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Preface 
 
MCEER is a national center of excellence dedicated to the discovery and development of 
new knowledge, tools and technologies that equip communities to become more disaster 
resilient in the face of earthquakes and other extreme events. MCEER accomplishes this 
through a system of multidisciplinary, multi-hazard research, in tandem with 
complimentary education and outreach initiatives.  
 
Headquartered at the University at Buffalo, The State University of New York, MCEER 
was originally established by the National Science Foundation in 1986, as the first National 
Center for Earthquake Engineering Research (NCEER). In 1998, it became known as the 
Multidisciplinary Center for Earthquake Engineering Research (MCEER), from which the 
current name, MCEER, evolved. 
 
Comprising a consortium of researchers and industry partners from numerous disciplines 
and institutions throughout the United States, MCEER’s mission has expanded from its 
original focus on earthquake engineering to one which addresses the technical and socio-
economic impacts of a variety of hazards, both natural and man-made, on critical 
infrastructure, facilities, and society. 
 
The Center derives support from several Federal agencies, including the National Science 
Foundation, Federal Highway Administration, Department of Energy, Nuclear Regulatory 
Commission, and the State of New York, foreign governments and private industry.   
 
This report presents a study on seismic fluid-structure-interaction (FSI) analysis, with a 
focus on liquid-filled nuclear reactors. Seismic design, qualification, and risk assessment 
of advanced reactors will rely on numerical models to calculate fluid-structure responses 
of the reactor vessel, contained liquid, and submerged components. These numerical 
models must be verified and validated. This study verifies and validates numerical 
models for seismic FSI analysis. The Arbitrary-Lagrangian-Eulerian and 
Incompressible Computational Fluid Dynamics solvers in LS-DYNA are used to 
seismically analyze tanks, fluid and submerged components. Specifically, this study 1) 
reviews and corrects, as needed, prior analytical solutions for base-supported tanks and 
submerged components, 2) develops analytical solutions for seismic FSI analysis of 
head-supported tanks, 3) verifies numerical models using the corrected and newly-
developed solutions, and 4) validates the numerical models using data from earthquake-
simulator experiments. Numerical models of submerged components are verified for 
calculating their lateral frequencies, and those of tanks are verified and validated for 
calculating fluid pressures and reactions at the support, but not for calculating wave 
heights in the contained liquid. The products of the study are broadly applicable to the 
seismic analysis of base- and head-supported liquid-filled vessels. 
 
 
Erratum: The revision updates equations and their descriptions in Section 3 and text on 
pages 232, 235, and 237 in Section 5. The updated equations include (3.11), (3.12), (3.13), 
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(3.33), (3.34), (3.35), (3.49), (3.61), (3.62), (3.63), (3.82), (3.83), (3.84), (3.107), (3.108), 
(3.109), (3.120), (3.136), (3.137), (3.138) and (3.141). On pages 232, 235 and 237, a14, a41, 
and a11 are changed to f14, f41, and f11, respectively. Equations (5.28) and (5.29), which are 
related to the above-mentioned changes in Section 5, are correct as written. 
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ABSTRACT 

A liquid metal reactor includes a vessel, and internal components submerged in a liquid metal 

coolant. Earthquake shaking of this liquid (fluid)-filled reactor induces fluid-structure interaction 

(FSI) between the vessel, the submerged components, and the contained coolant. Seismic design, 

qualification, and risk assessment of the reactor must consider response due to FSI, the actual 

geometries and support conditions, and three-directional seismic inputs of a site-specific 

intensity, none of which can be accommodated using analytical solutions. Physical testing of 

reactor vessels and internal components for seismic qualification is also not feasible because of 

the large scales involved. These limitations on analytical solutions and physical testing leave 

numerical simulations as the only plausible pathway for seismic design and qualification of 

fluid-filled reactors. However, reliable numerical models for FSI analysis that are both verified 

and validated are not available at the time of this writing.  

Numerical models can be verified by comparing predictions with analytical solutions and then 

validated using data from physical testing. This report performs 1) verification and validation 

studies on numerical models for rigid and flexible, cylindrical vessels (tanks), supported at either 

the base or the top (head); and 2) a verification study on numerical models for flexible, 

submerged internal components. Two solvers capable of predicting nonlinear fluid responses are 

used to perform seismic FSI analysis in LS-DYNA: Arbitrary-Lagrangian-Eulerian and 

Incompressible Computational Fluid Dynamics. Analytical solutions, both extracted from prior 

studies and developed in this report, are used for the verification. The prior analytical solutions 

are corrected as needed. Test data from earthquake-simulator tests for a base-supported 

cylindrical tank are used for validation.  

In general, the ALE models of tanks are verified and validated for calculating fluid pressures on 

the tank wall and reactions (shear force and moment) at the support, and the ICFD models are 

verified and validated for calculating these responses, if the wave action is not significant. The 

ALE and ICFD models of tanks are not verified and validated for calculating wave heights. The 

ALE and ICFD models of submerged components are verified for calculating their lateral 

frequencies. 
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SECTION 1 

INTRODUCTION 

1.1 Nuclear power reactors 

The nuclear reaction used for energy generation at the time of this writing is the process of 

nuclear fission: a heavy nucleus1, mostly in actinides2, absorbs a neutron, and splits into lighter 

nuclei, with a release of energy and neutrons. The released energy is in the form of heat, 

transferred by a coolant to be used to produce electricity through other systems, including steam 

turbines and energy generators. The released neutrons are absorbed by other heavy nuclei and 

foster a chain fission reaction. Based on the kinetic energy of the neutrons sustaining the chain 

reaction (i.e., slow and fast neutrons), nuclear reactors can be parsed into thermal and fast 

reactors. A thermal reactor uses a moderator, such as light water, heavy water, or solid graphite, 

to slow the neutrons to fission the nuclei of enriched uranium3, used as the nuclear fuel. Fast 

reactors use fast neutrons to fission the nuclei of a wider variety of actinides, including natural 

uranium4 and plutonium-239 (239Pu). The coolants used in the fast reactors do not substantially 

moderate (reduce) the kinetic energy of the fast neutrons. Liquid metals, such as liquid sodium, 

lead-bismuth, and their alloys, serve as the coolant in a fast reactor, with advantages of 1) high 

power density, 2) high thermal conductivity to transfer heat from the nuclear reaction to create 

electricity, 3) suitable melting and boiling points to remain liquid at the operating temperature of 

the reactor (American Society of Mechanical Engineers (ASME) 1979) with a high margin, and 

4) low operating reactor pressures, avoiding the need for a thick-walled pressure vessel. 

