blocks, seven columns (one core region) of blocks, a two-dimensional vertical core section, and a two-

dimensional horizontal core section; see Figure 1.2. The goals of the tests included determining the 

coefficient of restitution and impact duration (for impact between reflector blocks), generation of data on 

block rocking and impact characteristics, column displacement, and connecting pin (dowel pin) forces. The 

data generated from the tests were used for correlation studies with analytical models (Ikushima 1982a; 

Ikushima and Honma 1989; Ikushima and Nakazawa 1979) and for validation studies in a companion 

software development program (Ikushima 1982b; Ikushima 1990). In the numerical models, the blocks 

Core barrel

Outer vessel

Fuel pebbles 

Reflector blocksCore barrel

Outer vessel

Fuel pebbles 

Reflector blocks
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were treated as rigid bodies with block-to-block interactions modelled using springs and dashpots, as shown 

in Figure 1.3.  

 

 

 

 

Figure 1.2. Seismic tests on reflector-block assembly (core) in a HTGR, adapted from Fig 2 in Ikushima et al. 

(1982) 

 

 

Figure 1.3. Analytical model of a two-dimensional horizontal core, adapted from Fig 1 in Ikushima and Honma 

(1989) 

 

Experimental studies on the seismic response of graphite blocks in HTGRs continued at JAERI in the 1990s 

(Iyoku et al. 1994; Iyoku et al. 1992a; Iyoku et al. 1992b). The studies included seismic tests on a half-

scale vertical section model, a full-scale seven-column model of the core graphite block, and a one-fifth 

and a one-third scale-model of core bottom structures. A summary of the studies can be found in Iyoku et 

al. (2004).  
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Olsen et al. (1976) describes one-dimensional earthquake simulator tests of a one-fifth scale, horizontal 

array of HTGR graphite reflector blocks, as shown in Figure 1.4. The tests were conducted using two 

different lateral core support designs (lateral support springs with small and large stiffnesses of 800 lb/in 

and 100,000 lb/in, respectively). Core dynamic characteristics, in terms of frequency of vibration and 

equivalent viscous damping, were investigated and support (reaction) and in-core forces for different levels 

of input acceleration were generated. The core damping was greater than 30% of critical. The use of lateral 

support springs with small stiffness expectedly resulted in small support forces and large core 

displacements. The support forces generated in the tests were used for a correlation study using the 

computer code CRUNCH (Rickard 1977).   

 

 

Figure 1.4. One-fifth scale horizontal array test, adapted from Fig. 3 in Olsen et al. (1976) 

 

Dove et al. (1981) describes a study of the seismic response of a core in a large gas-cooled reactor. The 

authors tested a one-dimensional, four-block system of reflector blocks and a two-dimensional, 4 × 4 block 

vertical array on an earthquake simulator at the White Sands Missile Range in New Mexico, using 

sinusoidal inputs. The models are shown in Figure 1.5 (note the two fixed blocks and columns at the 

extremes in Figure 1.5a and Figure 1.5b, respectively). Separate models were constructed based on two 

governing scaling laws: one preserving gravitational effects (body forces) and the other utilizing prototype 
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materials at model scale. A study of the changes in shear pin or side support forces with varying clearances 

between shear pins and sockets and between blocks and side supports was presented.    

 

  

a. one-dimensional,  four-block system   b. two-dimensional, 4 × 4 block vertical array 

Figure 1.5. Reflector blocks tested for seismic behavior, adapted from Fig. 3 and Fig. 9 in Dove et al. (1981) 

 

Theymann et al. (1989) presents an overview of studies performed in Germany to support the development 

of a high temperature gas-cooled reactor. The core of the reactor comprised a loose bed of spherical fuel 

elements (pebbles) enclosed in a structure of graphite reflector blocks. The graphite structure was composed 

of a side reflector, a top reflector, and a bottom reflector. The side reflector blocks were supported by 

radially-oriented, prestressed springs. The experiments included tests focused on behavior of the pebble 

bed, the side reflector (see Figure 1.6), and the impact behavior of the top reflector blocks. Minor 

compaction of the pebble bed was observed. The damping effects in the pebble bed core were found to be 

high (damping > 15% of critical) and the pebble bed did not behave like a liquid and slosh, even under high 

accelerations. Opening of gaps between the reflector blocks was not observed in the earthquake-simulator 

experiments.  
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a. 2D ring model b. 3D cylindrical model 

Figure 1.6. Models of the side reflector blocks with the pebble bed, adapted from  Fig. 4 and Fig. 5 in Theymann 

et al. (1989) 

 

Ichikawa et al. (2003) describes seismic tests of a model of a neutron reflector assembly of an advanced 

pressurized water reactor. The prototype reflector assembly comprised a stack of eight octagonal ring-

blocks (see Figure 1.7a), tightened and secured to a lower core plate using eight long bolts (tie rods). The 

assembly was separated from the core barrel by a narrow gap. In the test, four cylindrical blocks, tightened 

using eight bolts, were tested along with an enclosure simulating the core barrel and the gap in between 

them (see Figure 1.7b). The enclosure was filled with water. The in-air natural frequency and damping of 

the assembly were 64.5 Hz and 1.25%, respectively. The corresponding values in-water were dependent on 

the amplitude of vibration: the frequency ranged between 12 Hz and 13 Hz and decreased with increasing 

vibration amplitude, and the damping ranged from a little less than 5% to values greater than 15%. The 

damping ratio tended to increase with vibration amplitude. The study also investigated the effect of vertical 

vibrations, tie-rod tightening forces, gap size, and friction at the bottom (supporting) surface. The vertical 

displacement response of the assembly under seismic excitations decreased with tie-rod tightening forces. 

The horizontal displacement response of the assembly tended to increase as the gap widened and decrease 

as the friction increased. The described test is different from the other studies described above as the 

reflector-block assembly was tested in a submerged state.  
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a. neutron reflector in an advanced 

pressurized water reactor 

b. four-block reflector model for tests 

Figure 1.7. Tests of a neutron reflector assembly in an advanced pressurized water reactor, adapted from Fig.1 and 

Fig.2 in Ichikawa et al. (2003) 

 

Sun et al. (2012) describe seismic tests on a half-scale, double-layer graphite core model executed on the 

six degrees-of-freedom earthquake simulator at the China Academy of Building Research. The model (see 

Figure 1.8) was tested with different gaps (1.6 mm, 3.0 mm, and 5.0 mm) between the blocks. The model 

with a 5 mm gap between the blocks was tested with and without hold-down plates to simulate core-

structure conditions expected at different stages of operation. The tests were carried out in support of the 

design of the graphite reflector assembly for a high temperature gas-cooled reactor in China. White noise 

excitations in the two horizontal directions with amplitudes between 0.1g and 0.5g, sine sweeps, and three 

directional seismic excitations2 were used for testing. Acceleration and displacement sensors were used at 

multiple locations on the specimen and pressure films were used around keys and dowels connecting the 

blocks. The natural frequency of the test specimen could not be identified from the test data. The authors 

reported that the assembly remained intact under all excitations although some graphite blocks were 

damaged. No pattern of damage or cause were reported. The measured pressure on the surface of some of 

the dowels exceeded 10 MPa, which was the upper limit on the film. Amplification of accelerations was 

found to be greatest in the model with the greatest gap size between blocks. 

                                                      

2 The amplitude of the seismic excitations used in Sun et al. (2012) is unclear. Table 4 in Sun et al. (2012) presents the specifications 

of the earthquake simulator, mentioning maximum acceleration capacities of ±1.5g, ±1 g, and ±0.8g in the X, Y, and Z directions, 

respectively. (X, Y, and Z denote the two horizontal directions and the vertical direction, respectively.) However, on page 4 of the 

study, where seismic excitations used in the tests are discussed, a significantly greater acceleration amplitude of 7.4g is mentioned.  
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a. CAD model of the double-layer core model, 

connection details 

b. double-layer core model on earthquake simulator  

Figure 1.8. Double-layer graphite core model, adapted from Figure 1 in Sun et al. (2012) 

 

Jin et al. (2014) describe impact experiments using two graphite blocks of a planned HTGR. Two types of 

collisions were investigated: flat and oblique; see Figure 1.9. The contact time of the colliding blocks was 

found to decrease and the coefficient of restitution was found to increase with contact speed. The authors 

note that it was challenging to achieve a normal collision, wherein the colliding faces of the two blocks 

come in contact across their whole areas. They observed that the dimensions of the blocks and collision 

angles may be more important to the collision process than material properties.  

 

 

 

a. experimental setup  b. oblique collision 

Figure 1.9. Experiment for characterizing collisions between reflector blocks, adapted from Fig. 1 and Fig. 7 in 

Jin et al. (2014)  

 

Cai et al. (2018) present a numerical study on the seismic response of submerged graphite reflector blocks 

in a Thorium-based Molten Salt Reactor (TMSR). The study uses a simplified approach to model individual 

reflector blocks by considering a lumped mass at the center of gravity of a block and using rigid beams to 
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outline the profile of a block (see Figure 1.10). The fluid was modeled as an additional lumped mass. The 

block-to-block interactions in the model of the complete reflector-block assembly were simulated using 

springs, dashpots, and gap elements, the properties of which were calibrated using a more detailed finite 

element model of two impacting blocks as a reference. The reference finite element model was neither 

verified nor validated and thus the results of the seismic analyses are of questionable value.  

    

                  

                  

 

a. reflector block and simplified lumped mass 

model  
b. model of the reflector-block assembly 

Figure 1.10. Modelling of reflector-block assembly using lumped masses and rigid beams, adapted from Fig. 3 and 

Fig. 9 in Cai et al. (2018) 

 

A few studies on the behavior of pebble beds (as shown in Figure 1.1b) under seismic excitations are 

available in the literature. During shaking, the packing fraction (i.e., ratio of volume of pebbles to the 

summation of the volume of pebbles and voids) of the pebble bed could increase, which could lead to an 

increase in core reactivity (and power output from the reactor core) and changes in coolant flow through 

the pebble bed. Both the distribution of packing fraction in a pebble bed and the average packing fraction 

depend on how the pebbles are loaded or placed. Existing literature suggests that the packing fraction varies 

between 0.609 and 0.625 for spheres poured into a bed and between 0.625 and 0.641 for a vibrated bed 

(Dullien 1992). A recent study (Satvat et al. 2021) involved a sensitivity analysis of a core reactivity model 

performed by varying the pebble packing fraction from 0.57 to 0.63. The resulting change in core reactivity 

was small. Another study (Auwerda 2014) suggests that small changes in core reactivity due to earthquake 

shaking can be easily countered by control mechanisms (e.g., small movements of control rods). 
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Nonetheless, information on the expected change in packing fraction in design basis shaking is important. 

A study at the Shanghai Institute of Applied Physics (Chen et al. 2017; Chen et al. 2018) investigated the 

effect of earthquake shaking on a pebble bed in a one-fourth scale model of a Thorium Molten Salt Reactor 

(TMSR); see Figure 1.11a. The model included nearly ten thousand polypropylene spheres (pebbles). Flow 

velocities of 0.015 m/s, 0.03 m/s, 0.045 m/s, and 0.06 m/s through the pebble bed were used during the 

shaking tests. The model was vibrated using sinusoidal excitations at frequencies of 20 Hz and 10 Hz. The 

latter resulted in strong vibrations in the model vessel. The time-variation of the packing fraction for 

different flow velocities under sustained strong vibrations (lasting for over an hour) at 10 Hz frequency is 

shown in Figure 1.11b. The packing fraction changed significantly in the initial 10 minutes of shaking for 

low flow velocities. At high flow velocities through the pebble bed, the changes in packing fraction were 

minimal, pointing to the possible stabilizing effect of high flow velocities. The results from the study might 

be helpful for design of pebble bed reactors although the long-duration, sinusoidal excitations used in the 

experiment are not representative of recorded earthquakes.  

 

 

 

a. one-fourth scale model on vibration 

table 

b. packing fraction (factor) for different flow velocities 

through the pebble bed undue strong shaking 

Figure 1.11. Set up and results of a study on effect of earthquake shaking on pebble bed packing fraction, adapted 

from Fig. 1 and Fig. 7 in Chen et al. 2017 

 

1.3 Objectives of the report 

There is a body of research on the seismic responses of reflector block cores and pebble beds but it is not 

sufficient for  informing the design of an integrated system (such as the one shown in Figure 1.1) comprising 

a base-isolated reactor vessel, a core barrel, a reflector-block assembly with complex block geometries, 
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pebbles, and coolant. The goals of the research program described in this report were to gain a better 

understanding of the dynamic behavior of such an integrated system, formulate recommendations for its 

seismic analysis (numerical or analytical), and experimentally demonstrate the benefits of seismically 

isolating equipment in a nuclear power plant. These goals are achieved by meeting the following objectives: 

1. Designing a scale model of an FHR for earthquake-simulator experiments considering aspects of 

the KP-FHR as the prototype.  

2. Generating experimental data for dynamic responses of model-scale coolant, reflector-block 

assembly, pebble bed, core barrel, and vessel for multi-directional seismic inputs and two isolation 

systems, curating the data and archiving it for use by others.     

3. Analyzing the experimental data for assessing system behavior and formulating recommendations 

for seismic analysis and design suitable for use by designers and regulators.  

1.4 Organization of this report 

This report is organized into seven sections, a list of references, and an appendix, as follows:  

Section 2 presents a dimensional analysis for a generic coupled fluid-solid problem and presents scaling 

analyses for different components of the model used in the experiments. 

Section 3 describes the model geometry and the used friction pendulum bearings. 

Details of instrumentation, seismic inputs, and the test plan are presented in Section 4.  

Key results from the experiments are presented in Section 5. Sloshing of the fluid (representing coolant), 

amplification of accelerations along the height of the vessel, behavior of the reflector-block assembly and 

challenges in assembling it, change in pebble packing fraction due to shaking, and benefits of seismic 

isolation are explored.   

Section 6 provides recommendations and examples for simplified numerical analysis of components of the 

reactor vessel, based on results presented in Section 5. 

Section 7 summarizes the work and presents conclusions. 

A list of references is provided after Section 7 and is followed by an appendix describing the 

characterization tests for the friction pendulum bearings used for the experiments.  
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SECTION 2  

SCALING ANALYSES 

2.1 Introduction 

This section presents scaling analyses guiding the design of a scale model of the Fluoride salt-cooled High 

temperature Reactor introduced in Section 1. As discussed in Section 1, the scale model involved 

representations of an outer vessel, a concentric core barrel, positively-buoyant reflector blocks that act as a 

moderator, positively-buoyant spherical fuel pebbles, and molten-salt coolant (see Figure 1.1). The 

geometries of prototype components correspond to the hot condition in normal operation. Different physical 

phenomena govern the scaling of these test components for earthquake-simulator experiments. As an 

example, scaling buoyant effects is critical for proper scaling of reflector block behavior, but not for the 

core barrel or the outer vessel. Accordingly, different scaling approaches were used for different 

components. The following sub-sections summarize a dimensional analysis for a generic coupled fluid-

solid problem and present scaling analyses for different components in the scale model. The inlet and outlet 

temperatures in the prototype reactor vessel are 550 °C and 650 °C, respectively. For the scaling analyses 

that follow, the mechanical properties of prototype components at the average of the inlet and outlet 

temperatures (i.e., 600 °C) are used and the variability in properties over the temperature range is noted.   

2.2 Dimensional analysis for a coupled fluid-solid problem 

The discussion below is based on the presentation of DeLangre (2020). The physical quantities that can be 

used to define a general coupled fluid-solid problem are listed in Table 2.1.  

 

Table 2.1. Quantities considered for defining the coupled fluid-solid problem 

Fluid Solid 

Coordinates, x  Coordinates, x  

Time, t  Time, t  

Velocity field, U  Displacement field,   

Viscosity,   Stiffness, E  

Size, L  Size, L  

Gravity, g  Gravity, g  

Density,   Density, 
s

  

Velocity data, 
oU  Displacement data, 

o  
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Some of the quantities listed in Table 2.1 are specific to the fluid or solid domain (e.g.,   and E ) whereas 

some are common to both (e.g., g  and t ). Considering U  (or  ) as the variable of interest, the coupled 

fluid-solid problem can be expressed by a dimensionally homogeneous equation involving the remaining 

eleven ( 11n = ) variables listed in Table 2.1, as noted below:  

 ( , , , , , , , , , , ) 0o s oQ U x t U L g E    =  (2-1) 

The dimensional matrix (of exponents in terms of fundamental quantities: length, mass and time) can be 

formed as:  

1 1 0 1 3 1 1 1 1 3 1

0 0 0 1 1 0 0 0 1 1 0

1 0 1 1 0 1 0 2 2 0 0

o s oU x t U L g E

L

M

T

   

− − − − 
 
 
 − − − − − 

 

The rank, r , of this matrix is 3. Invoking Buckingham’s Pi theorem (Buckingham 1914), equation (2-1) 

can be expressed in an equivalent form (2-2), where eight ( 8n r− = ) dimensionless products are used to 

describe the phenomenon:  

 
1 2 8( , ..... ) 0F    =  (2-2) 

The independent dimensionless products are formed by inspection and appropriate grouping of variables, 

and are presented below. Products 
1  through 

5  are related to the fluid domain and are similar to what 

would be obtained for a fluid-only case. Similarly, 6  and 7  are related to the solid domain. The product 

8  involves quantities from both domains (fluid and solid) indicating its importance for coupled problems. 

Three possible choices for 8  are presented here: mass number denoting the ratio of fluid density to solid 

density, reduced velocity number denoting the ratio of fluid velocity to velocity of elastic waves in the 

solid, and Cauchy number denoting the ratio of fluid loading (quantified by dynamic pressure) to the 

stiffness of the solid (quantified by E ). The choice of 
8  should be made in accordance with the nature of 

fluid-solid coupling at hand. For example, if buoyancy effects are important, mass number should be 

chosen. Similarly, if the deformations of the solid under fluid loading are important, Cauchy number should 

be chosen. 
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(Cauchy number) 

2.3 Scaling of pebble dynamics: fluid and pebbles 

In the prototype, the spherical fuel pebbles are randomly packed in the reactor core and float in the molten 

salt (Flibe). The molten slat flows through the gaps between pebbles and extracts heat. Thus, buoyancy and 

drag forces dominate the dynamic behavior of pebbles in the prototype. Laufer (2013) showed that for 

proper scaling of pebble dynamics, three dimensionless numbers should be matched for model and 

prototype: 4 , 
5  and 

8 . Since buoyancy is important here, mass number is chosen for 
8 . A description 

of each term is provided here: 

a.  4  (Reynolds number): The ratio of viscous and inertial forces in the model and prototype should 

be the same, so that drag forces (on the pebbles, particularly) scale properly. That is: 

 
m m m

p p p

U L

U L




=  (2-3) 

where U , L  and   are the flow velocity, characteristic length, and kinematic viscosity 

respectively. The subscripts m  and p  denote model and prototype, respectively. 

b. 5  (Froude number): The ratio of inertial force to gravitational force in the model and the prototype 

should be the same. This is important in case a free surface exists or in case an active pump is used 

to circulate the fluid through the core. The condition is: 

 
pm

m p

UU

gL gL
=   

or ( )
1/2

m m

pp

U L

U L
=  (2-4) 

c. 8  (Mass number): The ratio of the density of fuel pebbles to the surrounding fluid must be the 

same in the model and the prototype to correctly simulate buoyancy effects. This was nearly 

achieved by using polypropylene (PP) spheres to represent fuel pebbles, as shown in Table 2.2. 
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 Table 2.2. Scaling analysis, PP spheres for modeling fuel pebbles 

 Prototype at 600 °C Model 

Fuel pebble density, sf  
1785 kg/m3 

(1740 kg/m3 – 1830 kg/m3) † 
880 kg/m3 

Fluid density,   
1986 kg/m3  

(2011 kg/m3 – 1962 kg/m3) †† 
998 kg/m3 

Mass number, / sf   1.11 1.13 

†The fuel pebbles have a nominal (as fabricated) density of 1740 kg/m3 which can change under neutron flux to about 

1830 kg/m3. The average value is used here. 

††Values in parenthesis indicate range over 550 °C – 650 °C 

 

Combining equations (2-3) and (2-4): 

 

2/3

m m

p p

L

L





 
=  
 
 

 (2-5) 

The kinematic viscosity of water ( m ) at 20 °C is 10-6 m2/s and that of Flibe ( p ) at a temperature of 600 °C 

is 4.3×10-6 m2/s, leading to a required length scale ratio (The kinematic viscosity of Flibe is 5.46 ×10-6 m2/s 

and 3.45 ×10-6 m2/s at temperatures of 550 °C and 650 °C, respectively.): 

0.38m
L

p

L
S

L
= =   

Using equation (2-4), the required flow scale ratio, 0.62m
U

p

U
S

U
= = .  

An available outer vessel (see Mir et al. (2021)) was used for the model, the use of which resulted in a 

nearly equal length scale 0.39LS = .  

2.4 Scaling of reflector blocks 

Reflector blocks in the prototype float in the coolant and function as a moderator in an operating reactor. 

To represent them at the model scale, density scaling was considered primary. Dynamic effects (related to 

stiffness and inertia) may also be important given that the blocks form a significant fraction of the specimen 

mass and it was of interest to investigate gap openings between adjacent blocks. So 7  and 
8  (mass 

number) were considered for scaling analysis. A model material with a density of approximately 870 kg/m3 

and an elastic modulus of 1.85 GPa would be ideal for modeling the reflector blocks, but such a material 

does not exist to the knowledge of the authors. The used material at the model scale, polypropylene, has 

physical and mechanical properties close to what were required per scaling: density of 900 kg/m3 and an 
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average elastic modulus of 1.3 GPa (Material Properties 2022) . Table 2.3 lists the relevant values and scale 

factors. The density and elastic modulus of graphite are essentially constant over the temperature range of 

550 °C - 650 °C. 

 

 Table 2.3. Scaling analysis, polypropylene for modeling reflector blocks 

 Prototype at 600 °C† Model Scale factor 

Fluid density,   
1986 kg/m3  

(2011 kg/m3 – 1962 kg/m3) 
998 kg/m3 0.50S =  

Reflector density, sr  1739 kg/m3 900 kg/m3 0.52
sr

S =  

Mass number, / sr   1.14 1.10 - 

Elastic modulus of reflector 9.5 GPa 1.3 GPa 0.14ES =  

Size (generalized), L  - - 0.39LS =  

†Values in parenthesis indicate range over 550 °C - 650 °C 

 

For the listed values, the ratio of 8  (mass number) for the model and the prototype is 0.96. For 
7 , the 

ratio is 1.45. The departures of these values from unity represents distortion in the model. The distortion in 

mass number 8  was minimized by creating voids (hollow spaces) in some of the polypropylene reflector 

blocks such that an equivalent density of 850 kg/m3 was achieved for the reflector-block assembly, resulting 

in a mass number ratio for model and prototype of 1.02. 

2.5 Scaling of core barrel 

The primary function of the core barrel in the prototype is to channel the inflow of the coolant down in the 

annular space between that separates it from the outer vessel (see Figure 1.1) (The coolant flows bottom-

up through the pebble bed for heat extraction.). For simulating fluid-structure interaction (FSI) effects at 

the core barrel-fluid interface and the dynamic effects (related to stiffness and inertia of the core barrel), it 

is sufficient to match 
7  and 8  for the model and the prototype.  For 8 , it could be argued that preserving 

the Cauchy number is critical. (The Cauchy number, as defined in section 2.2, is the ratio of the fluid loading 

quantified by the dynamic pressure, 2U , to the stiffness of the structure characterized here by elastic 

modulus, E .)  

Scaling of FSI effects was considered primary, so 8  was considered first. The expression for 8  is re-

written here: 



 

18 

 

 
2

8

U

E


 =  (2-6) 

The dimesnionless product, 8 , was derived using the same length scale factor for all dimensions (height, 

diameter, and thickness). Since it may be valuable to use a different scale factor for thickness, the above 

dimensionless product is modified to: 

 
2

8

U L

Eh


 =  (2-7) 

where h  is the thickness of the core barrel and L  is any other dimension (e.g., radius, or height of fluid). 

This modification is not arbitrary, as explained below. 

The condition for scaling that is obtained from (2-7) can be written as follows (subscripts m  and p  denote 

model and prototype, respectively; and S  denotes a scale factor):  

 m p =   

or 
2

1
U L

E h

S S S

S S


=  (2-8) 

Now consider the following equation for the impulsive period of a flexible tank (Malhotra et al. 2000):   

 imp i

H
T C

h E
R


=  

(2-9) 

where impT  is the impulsive period, H  is the fluid height,   is the fluid density, R  is the radius of the tank, 

i
C  is a factor that depends on the ratio of fluid height-to-tank radius, and E  is the modulus of elasticity of 

the tank material. Equation (2-9) can be written separately for the model and the prototype. The two 

equations can then be combined to give the following relationship for the scale factor for impulsive period, 

TS : 

 
L

T

h
E

L

S S
S

S S
S


=  

(2-10) 

Equation (2-10) can be re-written as: 

 
( )

1

L

UT

h h
E E

L L

S S S SS

S SS S
S S




= =   

or 
2

1
U L

E h

S S S

S S


=  (2-11) 
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which is identical to (2-8) and hence the modification from (2-6) to (2-7) is justified.  

Using either equation (2-11) or (2-8), the information in Table 2.4 below and considering aluminum as the 

model scale material, the scale factor for thickness, hS , was calculated as 0.16, which is less than the 

(general) scale factor for length, 0.39
L

S = .  

 

Table 2.4. Scaling analysis, aluminum as core-barrel material 

 Prototype at 600°C†   Model Scale factor 

Fluid density,   
1986 kg/m3  

(2011 kg/m3 – 1962 kg/m3) 
998 kg/m3 0.50S =  

Elastic modulus, core barrel, E    
148 GPa 

(155 GPa – 148 GPa)  
70 GPa  0.47ES =  

Mass density, core barrel, sc  
7709 kg/m3  

(7731 kg/m3 – 7688 kg/m3) 
2700 kg/m3  0.35

sc
S =  

Size (generalized), L  - - 0.39
L

S =  

Velocity (flow), U  - - 0.62
U

S =  

†Values in parenthesis indicate range over 550 °C - 650 °C 

 

Using aluminum for the core barrel and the derived scale factor for thickness led to proper scaling of FSI 

effects, and enabled rolling of available sheet, fabrication, and welding. However, a check on the ratio of 

7  at the model and prototype scales indicated that the ratio was not unity, indicating a distortion: 

 0.29sc L

E

S S

S


=  (2-12) 

The thickness scale factor does not appear in (2-12) because 7  is a ratio of inertial and elastic forces for 

the core barrel alone and the thickness term cancels. Mass could have been added to the aluminum core 

barrel to achieve a ratio of 7  at the model and prototype scales equal to unity, but there was insufficient 

space in the model to do so. Importantly, earthquake-induced strains in the prototype core barrel due to 

inertial loadings were expected to be small due to its high stiffness and relatively low mass. Accordingly, 

the ratio of 0.29 for the model and prototype scale core barrel was not considered problematic, which was 

confirmed in the experiments. 
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2.6 Scaling of outer vessel 

An approach similar to that presented in section 2.5 for the core barrel should ideally be used for scaling 

FSI and dynamic effects for the outer vessel as well. However, as mentioned in 2.3, an existing steel vessel 

with a wall thickness of 7.9 mm was used. Considering steel as the model material for the outer vessel, 

relevant quantities for scaling are listed in Table 2.5. 

 

Table 2.5. Scaling analysis, steel as outer vessel material 

 Prototype at 600°C†   Model Scale factor 

Fluid density,   
1986 kg/m3  

(2011 kg/m3 – 1962 kg/m3) 
998 kg/m3 0.50S =  

Elastic modulus, outer vessel, E    
148 GPa 

(155 GPa – 148 GPa) 
200 GPa  1.35ES =  

Mass density, outer vessel, 
sv

  
7709 kg/m3  

(7731 kg/m3 – 7688 kg/m3) 
7800 kg/m3  1.01

sv

S

=  

Size (generalized), L  - - 0.39
L

S =  

Thickness, h  60 mm 7.9 mm 0.13hS =  

Velocity (flow), U  - - 0.62US =  

†Values in parenthesis indicate range over 550 °C - 650 °C 

Using the values in Table 2.5, it can be shown that the ratio of 
7

  or 
8

  for the model and the prototype is 

not equal to one as noted below, indicating distortion: 

7,

7,

0.29
m

p




=  and 

8,

8,

0.43
m

p




=  

The distortion in the force response of the vessel was inevitable, unless artificial masses could be added. 

However, the distortion in terms of FSI effects was ignored since the vessel was practically rigid at both 

the model and prototype scales.   

2.7 Summary 

This section presented scaling analyses for different test components of a model FHR for earthquake 

simulator testing. A length scale of 0.39 was selected except for thickness of the core barrel, for which a 

length scale of 0.16 was used. Model components were scaled per different governing scaling laws. There 

were practical limits, in terms of available materials and space, on ideal scaling of all components and 

desired behaviors, and compromises were inevitable. Possible compromises were identified in terms of 
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importance to the test goals and made such that important behaviors (e.g., buoyancy in the reflector blocks, 

fluid-structure interaction in the core barrel) were simulated as best as possible at the model scale. Table 

2.6 summarizes the analyses for different components. The presented information was used to design the 

scale model, the geometry of which is described in detail in the next section.  

 

Table 2.6. Summary of scaling analysis 

Component 
Governing behavior or property for 

scaling analysis 

Material  

Prototype scale Model Scale 

Outer vessel Interaction with coolant Stainless steel Carbon steel 

Core barrel Interaction with coolant Stainless steel Aluminum 

Fuel pebbles Buoyancy and flow behavior 
Graphite pebbles filled 

with TRISO particles  
Polypropylene 

Reflector blocks Buoyancy and stiffness Graphite Polypropylene 

Coolant 

Buoyancy of submerged 

components (fuel pebbles and 

reflector blocks) 

Molten salt (Flibe: a 

LiF/BeF2 mixture) 
Water 
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SECTION 3  

MODEL DESCRIPTION AND BUILD 

3.1 Introduction 

The scaling analyses presented in Section 2 informed the design of a scale model of a Fluoride salt-cooled 

High temperature Reactor (FHR) for earthquake-simulator testing. The tested model included 

representations of a reactor vessel, core barrel, graphite reflector blocks, TRISO fuel pebbles, and molten 

salt coolant. Section 3.2 describes the geometry of the model components and the sequence of assembling 

the model. Challenges, associated with tight tolerances in the model components, were encountered during 

the model build, and those are discussed in section 3.2.1.1. The properties of the friction pendulum bearings 

used to seismically isolate the model are described in 3.3. 

3.2 Model geometry and build 

A schematic of the model on the earthquake simulator is shown in Figure 3.1. The primary components of 

the model included a base plate, a cylindrical outer vessel (OV) and a cylindrical core barrel (CB) each 

provided with a flange, a double ring with vertical pins at the base of the vessel, polypropylene reflector-

block assembly, top ring with pins, head, and polypropylene (PP) pebbles. A flexible tube for 

instrumentation was inserted through the top of the head and the reflector-block assembly, as shown in 

Figure 3.1. The vessel base was supported on four load cells (introduced later) in the fixed-base tests and 

on four bearings in the isolated configuration. A description of the model components is provided in this 

sub-section. 

 

 

Figure 3.1. Schematic of the model on the earthquake-simulator platform, base-isolated configuration 

The cylindrical outer vessel had a height of 2 m, an outer diameter of 1.524 m, and a wall thickness of 

7.9 mm. The vessel was welded to a 95 mm thick base plate with plan dimensions of 2 m × 2 m. A 76.2 mm 
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wide, 25.4 mm thick flange was welded to the top of the vessel. The outer vessel, base plate, and the flange 

were fabricated using carbon steel.  

The aluminum core barrel had a height of 1.778 m, an outer diameter of 1.479 m, and a wall thickness of 

2 mm. A 98.4 mm wide, 12.7 mm thick (aluminum) flange was welded at its top. The core barrel was placed 

concentrically within the vessel such that its flange rested on the flange of the outer vessel (see Figure 3.1). 

A nominal radial gap (annulus) of 14.6 mm separated the outer surface of the core barrel and the inner 

surface of the outer vessel. The core barrel was provided with twenty-four tabs (spacers) in arrays of eight 

at three heights (see Figure 3.2a). Each tab was 50.8 mm long, 9.5 mm wide, and 3.1 mm thick. The tabs 

were welded to the core barrel such that their width (9.5 mm) was oriented radially, as shown in Figure 

3.2a. A fill level (water) of 1.93 m was used for testing. The space above the free surface of water, between 

the outer vessel and the core barrel, was filled with rubber, as shown in Figure 3.2b, such that sloshing of 

water in this space was prevented, consistent with the prototype boundary condition of this annulus not 

having a free surface. 

 

 
 

a. schematic b. rubber ring seal between vessel and core barrel  

Figure 3.2. Core barrel, schematic and placement 

 

A 12.7 mm thick steel double ring (see Figure 3.1) was welded to the base of the vessel, as shown in Figure 

3.3. The ring was provided with thirty-two vertically oriented pins (see Figure 3.3), arranged in two arrays 

of sixteen pins, along circles of diameters 0.71 m and 1.32 m. Each pin had a diameter of 12.7 mm and 

protruded 50.8 mm above the upper face of the ring. These pins were provided to ensure proper positioning 

of the reflector-block assembly during installation and when afloat. 

0.66 m

Tab

Flange

9.5 mm

Vessel

Core barrel
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Figure 3.3. Double ring at the base of the vessel  

 

Figure 3.4 presents a cutaway view of the reflector-block assembly. The assembly comprised sixteen 

vertical columns and a top block referred to hereafter as the plug. Each of the sixteen vertical columns 

comprised a stack of fourteen blocks, denoted RB-1 through RB-14. Blocks RB-1 and RB-14 denote the 

lower most and the upper most blocks in a column, respectively. Air voids (hollow spaces) with a net 

volume of 0.141 m3 were provided in blocks RB-1, RB-2, RB-3, RB-5, RB-6, RB-7, RB-8, RB-9, RB-10 

to reduce the equivalent density of the reflector-block assembly as a whole, as explained in section 2.4. The 

air voids can be seen in the cutaway view presented in Figure 3.4. A nominal gap (annulus) of 10.5 mm 

separated the outer surface of the reflector-block assembly and the inner face of the core barrel (see Figure 

3.1). The fluid in in this gap was free to slosh under seismic excitations.   

 

 

Figure 3.4. Reflector-block assembly, cutaway view, dimensions in m 
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Drawings of the fourteen blocks and the plug are shown in Figure 3.5 (Blocks RB-5 through RB-10 were 

of a similar geometry). The blocks were fabricated by gluing machined sheets of polypropylene which were 

cut to specific shapes using a waterjet. Three sheets were used for each block, except for RB-13, for which 

two sheets were used. 

 

   

   

   

 

Figure 3.5. Reflector blocks   

 

Blocks in a column were connected by polypropylene shear pins, 12.7 mm in diameter. Circular, partial-

depth slots of 15.2 mm diameter were provided in the blocks to accommodate these pins. The underside of 

RB-1 was provided with two circular slots to interface with the steel pins protruding above the double ring 

(see Figure 3.4). Blocks in adjacent columns were connected by polypropylene shear keys, rectangular in 

cross section. The shear keys had cross sectional dimensions of 25.4 mm × 50.8 mm. The corresponding 

slot for a shear key formed by two adjacent blocks (of two adjacent vertical columns) had cross sectional 

dimensions of 27.9 mm × 55.9 mm. A slot was also provided at the periphery of each block for 
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instrumentation wires. Figure 3.6 shows the slots for the shear key, shear pin, and instrumentation wires in 

one block. Similar slots were provided in other blocks, as presented in Figure 3.5.  

 

                         

Figure 3.6. Slots in RB-5 to 10   

 

A 12.7 mm thick, steel top-ring with inner and outer diameters of 1.22 m and 1.37 m, respectively, and  

sixteen and four steel pins on the lower and upper faces, respectively, as shown in Figure 3.7, was used to 

interface between the reflector-block assembly and the head of the vessel (described below). The pins were 

12.7 mm in diameter. The four pins on the upper face were fabricated from threaded rod. The pins on the 

lower face fitted into slots in the top-most blocks of the sixteen reflector block columns and the threaded 

pins on the upper face (referred as top-ring threaded pins hereafter) protruded through slots in the head.  

 

 

Figure 3.7. Top ring   

 

The head of the assembly was a 38.1 mm thick circular plate, as shown in Figure 3.8a. The plate was 

provided with through holes for bolts and slots for instrumentation wires, top-ring threaded pins, and pebble 

loading and viewing as indicated in the figure. In the assembled condition, the top-ring threaded pins were 

secured to the head using nuts and washers, as presented in Figure 3.8b. The head and the flanges of the 

core barrel and the outer vessel were connected using sixteen 25.4 mm diameter bolts. 
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The pebbles used in the experiments were 15.87 mm diameter PP spheres as presented in Figure 3.9. A total 

of 285,000 pebbles were used. The nominal density of the spheres, as specified by the manufacturer, was 

880 kg/m3.  

Coolant flow through the fuel pebbles in the core of the reactor vessel was not simulated. 

 

 

 

a. slots in head b. top-ring threaded pins secured to head 

Figure 3.8. Head of the vessel  

 

 

Figure 3.9. A pebble used in the experiments 

 

3.2.1 Assembly sequence and challenges  

This sub-section describes the sequence in which the model was assembled. (The sequence described here 

does not include the installation of the load cells or the bearings under the base of the vessel.) The double-

ring was welded to the base of the vessel first. This was followed by placement of the rubber ring on the 

core barrel and lowering the core barrel (see Figure 3.2b) inside the outer vessel using an overhead crane. 

The reflector blocks were manually placed inside the vessel, one block at a time (see Figure 3.10b). After 

the first (of fourteen) layer of reflector blocks had been positioned (see Figure 3.10c), shear keys and shear 

pins were installed, as shown in Figure 3.10d and Figure 3.10e. The shear keys connected adjacent blocks 

in a layer and the shear pins interfaced with the next layer. This procedure of placing blocks, shear keys, 

and shear pins was repeated until all fourteen layers of the assembly had been assembled inside the vessel 
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(see Figure 3.10f). The top ring was then placed atop the fourteenth layer, as shown in Figure 3.10g and 

Figure 3.10h, using an overhead crane. Figure 3.11 presents pictures taken at different stages of the 

assembly. 

 

   

a. double ring and core barrel in 

place 
b. one RB-1 in place 

c. sixteen RB-1 blocks in place 

(first of fourteen layers) 

   

d. shear keys and pins above first 

layer 

e. shear keys and pins above 

first layer in place 

f. reflector-block assembly, 

except plug, in place 

  

g. placement of the top ring h. top ring in place 

Figure 3.10. Assembly sequence, cutaway views of outer vessel and core barrel shown 
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a. three layers of reflector blocks installed b. six layers of reflector blocks installed 

 

c. fourteen layers of reflector blocks and the top ring in place 

Figure 3.11. Different stages of building the reflector-block assembly  

 

The reflector-block assembly was completed by placing the plug in position using an overhead crane, as 

shown in Figure 3.12. The head was also positioned using an overhead crane, as shown in Figure 3.13. 

Water was filled through an inlet provided in the vessel wall, as indicated in Figure 3.13. A slot was cut in 

the rubber ring (between the outer vessel and the core barrel) at the location of the inlet such that water 

could flow down the annulus between the core barrel and the outer vessel. An air outlet, with arrangement 

similar to the inlet, was provided in the outer vessel at a location diametrically opposite to the inlet. The air 

outlet was provided to ensure an exit path for air leaving the annulus between the outer vessel and the core 

barrel during filling with water. (This air outlet proved to be unnecessary because the flange of the core 

barrel did not have an air-tight fit with the flange of the outer vessel in the bolted condition.)   
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a. positioning the plug using an overhead crane b. completed reflector-block assembly 

Figure 3.12. Placement of plug 

 

 

Figure 3.13. Placement of head 

 

Pebbles were manually loaded into the vessel through the four large-sized holes in the head (see Figure 

3.8a). During the loading process, the flow of water into and out of the vessel was controlled such that the 

underside of the pebble bed stayed above the bottom layer of reflector blocks and the reflector-block 

assembly floated at all times. A borescope (Make: DEPSTECH) was inserted into the interior of the 

reflector-block assembly (core) through the hollow tube shown in Figure 3.1 and used to monitor the 

location of the underside of the pebble bed and the lowermost layer of reflector blocks during loading.  

Inlet
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3.2.1.1 Challenges 

Listed below are some challenges encountered during the assembly of the model for earthquake-simulator 

testing. These were associated with tight design tolerances. 

1. The outer radius of the double ring was 1.6 mm smaller than the inner radius of the vessel. Lowering 

the double-ring assembly into the vessel (using an overhead crane) such that it laid flat (horizontal) 

on the base of the vessel was challenging because of small fabrication-related shape distortions in 

the outer vessel and the ring (see Figure 3.14). Multiple regions along the periphery of the double 

ring were machined on-site using an angle grinder to ensure proper placement of the ring. 

 

 

Figure 3.14. Vertical gaps (highlighted) between the double ring and the base of the vessel 

 

2. The underside of each block in the first layer (RB-1) of the reflector-block assembly was provided 

with two circular slots to interface with the 50.8 mm long steel pins projecting above the double 

ring. The circular slots and pins had diameters of 15.2 mm and 12.7 mm, respectively.  In the water-

filled condition, the reflector-block assembly was designed to float 25.4 mm above the double ring 

such that the pins stayed engaged with the slots over a length of 25.4 mm.  However, the designed 

difference in the diameters of the pins and the slots was small and practically insufficient to allow 

all columns of the reflector-block assembly to float freely. To allow free vertical movement of the 

reflector-block assembly, the slots sizes in the lower layer of blocks were increased to a diameter 

of 17.1 mm (using a 43/64-inch drill bit).  

3. The design gap between the lateral surface of the reflector-block assembly and the inside of the 

core barrel was 10.5 mm. Measurements taken after the reflector-block assembly was built and 

before placement of the head indicated that the gap size varied along the circumference. Figure 

3.15 presents measurements of the gap taken at eight locations. The size varied between 9.5 mm 

and 15.1 mm. Measurements of gap size could not be taken after placement of the head. 

Base plate

Double ring
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a. completed reflector-block assembly b. gap at eight locations, inch-tape 

Figure 3.15. Gap between reflector-block assembly and core barrel 

 

4. The placement of the head using an overhead crane, as shown in Figure 3.13, such that the four 

top-ring threaded pins engaged the four slots in the head was challenging and required manual 

adjustment. At the prototype scale, such a manual intervention may not be practical. 

5. The designed gap between adjacent reflector blocks in a layer was 2.8 mm, as indicated in Figure 

3.16a. In the fully-assembled and water-filled condition, the gaps between blocks in a layer 

coalesced at a few locations creating gaps large enough to accommodate the 15.87-mm diameter 

pebbles (see Figure 3.16b). To prevent pebbles from entering such large gaps between columns of 

reflector blocks, a fabric net was subsequently installed inside the reflector-block assembly, as 

shown in Figure 3.16c.  

 

   

a. designed gap of 2.8 mm between 

adjacent blocks in a layer 

b. pebbles in gap between 

adjacent columns of blocks 

c. fabric net installed on inside the 

reflector-block assembly 

Figure 3.16. Gap between adjacent blocks and installed fabric net 

 

 

2.8 mm
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3.3 Friction pendulum bearings 

Two types of friction pendulum (FP) bearings were used to base-isolate the model described above: 1) 

Single concave Friction Pendulum (SFP) bearings, and 2) Triple Friction Pendulum (TFP) bearings. Four 

bearings of a type (SFP or TFP) were installed under the base of the vessel for tests in the isolated 

configurations, as presented in Figure 3.1. The bearings were tested individually to characterize their force-

displacement behavior in the horizontal and vertical directions. The characterization tests for the bearings 

are summarized below and described in detail in Appendix A. 

3.3.1 SFP isolators 

The four SFP bearings used for testing are identified here as SFP1, SFP2, SFP3, and SFP4. Each bearing 

consists of a sliding surface (concave plate), a housing plate, and a slider that is coated with a PTFE-type 

composite, as shown in Figure 3.17. Figure 3.18 presents the fabrication drawings of the bearings, as 

provided by the manufacturer, Earthquake Protection Systems. The bearings had a sliding period of 

1.38 seconds (where period is a function of the radius of curvature of the sliding surface) and a displacement 

capacity of approximately 9 cm. The idealized force-displacement behavior of an SFP isolator in the 

horizontal directions is characterized by the radius of curvature of the sliding surface ( R ) and the 

coefficient of friction (  ) at the sliding surface (see Figure 3.19). The coefficient of friction is a function 

of axial load on the bearing, sliding velocity, and temperature of the sliding surface. An increase in axial 

load leads to a reduction in the coefficient of friction. The coefficient of friction at near zero sliding velocity 

is referred to as the breakaway friction. As the sliding velocity increases, the coefficient of friction drops to 

a minimum value ( min ) at a small sliding velocity before attaining a maximum value ( max ) at a higher 

velocity. In general, for a fixed value of axial load, the relationship between the coefficient of friction and 

the sliding velocity (V ) can be described by (Constantinou et al. 2007): 

 max max min( ) aVe    −= − −  (3-1)   

where a  is a rate parameter. The coefficient of friction reduces with an increase in temperature of the sliding 

surface.  

The behavior of an SFP bearing in the vertical direction is characterized by stiffness under a specified 

(compressive) axial load (the stiffness in tension is zero). Figure 3.20 shows a representative axial force-

axial displacement behavior of a friction pendulum bearing. The axial stiffness is small at low axial load 

and increases with axial load. 
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Figure 3.17. Components of an SFP isolator 

 

 
a. elevation 

 
b. cross-section 

Figure 3.18. Fabrication drawings of SFP isolators (provided by Earthquake Protection Systems) 

 

 
Figure 3.19. Force-displacement behavior of an SFP isolator 
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Figure 3.20. Representative behavior of a friction pendulum bearing in compression 

 

The behavior of the four SFP bearings under horizontal and vertical loads was characterized at an axial load 

of 20 kN (4.5 kips), which was approximately equal to the expected load per bearing in the earthquake- 

simulator tests. Behavior under horizontal loads was characterized by estimating slow and fast coefficients 

of friction using a bearing testing machine (BTM) (Warn and Whittaker 2006). The radius of the sliding 

surface is a known geometric quantity. The velocity dependence of the coefficient of friction for each 

bearing was characterized by a rate parameter (see equation (3-1)). The behavior under vertical load was 

established by estimating the vertical stiffness of each bearing at an axial load of 20 kN using a tension-

compression machine. Table 3.1 summarizes results of characterization tests for the four SFP bearings.  

 

Table 3.1. Summary of characterization tests for SFP bearings, axial load = 20 kN 

Bearing 
Friction coefficient 

(slow), min  (%) 

Friction coefficient 

(fast), max  (%) 

Rate parameter 

(s/cm) 

Axial stiffness 

(×105 kN/m) 

SFP1 3.7 12.5 0.39 1.08 

SFP2 2.3 7.5 0.67 0.96 

SFP3 2.6 10.5 0.35 1.07 

SFP4 2.4 10.1 0.35 1.20 

Average 2.8 10.2 0.44 1.07 

 

3.3.2 TFP isolators 

The four TFP bearings used in tests are identified here as TFP1, TFP2, TFP3, and TFP4. A TFP bearing 

comprises two concave plates (top and bottom) and a slider assembly, as shown in Figure 3.21. Two 

concave plates separated by a rigid slider and enclosed in a rubber seal form the slider assembly. The 

surfaces of the slider assembly in contact with the top and bottom concave plates and the surfaces of the 

rigid slider in contact with the concave plates of the slider assembly are coated with a PTFE-type material. 
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Figure 3.22 presents the construction of the TFP bearings. The four surfaces on which sliding is permitted 

are marked 1 through 4 in Figure 3.22b. The bearings had a sliding period (for sliding on the outer concave 

surfaces) of 1.96 seconds (frequency of 0.51 Hz) and a displacement capacity of about 16 cm. 

 

 
Figure 3.21. Components of a TFP isolator 

 

 
a. elevation 

 
b. cross-section, sliding surfaces numbered 1 through 4 in green 

Figure 3.22. Fabrication drawings of TFP isolators (provided by Earthquake Protection Systems) 
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Figure 3.23 presents the horizontal force-displacement behavior of a TFP bearing. The force-displacement 

relationship in a TFP bearing is displacement dependent and differs depending on which of the four sliding 

surfaces accommodate bearing displacements. Accordingly, (sliding) Regimes I through V are identified in 

Figure 3.23. A detailed discussion of the force-displacement relationships of a TFP bearing in different 

sliding regimes is presented in Section 4 of Fenz and Constantinou (2008) and not reproduced here. The 

relationships are characterized by the radii of curvature of the sliding surfaces and the coefficients of friction 

at the four sliding surfaces. The radii of curvature of the surfaces are known geometric quantities (see Figure 

3.22b). The coefficients of friction of the four surfaces were determined from tests in the BTM and were 

such that 1 4 2 3   =  = , where i  denotes the coefficient of friction at sliding surface i . Such a 

relationship between coefficients of friction is common in practice. The minimum and maximum values of 

1 4( ) = (outer surface friction) at slow and fast sliding velocities, respectively, was determined from the 

characterization tests. The velocity dependence of friction at sliding surface 1 (or 4) was characterized by 

a rate parameter, as introduced in equation (3-1).  