The first nuclear reactor in the world was Chicago Pile-1 (CP-1) (ASME 1979), operated by the 

University of Chicago from around 1942 to 1943. It was a thermal reactor, with a stack of solid 

graphite bricks as a moderator and no coolant (Figure 1.1a). The first fast reactor was 

Clementine (Figure 1.1b), using mercury as the primary coolant, operated by the Los Alamos 

                                                 
1 Nucleus: the central core of an atom.  A nucleus carries positive charges and contributes most of the mass of an 

atom.  
2 Actinide: fifteen radioactive metallic elements with atomic numbers from 89 to 103 in the periodic table of 

chemical elements. 
3 Enriched uranium: a type of uranium in which the composition of uranium-235 is increased to 3% to 5% by mass, 

by comparison to natural uranium4. 
4 Natural uranium: 0.7% uranium-235 and 99.3% uranium-238 by mass. 
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National Laboratory from 1949 to 1952. Mercury proved not to be an appropriate coolant 

because of its poor thermal conductivity (Harvey 2004). In the 1940s, Enrico Fermi proposed 

breeding nuclear fuel in a fast reactor (International Atomic Energy Agency (IAEA) 2012). The 

first demonstration of fuel breeding was in the Experimental Breeder Reactor I (EBR-I) (Figure 

1.1c), operated by the Argonne National Laboratory from around 1951 to 1963, on the site of 

what is now the Idaho National Laboratory (INL). This reactor used liquid sodium-potassium 

eutectic (NaK) as its primary coolant (ASME 1979). The construction of EBR-1 was followed by 

Enrico Fermi 1 (operated from 1963 to 1972,) and EBR-II (operated from 1963 to 1994, also on 

the site of INL), which both used liquid sodium as the primary coolant (Cochran et al. 2010). 

These pioneering fast reactors demonstrated the feasibility of using liquid metals as the primary 

coolant.  

   
(a) CP-1 (Atomic Heritage 

Foundation (AHF) 2016) 
(b) Clementine (Harvey 2004) (c) EBR-I (ASME 1979) 

Figure 1.1. Early nuclear reactors in the United States: the first thermal, fast, and fast breeder 

reactors 

Sodium-cooled and lead-cooled fast reactors (SFR and LFR) are two of the six next-generation 

reactors selected by the Generation IV International Forum (GIF) (2002, 2014) for development. 

Both the SFR and the LFR use a liquid metal (i.e., liquid sodium and lead-bismuth) as the 

primary coolant. The six next-generation reactors were selected to meet three goals (Abram and 

Ion 2008): 1) improved safety and reliability, 2) efficiency and economic competitiveness, and 3) 

energy sustainability. The GIF established a Risk and Safety Working Group (RSWG) (2012) to 

address the goal of improved safety and reliability, where earthquake shaking was identified as 

one of the external hazards to be studied (Kelly 2014).  

Figure 1.2 presents two cut-way views of a prototype liquid metal reactor, designed by General 

Electric Company, Boston, MA (Gluekler 1997). This reactor consists of a reactor vessel, a 
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containment or guard vessel, liquid sodium, and internal components, including an upper internal 

structure (UIS), intermediate heat exchangers (IHXs), primary pumps, and a nuclear core. The 

reactor vessel is filled with a liquid sodium and closed at its top by a shield or head, which 

supports many of the immersed internal components. The guard vessel surrounds the wall of the 

reactor vessel to capture the liquid sodium coolant in the event of a leak. The reactor vessel is 

supported at its head, at the top of a reactor vault, which is a cylindrical reinforced concrete 

structure supported on the basemat of the nuclear building.  

The low operating pressure in a liquid metal reactor enables design of thin-walled vessels 

containing the fluid and internal components. (Thick-walled vessels are needed for pressurized 

water reactors and boiling water reactors, which operate at pressures of approximately 150 and 

75 atmospheres, respectively.) Chellapandi et al. (2008) reports that the diameter-to-thickness 

ratio for the vessel and internal components in a liquid metal reactor is typically between 500 and 

800. The seismic capacity of a thin-walled vessel is less than its thick-walled counterpart, which 

is why seismic isolation was proposed for the liquid metal reactor of Figure 1.2: to enable an 

operationally efficient design with sufficient seismic capacity.  

Nuclear reactors must be analyzed, designed, and qualified for site-specific, design basis 

earthquake shaking. Seismic probabilistic risk assessment (SPRA) is performed to demonstrate 

 
Figure 1.2. Prototype liquid metal reactor: reactor vessel, guard vessel, internal 

components, and liquid sodium coolant, designed by General Electric Company, Boston, 

MA (Gluekler 1997) 
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that the mean annual frequency of core damage (CDF) and large early release (LERF) of 

radiation is acceptably small. The earthquake shaking of a liquid (fluid)-filled reactor induces 

interaction of the vessel, contained fluid, and components inside the vessel and immersed in the 

fluid. Seismic fluid-structure-interaction (FSI) analysis of the vessel-fluid-component system is 

needed to predict demands for design and SPRA.  

1.2 Seismic FSI analysis of fluid-filled reactors 

1.2.1 Legacy design methods and associated studies 

Early reactor designs simplified seismic FSI analysis into: 1) interaction of the vessel (tank) and 

its contained fluid, and 2) interaction of the internal components and the surrounding fluid, both 

of which were calculated using analytical solutions. The early studies on seismic FSI analysis of 

tanks and submerged components, which were used to support the design of the first and second 

generations of nuclear reactors, are introduced below. 

Analytical studies on seismic FSI of base-supported tanks began in the 1930s at the Vibration 

Laboratory at Stanford University (e.g., Hoskins and Jacobsen (1934); Morris (1938); Jacobsen 

(1949); Jacobsen and Ayre (1951)). Simplifying assumptions were made for developing 

analytical solutions. The tank was assumed to be rigid, and the fluid response was assumed to be  

linear and parsed into impulsive and convective components5. Hoskins and Jacobsen (1934) 

derived an analytical solution for impulsive pressures in a rectangular tank using the method of 

Westergaard (1933) for analyzing pressures on the wall of a dam. The solution was validated by 

earthquake-simulator tests presented in Figure 1.3, which were among the earliest (if not the first) 

seismic FSI experiments to the knowledge of the authors. Morris (1938) performed similar 

earthquake-simulator tests to study convective responses of rectangular and cylindrical tanks. 

Jacobsen (1949) used Bessel functions to derive the impulsive responses of a cylindrical tank, 

and those solutions were validated by Jacobsen and Ayre (1951) using earthquake-simulator tests. 

                                                 
5 The impulsive response is generated by the part of the fluid accelerating with the tank (the so-called added mass 

effect) subjected to ground motion, and the convective response is generated by the part of the fluid assumed not to 

move with the tank but to oscillate vertically and form waves on the free surface. The hydrodynamic response in 

the tank is the sum of the impulsive and convective responses. See Section 3 for more information. 
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Figure 1.3. Experimental setup of the impulsive earthquake-simulator tests for a rectangular 

tank, Figure 1 in Hoskins and Jacobsen (1934) 

Housner (1954, 1957) approximated impulsive and convective responses of rigid, base-supported, 

cylindrical tanks to avoid using Bessel functions in his analytical solutions. A mechanical analog 

was developed based on the approximate solutions and was widely accepted in early design 

practice (e.g., American Concrete Institute (ACI) (2006)). The U.S. Atomic Energy Commission 

(Thomas et al. 1963) provided information on seismic design and analysis for nuclear vessels 

and included the mechanical analog (Housner 1957) for calculating FSI responses. Early designs 

of fluid-filled vessels used this method (Fujita et al. 1984; Ma et al. 1982b) and ignored the 

internal components, the flexibility of the tank, and the head-supported boundary condition.  

In the 1970s and early 1980s, Veletsos and two of his Ph.D. students, Yang and Tang, developed 

analytical solutions for rigid and flexible, base-supported, cylindrical tanks: 1) Veletsos and 

Yang (1977), Veletsos and Tang (1986, 1987), and Tang (1986) for impulsive responses; and 2) 

Veletsos and Yang (1977) and Yang (1976) for convective responses using the method of 

Abramson (1966) for analyzing sloshing of propellants in space vehicles. Veletsos, Yang, and 

Tang’s solutions were presented, in part, in an American Society of Civil Engineers (ASCE) 

guideline (Veletsos 1984a) and a Department of Energy (DOE) guideline (Bandyopadhyay et al. 