 

 
Figure 3.23. Force-displacement behavior of a TFP bearing 

 

Achieving high sliding velocities at the inner surfaces (2 and 3) in tests is difficult. Thus, only the minimum 

value of 2 3( ) =  (inner surface friction) was determined in the tests. The maximum value of 2 3( ) =

was assumed to be equal to the product of the estimated minimum value and the ratio of the maximum and 

minimum values of 1 4( ) = . The rate parameter characterizing the velocity dependance of 2 (or 3 ) was 

assumed to be identical to that for 1 (or 4 ). These assumptions regarding friction on the inner surface 

are insignificant because the behavior of a TFP bearing is primarily governed by sliding on the outer 

surfaces (McVitty and Constantinou 2015).  

The behavior of the TFP bearings in the vertical direction was characterized by estimation of vertical 

stiffness at a specified axial load (20 kN here), as explained previously for SFP bearings.  
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Table 3.2 summarizes results of characterization tests for the four TFP bearings. 

 

Table 3.2. Summary of characterization tests for TFP bearings, axial load = 20 kN 

Bearing 

Friction coefficients 

Rate parameter 

(s/cm) 

Axial stiffness 

(×105 kN/m) 

2 3 =  (%) 1 4 =  (%) 

Minimum 

(slow)  

Maximum 

(fast) 

Minimum 

(slow)  

Maximum 

(fast) 

TFP1 2.1 4.7 7.0 15.5 0.28 1.08 

TFP2 2.2 5.0 6.0 13.6 0.47 1.10 

TFP3 2.1 5.6 5.2 13.8 0.47 1.03 

TFP4 2.3 5.0 6.6 14.3 0.47 1.00 

Average 2.2 5.1 6.2 14.3 0.42 1.05 

 

The variability in the estimated parameters for the SFP and TFP bearings, evident in Table 3.1 and Table 

3.2, is typical for friction pendulum bearings at both model and prototype scales (e.g., see Sarlis et al. (2013) 

and McVitty and Constantinou (2015)).  

3.4 Summary 

A scale model of an FHR reactor was designed per scaling analyses presented in Section 2. The geometries 

of the different components of the scale model were described in this section. The sequence of assembling 

the components and the challenges encountered therein were discussed. Two types of friction pendulum 

bearings were used to seismically isolate the scale model at its base: Single concave Friction Pendulum 

bearings and Triple Friction Pendulum bearings. The properties used to characterize the behavior of the 

bearings were described.      
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SECTION 4  

INSTRUMENTATION, SEISMIC INPUTS, AND TEST PLAN 

4.1 Introduction 

This section presents the instrumentation and test plan for the earthquake-simulator testing of the Fluoride 

salt-cooled High temperature Reactor (FHR) model described in section 3. The responses measured in the 

experiments included the dynamic response of the fluid (hydrodynamic pressure and sloshing 

displacements), base reactions, dynamic responses of the vessel, core barrel, and reflector blocks, reflector 

block attachment performance, and pebble bed compaction under shaking. Section 4.2 describes the 

instrumentation used to record these responses. Unidirectional, bidirectional, and three directional seismic 

motions were used as inputs to the specimen, as described in section 4.3. Section 4.4 introduces the three 

test series focused on different behaviors of the test components.  

4.2 Instrumentation 

The instrumentation plan described below accommodates the conventional and isolated configurations and 

was designed to capture the responses identified above. Figure 4.1 presents the cartesian (x, y, and z) and 

cylindrical (r,  , z ) coordinate systems used in the presentation that follows.  

 

  

a. elevation b. section A-A, earthquake simulator not shown 

Figure 4.1. Coordinate systems  

 

Three-directional accelerations were recorded at the center of the earthquake-simulator platform at the 

location indicated by a green solid triangle in Figure 4.2a and 4.2b. Four vertically-oriented accelerometers 

were installed on the earthquake-simulator platform to record rocking accelerations of the simulator about 
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the two horizontal axes (x and y). The locations of these vertically-oriented accelerometers are indicated by 

red solid triangles in Figure 4.2b.    

Four load cells were installed under the base of the vessel and used to measure reactions (shear forces and 

normal forces); see Figure 4.2a and 4.2c. The load cells were built at the University at Buffalo. A NIST 

(National Institute of Standards and Technology) traceable reference load cell was used to calibrate the load 

cells in a tension-compression machine (Tinius Olsen Testing Machine Co.) prior to earthquake-simulator 

testing; see Appendix A of Mir et al. (2022b) for details. The load cells were named LNE, LNW, LSE, and 

LSW, denoting the load cells at the north-eastern, north-western, south-eastern, and south-western corners, 

respectively, as shown in Figure 4.2c.  

Three-directional acceleration responses were measured above the four load cells, on the base of the vessel 

(above the isolators), and near the top of the vessel, at the locations indicated by green solid triangles in 

Figure 4.2c, Figure 4.2d, and Figure 4.2f, respectively.  Rocking accelerations above the isolation system 

(on the base of the vessel) were measured using four vertically-oriented accelerometers (in addition to the 

tri-axial accelerometers), as indicated by red solid triangles in Figure 4.2d.    

Horizontal displacements of the isolators were measured using eight string potentiometers: four installed 

above the load cells and four above the isolators (on the base plate). The locations of the string 

potentiometers are indicated by solid yellow circles in Figure 4.2. 

Twelve pressure gages, arranged in arrays of four at three heights (0.15 m, 0.914 m, and 1.524 m) above 

the base of the vessel, were used to measure hydrodynamic pressure on the wall of the outer vessel; see 

Figure 4.2a and 4.2e. 
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a. elevation 

  

b. section A-A, earthquake simulator  c. section B-B, above load cells  

 

 

d. section C-C, above base plate 
e. section D-D, pressure gages near mid-height 

of vessel 

Figure 4.2. Instrumentation on outer vessel, base plate and earthquake simulator; accelerometer, string 

potentiometer and pressure gage names begin with ‘A’, ‘SP’, and ‘P’, respectively 
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f. section E-E, top of the outer vessel 

Figure 4.2. Instrumentation on outer vessel, base plate and earthquake simulator; accelerometer, string 

potentiometer and pressure gage names begin with ‘A’, ‘SP’ and ‘P’, respectively (cont.)  

 

The acceleration and strain response of the core barrel was measured using four unidirectional 

accelerometers, waterproofed using an epoxy compound, and four strain gages as shown in Figure 4.3. The 

accelerometers were installed on the inner face of the core barrel. Slots were machined in the reflector 

blocks to accommodate these accelerometers and their wiring, as explained in section 3.2. The 

accelerometers were oriented at an angle of 9.5° to directions x and y, as indicated in Figure 4.3b.   

 

 

 

 

a. elevation b. section A-A, accelerometers c. section B-B, strain gages 

Figure 4.3. Instrumentation on core barrel, accelerometer and strain gage names begin with ‘ACR’ and ‘SGCR’, 

respectively; angles not shown at scale 

 

The vertical and lateral acceleration response of the reflector blocks was measured at four locations at the 

top of the blocks and four locations at the bottom of the blocks, as shown in Figure 4.4b. Similar to the 

accelerometers on the core barrel, the accelerometers on the reflector-block assembly were oriented at an 

angle of 9.5° to directions x and y, as indicated in Figure 4.4b. 
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a. isometric view b. section A-A, angles not shown at scale 

Figure 4.4. Instrumentation on reflector-block assembly, accelerometer names begin with ‘ARF’ 

 

To evaluate the seismic behavior of the reflector blocks and the reflector-block assembly, paper markers 

were used on four blocks each in eight out of the sixteen vertical reflector-block assembly columns. (The 

four selected blocks were RB-4, RB-7, RB-9, and RB-11 per Figure 3.4 and Figure 3.5.) The selected eight 

vertical columns were denoted A through H and the selected four blocks in a column were denoted 1 through 

4 such that the individual blocks were identified as A1, A2, A3, A4, B1, B2 and so on, as shown in Figure 

4.5. Two markers, made of parchment paper (shown in black in Figure 4.5), were used on each selected 

block: one connecting the selected block to another block in an adjacent column and the other connecting 

it to a block above or below. The ends of the tape markers were secured to the blocks using adhesive tape. 

A borescope (Make: DEPSTECH; Model: 8.0MP WiFi Endoscope) was used to check for damaged markers 

after an earthquake simulator test. (The tests to evaluate the attachment performance were carried out prior 

to the installation of pebbles.)  

 

    

a. two black markers on 

block C4 
b. markers on reflector-block assembly, different views 

Figure 4.5. Markers for assessing attachment performance of reflector blocks 
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Visual scales were installed on blocks RB-2 and RB-3 of eight vertical columns of reflector blocks, as 

shown in Figure 4.6a, to assess compaction of the pebble bed.  A visual scale comprised twenty bands with 

each band having a distinct color or pattern and a depth of 10 mm, as shown in Figure 4.6b. A borescope 

inserted through the tube shown in Figure 3.1 was used to capture images of the underside of the pebble 

bed against the visual scales before and after an earthquake simulator test. One such image is presented in 

Figure 4.6c. The vertical displacement of the underside of the pebble bed was used to calculate changes in 

pebble packing fraction.       

 

   

a. eight visual scales  b. twenty bands of a visual scale 
c. picture of the underside of the 

pebble bed  

Figure 4.6. Colored markers for assessing pebble consolidation 

 

The sloshing displacements of water in the annular space between the reflector blocks and the core barrel 

were measured using two bespoke float-and-Temposonic sensors. Each sensor comprised a float attached 

to a lightweight tube mounted on to the waveguide of a Temposonic, as presented in Figure 4.7a. A magnet 

was attached to the top of the tube as shown in Figure 4.7a and the Temposonic recorded the vertical motion 

of the magnet, which was driven by the motion of the float. A discussion on the performance of this sensor 

is presented in Section B.6 of Mir et al. (2022b). The two sensors were installed above the head of the 

vessel on an overhead frame as shown in Figure 4.7b. The locations of the sensors in the r –   plane (per 

Figure 4.1b) were ( , ) (0.7, 0.072 )r  = −  and ( , ) (0.7,1.052 ),r  =  and were denoted TE and TW, 

respectively, as indicated in Figure 4.7b.        
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a. sensor, schematic b. TE and TW installed on an overhead frame 

Figure 4.7. Float-and-Temposonic sensors for recording sloshing displacements 

 

4.3 Seismic inputs 

Four sets of three-component motions, including three recorded triplets, and one synthetic triplet were used 

for testing. The recorded ground motions were from the 1999 Chi-Chi Earthquake, the 1940 Imperial Valley 

earthquake, and the 1952 Kern County earthquake, and were extracted from PEER Ground Motion 

Database (http://ngawest2.berkeley.edu). The recorded motions were time-scaled to be consistent with 

the assumed length scale of test specimen: the time-axis was compressed by a factor of 1.6  (= 1/ LS , 

where 0.39LS =  per section 2). The synthetic triplet had frequency contents that spanned a broad range 

(< 50 Hz) and is referred to as the broad-band motion (BBM) hereafter. The peak accelerations of the three 

components of the different inputs were selected to ensure that the displacement capacities of the earthquake 

simulator’s actuators or the friction pendulum bearings were not exceeded. Table 4.1 presents information 

on the earthquake simulator inputs and Figure 4.8 presents the response spectra for the time-scaled inputs 

used in the experiments. The chosen ground motions envelop a wide frequency range: the horizontal 

components of Chi-Chi earthquake have a dominant low-frequency content whereas those of the Imperial 

Valley and Kern County earthquakes have a dominant high-frequency content. 
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Table 4.1. Earthquake-simulator inputs used for testing 

Motion Event Recording station 
Time scale 

compression 

Peak accel. (g) 

x y  z  

CCE Chi-Chi earthquake, 1999 TCU052 1.6 0.4 0.19 0.14 

ECE 
Imperial Valley earthquake, 

1940 
El Centro Array #9 1.6 0.4 0.3 0.25 

KCE 
Kern County earthquake, 

1952 
Taft Lincoln School, 21 1.6 0.57 0.65 0.39 

BBM - - - 0.37 0.22 0.23 

 

   

a. CCE b. ECE c. KCE 

 

 

 

 d. BBM  

Figure 4.8. Response spectra of used earthquake simulator inputs, damping ratio of 5% 

 

4.4 Test series  

The earthquake-simulator tests of the test specimen were grouped into three series based on the previously 

defined objectives. Test series 1 through 3 are described below.  

4.4.1 Test series 1  

The primary objective of test series 1 was to assess the buoyant behavior and attachment performance of 

the reflector blocks. A secondary objective of the test series was to characterize the assembly comprising 

the vessel, the core barrel, the reflector blocks, and water. Accordingly, the paper markers and 
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accelerometers on the reflector blocks were the key instruments for this test series. Instrumentation on the 

outer vessel, core barrel, and the float-and-Temposonic sensors described in section 4.2, were also active. 

Pebbles were not placed for this test series. White noise excitations in the three directions, horizontal 

sinusoidal excitations of different frequencies, and one-directional (x) and three-directional (x, y, and z) 

inputs listed in Table 4.1 were used for testing. The input motions used for test series 1 are listed in Table 

4.2.  

 

Table 4.2. Input motions for test series 1 

Number Motion x-direction PGA (g) y-direction PGA (g)  z-direction PGA (g)  

1 White noise, x 0.2 - - 

2 White noise, y - 0.2 - 

3 White noise, z - - 0.2 

4 Sine sweep, z - - 0.15 

5 Sine wave (0.5 Hz) 0.14 - - 

6 Sine wave (0.6 Hz) 0.16 - - 

7 Sine wave (0.7 Hz) 0.2 - - 

8 Sine wave (0.8 Hz) 0.18 - - 

9 Sine wave (1 Hz) 0.19 - - 

10 Sine wave (5 Hz) 0.43 - - 

11 CCE 0.4  - - 

12 ECE 0.4 - - 

13 KCE 0.57 - - 

14 BBM 0.37 - - 

15 CCE 0.4 0.19 0.14 

16 ECE 0.4 0.3 0.25 

17 KCE 0.57 0.65 0.39 

18 BBM 0.37 0.22 0.23 

 

4.4.2 Test series 2 

Test series 2 involved earthquake-simulator tests of the complete assembly, including the pebbles. Tests 

were conducted in the fixed base configuration and two base-isolated configurations utilizing the Single 
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concave Friction Pendulum (SFP) bearings and Triple Friction Pendulum (TFP) bearings described in 

Section 3. Test configurations were grouped into sub-series 2-FB (fixed base), 2-SFP (base-isolated with 

Single concave Friction Pendulum bearings), and 2-TFP (base-isolated with Triple Friction Pendulum 

bearings). The input motions used for 2-FB, 2-SFP, and 2-TFP are listed in Table 4.3, Table 4.4, and Table 

4.5, respectively. The peak accelerations of the CCE motion in 2-SFP and 2-TFP were reduced to 80% of 

the values listed in Table 4.1 because the isolation-system displacements in the full-scale CCE motion were 

close to the capacity of the bearings and an earthquake-simulator-control related amplification in the input 

acceleration could lead to the bearing displacement capacities being exceeded. Sloshing displacements, 

hydrodynamic pressure on the vessel wall, force response of the test assembly, dynamic responses of the 

core barrel and reflector blocks were of interest in test series 2. These responses were recorded using the 

instrumentation described previously.  

 

Table 4.3. Input motions for test series 2-FB 

Number Motion x-direction PGA (g) y-direction PGA (g)  z-direction PGA (g)  

1 White noise, x 0.2 - - 

2 White noise, y - 0.2 - 

3 White noise, z - - 0.2 

4 Sine sweep, z - - 0.15 

5 Sine wave (0.5 Hz) 0.1 - - 

6 Sine wave (0.6 Hz) 0.15 - - 

7 Sine wave (0.7 Hz) 0.17 - - 

8 Sine wave (0.8 Hz) 0.17 - - 

9 Sine wave (1 Hz) 0.18 - - 

10 Sine wave (5 Hz) 0.32 - - 

11 CCE 0.4 - - 

12 ECE 0.4 - - 

13 KCE 0.57 - - 

14 BBM 0.37 - - 

15 CCE 0.4 0.19 0.14 

16 ECE 0.4 0.3 0.25 

17 KCE 0.57 0.65 0.39 

18 BBM 0.37 0.22 0.23 
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Table 4.4. Input motions for test series 2-SFP 

Number Motion 
Peak accel. (g) 

x y  z  

1 CCE 0.32 - - 

2 KCE 0.57 - - 

3 CCE 0.32 0.152 0.112 

4 ECE 0.4 0.3 0.25 

5 KCE 0.57 0.65 0.39 

6 BBM 0.37 0.22 0.23 

 

Table 4.5. Input motions for test series 2-TFP 

Number Motion 
Peak accel. (g) 

x y  z  

1 CCE 0.32 - - 

2 KCE 0.57 - - 

3 CCE 0.32 0.152 0.112 

4 ECE 0.4 0.3 0.25 

5 KCE 0.57 0.65 0.39 

6 BBM 0.37 0.22 0.23 

 

4.4.3 Test series 3 

The focus of test series 3 was on assessing the impact of strong earthquake shaking on the packing fraction 

of the pebble bed. The three-directional KCE motion with peak accelerations per Table 4.1 was selected as 

the strong earthquake input for this test series. The motion was run repeatedly and the compaction of the 

pebble bed was assessed using a borescope to capture images of the underside of the pebble bed before and 

after each run. Tests were conducted in the fixed base and the two base-isolated configurations. The pebbles 

were un-loaded and re-loaded into the vessel after each set of runs.   

  



 

52 

 

  



 

53 

 

SECTION 5  

TEST RESULTS 

5.1 Introduction 

This section presents results from earthquake-simulator tests of the scaled model of the Fluoride salt-cooled 

High temperature Reactor (FHR) described in Section 3. The tests were conducted on a six-degrees-of-

freedom earthquake simulator and utilized the three-directional seismic inputs introduced in section 4.3. 

Section 5.2.2 through section 5.2.6 below discuss the behavior of individual model components: the outer 

vessel, the core barrel, the reflector-block assembly, the fluid, and the pebble bed. Test results from base-

isolated configurations utilizing Single concave Friction Pendulum bearings and Triple Friction Pendulum 

bearings, introduced in section 3.3, are presented in section 5.3. The conclusions drawn in this section are 

used in Section 6 to formulate recommendations for seismic analysis and modelling of FHR components.  

5.2 Component behaviors 

5.2.1 Introduction   

Conclusions are drawn from results of test series 1 through 3, introduced in Section 4, in the following sub-

sections on the behavior of different model components. A discussion on the additional rocking inputs, 

observed in the experiments, is presented first.  

The seismic inputs introduced in Section 4 do not include rocking about the two horizontal axes of the 

earthquake simulator. However, rocking of the platform was observed in tests due to compliance between 

the simulator’s horizontal and vertical actuators. These accelerations impacted certain component behaviors 

as discussed below. Rocking accelerations (in rad/sec2) at the base of the vessel about the x- and y-axes, 

denoted xr  and yr , respectively, were determined using recordings from the four vertically-oriented 

accelerometers presented in Figure 4.2d as follows: 

 ( ) /xr ABNZ ABSZ L= −  (5-1) 

 ( ) /yr ABWZ ABEZ L= −  (5-2) 

where ABNZ, ABSZ, ABWZ, and ABEZ are the vertical acceleration histories (in m/sec2) at the north, east, 

south, and west sides of the base plate, respectively (see Figure 4.2d), and L  (= 2 m) is the size of the 

square base plate (the four vertically-oriented accelerometers were installed on the edges of the 2 m × 2 m 

square base plate). 
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5.2.2 Outer vessel   

The response spectra of the horizontal acceleration responses at the base and the top of the outer vessel are 

presented in Figure 5.1 through Figure 5.5 for the 1D and 3D earthquake inputs of Table 4.3. The 

accelerations at the base of the vessel along the x and y directions, denoted ,b xa  and ,b ya , respectively, were 

calculated as: 

 , ( 1 1 1 1 ) / 4b xa ANE X ANW X ASE X ASW X= + + +  (5-3) 

 , ( 1 1 1 1 ) / 4b ya ANE Y ANW Y ASE Y ASW Y= + + +  (5-4) 

where ANE1X (Y), ANW1X (Y), ASE1X (Y), and ASW1X (Y) are the acceleration histories recorded above 

the base of the vessel by identically-named accelerometers per Figure 4.2d. The accelerations at the top of 

the vessel along the x and y directions, denoted ,t xa  and ,t ya , respectively, were calculated as: 

 , ( 3 3 3 3 ) / 4t xa AN X AS X AE X AW X= + + +  (5-5) 

 , ( 3 3 3 3 ) / 4t ya AN Y AS Y AE Y AW Y= + + +  (5-6) 

where AN3X (Y), AS3X (Y), AE3X (Y), and AW3X (Y) are the acceleration histories recorded by 

accelerometers at the top of the vessel per the instrumentation layout in Figure 4.2a and f.3  

Figure 5.1 through Figure 5.5 also include spectral accelerations at the top of the vessel calculated assuming 

the outer vessel to be rigid (dashed lines). That is, the acceleration at the top was calculated as a summation 

of the acceleration at the base and the horizontal acceleration at the top due to rocking at the base. 

Accordingly, the accelerations at the top of the vessel along the x and y directions, calculated using a rigid-

vessel assumption, were ,( )b x ya r H+  and ,( )b y xa r H− , respectively, where H (= 2 m) is the height of the 

vessel.  

The response spectra of the recorded accelerations at the top of the vessel (calculated per equations (5-5) 

and (5-6)) and the accelerations calculated using a rigid-vessel assumption are virtually identical, as seen 

in Figure 5.1 through Figure 5.5, indicating that: (a) any amplification in accelerations along the height of 

the outer vessel is due to rocking inputs only, and as a consequence, (b) the outer vessel is effectively rigid. 

 

                                                      

3 Equations (5-3) through (5-6) involve averaging the accelerations recorded by four accelerometers. The recordings 

from the four accelerometers were similar in each case and the averaging is done for the purpose of completeness in 

presentation.     
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a. 1D CCE, motion #11 in Table 4.3 b. 1D ECE, motion #12 in Table 4.3 

  

c. 1D KCE, motion #13 in Table 4.3 d. 1D BBM, motion #14 in Table 4.3 

Figure 5.1. Amplification in acceleration along the height of the vessel due to rocking inputs, x direction, spectra 

for 5% damping 
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a. x direction b. y direction 

Figure 5.2. Amplification in accelerations along the height of the vessel due to rocking inputs, 3D CCE input, 

motion #15 in Table 4.3, spectra for 5% damping 

 

 

  

  
a. x direction b. y direction 

Figure 5.3. Amplification in accelerations along the height of the vessel due to rocking inputs, 3D ECE input, 

motion #16 in Table 4.3, spectra for 5% damping 
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a. x direction b. y direction 

Figure 5.4. Amplification in accelerations along the height of the vessel due to rocking inputs, 3D KCE input, 

motion #17 in Table 4.3, spectra for 5% damping 

 

 

  

  
a. x direction b. y direction 

Figure 5.5. Amplification in accelerations along the height of the vessel due to rocking inputs, 3D BBM input, 

motion #18 in Table 4.3, spectra for 5% damping 
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Reaction force time series recorded under the base of the vessel for the 1D and 3D earthquake inputs per 

Table 4.3 (fixed-base configuration) are presented in Figure 5.7 through Figure 5.11. For the 1D inputs, 

only the shear force in x direction is presented. For the 3D inputs, shear forces in the two horizontal 

directions and the normal force are presented. Reaction force time series calculated considering a lumped-

mass approach are also plotted to enable a comparison. For the lumped-mass calculation, denoted 

Calculation in the figures, the mass of the test specimen is lumped at its center of mass, as presented in 

Figure 5.6, and the forces in the x, y, and z directions, denoted xF , yF , and zF , respectively, are calculated 

as:    

 ,( )x b x y CMF M a r h= +  (5-7) 

 ,( )y b y x CMF M a r h= −  (5-8) 

 ,z b zF Ma=  (5-9) 

where M is the mass of the specimen (= 7700 kg), CMh  (= 0.76 m) is the height of the center of mass of 

the test specimen, as indicated in Figure 5.6, and ,b za  is the vertical acceleration recorded at the base of the 

vessel calculated per Figure 4.2d as: 

 , ( 1 1 1 1 ) / 4b za ANE Z ANW Z ASE Z ASW Z= + + +  (5-10) 

  

 

Figure 5.6. Lumped mass approximation of the test specimen 

The insets in the panels of Figure 5.7 through Figure 5.11 present measured (experiment) and calculated 

(lumped mass) reaction histories around the time of peak response to aid the interpretation of results. 

The experimental and calculated histories of base reactions correlate well, as can be seen in Figure 5.7 

through Figure 5.11: the measured time series are recovered reasonably well using the lumped-mass 

    
  

    

   

 

   

      

    

Center 

of mass
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approach. Table 5.1 presents the percentage differences in absolute maximum values of the measured and 

calculated base reactions for the 1D and 3D earthquake inputs in test series 2. The absolute values of the 

percentage differences in the case of test series 2-FB (fixed-base configuration), 2-SFP (base-isolated with 

SFP bearings), and 2-TFP (base-isolated with TFP bearings) range between 0% and 17%, indicating that 

the lumped-mass approach can be used to calculate support reactions with sufficient accuracy for design.   
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a. 1D CCE, motion #11 in Table 4.3 

 
b. 1D ECE, motion #12 in Table 4.3 

 
c. 1D KCE, motion #13 in Table 4.3 

 
d. 1D BBM, motion #14 in Table 4.3 

Figure 5.7. Comparison of experimental and calculated time series of shear force in the x direction, 1D inputs 
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a. x direction 

 
b. y direction 

 
c. z direction 

Figure 5.8. Comparison of experimental and calculated time series of base reactions, 3D CCE input, motion #15 

in Table 4.3 
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a. x direction 

 
b. y direction 

 
c. z direction 

Figure 5.9. Comparison of experimental and calculated time series of base reactions, 3D ECE input, motion #16 

in Table 4.3 
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a. x direction 

 
b. y direction 

 
c. z direction 

Figure 5.10. Comparison of experimental and calculated time series of base reactions, 3D KCE input, motion #17 

in Table 4.3 
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a. x direction 

 
b. y direction 

 
c. z direction 

Figure 5.11. Comparison of experimental and calculated time series of base reactions, 3D BBM input, motion #18 

in Table 4.3 
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Table 5.1. Percentage differences between absolute maximum values of experimental and calculated base 

reactions† 

Test series Input motion†† x direction y direction  z direction  

2-FB 

1D CCE (#11) 15 - - 

1D ECE (#12) 15 - - 

1D KCE (#13) 14 - - 

1D BBM (#14) 13 - - 

3D CCE (#15)  14 -4 6 

3D ECE (#16) 14 4 6 

3D KCE (#17) 14 5 4 

3D BBM (#18) 13 9 7 

2-SFP 

1D CCE (#1) 7 - - 

1D KCE (#2) 13 - - 

3D CCE (#3)  9 5 13 

3D ECE (#4) 17 3 6 

3D KCE (#5) 10 -3 11 

3D BBM (#6) 7 4 14 

2-TFP 

1D CCE (#1) 1 - - 

1D KCE (#2) 7 - - 

3D CCE (#3)  1 -1 10 

3D ECE (#4) 11 -3 11 

3D KCE (#5) 5 0 10 

3D BBM (#6) 2 0 8 
†The differences are calculated as: (experimental value – calculated value)/calculated value ×100 
††Number in parenthesis are motion numbers per Table 4.3, Table 4.4, and Table 4.5 for test series 2-FB, 2-SFP, and 2-TFP, 

respectively.  
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5.2.3 Core barrel 

The acceleration response of the core barrel, obtained from accelerometers per Figure 4.3, is compared with 

the input acceleration at the base of the vessel in this sub-section. Since the accelerometers near the bottom 

of the core barrel were not aligned with the defined x and y axes, the horizontal accelerations at the base of 

the vessel were transformed to align with transformed axes x̂  and ŷ  per Figure 5.12. The transformed 

horizontal accelerations along axes x̂  and ŷ , denoted ˆ,b xa  and ˆ,b ya , respectively, were calculated as: 

 ˆ, , ,cos(9.5 ) sin(9.5 )b x b x b ya a a=  +   (5-11) 

 ˆ, , ,sin(9.5 ) cos(9.5 )b y b x b ya a a= −  +   (5-12) 

Figure 5.13 through Figure 5.17 enable a comparison of response spectra of accelerations recorded on the 

base of the vessel (input to the superstructure/specimen) and on the core barrel in tests using the 1D and 3D 

earthquake inputs of Table 4.3. 

The acceleration response spectra on the base of the vessel and on the core barrel are virtually identical for 

all input motions considered here, except for minor differences at high frequencies, particularly in case of 

the 1D and 3D BBM motions (see Figure 5.13d and Figure 5.17), which were not characterized.   

It is challenging to numerically or analytically characterize these minor differences in the high-frequency 

acceleration responses of the core barrel because the core barrel was not a perfect cylinder. Specifically, 

some of the tabs on the core barrel (introduced in section 3.2) were in contact with the inner surface of the 

vessel during testing and two thick welds (see Figure 5.18) ran along the height of the cylindrical core barrel 

at two locations.   

The strain response of the core barrel, recorded using strain gages SGCRN, SGCRS, and SGCRW per Figure 

4.34 was insignificant. The peak strains recorded in motions #11 through #18 per Table 4.3 were smaller 

than 40 microstrain (40 × 10-6): less than 1% of the yield strain of aluminum. Figure 5.19 presents the strain 

histories recorded in motion #17, which was the most intense earthquake input used for testing (in terms of 

peak accelerations).   

 

Inertial effects on the core barrel at the model scale were distorted, as noted in section 2.5, and forces would 

have been 3.5 times greater if the ratio of 7  at model and prototype scales had equaled 1.0 and not 0.29. 

                                                      

4The fourth strain gage on the core barrel, SGCRE, malfunctioned during tests and is not included in the discussion 

here.  
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However, the corresponding maximum strain in the core barrel would have been less than 5% of the yield 

value. Accordingly, because the acceleration response spectra computed on the core barrel and at the base 

of the vessel are similar, and the strains in the core barrel are very small, it is concluded that the core barrel 

and outer vessel respond as a unit. 

 

 

Figure 5.12. Accelerometers near the lower end of the core barrel and transformed axes x̂  and ŷ  
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a. 1D CCE, motion #11 in Table 4.3 b. 1D ECE, motion #12 in Table 4.3 

  

c. 1D KCE, motion #13 in Table 4.3 d. 1D BBM, motion #14 in Table 4.3 

Figure 5.13. Acceleration response spectra of the core barrel, x̂  direction, 5% damping 
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a. x̂  direction b. ŷ  direction 

Figure 5.14. Acceleration response spectra of the core barrel, 3D CCE input, motion #15 in Table 4.3, 5% 

damping 

 

  

  

a. x̂  direction b. ŷ  direction 

Figure 5.15. Acceleration response spectra of the core barrel, 3D ECE input, motion #16 in Table 4.3, 5% 

damping 
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a. x̂  direction b. ŷ  direction 

Figure 5.16. Acceleration response spectra of the core barrel, 3D KCE input, motion #17 in Table 4.3, 5% 

damping 

 

  

  

a. x̂  direction b. ŷ  direction 

Figure 5.17. Acceleration response spectra of the core barrel, 3D BBM input, motion #18 in Table 4.3, 5% 

damping 
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Figure 5.18. Weld on the core barrel 

 

 

a. SGCRW 

 

b. SGCRN 

 

c. SGCRS 

Figure 5.19. Strain response of the aluminum core barrel, 3D KCE input, motion #17 in Table 4.3, yield strain = 

4000 Microstrain 
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5.2.4 Reflector-block assembly 

A borescope, inserted into the core of the specimen through the head, was used in test series 1 to check that 

all reflector block columns were afloat to confirm the buoyant behavior of the reflector-block assembly. 

The potential for movement between reflector blocks was assessed by running motion #17 (3D KCE) at 

25%, 50%, 75%, and 100% of the full intensity followed by motion #15, #16, and #18 per Table 4.2. The 

paper markers on the reflector blocks, introduced in section 4.2, were checked using a borescope after each 

run. Figure 5.20 presents pictures of a few markers taken (in the submerged state) after these tests. None of 

the tape markers were damaged during shaking with the 3D inputs, indicating the gaps between the blocks 

did not change significantly with shaking.      

      

   

  

Figure 5.20. Paper markers after tests for attachment performance 

 

The three-directional acceleration responses at the bottom (top) of the reflector-block assembly, recorded 

by accelerometers per Figure 4.4, and the acceleration responses at the base (top) of the vessel are presented 

in Figure 5.21 through Figure 5.24 (Figure 5.25 through Figure 5.28)5.  Data are presented for the three-

directional earthquake motions #15 through #18 per Table 4.3. The acceleration response spectra at the 

north, south, east, and west ends of the reflector-block assembly are essentially identical for frequencies 

less than 20 Hz, both at the top and bottom of the assembly, indicating that the assembly responded as a 

rigid unit. The minor differences in responses at high frequencies are not well-characterized but are likely 

due to impacts of the blocks, shear keys, and shear pins.  

 

                                                      

5The tri-axial accelerometer ARFN1X (Y, Z), located near the northern end at the bottom of the reflector-block 

assembly per Figure 4.4, did not function during these tests. Response spectra for the north accelerometer time 

series are not presented in Figure 5.21 through Figure 5.24. 
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a. x̂  direction b. ŷ  direction 

 

 

c. z direction  

Figure 5.21. Acceleration response spectra at the bottom of the reflector block (RB) assembly, 3D CCE input, 

motion #15 in Table 4.3, 5% damping  

  



 

74 

 

 

 

 

 

  

a. x̂  direction b. ŷ  direction 

 

 

c. z direction  

Figure 5.22. Acceleration response spectra at the bottom of the reflector block (RB) assembly, 3D ECE input, 

motion #16 in Table 4.3, 5% damping 
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a. x̂  direction b. ŷ  direction 

 

 

c. z direction  

Figure 5.23. Acceleration response spectra at the bottom of the reflector block (RB) assembly, 3D KCE input, 

motion #17 in Table 4.3, 5% damping 

 

 

 

 

 



 

76 

 

 

 

 

 

  

a. x̂  direction b. ŷ  direction 

 

 

c. z direction  

Figure 5.24. Acceleration response spectra at the bottom of the reflector block (RB) assembly, 3D BBM input, 

motion #18 in Table 4.3, 5% damping 
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a. x̂  direction b. ŷ  direction 

 

 

c. z direction  

Figure 5.25. Acceleration response spectra at the top of the reflector block (RB) assembly, 3D CCE input, motion 

#15 in Table 4.3, 5% damping 
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a. x̂  direction b. ŷ  direction 

 

 

c. z direction  

Figure 5.26. Acceleration response spectra at the top of the reflector block (RB) assembly, 3D ECE input, motion 

#16 in Table 4.3, 5% damping 
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a. x̂  direction b. ŷ  direction 

 

 

c. z direction  

Figure 5.27. Acceleration response spectra at the top of the reflector block (RB) assembly, 3D KCE input, motion 

#17 in Table 4.3, 5% damping 
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a. x̂  direction b. ŷ  direction 

 

 

c. z direction  

Figure 5.28. Acceleration response spectra at the top of the reflector block (RB) assembly, 3D BBM input, 

motion #18 in Table 4.3, 5% damping 
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5.2.5 Fluid  

The sloshing behavior of the fluid in the annular space between the core barrel and the reflector blocks was 

studied using time series of wave heights recorded by the float-and-Temposonic transducers introduced in 

Figure 4.7.  

Figure 5.29 presents the normalized power spectral density (PSD) plots of the wave-height time series 

recorded by the two wave-height transducers for the fixed-base specimen excited by white noise excitation 

in the x direction. For reference, the analytically-evaluated, first-mode sloshing frequencies of fluid-filled 

tanks with two geometries are also indicated on the plots in Figure 5.29: (1) an annular cylindrical tank with 

outer and inner radii of 0.748 m and 0.732 m, respectively, and a fluid height of 1.93 m, frequency = 0.6 Hz, 

and (2) a cylindrical tank with an outer radius of 0.748 m and a fluid height of 0.04 m, frequency = 0.25 Hz. 

The two geometries, depicted in Figure 5.30, represent simplifications of the fluid-domain geometry in the 

test specimen that could enable use of existing analytical solutions for assessment of the seismic response 

of the fluid. The analytical solutions by Tang et al. (2010) and Veletsos (1984) for seismic (hydrodynamic) 

responses of fluid in annular and regular cylindrical tanks, respectively, were used to calculate the indicated 

frequencies.  

The angular frequency ,1annular  of the first sloshing mode in an annular tank with outer radius and fluid 

height of a  and H , respectively, is given by the following expression (Tang et al. 2010):   

 
2 1 1

,1 tanhannular

H
g

a a

 


 
=  

 
 (5-13) 

where 
1  (=1.01 here) depends on the ratio of inner and outer tank radii. For outer and inner radii of 0.748 m 

and 0.732 m, respectively, and a fluid height of 1.93 m, ,1 3.77annular = rad/s (frequency = 0.6 Hz). 

For a regular cylindrical tank with radius and fluid height of a  and H , respectively, the angular frequency 

of the first sloshing mode, ,1regular , is given by (Veletsos 1984):  

 
2 1 1

,1 tanhregular

H
g

a a

 


 
=  

 
 (5-14) 

where 
1 1.841 = . For a tank with an outer radius of 0.748 m and a fluid height of 0.04 m, which is the 

clearance between the underside of the reflector-block assembly and the base of the vessel, ,1 1.57regular =

rad/s (frequency = 0.25 Hz).   
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The peak amplitude in each PSD plot in Figure 5.29 is at a frequency of 0.4 Hz. Smaller peaks are observed 

at other frequencies, including at 0.25 Hz and at a frequency of approximately 0.6 Hz. This range of 

frequencies observed in the PSD plots indicates that idealizing the fluid-domain geometry as an annular or 

a regular tank, as discussed below, would at best, result in approximate estimates of responses.  

 

  

a. transducer TE b. transducer TW 

Figure 5.29. Normalized PSD plot for wave height, white noise excitation in the x direction 

 

Figure 5.30. Simplification of fluid-domain geometry for application of existing analytical solutions  

 

The sloshing response of the fluid in the experiments was heavily damped and ceased as soon as the input 

motion stopped. As an illustration of the heavily-damped response of the fluid, Figure 5.31 through Figure 

5.34 present time series of four unidirectional input accelerations ( ,b xa ) and the corresponding wave height 

responses recorded by TE: there was no free vibration response of the fluid.  

0.25 Hz 0.6 Hz 0.25 Hz 0.6 Hz0.25 Hz 0.6 Hz 0.25 Hz 0.6 Hz

Hc = 0.04 m

H = 1.93 m

Cylindrical tank with a water 

height of Hc and a calibrated 

value of fluid damping

Annular tank with a water 

height of H and a calibrated 

value of fluid damping

Ignore fluid and 

pebbles inside the

reflector block

assembly

Test specimen
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Figure 5.31. Input acceleration at base and wave height response recorded by TE, 1D CCE input, motion #11 per 

Table 4.3 

 

 

Figure 5.32. Input acceleration at base and wave height response recorded by TE, 1D ECE input, motion #12 per 

Table 4.3 
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Figure 5.33. Input acceleration at base and wave height response recorded by TE, 1D KCE input, motion #13 per 

Table 4.3 

 

 

Figure 5.34. Input acceleration at base and wave height response recorded by TE, 1D BBM input, motion #14 per 

Table 4.3 
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The wave height responses recorded in experiments with those evaluated analytically using the regular tank 

approximation per Figure 5.30, and the Veletsos solution, are presented in Figure 5.35 through Figure 5.37 

for unidirectional earthquake inputs in tests series 2-FB, 2-SFP, and 2-TFP, respectively. A damping ratio 

of 30% of critical was used in the analysis based on a sensitivity study6. Peak values of experimentally and 

analytically evaluated wave height responses and their percentage differences are presented in Table 5.2. 

The percentage differences vary between 2% and 49% and the match between the time series of 

experimental and analytical responses is judged to be satisfactory.  

 

 

 

 

 

 

  

                                                      

6 Damping ratios between 0.5% and 75% of critical were considered for the sensitivity analysis. For each value of 

damping ratio, wave-height responses were calculated for eight unidirectional inputs: motions #11 through #14 in 

Table 4.3, motions #1 and #2 in Table 4.4, and motions #1 and #2 in Table 4.5. Differences in the calculated and 

measured peak responses for each value of damping were arranged as an 8 × 1 vector. The Euclidean norm (2-norm) 

of the vector was minimized at a damping ratio equal to 30%.   
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a. 1D CCE, motion #11 per Table 4.3 

 

b. 1D ECE, motion #12 per Table 4.3 

 

c. 1D KCE, motion #13 per Table 4.3 

 

d. 1D BBM, motion #14 per Table 4.3 

Figure 5.35. Wave height time series calculated using a regular tank approximation per Figure 5.30 and 

experimental results recorded by TE, tests series 2-FB 
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a. 1D CCE, motion #1 per Table 4.4 

 

b. 1D KCE, motion #2 per Table 4.4 

Figure 5.36. Wave height time series calculated using a regular tank approximation per Figure 5.30 and 

experimental results recorded by TE, tests series 2-SFP 
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a. 1D CCE, motion #1 per Table 4.5 

 

b. 1D KCE, motion #2 per Table 4.5 

Figure 5.37. Wave height time series calculated using a regular tank approximation per Figure 5.30 and 

experimental results recorded by TE, tests series 2-TFP 

 

Table 5.2. Peak experimental and analyticalϯ wave height responses and percentage differences  

Motion, test series Experimental (cm) Analytical (cm) Difference (%) 

1D CCE, 2-FB 6.0 5.5 -7 

1D ECE, 2-FB 2.4 3.6 49 

1D KCE, 2-FB 2.4 2.6 7 

1D BBM, 2-FB 3.0 3.0 2 

1D CCE, 2-SFP 4.4 3.2 -28 

1D KCE, 2-SFP 4.8 3.6 -24 

1D CCE, 2-TFP 3.7 2.9 -22 

1D KCE, 2-TFP 3.9 3.5 -10 

ϯAnalytical wave height responses evaluated using Veletsos (1984).  
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Responses calculated using the annular tank approximation per Figure 5.30 and the Tang solution were 

significantly greater than those measured in the experiments. Figure 5.38 presents wave height responses 

calculated using the annular tank approximation and experimental results for two earthquake inputs. No 

value of damping ratio provided satisfactory results in this case. This indicates that of the two 

approximations, the regular tank approximation is better suited for analyzing the sloshing response of the 

fluid in the test specimen.     

 

  

 

a. 1D CCE, motion #11 per Table 4.3 

 

b. 1D ECE, motion #13 per Table 4.3 

Figure 5.38. Wave height time series calculated using an annular tank approximation per Figure 5.30 and 

experimental results recorded by TE, tests series 2-FB 
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5.2.6 Pebble bed 

Compaction of the pebble bed under earthquake shaking was studied in test series 3. The visual scales 

introduced in Figure 4.6 were used to monitor and estimate the displacement of the underside of the pebble 

bed and to calculate changes in packing fraction. As discussed in section 4.4.3, the 3D KCE motion with 

peak accelerations of 0.57g, 0.65g, and 0.39g in the x, y, and z directions, respectively, was run repeatedly 

and the packing fraction calculated after each run. The three components had significant shaking durations 

of 19.2 s, 18.0 s, and 19.7 s, as indicated in Figure 5.39, where significant shaking duration is defined as 

the time interval bracketing 90% of the Arias intensity (IA) (Arias 1970) of the acceleration time series7.  

 

 

a. x direction 

 

b. y direction 

 

c. z direction 

Figure 5.39. Significant shaking duration of the three components of 3D KCE motion used for assessing pebble 

compaction 

                                                      

7The Arias intensity IA of an acceleration time series is defined as 
2

0

( )
2

dT

AI a t dt
g


=   where, where ( )a t  is the 

acceleration time (t) series and dT  is the duration of the time series.    

19.2 sec

18.0 sec

19.7 sec

5% Arias 

intensity
95% Arias 

intensity

5% Arias 

intensity

5% Arias 

intensity

95% Arias 

intensity

95% Arias 

intensity

IA=4.4 m/s

IA=4.8 m/s

IA=1.9 m/s

19.2 sec

18.0 sec

19.7 sec

5% Arias 

intensity
95% Arias 

intensity

5% Arias 

intensity

5% Arias 

intensity

95% Arias 

intensity

95% Arias 

intensity

IA=4.4 m/s

IA=4.8 m/s

IA=1.9 m/s

19.2 sec

18.0 sec

19.7 sec

5% Arias 

intensity
95% Arias 

intensity

5% Arias 

intensity

5% Arias 

intensity

95% Arias 

intensity

95% Arias 

intensity

IA=4.4 m/s

IA=4.8 m/s

IA=1.9 m/s



 

91 

 

Tests were run in the fixed-base (FB) configuration, and two base-isolated configurations using Single 

concave Friction Pendulum (SFP) bearings and Triple Friction Pendulum (TFP) bearings. The height of the 

underside of the pebble bed was measured using the visual scales before and after each run of the 3D KCE 

motion. Figure 5.40 presents pictures of the underside of the pebble bed taken before and after tests with 

the 3D KCE input in different test configurations. Since the pebbles were loaded manually, a constant initial 

packing fraction was not achieved in the different configurations.  

Figure 5.41 presents the change in packing fraction with duration of significant shaking in the different 

configurations. One run of the 3D KCE motion is considered to correspond to a significant shaking duration 

of 19.0 s, which is the average of the significant shaking duration in the three directions; see Figure 5.39. 

For the TFP-isolated configuration, two rounds of tests were conducted (round 1 and round 2 in Figure 

5.41) because the initial packing fraction in round 1 (= 0.622) was greater than that achieved in the prior 

two configurations (=0.613 in both the fixed base and the SFP isolated configurations). The initial packing 

fraction in all tested configurations was greater than that expected in the prototype reactor vessel (= 0.6) 

where the pebbles are loaded using a different approach: introduced one by one near the base of the vessel 

such that they rise through the Flibe. 

The maximum change in packing fraction in all tested configurations after 150+ seconds of significant 

shaking was of the order of 3%. The percentage change in packing fraction in a particular configuration 

depended on the initial packing fraction. The greatest packing fraction after shaking in all tested 

configurations was 0.628, which was within the expected range (0.625 to 0.641) for a vibrated bed of 

spheres per Dullien (1992).  
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Start of testing End of testing 

 

a. fixed base configuration 

 

b. SFP-isolated configuration 

 

c. TFP-isolated configuration, round 2 

Figure 5.40. Pictures of the underside of the pebble bed taken at the start and end of testing (refer to the visual 

scales presented in Figure 4.6)  
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Figure 5.41. Change in packing fraction with significant shaking duration  
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5.3 Key responses in isolated configurations  

Key test results from test series 2-SFP and 2-TFP per section 4.4.2 are presented in this sub-section. Table 

5.3 presents information on the acceleration time series used to compare response spectra at different 

locations in the test specimen. Response spectra of accelerations recorded below the isolation interface and 

at multiple locations above the isolation interface in tests of 2-SFP and 2-TFP are presented in Figure 5.42 

through Figure 5.53.  