1995) for liquid storage tanks.  

In the 1970s and 1980s, the Argonne National Laboratory (ANL) funded research on FSI 

analysis of submerged components for application to fluid-filled nuclear reactors (Chen et al. 

1976; Chung and Chen 1976, 1977, 1984; Ma et al. 1983d, 1985b; Sakurai et al. 1989). Chen et 

al. (1976) and Chung and Chen (1976, 1977, 1984) derived solutions for the mass of fluid to be 

attached to submerged cylindrical pipes and rods (i.e., the so-called added mass effect) to 

calculate frequencies and damping ratios for seismic analysis. Ma et al. (1985b, 1983d) used 
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finite element models to address the impacts of internal components on pressures and wave 

heights of coolant in a reactor vessel; the response of the fluid was assumed to be linear. Sakurai 

et al. (1989) performed earthquake-simulator tests on a scaled model of a prototype liquid metal 

reactor with different arrangements of internal components for small-amplitude motions. The test 

results were used to validate Ma’s models. Dong (1978) summarized studies on added mass and 

damping of submerged components in reactor vessels, including the studies performed at the 

ANL. 

1.2.2 Modern methods 

Modern seismic design and qualification of a fluid-filled advanced reactor must consider the 

interaction of the vessel, its internal components, and the contained fluid, the actual support 

conditions of the vessel, and three translational components (i.e., 2 horizontal, 1 vertical) of 

seismic input of site-specific intensity. Analytical solutions for seismic FSI analysis involve 

simplifying assumptions, which cannot accommodate 1) the geometries, boundary and support 

conditions, and interactions of a reactor vessel and its internal components, 2) simultaneous 

three-component seismic inputs, and 3) and nonlinear response of the fluid (e.g., large-amplitude 

sloshing, disengagement of fluid from the vessel wall, interaction of waves with the vessel head). 

Physical testing of reactors for seismic qualification is also not feasible because they are too 

large and too heavy to be tested on available earthquake simulators, and the spatial and temporal 

pressure loadings on the vessel and internal components are too complex to reproduce with 

physical testing equipment such as actuators. These limitations on analytical solutions and 

physical testing leave numerical simulation of reliable models as the only plausible pathway for 

seismic FSI design and qualification of advanced reactors.  

Numerical models need to be verified and validated for analysis of nuclear structures. Figure 1.4 

introduces verification and validation. A model can be verified by comparing the results of 

numerical simulations with those calculated using analytical solutions for identical assumptions. 

A verified model can then be validated by comparing the results of numerical solutions with 

those generated by physical testing. The dimensions, mechanical properties, and boundary 

conditions of the test specimen are used to build the numerical model for validation. The verified 

and validated model can then be used for seismic design, qualification, and probabilistic risk 

assessment. 
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Numerical model

Validation

• Comparing results with analytical solutions
• Applying the assumptions used in the 

analytical solutions to the models

• Comparing results with physical test data
• Modeling based on measured properties, 

geometry, and boundary conditions

Verification

 

Figure 1.4. Verification and validation for a numerical model 

1.3 Objectives of the report 

Seismic FSI analysis of advanced nuclear reactors will be needed regardless of whether the 

reactor building or fluid-filled components inside the building are seismically isolated. The goal 

of this report is to enable such analysis by providing reliable numerical models and guidance for 

verification and validation. The goal is achieved by meeting six objectives:  

1. To review, summarize, and correct as needed, prior analytical studies on seismic FSI analysis 

of base-supported cylindrical tanks (Jacobsen 1949; Chalhoub and Kelly 1988; Housner 1957, 

1954; Veletsos 1984a) and submerged components (Chen and Rosenberg 1975). 

2. To develop analytical solutions for seismic FSI responses of a head-supported cylindrical 

tank (see Figure 1.2), which is a support condition for a number of advanced reactor designs. 

The analytical solutions could be used for preliminary design of the reactor vessel and to 

support verification of numerical models. 

3. To verify numerical models of tanks using prior analytical solutions for a base-supported 

boundary condition (Jacobsen 1949; Veletsos 1984a) and using newly developed analytical 

solutions for a head-supported boundary condition.  

4. To validate verified models using data from earthquake-simulator tests on a base-supported 

cylindrical tank. 

5. To verify models of components submerged in a fluid using prior analytical solutions (Chen 

and Rosenberg 1975). 

6. To provide recommendations for developing verified and validated numerical models for 

fluid-filled advanced reactors. 
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1.4 Organization of the report 

This report is organized into seven sections, a list of references, and three appendices. 

Section 2 reviews analytical, numerical, and experimental studies on seismic fluid-structure 

interaction (FSI) analysis for tanks (vessels), submerged components, and nuclear reactors.  

Section 3 summarizes analytical solutions from prior studies on base-supported cylindrical tanks 

and develops companion solutions for head-supported cylindrical tanks, with application to the 

boundary conditions and geometries similar to those proposed for fluid-filled advanced reactor 

vessels. The solutions address lateral frequencies of the tank, frequencies of waves, 

hydrodynamic pressures, reactions at the tank support, and wave heights of the contained fluid. 

Section 4 develops numerical models for base- and head-supported cylindrical tanks and verifies 

them using analytical solutions presented in Section 3. Response-history analysis is performed 

using the Arbitrary Lagrangian-Eulerian (ALE) and Incompressible Computational Fluid 

Dynamics (ICFD) solvers in LS-DYNA (Livermore Software Technology Corporation (LSTC) 

2018a). Guidance is provided for verification studies on numerical models of a reactor vessel. 

Section 5 reviews analytical solutions for submerged internal components, develops ALE and 

ICFD models for internal components, and verifies the models using the reviewed solutions. 

Guidance is provided for verification studies on numerical models of submerged reactor 

components. 

Section 6 describes earthquake-simulator tests on a base-supported cylindrical tank and validates 

the verified models constructed in Section 4 by comparing numerical and test results. Guidance 

is provided for validation studies on numerical models of a reactor vessel. 

Section 7 summarizes the work in each section, presents conclusions drawn from the verification 

and validation studies performed in this report, and provides recommendations for developing 

verified and validated numerical models for fluid-filled advanced reactors. 

A list of references and three appendices follow the body of this report.  

Appendix A summarizes the derivations and analytical solutions for FSI responses of base- and 

head-supported cylindrical tanks that are presented in detail in Section 3. 
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Appendix B compares FSI responses of a flexible base-supported tank calculated using solutions 

from an analytical study (Veletsos 1984a) presented in Section 3 and a simplified procedure 

(Malhotra et al. 2000), which was based on the Veletsos study and has been widely used by 

industry in the United States. 

Appendix C discusses challenges in outputting results for wave heights calculated using the ALE 

models in Section 4 to help engineers tasked with analyzing fluid-filled vessels, verifying and 

validating numerical models, and performing commercial grade dedication of software.   

Appendix D presents a list of the input motions used for the earthquake-simulator tests on a base-

supported cylindrical tank that support the validation studies of Section 6. 
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SECTION 2 

LITERATURE REVIEW 

2.1 Overview 

This section summarizes the literature on analytical, numerical, and experimental studies related 

to seismic fluid-structure interaction (FSI) of tanks and fluid-filled reactors vessels6. Section 2.2 

introduces studies on: 1) FSI analysis of vessels (tanks), excluding internal components, 2) FSI 

analysis of submerged components, and 3) FSI analysis of fluid-filled reactors, including tanks 

and internal components. Section 2.3 describes relevant experimental studies on tanks and fluid-

filled reactors and the use of test data to validate analytical and numerical calculations. 

2.2 Analytical and numerical studies on seismic FSI analysis 

2.2.1 FSI analysis of tanks 

Jacobsen (1949) developed analytical solutions for impulsive responses (see footnote 5 on page 4) 

of a base-supported cylindrical tank, excited by unidirectional horizontal motion of small 

amplitude. The impulsive responses included fluid pressure impp  and reactions at the tank base 

(i.e., shear force impF  and moment impM ). The analytical solutions assumed the tank to be rigid, 

and the fluid to be ideal7 and respond linearly. The effects of hydrostatic pressure8 and fluid 

sloshing were not considered. A velocity potential 9  was derived for the fluid using three 

boundary conditions at the three surfaces enclosing the fluid: 1) zero pressure at the free surface, 

namely no wave action, 2) zero vertical velocity on the tank base, and 3) the fluid adjacent to the 

tank wall moved with the wall at the ground velocity. Boundary conditions 2) and 3) were 

defined based on the assumption that the contained fluid would not disengage from the inner 

surface of the tank. The impulsive pressure was derived using an assumed velocity potential for 

the contained fluid, and the impulsive reactions were derived to balance the resultant forces and 

moments generated by the impulsive pressure on the inner surface of the tank. Section 3 presents 

the derivation and calculates the impulsive responses of a tank using Jacobsen’s solutions. 

                                                 
6 Herein, fluid is used to refer to liquid.  
7 Ideal fluid: a fluid that is incompressible, irrotational, and inviscid. 
8 Hydrostatic pressure: pressure created by fluid at rest under gravity. 
9 Fluid responses can be fully defined using a velocity potential: 1) fluid velocity is the gradient of the velocity 

potential, and 2) fluid pressure is associated with the derivative of the velocity potential with respect to time. 
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Jacobsen (1949) validated his solutions using data from earthquake-simulator tests for a 

cylindrical tank, with a radius R  of 0.3 m and filled with fluid with a range of depth H : 

0.2 /H R  15. The test tank was subjected to a horizontal impulse of 0u =  0.12 g. Figure 2.1 

presents the analytical results 0/ ( )imp lF u m (solid lines) and experimental data (open circles) for 

the normalized impulsive shear force 0/ ( )imp lF u m  and the impulsive moment impM  at the tank 

base, where lm  is the mass of the contained fluid. The analytical solutions were in excellent 

agreement with the experimental results. 
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Figure 2.1. Analytical solutions (solid lines) and experimental data (open circles), 

normalized impulsive shear force 0/ ( )imp lF u m  and moment impM  at the tank base for 

0u = 0.12 g, adapted from Jacobsen (1949) 

Housner (1954, 1957) derived approximate analytical solutions for impulsive and convective 

responses (see footnote 5 on page 4) of rectangular, cylindrical, elliptical, and trapezoidal base-

supported tanks subjected to unidirectional horizontal motion. The tank was assumed to be rigid, 

and the fluid was assumed to be ideal and respond linearly. His solutions addressed the impulsive 

and convective components of 1) fluid pressures, impp  and conp , 2) shear forces at the tank base, 

impF  and conF , and 3) moments at the tank base, impM  and conM , and convective frequencies conf  

(i.e., frequencies of wave action) and wave heights wd . The solutions were derived using 

discretized fluid in a vertical cross section of a tank, as presented in Figure 2.2. The impulsive 

responses were calculated using the vertically discretized fluid presented in Figure 2.2a. The 

analytical solution for impp  of a fluid layer was derived by balancing its resultant force and the 

inertial force generated by the horizontal acceleration 0u  of the tank. The analytical solutions for 

the impulsive reactions impF  and impM  at the tank base were derived using the resultant forces 
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and moments generated by impp  on the inner surfaces of the tank. The convective responses were 

decoupled into modes. The convective pressure conp  in the first mode was calculated using the 

horizontally discretized fluid presented in Figure 2.2b. The fluid layers were free to rotate with 

respect to the axis normal to the cross section and generate the first modal wave shape on the free 

surface. The vertical displacement of the free surface, namely, the wave height wd , was defined 

using the rotational angle   of the top fluid layer. The analytical solution for the convective 

pressure was derived using Hamilton’s Principle: balancing the kinetic and potential energies of 

the fluid layers, both of which were expressed using  . The analytical solutions for the 

convective reactions conF  and conM  at the tank base were derived using the resultant forces and 

moments generated by the convective pressures on the inner surfaces of the tank. Section 3 

presents Housner’s derivation and calculates the impulsive and convective responses of a tank. 

Housner compared FSI responses calculated using his solutions with those calculated using 

solutions from other studies: Graham and Rodriquez (1951) for rectangular tanks, Jacobsen 

(1949) and Lamb (1932) for cylindrical tanks, and Jeffreys (1925) for elliptical tanks. The 

differences were less than 4%10. 

H
z

’’

’

 

’

’H z



 

(a) impulsive response (b) convective response, first mode 

Figure 2.2. Vertical cross section through a tank and discretized contained fluid, 

adapted from Housner (1954) 

Housner (1957) then developed a mechanical analog based on his analytical solutions for seismic 

FSI analysis of rigid base-supported tanks. The mechanical analog is presented in Figure 2.3. 

The mechanical analog simulated the impulsive response using a lumped mass impm  (termed 

impulsive mass hereafter), rigidly attached to the tank wall at a height of imph  with respect to the 

tank base. The convective response was simulated using multiple lumped masses ,con jm  ( j =1, 

                                                 
10 The dimensions of the tank used for the comparison were not given. 
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2,…, n ; termed convective mass hereafter), and each lumped mass ,con jm  was associated with a 

convective mode (i.e., j th mode). The lumped mass ,con jm  was attached to the tank wall using a 

set of elastic springs with a composite stiffness of ,con jk  at a height of ,con jh , with respect to the 

tank base.  

…

mimp

mcon,1

mcon,2

mcon,n kcon,n

kcon,2

kcon,1

himp

hcon,1

hcon,2

hcon,n

 

Figure 2.3. Mechanical analog for seismic FSI analysis of a rigid base-supported tank, 

adapted from Housner (1957) 

The parameters used in the mechanical analog ( impm , ,con jm , imph , ,con jh , and ,con jk ) were 

developed by balancing the inertial forces of the lumped masses with the impulsive and 

convective reactions at the tank base calculated using the analytical solutions (Housner 1957). 