 

Table 5.3. Calculation of key acceleration responsesϯ from test data for comparison  

Location and direction Expression† used for calculation  

Below isolation 

interface (see 

Figure 4.2) 

x direction (m/s2) ( 0 0 0 0 ) / 4ANE X ANW X ASE X ASW X+ + +  

y direction (m/s2) ( 0 0 0 0 ) / 4ANE Y ANW Y ASE Y ASW Y+ + +  

z direction (m/s2) ( 0 0 0 0 ) / 4ANE Z ANW Z ASE Z ASW Z+ + +  

Rocking about x direction 

(rad/s2) 
( ) /1.219ATBLNZ ATBLSZ− m 

Rocking about y direction 

(rad/s2) 
( ) /1.219ATBLWZ ATBLEZ− m 

Above isolation 

interface (see 

Figure 4.2) 

x direction (m/s2) ( 1 1 1 1 ) / 4ANE X ANW X ASE X ASW X+ + +  

y direction (m/s2) ( 1 1 1 1 ) / 4ANE Y ANW Y ASE Y ASW Y+ + +  

z direction (m/s2) ( 1 1 1 1 ) / 4ANE Z ANW Z ASE Z ASW Z+ + +  

Rocking about x direction 

(rad/s2) 
( ) / 2ABNZ ABSZ− m 

Rocking about y direction 

(rad/s2) 
( ) / 2ABWZ ABEZ− m 

Bottom of core 

barrel†† (see Figure 

4.3) 

x̂  direction (m/s2) ( ) / 2ACRE ACRW+  

ŷ  direction (m/s2) ( ) / 2ACRN ACRS+  

Top of reflector-

block assembly†† 

(see Figure 4.4) 

x̂  direction (m/s2) ( 3 3 3 3 ) / 4ARFN X ARFS X ARFE X ARFW X+ + +  

ŷ  direction (m/s2) ( 3 3 3 3 ) / 4ARFN Y ARFS Y ARFE Y ARFW Y+ + +  

z direction (m/s2) ( 3 3 3 3 ) / 4ARFN Z ARFS Z ARFE Z ARFW Z+ + +  

ϯ All acceleration time series were filtered using a 0.05 Hz – 50 Hz bandpass filter.  
† Accelerometer names per section 4.2 are used here to denote recorded acceleration time series in units of m/s2. 
†† The acceleration responses along x̂  and ŷ  directions were transformed for comparison with x and y direction responses 

above and below the isolation interface.    
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a. x direction b. rocking about y direction 

Figure 5.42. Acceleration spectra in SFP-isolated configuration, motion #1 per Table 4.4 (1D CCE), 5% 

damping 

 

 

 

  

  

a. x direction b. rocking about y direction 

Figure 5.43. Acceleration spectra in SFP-isolated configuration, motion #2 per Table 4.4 (1D KCE), 5% 

damping 
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a. x direction b. y direction 

  

c. z direction d. rocking about x direction 

 

 

e. rocking about y direction  

Figure 5.44. Acceleration spectra in SFP-isolated configuration, motion #3 per Table 4.4 (3D CCE), 5% damping 
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a. x direction b. y direction 

  

c. z direction d. rocking about x direction 

 

 

e. rocking about y direction  

Figure 5.45. Acceleration spectra in SFP-isolated configuration, motion #4 per Table 4.4 (3D ECE), 5% damping 
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a. x direction b. y direction 

  

c. z direction d. rocking about x direction 

 

 

e. rocking about y direction  

Figure 5.46. Acceleration spectra in SFP-isolated configuration, motion #5 per Table 4.4 (3D KCE), 5% damping 
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a. x direction b. y direction 

  

c. z direction d. rocking about x direction 

 

 

e. rocking about y direction  

Figure 5.47. Acceleration spectra in SFP-isolated configuration, motion #6 per Table 4.4 (3D BBM), 5% damping 
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a. x direction b. rocking about y direction 

Figure 5.48. Acceleration spectra in TFP-isolated configuration, motion #1 per Table 4.5 (1D CCE), 5% 

damping 

  

 

  

  

a. x direction b. rocking about y direction 

Figure 5.49. Acceleration spectra in TFP-isolated configuration, motion #2 per Table 4.5 (1D KCE), 5% 

damping 
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a. x direction b. y direction 

  

c. z direction d. rocking about x direction 

 

 

e. rocking about y direction  

Figure 5.50. Acceleration spectra in TFP-isolated configuration, motion #3 per Table 4.5 (3D CCE), 5% damping 
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a. x direction b. y direction 

  

c. z direction d. rocking about x direction 

 

 

e. rocking about y direction  

Figure 5.51. Acceleration spectra in TFP-isolated configuration, motion #4 per Table 4.5 (3D ECE), 5% damping 
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a. x direction b. y direction 

  

c. z direction d. rocking about x direction 

 

 

e. rocking about y direction  

Figure 5.52. Acceleration spectra in TFP-isolated configuration, motion #5 per Table 4.5 (3D KCE), 5% damping 
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a. x direction b. y direction 

  

c. z direction d. rocking about x direction 

 

 

e. rocking about y direction  

Figure 5.53. Acceleration spectra in TFP-isolated configuration, motion #6 per Table 4.5 (3D BBM), 5% 

damping 
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Figure 5.54 and Figure 5.55 present the horizontal displacement orbits of the bearings in tests of 2-SFP and 

2-TFP, respectively. The horizontal displacements 
xd  and yd  along the x and y directions, respectively, 

were calculated using recordings from eight string potentiometers, per Figure 4.2, as follows: 

 (( 1 1 ) ( 0 0 )) / 2xd SPNE X SPSE X SPNE X SPSE X= + − +  (5-15) 

 (( 1 1 ) ( 0 0 )) / 2yd SPNE Y SPNW Y SPNE Y SPNW Y= + − +  (5-16) 

The dashed blue open circle in each of these figures identifies the peak horizontal displacement.  

Table 5.4 and Table 5.5 presents the peak accelerations at the locations identified in Table 5.3 and the peak 

isolator displacements for tests in the two base-isolated configurations. The peak horizontal accelerations 

above the isolation interface (on the base of the vessel) were between 1.4 and 3.8 (1.2 and 4.6) times smaller 

than those below the isolation interface in the SFP-isolated (TFP-isolated) tests. The reduction in peak 

horizontal accelerations for the high amplitude KCE input (1D or 3D) was greater than for other inputs. 

Expectedly, there was an increase, albeit very small, in spectral acceleration around the sliding frequencies 

of the isolators: see the insets to Figure 5.46b and Figure 5.52b for two examples. The peak displacements 

in TFP-isolated configuration were greater than in SFP-isolated configuration for similar inputs because of 

differences in sliding periods in the two isolation systems and the adaptive behavior of the TFP bearings, 

that is, sliding on multiple concave surfaces.  

Spectral accelerations in the vertical direction above the isolation interface were amplified at high 

frequencies (25+ Hz). Rocking accelerations above the isolation interface were also amplified at high 

frequencies because of the vertical flexibility of the SFP and TFP bearings, as discussed in section 3.38. 

The maximum amplification in peak vertical accelerations across all isolated-configuration tests was by a 

factor of 1.3 with respect to the vertical acceleration below the isolation interface.    

 

 

 

 

 

                                                      

8Modal analysis of the SFP- and TFP-isolated configurations, presented in section 6.4, indicated that the frequencies 

of the vertical and rocking modes are nearly 38 Hz and 30 Hz, respectively, in both configurations, which explains 

the amplification of accelerations noted here.  
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a. motion #1 (1D CCE) b. motion #2 (1D KCE) 

  

c. motion #3 (3D CCE) d. motion #4 (3D ECE) 

  

e. motion #5 (3D KCE) f. motion #6 (3D BBM) 

Figure 5.54. Displacement orbits in SFP-isolated tests per Table 4.4, dashed blue open circles identify peak 

displacement, black curve traces movement of the slider   
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a. motion #1 (1D CCE) b. motion #2 (1D KCE) 

  

c. motion #3 (3D CCE) d. motion #4 (3D ECE) 

  

e. motion #5 (3D KCE) f. motion #6 (3D BBM) 

Figure 5.55. Displacement orbits in TFP-isolated tests per Table 4.5, dashed blue open circles identify peak 

displacement, black curve traces movement of the slider  
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Table 5.4. Peak values of key responses in tests of the SFP-isolated configuration 

Motion 

Peak accelerations (g) 

Peak 

isolator 

disp. (cm) 

Below isolation 

interface 

Above isolation 

interface  

Bottom of 

core barrel 

Top of RB 

assembly 

x y z x y z x y x y z 

#1 (1D CCE) 0.38 - - 0.18 - - 0.19 - 0.20 - - 3.2 

#2 (1D KCE) 0.71 - - 0.19 - - 0.18 - 0.23 - - 3.3 

#3 (3D CCE) 0.37 0.19 0.16 0.19 0.13 0.14 0.20 0.14 0.20 0.16 0.20 4.1 

#4 (3D ECE) 0.43 0.34 0.30 0.17 0.17 0.32 0.18 0.17 0.27 0.30 0.35 6.3 

#5 (3D KCE) 0.70 0.73 0.45 0.27 0.23 0.46 0.22 0.24 0.25 0.28 0.50 7.7 

#6 (3D BBM) 0.52 0.30 0.20 0.21 0.13 0.24 0.20 0.15 0.25 0.16 0.30 3.6 

 

Table 5.5. Peak values of key responses in tests of the TFP-isolated configuration 

Motion 

Peak accelerations (g) 

Peak 

isolator 

disp. (cm) 

Below isolation 

interface 

Above isolation 

interface  

Bottom of 

core barrel 

Top of RB 

assembly 

x y z x y z x y x y z 

#1 (1D CCE) 0.36 - - 0.17 - - 0.19 - 0.22 - - 5.8 

#2 (1D KCE) 0.75 - - 0.16 - - 0.17 - 0.18 - - 5.7 

#3 (3D CCE) 0.34 0.17 0.14 0.18 0.14 0.15 0.19 0.14 0.24 0.20 0.21 6.6 

#4 (3D ECE) 0.45 0.32 0.30 0.17 0.19 0.30 0.18 0.17 0.19 0.19 0.32 8.8 

#5 (3D KCE) 0.73 0.75 0.50 0.20 0.19 0.53 0.21 0.20 0.23 0.21 0.58 8.9 

#6 (3D BBM) 0.42 0.25 0.23 0.17 0.11 0.31 0.18 0.13 0.18 0.22 0.43 5.5 

 

5.4 Summary 

Results from earthquake-simulator experiments were discussed in this section and conclusions were drawn 

regarding the behavior of different components of the model. The outer vessel and the core barrel responded 

as a near-rigid unit with no relative displacements between them. Analysis of a lumped-mass model, 

wherein the mass of the test specimen was lumped at its center of mass, provided accurate estimates of base 

reactions.  



 

109 

 

The reflector-block assembly responded as one unit with negligible relative displacements between blocks. 

The high frequency responses of the core barrel and the reflector-block assembly were not particularly well-

characterized. 

The sloshing response of the fluid in the annulus between the reflector-block assembly and the core barrel 

was heavily damped and could be approximately recovered using an analytical solution for the sloshing 

response of a regular cylindrical tank and a large value of damping ratio. 

The behavior of the pebble bed was studied by repeatedly running a strong 3D input and observing the 

change in height of the underside of the pebble bed. The packing fraction of the pebble bed changed by 3% 

after 150+ seconds of strong shaking. 

Two isolation systems, utilizing SFP and TFP bearings were used to base-isolate the vessel. Peak horizontal 

accelerations at the base of the outer vessel reduced by a factor between 1.4 and 3.8 (1.2 and 4.6) with 

respect to inputs to the isolation system in the SFP-isolated (TFP-isolated) tests. Vertical and rocking 

accelerations were amplified by the isolation systems at high frequencies (25+ Hz) due their flexibility in 

the vertical direction.  
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SECTION 6  

MODELLING AND ANALYSIS OF MOLTEN SALT REACTORS 

6.1 Introduction 

This section presents recommendations for analysis and modelling of different components of a base-

isolated Fluoride-salt-cooled High temperature Reactor (FHR), based on results of tests described in the 

previous sections of this report. Section 6.2 presents recommendations for modelling fluid behavior to 

compute sloshing wave height and hydrodynamic pressure. Section 0 presents a practical approach to 

estimate forces in connections between blocks in a reflector assembly. Section 6.4 investigates modelling 

and analysis of the two base-isolation systems used in the physical tests. Recommendations are provided in 

Section 6.5. 

6.2 Fluid behavior  

6.2.1 Sloshing responses in small-width annuli  

Sloshing of fluid in the annulus between the core barrel and the reflector-block assembly (see Figure 3.1) 

was discussed in section 5.2.5, wherein it was demonstrated that the use of a regular tank approximation 

with a fluid height equal to the distance between the underside of the reflector-block assembly and the base 

of the vessel, and a large value of damping for the sloshing mode (30% of critical, calibrated using the 

experimental data) resulted in reasonably accurate estimates of sloshing wave height.  

Numerical estimation of sloshing responses in the thin annulus between the core barrel and reflector-block 

assembly is challenging for two reasons: 1) a computationally-expensive (fine) finite element mesh is 

required in the annulus to obtain meaningful results for wave height, and 2) the computation of the damping 

ratio in the sloshing mode, associated with boundary effects in the thin annulus and constricted flow 

between gaps in reflector blocks, is fluid- and geometry-specific.    

To address the challenge of computational expense, two annular tank geometries were modelled using the 

Arbitrary Lagrangian Eulerian (ALE) solver of LS-DYNA (LSTC 2017): 1) model A with a large annulus, 

with a ratio (k) of outer tank radius to inner tank radius of 0.5, and 2) model B with a small (thin) annulus, 

with  k = 0.98. The first model was chosen as a benchmark case. The width of the annulus in the second 

model was set equal to that between the reflector-block assembly and the core barrel in the test specimen. 

The radius of the outer tank in model A and model B was equal to that of the core barrel in the test specimen. 

Figure 6.1 shows the two finite element models and the used coordinate systems.   
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a. model A, k = 0.5, plan view of fluid-domain 

mesh and cutaway view  

b. model B, k = 0.98, plan view of fluid-domain 

mesh and cutaway view 

Figure 6.1. Annular tanks analyzed in LS-DYNA, dimensions in m 

 

The outer tank, inner tank, and the base of each annular tank, shown in green in Figure 6.1, were modeled 

using Lagrangian, four-node, shell elements, and as a rigid material such that their mass was nearly zero. 

(Acceleration cannot be applied to an element(s) with zero mass in LS-DYNA.) The fluid (water) domain 

and the space above the free surface (to accommodate sloshing), shown in blue and gray, respectively, in 

Figure 6.1, were modeled using Eulerian, eight-node solid elements. These Eulerian elements do not deform 

but rather serve as a grid through which fluid can flow. The material properties of the fluid domain were 

assigned using the *MAT (material) and *EOS (equation of state) cards in LS-DYNA. Water was assigned 

a density of 1000 kg/m3, a dynamic viscosity of 0 Ns/m2, and a bulk modulus of 2.2 GPa, to simulate 

inviscid and incompressible properties per Yu and Whittaker (2022). The space above the water was 

assigned void properties using the *INITIAL_VOID card. The fluid-domain elements near the walls of the 

inner and the outer tanks in model A were smaller than elsewhere (see plan view in Figure 6.1a). The 

annular space in model B was meshed using four elements in plan (see Figure 6.1b). Solid elements in the 

fluid domain (including the void space) shared nodes with the structural shell elements. The vertical 

movement of the free surface (sloshing) under seismic inputs was tracked by defining massless nodes, 

referred to as tracers, on the free surface of water using the *DATABASE_TRACER card. A detailed 

discussion on tracers is presented in Yu and Whittaker (2021).   
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Both models were analyzed for a horizontal input of four cycles of a sinusoid with a frequency of 1 Hz and 

an amplitude of 0.1g. The acceleration history was input using the keyword 

BOUNDARY_PRESCRIBED_MOTION_RIGID. An acceleration of 9.81 m/s2 was applied in the negative 

z direction in the models to simulate gravity. This acceleration was applied as a ramp from 0 to 9.81 m/s2 

in the initial 0.2 s of analysis, followed by a constant gravitational acceleration of 9.81 m/s2 thereafter. 

Horizontal acceleration inputs to the models were applied after the initial 1 s of analysis. This ensured 

proper initialization and stabilization of hydrostatic pressure in the models before the application of the 

horizontal acceleration input. 

The hydrodynamic pressure on the outer tank wall and the wave height (surface displacement) responses 

extracted from the numerical analysis of models A and B were compared with predictions using the 

analytical solution for hydrodynamic responses in annular tanks by Tang et al. (2010). For model A, the 

pressure histories near the base and the wave height histories at a point 10 mm from the outer tank wall 

were in close agreement: see Figure 6.2a and Figure 6.2b, respectively. (Errors in maximum values are 

indicated on plots as 𝜖.) The numerically predicted wave height history 4 mm from the outer tank wall, 

shown in Figure 6.2c, does not agree with the analytical prediction. The differences between the analytical 

and numerical predictions for wave height close to the wall of the tank are a result of boundary effects: the 

vertical fluid velocity at the tank wall is zero because the fluid and shell elements at the boundary share 

common nodes, and waves do not form correctly; see Yu and Whittaker (2022) for details. 
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a. pressure at ( , , ) (0.739, ,0.15)r z = −  
b. wave height at ( , , ) (0.729,0,1.65)r z =  (10 

mm from the wall) 

 

c. wave height at ( , , ) (0.735,0,1.65)r z =  (4 mm from the wall) 

Figure 6.2. Model A, ALE results and analytical predictions, sinusoidal input, coordinates in m, errors (𝜖) in 

maximum values indicated 

 

Results of analysis of model B are presented in Figure 6.3 and 6.4. Pressure histories at three heights along 

the wall (Figure 6.3) and wave height histories at two distances from the wall (Figure 6.4) are plotted. The 

plots presented in Figure 6.3 show that the numerical (ALE) results for hydrodynamic pressure are in 

reasonable agreement with the analytical predictions. Reasonably accurate estimates of wave height are 

obtained at a point 6 mm from the outer wall (see Figure 6.4a). However, similar to model A, the numerical 

predictions of wave height closer to the wall are inaccurate (see Figure 6.4b). To investigate whether 

analysis of a finer mesh would improve the numerical predictions of wave height near the edges of the 

annulus, model B was re-analyzed with element sizes reduced by a factor of 2. (In the original model B, 

four fluid elements were used along the radial direction in the annulus. In the model with a refined mesh, 

eight elements were used.) Results from model B with the refined mesh are shown in Figure 6.5 and Figure 

6.6: the numerically predicted hydrodynamic pressure histories do not improve with mesh refinement (see 

Figure 6.5), although the numerically predicted wave-height history close to the wall improves. The mesh 

refinement was computationally expensive and led to a thirteen-fold increase in simulation run time. This 

is of significance for numerical simulation of sloshing responses in the small annular space in the FHR (and 
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reactor vessels with similar internal construction). An important outcome (to be used in the next sub-

section) from the numerical results of model B described above is that the hydrodynamic pressure time 

series along the tank wall in the small annulus are predicted accurately, even though the wave height time 

series may not be captured as accurately across the width of the annulus.   

The ALE solver was used to identify computational challenges in the estimation of sloshing responses in 

thin annular spaces. (The computational cost associated with other solvers in different finite element 

packages will almost certainly be different.) However, if computational expense is considered in 

conjunction with the challenges of defining damping in the sloshing modes accounting for boundary effects 

and flow between gaps, it would appear to be more reasonable (and practical) to use the regular tank 

approximation of section 5.2.5 to estimate wave height. 

  

  

  

a. ( , , ) (0.739, ,0.15)r z = −  b. ( , , ) (0.739, ,0.9)r z = −  

 

c. ( , , ) (0.739, ,1.5)r z = −  

Figure 6.3. Model B, ALE results and analytical predictions for hydrodynamic pressure at three locations, 

sinusoidal input, coordinates in m, errors (𝜖) in maximum values indicated 
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a. 6 mm from the wall b. 3 mm from the wall 

Figure 6.4. Model B, ALE results and analytical predictions for wave height at two distances from the outer wall, 

sinusoidal input, errors (𝜖) in maximum values indicated 

 

 

  

  

a. ( , , ) (0.739, ,0.15)r z = −  b. ( , , ) (0.739, ,0.9)r z = −  

 

c. ( , , ) (0.739, ,1.5)r z = −  

Figure 6.5. Model B with finer mesh, ALE results and analytical predictions for hydrodynamic pressure at three 

locations, sinusoidal input, coordinates in m, errors (𝜖) in maximum values indicated 
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a. 6 mm from the wall b. 3 mm from the wall 

Figure 6.6. Model B with finer mesh, ALE results and analytical predictions for wave height at two distances 

from the outer wall, sinusoidal input, errors (𝜖) in maximum values indicated 

 

6.2.2 Estimation of hydrodynamic loads  

Hydrodynamic pressure loadings are needed for the analysis of reactor components (e.g., vessel, core 

barrel). The hydrodynamic pressure loads would be calculated most precisely by analysis of finite element 

models that involve an explicit representation of the fluid, contact between reflector blocks, and gap 

elements between the core barrel and vessel. Such detailed models are computationally intractable 

currently. A practical solution is to de-couple the fluid and solid domains and use 1) a fluid-only model for 

estimating hydrodynamic pressure loads, and subsequently, 2) the calculated pressure histories for analysis 

of models of the structural and mechanical components. This approach is robust because the structural 

(solid domain) components of the model, including the vessel, core barrel, and reflector blocks, responded 

as a unit during earthquake shaking.  

The efficacy of using a fluid-only model for estimation of hydrodynamic pressure histories was assessed 

using a double-annulus ALE model representative of the fluid-domain geometry in the test specimen. The 

double-annulus model, shown in Figure 6.7, considered the core barrel, the outer vessel, and the reflector-

block assembly as rigid boundaries around (inside; in case of the core barrel) the fluid domain. These 

boundaries are shown in grey in Figure 6.7. The geometry of the lower surface of the reflector-block 

assembly was simplified for this modelling exercise and the fluid-domain inside the reflector-block 

assembly was not modelled. The fluid domain is shown in blue in Figure 6.7. The core barrel partially 

separated the fluid domain into two annuli. Sloshing was restrained in the outer annulus and allowed in the 

inner annulus. Accordingly, void space was modelled above the fluid domain in the inner annulus, as shown 

in light grey in Figure 6.7. Like model B described in section 6.2, four solid elements were used across the 

width of the inner annulus. The model definition was similar to that described earlier in this section, except 
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that fluid was assigned a dynamic viscosity of 10-6 Ns/m2, representative of the water used in the 

experiments.  

The double-annulus model was subjected to accelerations recorded at the base of the test specimen for the 

one-directional CCE and KCE motions per Table 4.3. The resulting numerical hydrodynamic pressure 

histories at three locations on the wall of the outer vessel (PW1, PW2, and PW3 in Figure 6.7) were 

compared with pressure gage data (gages with same names per Figure 4.2) at the same locations on the test 

specimen. Data from PW2 and PW3 characterize the behavior of the fluid in the outer annulus. The pressure 

gage PW1 was located below the lower end of the core barrel and was thus common to the outer and the 

inner annuli. In addition to comparing hydrodynamic pressure time series, the wave height recorded by the 

sensor TW (in the inner annulus; see Figure 4.7) was compared with numerically obtained wave height time 

series at the center of the annulus at a location corresponding to that of TW in the experiments. Figure 6.8 

and Figure 6.9 present results for the two 1D motions.  

 

 

Figure 6.7. Cutaway view of the double-annulus model for estimating hydrodynamic pressure time series, LS-

DYNA 

 

Notably, the numerical and experimental pressure time series at the three locations are in good agreement 

(see Figure 6.8a, b, and c and Figure 6.9 a, b, and c). The predicted and measured wave height time series 

(see Figure 6.8d and Figure 6.9d) are substantially different in terms of both peak values and time variation, 

with possible reasons including: 

1. The damping related to wave action in the numerical model, which results from the definition of 

fluid viscosity and a small value of the hourglass-control-related coefficient, does not address the 
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dissipation of energy due to flow between the gaps in the reflector blocks and in the narrow 

annulus. 

2. The method for outputting wave height currently employed in the ALE solver of LS-DYNA is not 

robust: the tracers are not stationary in plan but rather move with the fluid (Yu and Whittaker 

2021). 

3. The breaking of waves in the annulus (see Figure 6.10) can neither be measured because there is no 

smooth free surface nor predicted with this ALE solver.  

Like the observations made in the previous section, inaccuracies in the numerically predicted wave height 

histories do not translate into similar discrepancies in pressure responses on the boundary of the annulus. 

The pressure histories close to the base of the annulus are predicted more accurately than those near the 

top. Accordingly, and with little conservatism, an analyst could choose to use the pressure histories obtained 

at the base and mid-height of the double annulus model and extrapolate the latter to the top of the annulus. 

 

            

  

a. hydrodynamic pressure at PW1 b. hydrodynamic pressure at PW2 

  

c. hydrodynamic pressure at PW3 d. wave height at TW 

Figure 6.8. Numerical and experimental results, double-annulus model, 1D CCE motion per Table 4.3. 
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a. hydrodynamic pressure at PW1 b. hydrodynamic pressure at PW2 

  

c. hydrodynamic pressure at PW3 d. wave height at TW 

Figure 6.9. Numerical and experimental results, double-annulus model, 1D KCE motion per Table 4.3. 