The lumped masses moved with the tank subjected to horizontal motion 0u . The impulsive mass 

impm  was rigidly attached to and moved with the rigid tank at 0u . Each of the convective masses 

,con jm  was assumed to oscillate at an acceleration ,con ju . Their inertial forces balanced the 

impulsive and convective shear forces at the tank base, impF  and ,con jF : 

 0imp impF m u=    (2.1) 

 , , ,con j con j con jF m u=    (2.2) 

The heights of the impulsive and convective masses generated overturning moments at the tank 

base, which were balanced by impM  and ,con jM : 

 0imp imp impM m u h=     (2.3) 

 , , , ,con j con j con j con jM m u h=     (2.4) 
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The stiffness ,con jk  of the springs for ,con jm  was related to the convective frequency ,con jf : 

 ,

,

,

1

2
con j

con j

con j

k
f

m
=  (2.5) 

The parameters impm , .con jm , imph , ,con jh  and ,con jk  were derived using impF , ,con jF , impM , ,con jM , 

and ,con jf  calculated per Housner’s solutions for Eqs. (2.1) to (2.5). 

Housner (1963) simplified the mechanical analog of Figure 2.3 for seismic FSI analysis of a 

base-supported tank to a two-degree-of-freedom system presented in Figure 2.4a, including the 

impulsive mass impm  and the convective mass of the first mode ,1conm . The simplified mechanical 

analog was adapted for elevated tanks as presented in Figure 2.4b. In this figure, fm  and fk  are 

the mass and the stiffness of the frame supporting the tank. 

mcon,1

kcon,1

mimp
himp

hcon,1

 

mimp+mf

mcon,1

kf

kcon,1

 

(a) base-supported tank (b) elevated tank 

Figure 2.4. Simplified mechanical analog for seismic FSI analysis of base-supported and 

elevated rigid tanks, adapted from Housner (1963) 

Veletsos (1974) and Chapter 3 of Yang (1976) derived analytical solutions for impulsive 

responses of a flexible, base-supported, cylindrical tank, subjected to unidirectional horizontal 

motion. The solutions addressed fluid pressure impp , and shear force impF  and moment impM  at 

the tank base, associated with an assumed lateral deformation of the tank. The lateral 

deformation of the tank along its height sH  was expressed using three shapes presented in 

Figure 2.5: 1) Mode A, linear, 2) Mode B, sinusoidal, and 3) Mode C, co-sinusoidal. The 

impulsive responses were calculated using the method of Jacobsen (1949) with a modification to 

the boundary condition assigned to the tank wall: the horizontal velocities of the tank wall and 



  16 

 

the adjacent fluid were identical, expressed using the three deformed shapes of Figure 2.5. Figure 

2.6 presents analytical results for the impulsive pressure impp  on the wall of a flexible tank, given 

the three deformed shapes, together with results for a rigid tank, for /H R = 0.5 and 3. (The 

results for impp  for a rigid tank are identical to those calculated using the solution of Jacobsen.) 

The pressures impp  were normalized using impHu  , where impu  is the acceleration of a single-

degree-of-freedom system with the impulsive frequency of the tank for a seismic input. The 

impulsive reactions at the tank base were derived using the resultant forces and moments 

generated by the impulsive pressures on the wall of the tank. However, the impulsive frequency 

for the calculation of impu  was not derived, and so the analytical solutions of Veletsos (1974) and 

Chapter 3 of Yang (1976) were not complete. 

 

Figure 2.5. Three lateral deformed shapes along the height of the tank Yang (1976) 

 

pimp/(ρHu0”)

R R

pimp/(ρHu0”)

 

Figure 2.6. Normalized impulsive pressure /imp impp Hu   on the wall of a rigid tank and a 

flexible tank with the lateral deformed shapes presented in Figure 2.5, /H R = 0.5 and 3, 

adapted from Yang (1976) 
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Veletsos and Yang (1977) and Chapter 4 of Yang (1976) improved the analysis methodology of 

Veletsos (1974) and Chapter 3 of Yang (1976): impulsive response of a flexible tank was 

decoupled into modes and associated frequencies were derived. The tank was assumed to be full. 

The impulsive response was derived using the method presented in Veletsos (1974) and Chapter 

3 of Yang (1976) with a modification to the boundary condition assigned to the tank wall: the 

horizontal velocities of the tank wall and the adjacent fluid were identical, expressed using a 

linear superposition of modal shapes of a vertical cantilever ( )i z  developed by Young and 

Felgar (1949)11 . The equation of motion for the tank, represented using a multi-degree-of-

freedom system, was derived using the Lagrangian equation, including the strain and kinetic 

energies of the tank, the kinetic energy of the fluid, and the external work of seismic motion. The 

strain and kinetic energies of the tank and the kinetic energy of the fluid were derived using the 

velocity or displacement of the tank wall, which were functions of ( )i z . The impulsive 

frequencies and responses can be calculated given the equation of motion of the tank. Veletsos 

and Yang (1977) and Chapter 4 of Yang (1976) presented the equation of motion but did not 

calculate either frequencies or responses. 

Veletsos (1984a) and Tang (1986) used the equation of motion of Veletsos and Yang (1977) and 

Chapter 4 of Yang (1976) to compute impulsive frequencies impf  of the first three modes and the 

associated modal responses, including pressure impp , and shear force impF  and moment impM  at 

the tank base. Section 3 of this report presents the derivation of the analytical solutions, extracted 

from Veletsos and Yang (1977), Chapter 4 of Yang (1976), Veletsos (1984a), and Tang (1986), 

and calculates the impulsive responses for flexible tanks using the solutions. 

Tang and Chang (1994) and Padmanaban (1996) modified the assumed modal shapes for the full 

base-supported tank presented in Veletsos and Yang (1977) to calculate impulsive frequencies 

for partially filled tanks with different boundary conditions: 1) free, 2) hinged, or 3) roller-

supported at its top, and fixed at its base. The first impulsive frequency ,1impf  of the partially 

filled tank was calculated for the three boundary conditions and different tank dimensions: 

0.5 / sH H  1 and 0.3 /sH R 3. The studies concluded that for a given tank radius R , the 

                                                 
11 Young and Felgar (1949) developed lateral modal shapes for a prismatic beam with two ends 1) fixed and free 

(cantilever), 2) fixed and hinged, 3) fixed and roller-supported, and 4) fixed and fixed. 
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effect of the fluid height H  on the impulsive frequency was much greater than that of the tank 

height sH . At a given /H R , the difference in the impulsive frequencies for 0.5 /sH R 1.5 

was insignificant.  

A Department of Energy (DOE) guideline (Bandyopadhyay et al. 1995) for liquid storage tanks 

summarized the work of Veletsos and his co-workers (i.e., Yang, Tang, Padmanaban, and 

Chang). 

Malhotra et al. (2000) developed a mechanical analog for seismic FSI analysis of flexible, base-

supported, cylindrical tanks subjected to unidirectional horizontal motion. The mechanical 

analog is a two-degree-of-freedom system using one impulsive and one convective mass, impm  

and conm , as presented in Figure 2.7. In this figure, the masses impm  and conm  are attached to the 

tank wall using springs and dampers at heights of imph  and conh  with respect to the tank base, 

respectively. The stiffnesses of the springs for impm  and conm  are impk  and conk , respectively. The 

damping ratios of the dampers for impm  and conm  are imp  and con , respectively. Malhotra et al 

proposed imp =2% for a steel tank, imp =5% for a concrete tank, and con =0.5% for both steel 

and concrete tanks. Similar to the mechanical analog of Housner (1957), the parameters used in 

the Malhotra analog (i.e., impm , conm , imph , conh , impk , and conk  shown in Figure 2.7) were 

developed by balancing the inertial forces of the lumped masses with the impulsive and 

convective reactions at the tank base calculated using analytical solutions. The analytical 

solutions of Veletsos (1984) for flexible tanks were used to develop the mechanical analog, with 

modifications to enable calculating FSI responses using one impulsive mode and one convective 

mode: impulsive (convective) responses in the second and higher modes were added to that in 

the first mode. Appendix B presents the derivation of the parameters (i.e., impm , conm , imph , and 

conh ) used in the mechanical analog. Malhotra compared shear forces and moments at the base of 

a tank and wave heights calculated using the mechanical analog and Veletsos’ solutions, and the 

differences in the responses were less than 10%. Malhotra’s procedure is widely accepted in 

industry and included in Eurocode 8 (European Committee for Standardization (CEN) 1998) and 

API 650 (American Petroleum Institute (API) 2012) for the seismic design and analysis of base-

supported cylindrical tanks. Appendix B calculates the FSI responses using the mechanical 
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analog of Malhotra et al. and the analytical solutions of Veletsos (1984) for three tanks with 

different dimensions and three input motions. 

mcon

kcon

mimp
himp

hconkimp

ζcon

ζ imp

 

Figure 2.7. Mechanical analog for seismic FSI analysis of flexible base-supported 

cylindrical tanks subjected to unidirectional horizontal motion (Malhotra et al. 2000) 

Haroun and Housner (Housner and Haroun 1980; Haroun 1980a, b, 1983; Haroun and Housner 

1981a, b, 1982a, b) performed numerical and experimental seismic FSI analysis of flexible, base-

supported, cylindrical tanks. Their work included three phases: 1) developing a numerical 

formulation for seismic FSI analysis of tanks, 2) performing ambient and forced vibration tests 

on three cylindrical water tanks, and 3) developing a mechanical analog based on FSI results of 

the formulation in (1). Phases (1) and (3) are introduced in this section (2.2.1) and phase (2) is 

introduced in Section 2.3. 

The numerical formulation of Haroun and Housner combined the finite element method and an 

analytical solution of fluid pressure to calculate seismic FSI in flexible, base-supported 

cylindrical tanks, subjected to unidirectional horizontal seismic motion of a small amplitude. The 

tank wall was modeled using cylindrical shell elements, as presented in Figure 2.8a. Seven 

cylindrical shell elements are used for the tank wall in this figure. Each end of the cylindrical 

shell elements (i.e., top and bottom) had four degrees of freedom: axial u , tangential v , radial 

w , and rotational w , with respect to the axial axis. The impulsive response of the tank was 

modeled by applying an analytically-calculated impulsive pressure (i.e., traction) on the inner 

surface of the cylindrical elements. The degrees of freedom of the cylindrical elements enabled 

modeling impulsive responses associated with the lateral and circumferential modal shapes of the 

tank wall presented in Figures 2.8b and c, respectively. The circumferential modes included two 
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types of motions: 1) cos − type and 2) cosn − type. The shape of the cos − type mode 

resulted in no deformation along the circumference of the wall, namely, the deformations of the 

tank were contributed by lateral modes only. The free surface of the fluid was modeled using 

concentric annular elements shown in Figure 2.9a to accommodate wave action (i.e., convective 

response). The concentric annular elements enabled deformations on the free surface associated 

with convective modes presented in Figure 2.9b. The numerical formation of Haroun and 

Housner was validated using test results generated in Phase (2) of the project, which is presented 

in Section 2.3. 

 

(a) flexible tank modeled using cylindrical shell elements 

 

 

(b) lateral modal shapes (c) circumferential modal shapes  

Figure 2.8. Numerical model for seismic FSI analysis of flexible base-supported cylindrical 

tanks, impulsive response (Haroun 1980a, b) 
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(a) free surface modeled using concentric 

annular elements 
(b) convective modal shapes 

Figure 2.9. Numerical model for seismic FSI analysis of flexible base-supported cylindrical 

tanks, convective response (Haroun 1980a, b) 

 

Haroun proposed a mechanical analog for seismic FSI analysis of flexible, base-supported 

cylindrical tanks subjected to unidirectional horizontal motion. The mechanical analog was based 

on results of analysis of his numerical formulation. Figure 2.10 presents the mechanical analog. 

The lumped masses ,imp rm  and ,imp fm  were the parts of the fluid contributing to the impulsive 

response generated by rigid-body motion and lateral deformation of the tank, respectively. The 

lumped mass conm  was the part of the fluid contributing to the convective response. The lumped 

masses were located at the corresponding heights, ,imp rh , ,imp fh , and conh , with respect to the tank 

base. The stiffness of the springs impk  ( conk ) that attached the lumped mass ,imp fm  ( conm ) to the 

tank wall was associated with the first impulsive frequency ,1impf  (convective frequency ,1cof ). 

The parameters used in the mechanical analog (i.e., ,imp rm , ,imp fm , conm , ,imp rh , ,imp fh , conh , impk , 

and conk ) were developed by balancing the inertial forces of the lumped masses with the 

impulsive and convective reactions at the tank base calculated using the numerical formulation. 

The values of the parameters were presented in charts, for a range of tank dimensions, in Haroun 

and Housner (1981b) and Haroun (1983). 
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Figure 2.10. Mechanical analog for seismic FSI analysis of flexible, base-supported, cylindrical 

tanks subjected to unidirectional horizontal motion, adapted from Haroun and Housner (1981b) 

Ma et al. (1982a) studied the effect of tank flexibility on seismic FSI response of base-supported 

cylindrical tanks using FLUSTR (Liu 1980, 1981; Liu and Belytschko 1982). FLUSTR was a 

finite element code for seismic FSI analysis developed by the Argonne National Laboratory in 

the 1980s for application to liquid metal reactors. The fluid response was assumed to be linear. 

Response-history analysis was performed for six finite element models of a tank with /H R = 1.7. 

One of the six models was rigid, and the other five models were flexible, with first impulsive 

frequencies ,1impf  of 10, 7, 5, 2.5, and 1.5 Hz, achieved by varying the elastic modulus of the tank 

material. The first convective frequency ,1conf  of the rigid tank was 4.8 seconds (0.2 Hz), 

estimated using an analytical solution (Housner 1957). A 10-second, unidirectional horizontal 

ground motion of with peak ground acceleration (PGA) of 0.5 g was input at the tank base in 

each model. Response-history analysis was performed for 10 seconds for the five flexible tanks 

and 60 seconds for the rigid tank to investigate free-vibration wave response after the shaking 

had ended. Hydrodynamic pressure on the tank wall, where the face was normal to the direction 

of the seismic input, and wave heights along the diameter parallel to the input were compared for 

the six models. Ma et al. observed that 1) fluid pressures on the wall of the five flexible tanks 

were greater than that of the rigid tank, 2) the greatest fluid pressure occurred in the tank with 

,1impf  close to the frequency of the peak spectral acceleration of the input motion, 3) wave heights 
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increased with increasing tank flexibility12, namely with reducing ,1impf , and 4) the amplitude of 

wave heights in the rigid tank in the last 50 seconds was greater than that in the first 10 seconds 

by 20%: post-earthquake wave action was significant.  