 

                        

a. initial condition 

    

b. images during shaking 

Figure 6.10. Wave breaking in the annulus, 3D CCE motion 
 

6.3 Estimating forces in the reflector-block assembly  

6.3.1 Introduction 

Section 6.3 provides a pathway to compute earthquake-induced forces in the pins and keys that join blocks 

in a reflector assembly, based in part on observations from the experiments introduced previously, and 

numerical analysis. Horizontal shaking is addressed in Section 6.3.2. Vertical shaking is addressed in 

Section 6.3.3. 
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6.3.2 Forces in pins and shear keys due to horizontal earthquake shaking 

Blocks in the reflector assembly introduced in section 3.2 are joined by cylindrical pins and cuboidal shear 

keys made of polypropylene: pins and shear keys hereafter. Figure 6.11 presents the locations of the pins 

and shear keys in a layer of reflector blocks in the test specimen. Figure 6.12 presents the dimensions of 

the shear keys and pins. The shear keys were installed in the orientation of Figure 6.12a. The shear keys 

connect adjacent blocks in a layer and adjacent layers of blocks, and reduce fluid flow (or core bypass flow 

in the prototype reactor) between adjacent columns of blocks. Each key resists shearing forces along two 

planes identified as planes A1 and B in Figure 6.12a. The pins were used primarily to align blocks in 

adjacent layers but resist shearing forces through their cross section (plane A2 per Figure 6.12b). The shear 

strengths of the keys and pins along planes A1, B, and A2 per Figure 6.12 are 35 kN, 100 kN, and 3.4 kN, 

respectively. Here, shear strength is calculated as 0.577 times the assumed tensile strength of polypropylene 

(= 27 MPa): von Mises criterion.     

 

 

Figure 6.11. Shear keys and pins installed in a layer of reflector blocks in the test specimen 

Pin
Shear key

https://material-properties.org/polypropylene-density-strength-melting-point-thermal-conductivity/


 

122 

 

 
 

a. shear key b. pin 

Figure 6.12. Dimensions (in mm) of a shear key and a pin and planes resisting shear forces 

 

A simplified finite element model of the reflector-block assembly, presented in Figure 6.13, was constructed 

in SAP2000 (CSI 2017). The model comprised sixteen individual columns. Each column was modelled 

using five master blocks (referred as M-blocks hereafter), as shown in Figure 6.13, rather than the fourteen 

blocks in each column of the test specimen. Accordingly, the finite element model comprised five layers of 

master blocks (see Figure 6.13a). The five master blocks were chosen to mimic the shape of an individual 

column in the test specimen. Each M-block comprised a set of massless rigid beams (to track edges) and 

rigid area elements. The area elements were assigned area masses such that the mass of an M-block in the 

model equaled the mass of the group of test blocks it represented: for example, the mass of M-block 3 per 

Figure 6.13 was equal to the mass of blocks RB-5 through RB-10 per Figure 3.5. The total mass of the 

reflector assembly in the model was 1900 kg. The mass of the pebbles and water inside the reflector-block 

assembly (1000 kg) was distributed as an area mass on the inner area elements of M-blocks 1 through 4 in 

each column9. Similarly, the mass of the plug was equally distributed to the inner area elements of M-block 

5 in each of the sixteen columns. Connections between adjacent M-blocks in a layer or column were 

modelled using four beam elements.10 The beams were modelled using a stiff elastic material to ensure that 

                                                      

9 The fluid-pebble mixture inside the core of the reflector block assembly is confined such that the hydrodynamic 

effects are purely impulsive. Modeling the fluid-pebble mixture as a distributed mass on the inside face of the 

reflector-block assembly is most reasonable.   

10The frictional contact between blocks is ignored here, resulting in conservative (high) estimates of forces in the 

shear pins and keys.   
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the modal frequencies of the assembly were very high (> 300 Hz). The pins at the top (one per block, sixteen 

in one ring) and bottom (two per block, sixteen in each of two rings) of each column of blocks were fixed 

against rotation and translation, as shown in Figure 6.10b. (The locations of the pins in the double ring 

(bottom) and the single ring (top) of the test specimen are identified in Figure 3.3 and Figure 3.7, 

respectively.) Horizontal (H) section cuts were made between the five layers of the M-blocks: H1 through 

H4 in Figure 6.14. Vertical, radial (R) section cuts were made between adjacent M-blocks in layer 3: R1 

through R16 in Figure 6.14. Forces were output at these section cuts. Additional horizontal section cuts, S1 

through S16 were defined at the level of section cut H3 (see Figure 6.14) to output horizontal forces at the 

sixteen interfaces between M-blocks 3 and 4.  

 

  

a. SAP model and coordinate 

systems 
b. one column of five blocks and connecting beam elements 

Figure 6.13. Model of the reflector-block assembly in SAP2000 

To quantify seismic demands in the pins and shear keys, which were not measured in the physical 

experiments, a simplified loading environment involving a constant acceleration of 1g was input to the 

model along the x direction. Forces were output using the section cuts identified above. Figure 6.15 presents 

the orientations of the forces output on different section cuts for the one directional input; the orientations 

are defined per the coordinate systems introduced in Figure 6.13a. The in-plane forces recorded on section 

cuts H1 through H4 only had components along the excitation direction (as expected) whereas forces 

recorded on other section cuts had components in both in-plane directions, as indicated in Figure 6.15.  
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Figure 6.14. Section cuts defined in the model 

 

Figure 6.16a presents the variation of total horizontal shear force along the height of the assembly, output 

using section cuts H1 through H4. The net inertial force associated with the 1 g horizontal acceleration of 

the model was 29 kN. The difference between the reactions at the top (13 kN) and bottom (16 kN) is due 

to the higher degree of restraint at the bottom (two pins per column) than at the top (one pin per column). 

(The reactions at the top and bottom were verified to be equal for a model with two pins per column at the 

top and bottom of the reflector-block assembly.) In the test specimen, the horizontal shear force at an H 

section cut is resisted by sixteen shear keys and sixteen pins along planes A1 and A2, respectively, per 

Figure 6.12 (assuming no friction). The distribution of the shear force in the keys and pins of the sixteen 

columns is addressed later in this section. The horizontal shear force in a single column is resisted by one 

shear key and one pin (planes A1 and A2 per Figure 6.12).      

The magnitudes of the resultant in-plane forces on section cuts R1 through R16 (in layer 3) are presented 

in Figure 6.16b: the forces are maximized at the section cuts that are aligned with the excitation direction 

(x; 0, 180  degrees in Figure 6.16b) and minimized at the cuts nearly perpendicular to the excitation direction 

(90, 270 degrees in Figure 6.16b). Note that a single M-block in layer 3 of the finite element model 

represents six reflector blocks (RB-5 through RB-10 per Figure 3.4) of the test specimen. Accordingly, the 

force on an R section cut in the model is distributed to six shear keys, each resisting force along plane B 

per Figure 6.12b. The maximum resultant force at an R section cut per Figure 6.16b for the constant 

acceleration input of 1g is 0.5 kN which is three orders of magnitude smaller than the shear strength of the 

six keys, resisting force along plane B (= 6 × 100 kN). 

Figure 6.16c presents the magnitudes of the resultant in-plane forces on section cuts S1 through S16, located 

at section cut H3. The vector sum of forces on the sixteen section cuts (S1 through S16) is equal to the x-

direction force on section cut H3 (= 6.7 kN; see Figure 6.16a): an expected outcome. The resultant of the 

y-direction forces (
Y

F  per Figure 6.15c) on section cuts S1 through S16 is zero: another expected outcome. 
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Note that the force on an individual section cut (e.g., S3)  has components in both in-plane directions (
X

F  

and 
Y

F  per Figure 6.15c). The curve presented in Figure 6.16c indicates that the shear force at a horizontal 

section in the reflector assembly (e.g., H3) is not distributed equally to the sixteen columns. Rather, columns 

aligned with the excitation direction (0, 180 degrees in Figure 6.16c) resist a smaller shear force than those 

orthogonal to the excitation direction (90, 270 degrees in Figure 6.16c).11 As noted previously, the force on 

an S section cut is resisted by a shear key and a pin in the test specimen, along planes A1 and A2, 

respectively, per Figure 6.12. Thus, the capacity of an S section cut in shear is 38 kN (shear key along plane 

A1 = 35 kN and pin along plane A2 = 3.4 kN). Per Figure 6.16c, the maximum shear force on an S section 

cut is 0.52 kN for the constant acceleration input of 1g, which is approximately two orders of magnitude 

smaller than the capacity of 38 kN.    

The discussion presented above indicates that that for the 1g horizontal input, the calculated force demands 

along R and S section cuts are orders of magnitude smaller than the shear capacity of the keys and the pins 

used in the test specimen.   

 

 

 

 

a. section cut H1 (through H4) b. section cut R1 (through R16) c. section cut S1 (through S16) 

Figure 6.15. Orientation of in-plane forces output using section cuts (see Figure 6.14), one directional input, 

forces are denoted by the letter F and a subscript indicating direction, r is radial  

 

 

                                                      

11A useful analogy is here is the distribution of shear stresses along the cross-sectional depth in a prismatic circular 

beam: the stress is maximized near the neutral axis (mid-depth), and minimized at the top and bottom. 
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a. total shear forces at horizontal section cuts 

and reactions at ends 

b. resultant forces at R section cuts between 

adjacent M-blocks (see Figure 6.14 and Figure 

6.15b) 

 

c. resultant forces at S section cuts between M-blocks 3 and 4 in the sixteen columns (see Figure 6.14 and 

Figure 6.15c) 

Figure 6.16. Section cut forces for 1g horizontal input 

 

The model of Figure 6.13 was analyzed for the horizontal accelerations recorded below and above the 

isolation interface for the 1D KCE input in tests with the Single concave Friction Pendulum bearings 

(motion 2 per Table 4.4). The inputs are presented in Figure 6.17 and denoted as motions E1 and E2; the 

motions enable a comparison of demands on the reflector-block assembly in the conventional (E1) and 

isolated (E2) configurations.  The maximum values of the accelerations are noted in the panels of Figure 

6.17. The force time series recorded at section cuts H1 through H4 for motion E1 are presented in Figure 

6.18. All time series in the figure attain a maximum (absolute) value at 14.25 seconds, which is the time of 
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maximum acceleration of motion E1. (A similar outcome was obtained for motion E2.) Figure 6.19 presents 

the maximum forces at section cuts H1 through H4 and the reactions for motions E1 and E2. The maximum 

values of forces in motion E2 are a small fraction of those for motion E1 and the ratio of maximum forces 

at a given level in the two motions is equal to the ratio of (absolute) peak accelerations per Figure 6.17 (= 

0.18/0.69 = 0.26). These are expected outcomes, since the model is linear and practically rigid. The 

distribution of forces along the R and S section cuts for any earthquake input can be obtained by scaling 

the distributions presented in Figure 6.16 for the 1g horizontal input. Such scaling requires multiplying the 

forces presented in Figure 6.16 by the peak acceleration (in g) of the earthquake input to the vessel. (The 

method of analysis described here does not consider tolerances (gaps) between the shear keys and pins and 

the corresponding slots machined in the reflector blocks. Tolerances will affect the number of shear keys 

and pins engaged in resisting forces, but this cannot be predicted. Importantly, the tolerances used to 

machine the plastic parts for the reflector block in the model are equal or similar to those planned for the 

graphite in the prototype reactor.)   

 

  

a. motion E1, below the isolation system b. motion E2, above the isolation system 

Figure 6.17. Acceleration time series recorded below and above the isolation interface, motion 2 per Table 4.4 
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a. H1 b. H2 

  

c. H3 d. H4 

Figure 6.18. Force time series recorded on different section cuts, E1 acceleration input of Figure 6.17a 

 

 

Figure 6.19. Maximum forces at horizontal section cuts and reactions for motions E1 and E2 

 

The model described above does not consider the pressure loading on the outer surface of the reflector-

block assembly. An approach to consider the pressure loading would be to extract the pressure histories on 

the surface representing the reflector-block assembly in the double-annulus model and apply those at 

corresponding points in the described reflector-block assembly model or, simply extract the pressure history 

at one location (say near PW1 per Figure 6.7), ignore the variation of pressure along the height of the 
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assembly, and use a cosθ-type variation of pressure loading along the circumference. (Figure 6.20 presents 

multipliers to be used on the pressure history at PW1 for defining loading on the sixteen columns of the 

reflector-block assembly). However, inclusion of pressure loading on the surface of the reflector-block 

assembly would lead to smaller design forces (at interfaces of layers/columns) than the case where the 

pressure loading is ignored. This is explained using the sketch presented in Figure 6.21a. Under a lateral 

acceleration (positive towards right in the figure), the total fluid pressure increases and decreases as 

indicated in the sketch. The direction of the net hydrodynamic load is such that it relieves the supports of 

the reflector-block assembly (and consequently, the pins and keys between blocks); see Figure 6.21b. Thus, 

analysis for lateral accelerations without pressure loading on the lateral surface of the reflector assembly 

will result in conservative (high) estimates of force.     

 

 

Figure 6.20. Multipliers on pressure history at PW1 that can be used to define pressure loading on the sixteen 

columns of the reflector-block assembly 

 

  

a. changes in fluid pressure around the reflector-

block assembly under a lateral (constant) 
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b. direction of hydrodynamic pressure loading 

under a lateral (constant) acceleration 

Figure 6.21. Pressure on the reflector-block assembly under a lateral acceleration 
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6.3.3 Tri-directional shaking of the reflector-block assembly 

Figure 6.21 presents fluid pressure loading profiles on the lateral and bottom surfaces of the reflector-block 

assembly in the presence of horizontal and vertical seismic inputs: the reflector-block assembly, shown in 

grey, is subjected to a horizontal (
x

a ) and a vertical (
z

a ) acceleration shaking. The acceleration due to 

gravity (g) acts in the negative z direction per the coordinate system shown in the figure.  

The acceleration due to gravity (g) results in the hydrostatic pressure profiles ( )
l

P g  and ( )
b

P g on the lateral 

surface and the base of the assembly, respectively, as drawn in the figure. (Subscripts l and b denote lateral 

and base, respectively.) Pressure loading profiles due to the vertical acceleration input (
z

a ) are similar to 

those due to g and are denoted ( )
l z

P a  and ( )
b z

P a  in Figure 6.22. The pressure loading profiles due to the 

horizontal acceleration input (
x

a ), denoted  ( )
l x

P a  and  ( )
b x

P a , can be estimated using the double annulus 

model described in section 6.2.2, and each has a cosθ-type variation around the circumference of the 

assembly. All pressure loadings on the vertical cylindrical surface can be ignored: ( )
l

P g  and ( )
l z

P a  

because they sum up to zero net resultant force on the assembly, and ( )
l x

P a for the reason described in the 

previous section.  

   

 

Figure 6.22. Fluid pressure loading profiles on the reflector-block assembly in the presence of vertical and lateral 

acceleration inputs 

 

The SAP2000 finite element model described in the previous section was modified for analysis involving 

three-dimensional seismic inputs. The axial restraints at support points at the top and bottom of each column 
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were replaced by multi-linear springs to accommodate vertical movement of the reflector-block assembly 

under fluid loading. Figure 6.23 presents the axial force-deformation curve for one of the springs: 

effectively rigid in compression for a displacement greater than 25.4 mm and near-zero stiffness for smaller 

displacements in compression and all displacements in tension.  

 

Figure 6.23. Force-deformation curve defined for multi-linear springs, k denotes stiffness 

 

Figure 6.24 presents the state of the reflector-block assembly in the finite element model under no loading, 

gravity loading, and gravity and hydrostatic loading. Under gravity loading only, the springs at the base are 

compressed and carry the weight of the assembly (= 29 kN), and the springs at the top are in tension and 

provide negligible resistance ( 0k   in tension). An upward pressure is applied at the base of the assembly 

to simulate hydrostatic pressure ( ( )
b

P g  per Figure 6.22, upward force = 30.7 kN)12 producing compression 

in the springs at the top and tension in the springs at the bottom. Under the net loading, the springs in 

compression at the top resist the difference (=1.7 kN) between the weight of the assembly (=29 kN) and the 

(buoyant) force due to hydrostatic pressure (= 30.7 kN), and the springs in tension at the base of the vessel 

provide negligible resistance.  

 

                                                      

12The upwards (buoyant) force can be calculated as gAH , where   is the density of water (=1000 kg/m3), A (= 

1.66 m2) is the area of a circle with a radius equal to the outer diameter of the reflector-block assembly, and H (= 

1.89 m) is the height of water above the base of the assembly.    

Multi-linear springs

Multi-linear springs

Multi-linear spring

   

-25.4
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Figure 6.24. Reflector assembly in the finite element model, only three representative springs shown at top and 

bottom, displacements not to scale 

 

The state of the finite element model for net loading under gravity and hydrostatic pressure (i.e., the 

reflector-block assembly floating inside the vessel but bearing against the head) can be used as the initial 

condition for dynamic analysis involving three-directional inputs. Herein, the finite element model is used 

to study the behavior of the assembly in two steps. A discussion of the behavior under a pure vertical input 

is presented first followed by a discussion of response under a horizontal input (introduced in the previous 

section).  

A vertical input acceleration 
z

a g −  was imposed on the reflector-block assembly and a pressure loading 

history corresponding to the vertical input, ( )
b z

P a  per Figure 6.22, was defined on the base of the assembly: 

see Figure 6.25. Figure 6.26a presents the assumed vertical loading history: a sinusoid with an amplitude 

of 0.5g and a frequency of 1 Hz. Figure 6.25b presents the corresponding axial force history at the top of 

the vessel. Expectedly, the vertical reaction history at the head of the vessel is sinusoidal and can be 

calculated as  ( / )( ( ))
z

W g AH g a t− + , where W  is the weight of the reflector-block assembly, t is time, 

and  , H , and A are defined in footnote 12. (If the sinusoid has an amplitude of 1g, the reaction varies 

between 0 kN and -3.4 kN.)  
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This analysis approach for vertical input applies for 
z

a g −  because the reflector-block assembly bears 

against the head of the vessel (i.e., springs at the top in the finite element model) only if the vertical 

acceleration is greater than g− . For 
z

a g − , the reflector-block assembly rests on the base of the vessel 

(in theory)13 and the pressure loadings on the base of the assembly per Figure 6.22 do not apply.   

 

 

Figure 6.25. Pressure on the base of the reflector-block assembly due to vertical input;   is fluid (water) density 

and H  is fluid height above the base of the assembly (= 1.9 m) 

 

  

a. input b. vertical reaction at the top of the assembly 

Figure 6.26. Vertical acceleration input to the reflector-block assembly after initialization of gravity and 

hydrostatic loading 

                                                      

13If the amplitude of the vertical acceleration input is smaller than -g only momentarily, the fluid between the base of 

the vessel and the underside of the assembly may not be able to quickly migrate out to allow the assembly to rest on 

the base of the vessel. However, such high magnitude vertical accelerations could lead to problems in the fluid flow 

paths inside the reactor. Hypothetically, if vertical accelerations smaller than -g are sustained for a significant duration, 

the fluid between the base of reflector-block assembly and the base of the vessel will migrate out, allowing the 

assembly to rest on the base of the vessel. In such a situation, there will be a gap between the top of the reflector-block 

assembly and the head of the vessel and it will be filled with fluid.    

Pressure =     

  

-1.7-1.7
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Analysis of the model described above for a lateral acceleration can be performed per section 6.3.2, but 

adjusted to accommodate the pressure loading ( )
b x

P a  (per Figure 6.22) on the base of the assembly, which 

is addressed here. A sinusoidal pressure time series, as shown in Figure 6.27a, was assigned at the base of 

the reflector-block assembly. The radial variation of the pressure amplitude is linear per Figure 6.27b and 

a cosθ-type variation was assumed around the circumference of the assembly. Expectedly, this pressure 

loading resulted in a moment at the top support (see Figure 6.27c) but no horizontal shearing forces within 

the assembly.  

The load associated with ( )
b x

P a  per Figure 6.27b is transferred to the top support in the finite element 

model as vertical compressive or tensile forces in individual columns of blocks. In the prototype system, 

compressive loads would be transferred through block-to-block and block-to-head contact and the tensile 

loads would serve only to reduce the compressive load due to hydrostatic pressure and pressure due to the 

vertical component of ground motion, if present. If the net resultant force on a column due to pressure 

loading profiles ( )
b

P g , ( )
b z

P a , and ( )
b x

P a  is tensile, the above model is not suitable for estimating shearing 

loads between adjacent columns. A column with a net tensile load in the vertical direction would move 

downwards (see footnote 13) in a prototype system and disengage (i.e., lose contact) from the head, which 

is similar to the case of 
z

a g −  presented above.  

In summary, the internal forces in a reflector-block assembly can be analyzed using the modelling approach 

described here provided the input accelerations do not lead to its disengagement from the head. Cases in 

which a column (or an entire assembly) disengages from the head could be analyzed using finite element 

models considering contact and gap elements between blocks. However, such analysis is unnecessary if the 

amplitudes of the horizontal and vertical accelerations are small: resulting from siting the reactor building 

in a region of low seismic hazard or by implementing seismic isolation. As discussed in Section 5, the 

implementation of 2D horizontal isolation systems in the tests described in this report resulted in significant 

reductions in peak horizontal accelerations, particularly for high-intensity seismic inputs (by a factor of 

about 4 for the KCE inputs). Vertical and 3D isolation systems, not discussed in this report, have been 

tested and implemented (see Lee and Constantinou (2017)), and are effective in protecting equipment from 

large vertical accelerations. 
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a. pressure time series defined at the base  b. radial variation of pressure at base 

 
c. resulting moment at top support 

Figure 6.27. Pressure loading on the base of the reflector assembly, lateral input 
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6.4 Isolation-system modelling 

The modelling of friction pendulum bearings in the finite element package SAP2000 (CSI 2017) is 

addressed in this sub-section with the goal of evaluating isolation-system responses (e.g., accelerations 

above the isolation plane) that could be used as inputs for estimation of component responses in the 

superstructure (i.e., components above the isolation interface). It was demonstrated in Section 5 that the 

components of the test specimen including the vessel, core barrel, and the reflector-block assembly 

responded as a unit. Accordingly, these components were considered rigid for the analysis described in this 

section.  

Figure 6.28 presents an isometric view of the model in SAP2000. The base plate, outer vessel, flange, and 

the top plate were modelled using rigid shell elements with thickness per measured dimensions and a mass 

density of carbon steel. The mass of the internal components (reflector assembly, core barrel, water, and 

pebbles = 3200 kg) was distributed (i.e., lumped) as an area mass on the wall of the vessel. Four isolators 

(SFP or TFP) were installed under the base plate at the centers of the green-colored squares in Figure 6.28.    

 

 

Figure 6.28. Isometric view of numerical model in SAP2000, and coordinate system 
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6.4.1 SFP-isolated model 

The friction isolator link element in SAP2000 was used to model the Single concave Friction Pendulum 

isolators.  Table 6.1 presents the key inputs used to define the force-deformation properties of the link 

element in the axial and the two horizontal directions. 

 

Table 6.1. Key inputs for definition of friction isolator link element in SAP2000, SFP-isolated model 

Input field (per SAP2000) Description 

Axial (U1) 

direction 

Effective stiffness for 

linear or non-linear 

analysis cases 

Axial compressive stiffness of the isolator. Value = 1.07×105 

kN/m per Table 3.1. 

Effective damping for 

linear analysis case or 

damping coefficient for 

nonlinear analysis cases 

Zero. Damping in the axial direction was defined as modal 

damping for the vertical mode under load case definition.  

Horizontal (U2 

or U3) direction 

Effective stiffness for 

linear analysis cases 

Post-elastic stiffness of the isolator for a given weight (Kpe  per 

Figure 3.19). Value = 39.8 kN/m, consistent with a weight per 

bearing of 18.9 kN and a sliding-surface radius of 0.473 m (see 

Figure 3.18).    

Effective damping for 

linear analysis cases 

Zero. (The response-history analyses were non-linear analysis 

cases and so this input is immaterial.)  

Stiffness for nonlinear 

analysis cases 

Value = 7868 kN/m: the stiffness of the elastic region of the 

force-deformation loop, obtained as 
max /W Y , where 

max is 

the maximum (fast) coefficient of friction (see below),  W is the 

weight on the isolator, and Y  is the yield displacement of the 

isolator = 0.3 mm, back-calculated using an experimental-force 

deformation loop.    

Friction coefficient, fast  

Value = 12.5%: slightly greater than the 10.2% per Table 3.1, 

determined from the from characterization tests. The chosen 

value of 12.5% better represented the force-displacement 

behavior observed in earthquake-simulator tests, as presented in 

Figure 6.29. 

Friction coefficient, slow 

Value = 3.3%, consistent with value chosen for the coefficient of 

fast friction and the ratio of fast and slow coefficients of friction 

per Table 3.1. 

Rate parameter Value = 44 s/m per Table 3.1. 

Net pendulum radius Value = 0.473 m per Figure 3.18. 
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Figure 6.29. Comparison of experimental and idealized normalized force-displacement loops, motion #1 per 

Table 4.4 

 

A modal analysis of the finite element model comprising the superstructure introduced in Figure 6.28 and 

four isolators defined per Table 6.1 was performed. Modal frequencies and mode-shape descriptions are 

presented in Table 6.2. As expected, the translational and rocking modes of the structure were symmetric 

in the two horizontal directions.   

Non-linear response history analysis was performed using inputs corresponding to the six motions 

introduced in Table 4.4: translational and rocking accelerations recorded at the tops of the load cells (below 

the bearings) were used as inputs to the model. The end of the gravity load case served as the starting point 

for the dynamic analysis. The gravity load case involved slow application of acceleration due to gravity as 

a ramp from 0 to 9.81 m/s2 in 7 seconds with a large value of modal damping (95% of critical) used to avoid 

vertical oscillations. In the response-history analyses, 5% damping was specified for modes 4 through 6 

(rocking and vertical modes). Figure 6.30 through Figure 6.35 present isolation-system responses 

(acceleration spectra, isolator displacements, and force-displacement loops) for the six motions in Table 

4.4. Table 6.3 and Table 6.4 present the absolute maximum experimental and numerical values of key 

isolation-system responses for the 1D and 3D inputs of Table 4.4, respectively.  The agreement between 

experimental results and numerical predictions for isolation-system responses is excellent. The absolute 

differences between peak experimental and numerical responses are less than 7%, 4%, 11%, and 24% on 

average for isolator displacements, reaction forces, horizontal accelerations, and vertical accelerations, 

respectively. The shapes of the rocking acceleration response spectra are captured reasonably well using 
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the numerical model. However, hard-to-characterize differences in damping in the rocking modes (and in 

the vertical mode14) do exist between the experimental specimen and the numerical model.  

 

Table 6.2. Summary of modal analysis in SAP2000, SFP-isolated model 

Mode number Description Frequency 

1 Translation along x axis  0.72 Hz 

2 Translation along y axis 0.72 Hz 

3 Torsion (rotation about z axis) 0.98 Hz 

4 Rocking about x axis 29.8 Hz 

5 Rocking about y axis 29.8 Hz 

6 Translation along z axis 37.7 Hz 

  

                                                      

14At the time of this writing, the element for the friction pendulum bearing in SAP2000 does not track the change in 

height of the isolator as a function of its horizontal relative displacement.  
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a. acceleration spectra, x b. acceleration spectra, rocking about y axis 

 

 

c. isolation-system displacement, x d. normalized force-displacement loop, x 

Figure 6.30. Numerical and experimental results, isolation-system responses, motion #1 in Table 4.4, acceleration 

spectra for 5% damping 
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a. acceleration spectra, x b. acceleration spectra, rocking about y-axis 

 

 

c. isolation-system displacement, x d. normalized force-displacement loop, x 

Figure 6.31. Numerical and experimental results, isolation-system responses, motion #2 in Table 4.4, acceleration 

spectra for 5% damping 
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a. acceleration spectra, x b. acceleration spectra, y c. acceleration spectra, z 

  

d. acceleration spectra, rocking about x-axis e. acceleration spectra, rocking about y-axis 

  

f. isolation-system displacement, x g. isolation-system displacement, y 

  

h. normalized force-displacement loop, x i. normalized force-displacement loop, y 

Figure 6.32. Numerical and experimental results, isolation-system responses, motion #3 in Table 4.4, acceleration 

spectra for 5% damping 
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a. acceleration spectra, x b. acceleration spectra, y c. acceleration spectra, z 

  

d. acceleration spectra, rocking about x-axis e. acceleration spectra, rocking about y-axis 

  

f. isolation-system displacement, x g. isolation-system displacement, y 

  

h. normalized force-displacement loop, x i. normalized force-displacement loop, y 

Figure 6.33. Numerical and experimental results, isolation-system responses, motion #4 in Table 4.4, acceleration 

spectra for 5% damping 
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a. acceleration spectra, x b. acceleration spectra, y c. acceleration spectra, z 

  

d. acceleration spectra, rocking about x-axis e. acceleration spectra, rocking about y-axis 

  

f. isolation-system displacement, x g. isolation-system displacement, y 

  

h. normalized force-displacement loop, x i. normalized force-displacement loop, y 

Figure 6.34. Numerical and experimental results, isolation-system responses, motion #5 in Table 4.4, acceleration 

spectra for 5% damping 
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a. acceleration spectra, x b. acceleration spectra, y c. acceleration spectra, z 

  

d. acceleration spectra, rocking about x-axis e. acceleration spectra, rocking about y-axis 

  

f. isolation-system displacement, x g. isolation-system displacement, y 

  

h. normalized force-displacement loop, x i. normalized force-displacement loop, y 

Figure 6.35. Numerical and experimental results, isolation-system responses, motion #6 in Table 4.4, acceleration 

spectra for 5% damping 
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Table 6.3. Maximum absolute isolation-system responses and percentage differences, 1D 

inputs, motion numbers per Table 4.4 

Response 
CCE 1D (Motion #1) KCE 1D (Motion #2) 

Model Exp. Diff., % Model Exp. Diff., % 

Isolator displacement, x, cm 3.4 3.2 7 3.1 3.3 -6 

Shear force, x, kN 14.6 14.3 3 13.8 14.8 -6 

Normal force, kN 78.9 77.0 2 80 77.6 3 

Acceleration, x, g 0.21 0.18 16 0.23 0.18 28 

 

Table 6.4. Maximum absolute isolation-system responses and percentage differences, 3D inputs, motion numbers per Table 4.4 

Response 
CCE 3D (Motion #3) ECE 3D (Motion #4) KCE 3D (Motion #5) BBM 3D (Motion #6) 

Model Exp. Diff., % Model Exp. Diff., % Model Exp. Diff., % Model Exp. Diff., % 

Isolator displacement, x, cm 3.5 3.6 -2 2.2 2.3 -6 4.3 4.6 -6 1.3 1.3 -4 

Isolator displacement, y, cm 0.8 0.9 -14 2.4 2.5 -4 4.8 5.1 -6 0.8 0.9 -11 

Shear force, x, kN 15.4 15.0 3 12.8 13.2 -3 19.3 19.8 -3 11.8 12.0 -2 

Shear force, y, kN 9.8 10.7 -8 14.0 13.3 5 17.8 17.6 1 9.9 10.1 -3 

Normal force, kN 92.8 86.9 7 92.1 92.4 0 103.4 105.4 -2 92.2 94.1 -2 

Acceleration, x, g 0.21 0.18 12 0.19 0.17 16 0.28 0.26 6 0.20 0.21 -4 

Acceleration, y, g 0.13 0.13 1 0.18 0.17 8 0.26 0.23 13 0.13 0.13 1 

Acceleration, z, g 0.27 0.15 82 0.32 0.34 -6 0.49 0.47 3 0.26 0.26 -2 
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6.4.2 TFP-isolated model 

The triple pendulum isolator link element in SAP2000 was used to model the TFP isolators. Table 6.5 

presents the key inputs used to define the force-deformation properties of the link element in the axial and 

the two horizontal directions. Table 6.6 summarizes the results of the modal analysis. 

  

Table 6.5. Key inputs for definition of triple pendulum isolator link element in SAP2000 

Input field (per SAP2000) Description 

Axial (U1) 

direction 

Effective stiffness for linear or 

non-linear analysis cases 

Axial compressive stiffness of the isolators. Value = 1.05×105 

kN/m per Table 3.2. 

Effective damping for linear 

analysis case or damping 

coefficient for nonlinear analysis 

cases 

Zero. Damping in the axial direction was defined as modal 

damping for the vertical mode under load case definition.  

Horizontal 

(U2 or U3) 

direction 

Effective stiffness for linear 

analysis cases 

Evaluated as / 2 effW R , where W  is the weight on the 

isolator and 
effR is the effective radius of the top (or bottom) 

sliding surface. Value = 21142 N/m. 

The effective radius 
effR  is calculated as the difference 

between the radius of the sliding surface and one-half of the 

distance between the bottom and top sliding surfaces (height of 

bearing) and is equal to 0.441 m here.  

Effective damping for linear 

analysis cases 
Zero (similar to Table 6.1). 

Stiffness for 

nonlinear 

analysis cases 

Outer top and 

outer bottom 

Stiffness before sliding. A reasonably large value, enough to 

distinguish sliding from not sliding, works well for this input 

field.   

Values of 9000 kN/m and 3000 kN/m were used for the outer 

and inner surfaces, respectively, consistent with the weight on 

the isolator, the fast friction coefficient of the surfaces (inner 

or outer) and an assumed yield displacement of 0.3 mm.  

Inner top and 

inner bottom 

Friction 

coefficient, fast  

Outer top and 

outer bottom 
Value = 14.3% per Table 3.2. 

Inner top and 

inner bottom 
Value = 5.1% per Table 3.2. 

Friction 

coefficient, 

slow 

Outer top and 

outer bottom 
Value = 6.2% per Table 3.2. 

Inner top and 

inner bottom 
Value = 2.2% per Table 3.2. 
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Table 6.5. Key inputs for definition of triple pendulum isolator link element in SAP2000 (cont.) 

Input field (per SAP2000) Description 

Horizontal 

(U2 or U3) 

direction 

Rate parameter Value = 42 s/m per Table 3.2. 

Radius of 

sliding surface 

Outer top and 

outer bottom 
Value = 0.473 m per Figure 3.22. 

Inner top and 

inner bottom 
Value = 0.076 m per Figure 3.22. 

Stop distance 

Outer top and 

outer bottom 

Related to the displacement capacity for sliding on the outer 

surfaces (see Figure 75 in CSI (2017)). Since only a fraction of 

the displacement capacity of the bearings was used in the tests, 

a large value (0.5 m) was used here.   

Inner top and 

inner bottom 
Value = 1.27 cm per Figure 3.22 and Figure 75 in CSI (2017) 

 

Table 6.6. Summary of modal analysis in SAP2000, TFP-isolated model 

Mode number Description Frequency 

1 Translation along x axis  0.52 Hz 

2 Translation along y axis 0.52 Hz 

3 Torsion (rotation about z axis) 0.70 Hz 

4 Rocking about x axis 29.6 Hz 

5 Rocking about y axis 29.6 Hz 

6 Translation along z axis 37.5 Hz 

 

Non-linear response history analysis of the TFP-isolated model was performed using inputs corresponding 

to the six motions introduced in Table 4.5, as described previously for the SFP-isolated model. Figure 6.36 

through Figure 6.41 present results of the analyses for the six motions. Table 6.7 and Table 6.8 present 

experimental and numerical values of key isolation-system responses for the 1D and 3D inputs of Table 

4.5, respectively. The conclusion from these data is identical to that presented in the previous sub-section 

(SFP-isolated model): the agreement between experimental results and numerical predictions for isolation-

system responses is excellent. The absolute magnitudes of differences between peak experimental and 

numerical responses are less than 8%, 6%, 17%, and 11% on average for isolator displacements, reaction 

forces, horizontal accelerations, and vertical accelerations, respectively. 
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The accuracy of the numerical results obtained from the SFP-isolated and the TFP-isolated models indicate 

that utilizing a rigid superstructure with lumped internal mass is sufficient for obtaining accurate isolation-

system responses. 

 

   

  

a. acceleration spectra, x b. acceleration spectra, rocking about y axis 

 

 

c. isolation-system displacement, x d. normalized force-displacement loop, x 

Figure 6.36. Numerical and experimental results, isolation-system responses, motion #1 in Table 4.5, acceleration 

spectra for 5% damping 
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a. acceleration spectra, x b. acceleration spectra, rocking about y axis 

 

 

c. isolation-system displacement, x d. normalized force-displacement loop, x 

Figure 6.37. Numerical and experimental results, isolation-system responses, motion #2 in Table 4.5, acceleration 

spectra for 5% damping 
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a. acceleration spectra, x b. acceleration spectra, y c. acceleration spectra, z 

  

d. acceleration spectra, rocking about x axis e. acceleration spectra, rocking about y axis 

  

f. isolation-system displacement, x g. isolation-system displacement, y 

  

h. normalized force-displacement loop, x i. normalized force-displacement loop, y 

Figure 6.38. Numerical and experimental results, isolation-system responses, motion #3 in Table 4.5, acceleration 

spectra for 5% damping 
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a. acceleration spectra, x b. acceleration spectra, y c. acceleration spectra, z 

  

d. acceleration spectra, rocking about x axis e. acceleration spectra, rocking about y axis 

  

f. isolation-system displacement, x g. isolation-system displacement, y 

  

h. normalized force-displacement loop, x i. normalized force-displacement loop, y 

Figure 6.39. Numerical and experimental results, isolation-system responses, motion #4 in Table 4.5, acceleration 

spectra for 5% damping 
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a. acceleration spectra, x b. acceleration spectra, y c. acceleration spectra, z 

  

d. acceleration spectra, rocking about x axis e. acceleration spectra, rocking about y axis 

  

f. isolation-system displacement, x g. isolation-system displacement, y 

  

h. normalized force-displacement loop, x i. normalized force-displacement loop, y 

Figure 6.40. Numerical and experimental results, isolation-system responses, motion #5 in Table 4.5, acceleration 

spectra for 5% damping 
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a. acceleration spectra, x b. acceleration spectra, y c. acceleration spectra, z 

  

d. acceleration spectra, rocking about x axis e. acceleration spectra, rocking about y axis 

  

f. isolation-system displacement, x g. isolation-system displacement, y 

  

h. normalized force-displacement loop, x i. normalized force-displacement loop, y 

Figure 6.41. Numerical and experimental results, isolation-system responses, motion #6 in Table 4.5, acceleration 

spectra for 5% damping 
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Table 6.7. Maximum absolute isolation system responses and percentage differences, 1D 

inputs, motion numbers per Table 4.5 

Response 
CCE 1D (Motion #1) KCE 1D (Motion #2) 

Model Exp. Diff., % Model Exp. Diff., % 

Isolator displacement, x, cm 5.8 5.8 0 5.8 5.6 3 

Shear force, x, kN 14.3 13 10 14 12.8 10 

Normal force, kN 77.8 80.1 -3 79.4 83.4 -5 

Acceleration, x, g 0.21 0.17 24 0.19 0.16 22 

 

Table 6.8. Maximum absolute isolation system responses and percentage differences, 3D inputs, motion numbers per Table 4.5 

Response 
CCE 3D (Motion #3) ECE 3D (Motion #4) KCE 3D (Motion #5) BBM 3D (Motion #6) 

Model Exp. Diff., % Model Exp. Diff., % Model Exp. Diff., % Model Exp. Diff., % 

Isolator displacement, x, cm 6.5 6.3 2 3.2 3.7 -14 5.9 6.1 -3 3.6 3.4 5 

Isolator displacement, y, cm 1.5 1.8 -14 3.5 3.8 -7 5.2 5.9 -13 2.2 2 10 

Shear force, x, kN 15.5 13.6 14 12.3 12.5 -2 16.6 14.7 13 12.1 11.6 5 

Shear force, y, kN 10.7 10.4 3 13.4 12.9 3 15.5 14.6 6 8.6 7.9 9 

Normal force, kN 89.5 89.4 0 90.5 93.5 -3 106.4 104.9 1 99.4 101.5 -2 

Acceleration, x, g 0.22 0.18 21 0.19 0.16 14 0.25 0.2 28 0.19 0.16 16 

Acceleration, y, g 0.16 0.14 14 0.2 0.18 8 0.2 0.19 6 0.12 0.1 17 

Acceleration, z, g 0.23 0.18 27 0.3 0.31 -3 0.5 0.56 -10 0.36 0.38 -4 
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6.5 Closing remarks 

Recommendations for analysis and modelling of different components of a base-isolated Fluoride-salt-

cooled High temperature Reactor (FHR) were presented previously in this section and are summarized 

below: 

1. Fluid behavior: Numerical simulation of sloshing wave height responses is challenging using the ALE 

method. The double annulus, fluid-only model can be used to estimate hydrodynamic pressure histories 

for analysis of structural and mechanical components inside a reactor vessel. 

2. Internal forces in a reflector-block assembly: The preliminary design of connectors in a reflector-block 

assembly can be use the approach presented in this report. Final design should address construction 

tolerances between the connectors and the blocks. Under extreme vertical and horizontal seismic inputs, 

dynamic fluid loadings on the reflector-block assembly may lead it to disengage from the head of the 

vessel, disrupting load paths and affecting fluid-flow paths inside the reactor vessel. Horizontal and 

vertical seismic isolation can substantially mitigate the effects of extreme earthquake shaking of a 

reactor vessel and its internals, permitting simpler design solutions and allowing the design approaches 

described in this chapter to be used. 

3. Base-isolation systems: Accurate estimates of isolation-system responses can be made by analysis of a 

rigid vessel, with the mass of the internal components and fluid distributed over the area of its wall.  
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SECTION 7  

SUMMARY AND OUTCOMES 

7.1 Introduction 

The Kairos Power Fluoride salt-cooled High temperature Reactor (KP-FHR) is a well-advanced Gen IV 

design (WNA 2022). This molten salt reactor uses circulating solid pebbles, filled with TRISO particles, 

as a fuel and graphite blocks as a moderator. The focus of this report is the behavior of components of the 

reactor under moderate to severe earthquake shaking. The reactor components studied here included an 

outer vessel, a concentric core barrel, positively-buoyant reflector blocks that act as a moderator, positively-

buoyant spherical fuel pebbles, and a molten-salt coolant.  

To support the seismic design of the reactor, this report: 1) describes the design of a seismically-isolated, 

scale model of the reactor for earthquake-simulator testing, 2) presents observations of component 

behaviors based on testing, and 3) presents recommendations for the seismic modelling and analysis of 

reactor components.  

Section 1.3 identified the three broad objectives of this report. Objective 1, the design of a scale model of 

an FHR, is addressed in Section 2 and Section 3. The generation of experimental data for responses of 

model-scale reactor components to multi-directional earthquake inputs, objective 2, is addressed in Section 

4. Objective 3, the analysis of experimental data for assessment of component behaviors and formulation 

of recommendations for analysis and modelling is addressed in Section 5 and Section 6.  

The following section summarizes the work presented in Section 1 through Section 6 of this report. 

7.2 Summary and Outcomes 

Section 1 introduced the FHR and presented an overview of the available literature on the seismic behavior 

of some of its components. Some of the FHR components are similar to those used in other deigns (e.g., 

graphite reflector blocks in some high temperature gas-cooled reactor (HTGR) designs). However, none of 

the past studies involved experiments at the scale and level of complexity described in this report.  

Section 2 presented a detailed scaling analysis for different test components of the model FHR for 

earthquake-simulator testing. Model components were scaled per different governing scaling laws with the 

aim of simulating important behaviors (e.g., buoyancy in the reflector blocks, fluid-structure interaction in 

the core barrel) as best as possible at the model scale. A length scale of 0.39 was used to design all the 

model components, except for the core barrel, for which a different length scale of 0.16 was used to scale 

the wall thickness.  

https://www.energy.gov/ne/articles/triso-particles-most-robust-nuclear-fuel-earth
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Section 3 described the geometries of the model components. The sequence in which the components were 

assembled and the challenges encountered during model assembly were discussed. The geometric details 

and force-deformation characteristics of the two types of friction pendulum isolators used to seismically 

(base) isolate the vessel were also presented in this section. 

Section 4 presented details of the instrumentation used to record responses of different test components 

during earthquake-simulator tests. The instrumentation recorded the dynamic response of the fluid 

(hydrodynamic pressure and sloshing displacements), base reactions, isolation system displacements, 

dynamic responses of the vessel, core barrel, and reflector blocks, and pebble bed compaction under 

shaking. Traditional earthquake engineering instruments, load cells, accelerometers, and pressure gages, 

were used in tandem with borescopes and bespoke float-and-Temposonic gages to measure wave height. 

The seismic inputs and the test plan were also described in Section 4. The earthquake-simulator tests of the 

test specimen were grouped into three series, each focused on specific objectives. Test series 1 and 3 were 

focused on the behaviors of the reflector-block assembly and the pebble bed, respectively. Series 2 involved 

earthquake-simulator tests of the entire assembly in fixed-base and base-isolated configurations.        

Section 5 presented results from the earthquake-simulator experiments and discussed the behavior of 

different test components. A comparison of acceleration responses recorded on the outer vessel, core barrel, 

and the reflector-block assembly revealed that these components responded as a near-rigid unit. 

Accordingly, accurate estimates of base reactions were computed using a lumped-mass model, wherein the 

mass of the test specimen was lumped at its center of mass. The sloshing response of the fluid between the 

core barrel and the reflector-block assembly was heavily damped and the wave height time series was 

recovered approximately using an analytical solution for sloshing responses in a regular cylindrical tank. 

Data generated from tests run to study consolidation of the pebble bed under earthquake shaking were 

presented. The pebble bed packing fraction changed by no more than 3% after 150+ seconds of strong 

shaking and the percentage change depended on the initial packing fraction. The use of base isolation 

systems utilizing model-scale SFP and TFP bearings led to reductions in peak horizontal accelerations at 

the base of the outer vessel by factors between 1.2 and 4.6. The axial stiffness of the model-scale bearings 

used in the two isolations systems was small at the axial load developed in the tests and resulted in 

amplification in accelerations at high frequencies (25+ Hz) in the vertical and rocking directions.   

Section 6 presented recommendations for analysis and modelling of different components of a base-isolated 

FHR. The challenges associated with accurate numerical estimation of sloshing responses in small annuli 

were discussed. A fluid-only, double annulus model was demonstrated to be effective for obtaining 

hydrodynamic pressure histories that could be used for analysis of structural and mechanical components 
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of the reactor. A practical approach to estimate forces for preliminary design of connectors within a 

reflector-block assembly was presented and the behavior of the assembly under extreme vertical and 

horizontal seismic inputs was noted to have a potential for disrupting load paths and affecting fluid-flow 

paths inside the reactor vessel. Horizontal base isolation systems mitigated the effects of extreme 

earthquake shaking. The responses of the horizontal isolation systems used in the experiments were 

recovered with good accuracy using a finite element model of a rigid outer vessel and considering the 

internal components (including fluid and pebbles) as a distributed mass on the wall of the vessel.  

7.3 Closing remarks 

The earthquake-simulator experiments on a seismically-isolated FHR, described in this report, were first-

of-a-kind, considering the scale and the level of complexity involved. There were practical limitations in 

terms of available materials for model-scale components and available space (and access) for instruments. 

Possible future experiments include:   

1. Experiments to further characterize the sloshing response of the coolant in the inner annulus of the 

FHR. In particular, the effect of fluid viscosity and size of gaps between columns of the reflector-

block assembly on damping in the sloshing mode are worthy of study. Such experiments could use 

a number of fluids and utilize a model with simpler internal construction than that described in this 

report. As an example, fewer columns and fewer rows than used here could be used to construct 

the reflector-block assembly and the gaps between them accurately controlled. 

2. Adding fluid-flow through the core of the assembly during earthquake simulations to study the 

effect, if any, on responses of the reactor’s components. 

The experimental results described in this report provided insights into the dynamic behavior of reactor 

components and enabled formulation of analysis and modelling recommendations. The use of horizontal 

(2D) base-isolation systems led to substantial reductions in peak horizontal accelerations at the base of the 

vessel. Base-isolation systems (2D and 3D) could significantly reduce demands on reactor component, 

thereby enabling simpler design approaches (see section 6.3.3 for an example) and supporting the 

deployment of standardized designs at sites with varying seismic hazards.     

All data generated in the experiments will be made available on DesignSafe (Rathje et al. 2017).  
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APPENDIX A  

CHARACTERIZATION TESTS OF SINGLE AND TRIPLE FRICTION 

PENDULUM BEARINGS 

A.1 Introduction 

This appendix describes characterization tests for the four Single concave Friction Pendulum (SFP) and the 

four Triple Friction Pendulum (TFP) bearings used to seismically isolate the specimen in the earthquake-

simulator tests described in this report. The SFP bearings are denoted SFP1, SFP2, SFP3, and SFP4, and 

the TFP bearings are denoted TFP1, TFP2, TFP3, and TFP4.  

This appendix comprises eight sections including this introduction. Sections A.2 and A.3 present 

descriptions of the SFP and TFP bearings, respectively. The test set-up used to characterize the behavior of 

the bearings in the horizontal direction is described in section A.4. The tests performed to characterize 

behavior of the bearings in the horizontal direction and results are presented in sections A.5 and A.6. Section 

A.7 describes the tests performed to determine the axial stiffness of the bearings. Section A.8 summarizes 

the test results.  

A.2 Description of SFP bearings 

An SFP bearing consists of a sliding surface (concave plate), a housing plate, and a slider that is coated 

with a PTFE-type composite as shown in Figure A.1. Figure A.2 shows the fabrication drawings provided 

by the manufacturer (Earthquake Protection Systems). 