Ma et al. (1983a; 1983b) studied the effect of boundary conditions for flexible cylindrical tanks 

on seismic FSI responses. Response-history analysis was performed for a base-supported and a 

head-supported tank using FLUSTER. The dimensions of the two tanks were identical: 

/H R = 1.7. The bases of the two tanks were flat: rigid for the base-supported tank and flexible 

for the head-supported tank. A 10-second, unidirectional horizontal motion with a PGA of 0.5 g 

was input to the tank support, either base or head. Ma et al. observed the time series of 

hydrodynamic pressures on the tank wall and base of the two tanks, and approximated the period 

of the first impulsive mode using the time between every two consecutive crests in the time 

series. For the base-supported tank, the first impulsive frequency associated with the lateral 

vibration of the tank was identified using the pressure on the wall. For the head-supported tank, 

the impulsive frequencies associated with the lateral vibration of the tank and the vertical 

vibration of its base were identified using the pressure on the wall above the mid-height and on 

the base near the center, respectively. The pressure history near the wall-base intersection was 

affected by vibrations of both the wall and the base. The frequency for the lateral vibration of the 

head-supported tank was lower than that of the base-supported tank, and so the head-supported 

boundary condition increased the lateral flexibility of the tank. The frequency for the lateral 

vibration of the head-supported tank was significantly higher than that for the vertical vibration 

of its base. Ma et al. concluded that this outcome was due to the small bending stiffness of the 

tank base and the large mass of the fluid supported by and attached to the base. Wave heights 

along the diameter parallel to the input motion were compared for the two models, which were 

almost identical. Ma et al. concluded that wave action was independent of the location of the 

support (base or top). 

Ma and Chang (1985a, 1985b)13  studied the effect of horizontal seismic isolation on wave 

heights in a liquid metal reactor vessel. The seismic isolators were installed beneath the 

                                                 
12 Sakurai et al. (1989) disagree with this observation, as noted in Section 2.3: tank flexibility did not affect wave 

heights. 
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foundation of the reactor building that housed the reactor. The vessel was assumed to be a 

flexible base-supported tank with /H R = 1.4. No internal components were included in the 

vessel. A stick model was built for the reactor building, and a finite element model was built for 

the reactor. The fundamental frequency of the building was 3 Hz, and the first convective 

frequency of the vessel was 0.25 Hz. (The first impulsive frequency of the vessel was not 

reported.) Three isolation systems with different periods were designed for the nuclear building: 

1, 1.25, and 1.7 seconds (i.e., 1, 0.8, 0.6 Hz). Response-history analysis was first performed for 

the stick model of the reactor building using a unidirectional horizontal motion with a PGA of 

0.3 g, for four models, one conventionally founded and three isolated. The acceleration time 

series at the location of the support of the reactor was then extracted and applied to its finite 

element models. The maximum fluid pressure on the wall of the vessel was reduced by around 

80% with the use of the isolation of all three periods. The maximum wave height increased with 

all three isolation systems, with a maximum increase of 80% for the isolated period of 1.7 

seconds. Ma and Chang concluded that the use of the horizontal seismic isolation for the reactor 

building significantly reduced hydrodynamic pressures on the reactor vessel in the building, but 

increased wave height, especially if the isolation period was close to the first convective 

frequency. 

Malhotra (1997) performed seismic FSI analysis for conventionally founded and seismic isolated 

tanks to study the effectiveness of base isolation. A broad steel tank of /H R = 0.60 and a 

slender steel tank of /H R = 1.85 were used in the analysis. The first impulsive and convective 

frequencies of the broad tank were 9 and 0.12 Hz (i.e., periods of 0.25 and 8 seconds), 

respectively. The first impulsive and convective frequencies of the slender tank were 6.4 and 

0.27 Hz (i.e., periods of 0.16 and 3.7 seconds), respectively. Malhotra applied 60 and 12 

translational base isolators to the broad and slender tanks, respectively, and employed viscous 

dampers to prevent large horizontal displacements. The isolated periods for the broad and slender 

tanks were about 2.2 and 2.5 seconds, respectively. Seismic FSI analysis was performed using a 

mechanical analog per 3-D-BASIS-M (Tsopelas et al. 1991) for each tank. The mechanical 

                                                                                                                                                             
13 Ma and Chang (1985a, 1985b) repeated the work of Ma et al. (1985a, 1985b) on seismic FSI analysis of internal 

components in a liquid sodium reactor. The section of Ma and Chang (1985a, 1985b) related to seismic isolation 

is summarized here. Ma et al. (1985a, 1985b), which includes the section of Ma and Chang (1985a, 1985b) 

related to internal components, is summarized in Section 2.2.2.  
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analog modeled the fluid using one impulsive and one convective mode, identical to that 

proposed in Malhotra’s later study (Malhotra et al. (2000)), and the parameters used for the two 

modes were extracted from Veletsos and Tang (1990). Since the mechanical analog can only 

accommodate unidirectional horizontal input, responses to two horizontal components were 

calculated separately and combined using the method of the square root of the sum of the squares 

(SRSS). Malhotra compared reactions at the tank base and wave heights in the conventionally 

founded and seismic isolated tanks. For both the broad and the tall tanks, the use of the 

horizontal seismic isolation reduced the maximum base shear and moment by 80%, but increased 

the maximum wave height of the contained fluid by about 45%. The maximum axial force on the 

isolators was calculated using the maximum moment at the tank base and the weight of the tank 

and fluid, assumed to be evenly distributed to all isolators. The maximum tensile force on the 

isolators of the slender tank was significantly greater than that of the broad tank. Malhotra 

concluded that 1) horizontal seismic isolation was effective at reducing the reactions at the tank 

base without a significant increase in wave heights, 2) the tensile forces in the isolators due to the 

overturning moment would have to be considered in the design of the isolation system, 

especially for tall tanks. 

Christovasilis and Whittaker (2008) performed seismic FSI analysis for a conventionally 

founded and two horizontally seismic isolated cylindrical tanks using a finite element model and 

a mechanical analog (Malhotra et al. 2000). The finite element model was built using ANSYS 

(2005) and the mechanical analog was built using RUAUMOKO (Carr 2004). The results of the 

analysis were used to judge the utility of the mechanical analog for the preliminary design of the 

tank and the effectiveness of employing seismic isolation. The dimensions of the conventionally 

founded and seismic isolated tanks were identical: /H R = 0.87. The translational periods of the 

isolation systems were 2 and 3 seconds. The impulsive and convective periods of the 

conventionally founded tank calculated using the finite element model and the mechanical 

analog were identical: 0.5 and 9 seconds, respectively. Response-history analysis of the three 

tanks (i.e., the conventionally founded, 2-second isolated, and 3-second isolated) was performed 

using the finite element model and the mechanical analog. Five unidirectional horizontal motions 

were used in the response-history analysis, and they were spectrally matched to the design 

spectrum at an assumed site. Seismic responses calculated using the finite element model and the 
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mechanical analog were compared, in terms of the maximum shear force and moment at the tank 

base and the maximum wave height. The two numerical methods differed in these seismic 

responses to the five input motions by the average of 6% for the conventionally founded tank and 

1% for the isolated tanks. The seismic responses of the conventionally founded and isolated 

tanks were also compared. The maximum shear force and moment at the tank base were reduced 

by approximately 80% if isolation was used. The effect of the isolation on wave heights of the 

contained fluid was insignificant because the isolated periods were well separated from the 

period of the fundamental convective mode. Christovasilis and Whittaker concluded that the 

mechanical analog was a suitable tool for the preliminary design of a connectionally founded and 

seismic isolated cylindrical tank, and seismic isolation with an appropriate design period was 

effective for substantially mitigating seismic demands on the tank.  