 

 

Figure A.1. Components of an SFP bearing 

 



 

166 

 

       

a. elevation 

                 

b. cross-section 

Figure A.2. Fabrication drawings of SFP bearings, provided by Earthquake Protection Systems 

 

The idealized force-displacement behavior of an SFP bearing, shown in Figure A.3, is characterized by the 

radius of curvature of the sliding surface ( R ) and the coefficient of friction at the sliding surface (  ). The 

characteristic strength ( Q ) and the post elastic stiffness ( peK ) are related to these parameters and the 

imposed instantaneous axial load (W ) on the bearing as indicated in Figure A.3. The radius of curvature 

(R) is a known geometric property of the SFP bearing. The primary goal of the characterization tests is to 

determine the coefficient of friction ( ). 

 

                                      

Figure A.3. Idealized force-displacement behavior of an SFP bearing, horizontal direction 
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The coefficient of friction is a function of the axial load on the bearing, the sliding velocity, and the 

temperature of the sliding surface (Constantinou et al. 2007) The dependence on axial load and sliding 

velocity is illustrated in Figure A.4. An increase in the axial load leads to a reduction in the coefficient of 

friction. The coefficient of friction at near zero sliding velocity is defined as the breakaway coefficient of 

friction ( B ). As the sliding velocity increases, the coefficient of friction drops to a minimum ( min ) before 

attaining a maximum value ( max ) at high velocities. In general, for a fixed value of axial load, the relation 

of the coefficient of friction and the sliding velocity (V ) can be described by (Constantinou et al. 2007): 

 max max min( ) aVe    −= − −  (A-1) 

where a  is a rate parameter. The coefficient of friction reduces with an increase in the temperature of the 

sliding surface. (The temperature dependence of the coefficient of friction is not characterized here.)  

 

 

Figure A.4. Variation of the coefficient of friction with sliding velocity and axial load, adapted 

from Constantinou et al. (2007) 

 

A.3 Description of TFP bearings 

A Triple Friction Pendulum bearing comprises two concave plates and a nested slider assembly. The two 

concave plates are separated by the slider assembly that is enclosed in a rubber seal; see Figure A.5. The 

surfaces of the slider assembly in contact with the top and bottom concave plates and the surfaces of the 

slider in contact with the concave plates of the slider assembly are coated with a PTFE-type material. Figure 

A.6 presents the construction of a TFP bearing. Sliding is permitted on all four concave surfaces, denoted 

1 through 4 in Figure A.6b. 
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Figure A.5. Components of a TFP isolator 

 

 

a. elevation 

 

b. cross-section, sliding surfaces 1 through 4 indicated in green 

Figure A.6.  Fabrication drawings of TFP isolators (provided by Earthquake Protection Systems) 

 

Figure A.7 presents the horizontal force-displacement behavior of a TFP bearing. The force-displacement 

relationship in a TFP depends on the bearing displacement and the engaged sliding surfaces. Sliding 

regimes I through V are identified in Figure A.7. Fenz and Constantinou (2008) present a detailed 
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discussion of the force-displacement relationships of a TFP bearing in different sliding regimes. The 

relationships are characterized by the radii of curvature of the sliding surfaces and the coefficients of friction 

at the four sliding surfaces but detailed information is not reproduced here. The radii of curvature of the 

surfaces are known geometric quantities (see Figure A.6b). The coefficients of friction of the four surfaces 

and their velocity dependence (see equation A.1) were determined from the characterization tests. 

 

 

Figure A.7.  Idealized force-displacement behavior of a TFP bearing, horizontal direction 

 

A.4 Test set-up for characterization of horizontal force-displacement behavior  

The single bearing testing machine (SBTM) at the University at Buffalo was used to test the bearings. The 

machine comprises a loading beam, a horizontal actuator, two vertical actuators, a load cell, and supporting 

frame structures, as shown in Figure A.8 and Figure A.9. The horizontal and vertical actuators transmit 

horizontal and axial forces or displacements, respectively, to the bearing via the loading beam. For the tests 

described herein, the vertical actuators were run under force control to accommodate changes in the bearing 

height while maintaining a predefined axial load on the bearings. The axial load recorded by the load cell 

beneath the bearing was used to control the vertical actuators. The horizontal actuator was run in 

displacement control to impose a predefined displacement history.  
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Figure A.8. Schematic of the SBTM at the University at Buffalo, SFP bearings 

 

 
Figure A.9. SBTM at the University at Buffalo 

 

Ten channels were used to record data in the tests. Each of the three actuators has an inline uniaxial load 

cell and an internal or an external displacement transducer to measure axial force and displacement, 

respectively. The shear force and axial force imposed on the bearing were recorded using the load cell. The 

acceleration of the loading beam and the command horizontal displacement (used as command for the 

horizontal actuator) were also recorded. 

A.5 Test program and results for horizontal force-displacement behavior of SFP bearings 

The goal of the characterization tests was to determine the coefficient of friction ( max  and min ) and its 

velocity dependence for each SFP bearing. A constant value of axial load (20 kN or 4.5 kips) was used 

throughout the bearing characterization test program. This value is approximately equal to the axial load 

per bearing in the earthquake-simulator tests described in this report.  

Table A.1 describes the displacement histories used for testing the bearings. Tests S1 and S4 utilized low 

velocity triangular displacement histories (see Figure A.10) with different maximum displacements. These 

tests provide hysteresis loops with clearly defined transition points. Tests S2, S3, S5, and S6 utilized a 
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displacement history first proposed by Constantinou et al. (2007) The profile of the displacement history is 

presented in Figure A.11. The displacement history (termed cosine in this section) begins with an idle time 

in which data is acquired to establish the breakaway friction force. A build-up time of 60 to 180 seconds 

follows, in which the displacement amplitude, ou , is reached at a very low sliding velocity (less than 0.13 

cm/sec). During this part of the imposed motion, min  can be measured under truly quasi-static conditions. 

An idle time of 10 s is then imposed to allow the temperature at the sliding interface to stabilize. The idle 

time is followed by 3.25 cycles of harmonic displacement, as shown in Figure A.11, which enables 

calculation of the maximum coefficient of friction ( max ). The maximum coefficient of friction ( max ) is 

attained in the first cycle of displacement, after which the coefficient of friction reduces due to heating. The 

reduced value of friction in the third cycle can be used to characterize heating effects in the bearings. Tests 

S2 and S5 have nearly equal peak velocities (4.8 cm/s and 5.3 cm/s) and tests S3 and S6 have the same 

peak velocity (31.9 cm/sec).  

Figure A.12 presents the normalized force-displacement loop for test S2 of SFP2 and the different friction 

values computed per Constantinou et al. (2007) to illustrate the procedure used to determine the coefficients 

of friction. The minimum coefficient of friction ( min ) occurs immediately after the initiation of sliding 

(when the sliding velocity is close to zero) as identified in Figure A.12. The maximum value of the 

coefficient of friction ( max 1 _st cycle = ) occurs in the first cycle of loading, at the time instant when the 

highest velocity is first attained. In the subsequent cycles, the coefficient of friction reduces due to heating 

of the sliding surface, characterized herein as the value of friction in the third cycle ( 3 _rd cycle ). 

 

Table A.1. Test program for the bearings, axial load = 20 kN (nominal axial pressure = 17.6 MPa) 

Test Signal 
Frequency 

(Hz) 

Build-up 

time (sec) 

Max. displacement 

(cm) 

Max. velocity 

(cm/s) 

S1 Triangular - - 2.54 0.13 

S2 Cosine 0.3 60 2.54 4.8 

S3 Cosine 2.0 60 2.54 31.9 

S4 Triangular - - 8.4 0.13 

S5 Cosine 0.1 180 8.4 5.3 

S6 Cosine 0.6 180 8.4 31.9 
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Figure A.10. Triangular displacement history, test S4 

 

Figure A.11. Displacement history for test S2, u is displacement and f is frequency 

 

 

Figure A.12. Determining friction properties for SFP2 bearing, test S2 
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The velocity dependence of the friction coefficient is entirely characterized by max , min , and the rate 

parameter a  in equation (A-1) The coefficients of friction, max  and min , are determined from tests S2, 

S3, S5, and S6 using the procedure described above. To evaluate the parameter a  for a bearing, a dataset 

comprising four pairs of velocity and friction is used. A curve per equation (A-1) is fit to the dataset to 

obtain a . The four pairs are:  

1) velocity is zero, friction coefficient is equal to the average of min from tests S2, S3, S5, and S6 

2) velocity is 0.13 cm/s (tests S1and S4), friction coefficient is equal to the average of   determined from 

tests S1 and S4 

3) velocity is 5 cm/s (average of velocities in tests S2 and S5), friction coefficient is equal to the average 

of _Ist cycle  from tests S2 and S5 

4) velocity is 31.9 cm/s (tests S3 and S6), friction coefficient is equal to the average of _Ist cycle  from tests 

S3 and S6 

Table A.2 presents the minimum (slow), first cycle, and third cycle values of the coefficient of friction, 

determined from the test data, for the four SFP bearings. The coefficients of friction increase with sliding 

velocity and reduce with heating of the sliding surface, which is consistent with the behavior of a PTFE-

type composite and polished stainless-steel interface (see Constantinou et al. (2007)). The variability in the 

estimated parameters for the four bearings here is typical for friction pendulum bearings at both model and 

prototype scales (e.g., see Sarlis et al. (2013) and McVitty and Constantinou (2015)). 

Normalized force-displacement loops for all tests of the four bearings are presented in Figure A.13 through 

Figure A.16. The force-displacement behavior of the bearings for the high displacement, high velocity test 

S6 is erratic at high displacements because the axial load used in the tests is low (= 20 kN), which makes 

the control of the vertical actuators at high horizontal velocities and displacements challenging: the axial 

load reduces to near zero at multiple instants during the test. Similar outcomes are observed for the high 

horizontal velocity Test S3. Test S6 was repeated for SFP4 at a higher axial load of 62.3 kN (nominal axial 

pressure = 55 MPa). The resulting force-displacement loop is shown in Figure A.17. From the figure, it is 

evident the behavior of the bearing is stable at the higher axial load. 

 

 

 



 

174 

 

 

 

 

 

 

Table A.2. Coefficients of friction (%) determined from tests, SFP bearings, axial load = 20 kN 

(nominal axial pressure = 17.6 MPa) 

 

Test S1 S2 S3 S4 S5 S6 

Displacement (cm) 2.54 2.54 2.54 8.4 8.4 8.4 

Velocity (cm/sec) 0.13 4.8 31.9 0.13 5.3 31.9 

SF1 

Slow - 3.7 3.4 - 3.1 4.5 

1st cycle 4.9 10.5 12 5.2 10.5 13 

3rd cycle - 9.8 10.5 - 10.5 10 

SF2 

Slow - 1.9 2.5 - 2.5 2.3 

1st cycle 2.7 7.1 7.1 3.9 7.2 7.9 

3rd cycle - 6.6 6 - 7.2 6.9 

SF3 

Slow - 2.4 2.7 - 2.8 2.6 

1st cycle 3.3 8.2 9.2 4.7 8.9 11.8 

3rd cycle - 8.2 7.8 - 8.9 8.7 

SF4 

Slow - 1.8 2.5 - 2.8 2.5 

1st cycle 2.3 7.9 8.7 4.1 8.8 11.5 

3rd cycle - 7.9 7.5 - 8.8 8.2 
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a. test S1 b. test S2 

  

c. test S3 d. test S4 

  

e. test S5 f. test S6 

Figure A.13. Normalized force-displacement loops for SFP1, axial load = 20 kN, nominal axial 

pressure = 17.6 MPa 
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a. test S1 b. test S2 

  

c. test S3 d. test S4 

  

e. test S5 f. test S6 

Figure A.14. Normalized force-displacement loops for SFP2, axial load = 20 kN, nominal axial 

pressure = 17.6 MPa 
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a. test S1 b. test S2 

  

c. test S3 d. test S4 

  

e. test S5 f. test S6 

Figure A.15. Normalized force-displacement loops for SFP3, axial load = 20 kN, nominal axial 

pressure = 17.6 MPa 
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a. test S1 b. test S2 

  

c. test S3 d. test S4 

  

e. test S5 f. test S6 

Figure A.16. Normalized force-displacement loops for SFP4, axial load = 20 kN, nominal axial 

pressure = 17.6 MPa 
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Figure A.17. Normalized force-displacement loop for SFP4, test S6, axial load = 62.3 kN, nominal 

axial pressure = 55 MPa 

Table A.3 presents friction coefficients for the four bearings at four velocities (evaluated as described 

above). Figure A.18 presents best-fit curves per equation (A-1) plotted to determine the rate parameter. An 

average rate parameter of 0.44 s/cm was obtained for the four SFP bearings. 

 

Table A.3. Average coefficients of friction (%) at different velocities, 

axial load = 20 kN (nominal axial pressure = 17.6 MPa) 

 Velocity (cm/sec) 

  0 0.13 5.0 31.9 

SFP1 3.7 5.1 10.5 12.5 

SFP2 2.3 3.3 7.2 7.5 

SFP3 2.6 4.0 8.6 10.5 

SFP4 2.4 3.2 8.4 10.1 
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a. SFP1, a = 0.39 s/cm b. SFP2, a = 0.67 s/cm 

  

c. SFP3, a = 0.35 s/cm d. SFP4, a = 0.35 s/cm 

Figure A.18. Rate parameter a for the four bearings, average a = 0.44 s/cm 

 

A.6 Test program and results for horizontal force-displacement behavior of TFP bearings 

Table A.4 describes the displacement histories used for testing the TFP bearings. An axial load of 20 kN 

was used, like the SFP bearing tests. Test T1 utilized a triangular displacement history similar in profile to 

that shown in Figure A.10 and was a low velocity test (velocity = 0.13 cm/sec). Tests T2 and T3 utilized 

cosine displacements and involved intermediate (4.8 cm/sec) and high (31.9 cm/sec) velocities, 

respectively. The displacements in all three tests were large (> 8 cm). Such large displacement tests provide 

the data necessary to characterize the force-displacement behavior of a TFP bearing.  
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Table A.4. Test program for the bearings, axial load = 20 kN (nominal axial pressure, inner surfaces = 

17.6 MPa, outer surfaces = 4.4 MPa) 

Test Signal 
Frequency 

(Hz) 

Build-up 

time (sec) 

Max. displacement 

(cm) 

Max. velocity 

(cm/sec) 

T1 Triangular - - 8.4 0.13 

T2 Cosine 0.06 180 12.7 4.8 

T3 Cosine 0.4 180 12.7 31.9 

 

Figure A.19 through Figure A.22 present the normalized force-displacement loops for the four bearings. 

The erratic force-displacement behavior of the bearings in the case of the high-velocity test (T3), visible in 

panel c of Figure A.19 through Figure A.22 is related to challenges with actuator control at high velocities 

and displacements, as explained in the previous section.  

The coefficients of friction ( 1  through 4 ) of the four sliding surfaces were determined per Section 3 of 

Lal et al. (2022) and are presented in Table A.5. The coefficients of friction were such that 

1 4 2 3   =  = , which is typical for prototype TFP bearings.  

The coefficient of friction of the outer surfaces determined from the low velocity tests T1 was assumed to 

be the minimum value of the coefficient. The maximum coefficient of friction of the outer surfaces was 

determined using data from the high velocity test T3. Data from test T2 was used to determine the rate 

parameter, as explained below. The minimum coefficient of friction for the two inner surfaces in a test was 

estimated as one-half of the reduction in the normalized horizontal force at the maximum displacement 

(where the velocity reverses sign) per Fenz and Constantinou (2008). The average of the minimum values 

of 2  (= 3 ) obtained from tests T1, T2, and T3 was considered as the minimum value of 2  (= 3 ) for a 

bearing. Achieving high sliding velocities on the inner surfaces (2 and 3) in tests is difficult. Thus, only the 

minimum value of 2  (= 3 ) (inner surface friction) was determined in tests. The maximum value of 2  (=

3 ) for a bearing was assumed to be equal to the product of the estimated minimum value and the ratio of 

the maximum and minimum values of 1  (= 4 ).   
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a. test T1 b. test T2 

 

c. test T3 

Figure A.19. Normalized force-displacement loops for TFP1, axial load = 20 kN (nominal axial 

pressure, inner surfaces = 17.6 MPa, outer surfaces = 4.4 MPa) 
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a. test T1 b. test T2 

 

c. test T3 

Figure A.20. Normalized force-displacement loops for TFP2, axial load = 20 kN, (nominal axial 

pressure, inner surfaces = 17.6 MPa, outer surfaces = 4.4 MPa) 

. 
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a. test T1 b. test T2 

 

c. test T3 

Figure A.21. Normalized force-displacement loops for TFP3, axial load = 20 kN, (nominal axial 

pressure, inner surfaces = 17.6 MPa, outer surfaces = 4.4 MPa) 
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a. test T1 b. test T2 

 

c. test T3 

Figure A.22. Normalized force-displacement loops for TFP4, axial load = 20 kN, (nominal axial 

pressure, inner surfaces = 17.6 MPa, outer surfaces = 4.4 MPa) 
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Table A.5. Coefficients of friction (%) determined from tests, TFP bearings, axial load = 20 kN 

(nominal axial pressure, inner surfaces = 17.6 MPa, outer surfaces = 4.4 MPa) 

 
Test T1 T2 T3 Minimum Maximum 

TFP1 
 1 4 =  7.0 11.0 15.5 7.0 15.5 

 2 3 =  2.2 2.0 2.2 2.1 4.7 

TFP2 
 1 4 =  6.0 11.0 13.6 6.0 13.6 

 2 3 =  2.4 2.0 2.2 2.2 5.0 

TFP3 
 1 4 =  5.2 11.5 13.8 5.2 13.8 

 2 3 =  2.2 2.1 2.0 2.1 5.6 

TFP4 
 1 4 =  6.6 12.0 14.3 6.6 14.3 

 2 3 =  2.2 2.4 2.3 2.3 5.0 

 

The velocity dependence of friction on the outer surfaces was determined using a procedure similar to that 

described in the previous section for SFP bearings. A data set comprising three pairs of test velocity and 

estimated friction was used and a curve per equation (A-1) was fit to the data to obtain a . The three pairs 

are:  

1) velocity is 0.064 cm/s (= half the velocity in test T1; the maximum sliding velocity for each surface is 

one-half of the values presented in Table A.4 because the sliding motion is divided equally between the 

two surfaces), friction coefficient is equal to that determined from test T1 

2) velocity is 2.4 cm/s (= half the velocity in test T2), friction coefficient is equal to that determined from 

test T2 

3) velocity is 15.9 cm/s (= half the velocity in test T3), friction coefficient is equal to that determined from 

test T3 

Table A.6 presents the velocity-friction pairs used to estimate the rate parameter for friction on the outer 

surfaces of the four bearings. Figure A.23 presents best-fit curves per equation (A-1) plotted to determine 

the rate parameter. An average rate parameter of 0.42 s/cm was obtained. (The rate parameter for the inner 

surfaces was assumed identical to that for the outer surfaces. The assumptions regarding maximum friction 

and rate parameter for the inner surfaces are not important because the behavior of a TFP bearing is 

primarily governed by sliding on the outer surfaces; see McVitty and Constantinou (2015) for details.) 
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Table A.6. Average coefficients of friction (%) at different velocities, 

TFP bearings, axial load = 20 kN (nominal axial pressure, inner 

surfaces = 17.6 MPa, outer surfaces = 4.4 MPa) 

 Velocity (cm/sec) 

  0.064 2.4 15.9 

TFP1 7.0 11.0 15.5 

TFP2 6.0 11.0 13.6 

TFP3 5.2 11.5 13.8 

TFP4 6.6 12.0 14.3 

 

  

a. TFP1, a = 0.28 s/cm b. TFP2, a = 0.47 s/cm 

  

c. TFP3, a = 0.47 s/cm d. TFP4, a = 0.47 s/cm 

Figure A.23. Rate parameter a for the four bearings, average a = 0.42 s/cm 

 

A.7 Characterization of behavior in the vertical direction 

The representative force displacement behavior of an SFP or a TFP bearing under axial compressive 

(vertical) load is shown in Figure A.24. The axial stiffness is low at low axial loads. The behavior at a 

particular axial load is characterized by the slope of the load-displacement curve at that load.  The goal of 
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the characterization tests described here was to estimate the axial stiffness of the eight bearings at an axial 

load of 20 kN.  

 

 

Figure A.24. Representative behavior of an SFP or a TFP isolator in compression 

 

The vertical stiffness characterization tests were carried out using the MTS tension-compression machine, 

manufactured by MTS Systems Corporation. Figure A.25 shows the setup used for testing. Linear 

potentiometers at the four corners of a bearing were used to record the relative movement of the top and 

the bottom plates. The tension-compression machine has an inbuilt load and displacement sensor. Six 

channels of data were recorded. The average of the displacements recorded by the four linear potentiometers 

and the actuator’s displacement transducer was used as the measure of the axial displacement in the bearing.  

 

                         

Figure A.25. Test setup used for vertical characterization tests 
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The loading history of Figure A.26 was used for testing. A pre-load of 5 kN was applied before the start of 

data acquisition, followed by a ramp up to a load of 20 kN (4.5 kips) in 10 s and 2.75 cycles of ±8.9 kN (2 

kips) at 0.1 Hz.   

Figure A.27 and Figure A.28 present axial load–axial displacement plots for the four SFP and the four TFP 

bearings, respectively. The estimated stiffness for each bearing is indicated on each plot. The average 

stiffness of the SFP bearings and the TFP bearings is 1.07 × 105 kN/m and 1.05 × 105 kN/m, respectively, 

at an axial load of 20 kN. 

 

 

 

 

 

 

Figure A.26. Loading history used for characterizing vertical stiffness 
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a. SFP1 b. SFP2 

  

c. SFP3 d. SFP4 

Figure A.27. Axial load vs displacement plots for SFP bearings, vK  is axial stiffness 

 

 

 

 

51.08 10vK =  kN/m 

50.96 10vK =  kN/m 

51.07 10vK =  kN/m 51.20 10vK =  kN/m 
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a. TFP1 b. TFP2 

  

c. TFP3 d. TFP4 

Figure A.28. Axial load vs displacement plots for TFP bearings, vK  is axial stiffness 

 

The average stiffness of the SFP (TFP) bearings is approximately 3% of the axial stiffness of a cylindrical 

steel column with diameter equal to the slider diameter (= 3.8 cm) and height equal to that of the bearing 

(nested slider assembly) (=6.4 cm). The size of the sliders and the housing plate cavity (inner concave 

plates) in the SFP (TFP) bearings used here is small compared to bearings used in practice. Machining 

small-sized sliders, housing plate cavities, and inner concave plates to the tight tolerances required for 

achieving high axial stiffness at low axial loads is challenging. (Based on experiments, a reasonable axial 

stiffness for prototype sliders is 10% of column stiffness.)    

51.08 10vK =  kN/m 51.10 10vK =  kN/m 

51.03 10vK =  kN/m 51.00 10vK =  kN/m 
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A.8 Conclusions 

The behavior of four SFP and four TFP bearings under horizontal and vertical loads was characterized. An 

axial load of 20 kN (4.5 kips) was considered for the characterization tests. Behavior under horizontal loads 

was characterized by estimating slow and fast coefficients of friction at the different surfaces. The velocity 

dependence of the coefficient of friction for each bearing was characterized by a rate parameter. The 

behavior under vertical load was established by estimating the vertical stiffness of each bearing at an axial 

load of 20 kN. Table A.7 and Table A.8 summarizes results for the SFP and TFP bearings, respectively.    

  

Table A.7. Summary of characterization tests for SFP bearings, axial load = 20 kN 

Bearing 

Friction 

coefficient, slow 

(%) 

Friction 

coefficient, fast 

(%) 

Rate parameter 

(s/cm) 

Axial stiffness 

(×105 kN/m) 

SFP1 3.7 12.5 0.39 1.08 

SFP2 2.3 7.5 0.67 0.96 

SFP3 2.6 10.5 0.35 1.07 

SFP4 2.4 10.1 0.35 1.20 

Average 2.8 10.2 0.44 1.07 

 

Table A.8. Summary of characterization tests for TFP bearings, axial load = 20 kN 

Bearing 

Friction coefficients 

Rate parameter 

(s/cm) 

Axial stiffness 

(×105 kN/m) 

2 3 =  (%) 1 4 =  (%) 

Minimum 

(slow)  

Maximum 

(fast) 

Minimum 

(slow)  

Maximum 

(fast) 

TFP1 2.1 4.7 7.0 15.5 0.28 1.08 

TFP2 2.2 5.0 6.0 13.6 0.47 1.10 

TFP3 2.1 5.6 5.2 13.8 0.47 1.03 

TFP4 2.3 5.0 6.6 14.3 0.47 1.00 

Average 2.2 5.1 6.2 14.3 0.42 1.05 
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