2.2.2 FSI analysis of submerged components 

Chen (1975a, 1975b, 1977) derived analytical solutions for the mass of fluid contributing to 

hydrodynamic pressures on a row or an array of cylindrical rods subjected to seismic motions. 

The rods were parallel and submerged in an infinite fluid domain, and the seismic input was 

assumed to be unidirectional and perpendicular to their axial axis. The dimensions and boundary 

conditions of the rods in a row or an array were identical, and the distance between two adjacent 

rods was a constant, as presented in Figure 2.11: a row of 6 rods and arrays of 7 and 37 rods. The 

analytical solutions assumed the rods to be elastic, and the fluid to be ideal and respond linearly. 

The effects of hydrostatic pressure and fluid sloshing were not considered. The fluid contributing 

to the hydrodynamic pressures was assumed to be attached to and move with the rods. The mass 

of the attached fluid (i.e., added mass, addm ) reduced the lateral frequencies of the rods. A 

velocity potential was derived for the fluid using a boundary condition: each rod and its adjacent 

fluid moving at an identical velocity. Given the velocity potential, the hydrodynamic pressures 

on all rods in a row or an array could be calculated (see footnote 9 on page 11). The added mass 

addm  attached to and moving with the rod at an acceleration u  was derived by balancing the 

inertial force, addm u  , and the resultant force hydroF  associated with its hydrodynamic pressure: 

hydro addF m u=   . The added mass on each rod in a row or an array was a function of the rod radius 

iR , the clear distance id  between adjacent rods, and the density of the fluid  . Chen calculated 
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added masses for rows or arrays of rods using a range of iR  and id . In general, a smaller ratio of 

/i id R  added a greater mass to the rod, leading to lower lateral frequencies.  

 

 

 

(a) a row of 6 rods (b) an array of 7 rods (a) an array of 37 rods  

Figure 2.11. Row or array of parallel cylindrical rods in an infinite fluid space (Chen 1975b, 

1977) 

Chen and Rosenberg (1975) derived solutions for frequencies of two concentric pipes, with fluid 

filling the inner pipe and the annulus between the two pipes. The lateral, circumferential, and 

axial modes of the pipes were considered in the analysis. The two pipes were considered to be 

subjected to a unidirectional translational motion. The fluid contributing to the hydrodynamic 

pressures on the surfaces of the pipes was assumed to be attached to and move with the pipes as 

an added mass, and so the frequencies of the pipes were reduced. Solutions were derived using a 

method and assumptions similar to those of Chen (1975a, 1975b, 1977): elastic pipes, ideal 

fluids, identical lengths and boundary conditions for the two pipes, and neglecting hydrostatic 

pressure and sloshing. Section 5 presents the derivation and calculates the lateral frequencies of 

two concentric pipes with a range of dimensions using the solutions. In general, given a radius of 

the inner pipe, the frequencies of the two pipes both reduced with a smaller radius of the outer 

pipe (i.e., smaller clear distance between the two pipes). 

Chung and Chen (1976, 1977) developed a computer code, AMASS, to calculate the added mass 

on cylindrical rods submerged in a fluid confined by a pipe (e.g., tank wall). The added mass was 

calculated using the method of Chen (1975a, 1975b, 1977) and Chen and Rosenberg (1975): a 

velocity potential of the fluid was derived and used for calculating hydrodynamic pressures on 
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the rods generated by unidirectional translational seismic input. The computer code was capable 

of calculating added masses for a group of rods with arbitrary dimensions and clear distances.  

Chen and Chung (1976) provided a guideline for seismic FSI analysis of submerged components 

that summarized added masses for cylindrical rods and pipes extracted from their prior studies 

(e.g., Chen (1975a, 1975b) and Chen and Rosenberg (1975)). Chung and Chen (1984) provided a 

companion guideline for submerged components with various geometries, including rods of 

cylindrical, elliptical, semi-circular, triangle, rectangular, or hexagonal cross sections. Data 

presented in Chung and Chen (1984) were extracted from studies published in the 1930s to 

1980s (e.g., Yu (1945) and Patton (1965)). 

2.2.3 FSI analysis of fluid-filled advanced reactors 

Ma et al. (1983c, 1983d) and Ma (1985b, 1985a) performed seismic FSI analysis for a 

submerged cylindrical pipe concentrically mounted on the base of a cylindrical tank using 

FLUSTR. Ma et al. and Ma mapped the cylindrical tank to a liquid metal reactor vessel and the 

submerged pipe to a cylindrical shield14 for the reactor core, termed a core barrel in the studies. 

The effects of the presence of the core barrel and its dimensions on the FSI response of the tank 

were studied. A unidirectional horizontal motion with a PGA of 0.5 g was input at the base of the 

tank. Ma et al. (1983c, 1983d) performed the analysis using 2-D models, as presented in Figure 

2.12a. In this figure, H = 60 ft, R = 24 ft, bH = 36 ft, and bR = 8 ft. The 2-D models were 

constructed for a tank of /H R = 2.5, and a core barrel of height bH  and different radii bR : 

/bH H =0.6 and /bR R = 0.17, 0.3, 0.5, and 0.7. Ma (1985b, 1985a) used 3-D models for the 

tank, barrel, and contained fluid, as presented in Figure 2.12b. The models took advantage of 

symmetry: only one half of the tank and barrel was modeled, and the horizontal motion was 

parallel to the plane of symmetry. The 3-D models were constructed for a tank of /H R = 2, and 

a core barrel of height bH  and different radii bR : /bH H = 0.6 and /bR R = 0.3, 0.5, and 0.7. 

Both the tank and the barrel were flexible. The results of analysis presented in Ma et al. (1983c, 

1983d) and Ma (1985b, 1985a) are in good agreement and so are summarized together here. First, 

the radius of the core barrel affected the first impulsive frequency of the base-supported tank. 

                                                 
14 The cylindrical shield for the reactor core of a prototype liquid sodium reactor is presented in Figure 1.2 (Gluekler 

1997). 
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The impulsive frequencies of the tank reduced as the radius of the barrel was increased, namely, 

the gap between the walls of the tank and barrel was reduced. Second, for all models, 

hydrodynamic pressures on the inner surface of the core barrel were significantly smaller than 

those on the outer surface. Third, the presence of the core barrel reduced the first convective 

frequency of the tank. Ma et al. observed that the first convective frequency of a tank with a core 

barrel, calculated using the numerical models, was similar to the analytical results per Housner 

(1957), calculated using the tank radius R  and a fluid height of bH H− : the fluid depth at the 

level of the top of the barrel. Accordingly, Ma et al. concluded that the fluid below the level of 

the top of the core barrel, including that inside the barrel and between the barrel and the tank 

wall, did not affect the convective response of the tank. 

 

 

(a) 2-D model (Ma et al. 1983c) (b) 3-D model (Ma 1985b) 

Figure 2.12. Numerical models for seismic FSI analysis of a core barrel in a tank, FLUSTR 

Ma et al. (1985b, 1985a) investigated the effects of central and non-centered internal components 

on convective response in a liquid sodium reactor subjected to unidirectional horizontal motion. 

The reactor vessel and the internal components were assumed to be rigid and supported at their 

tops. Two 3-D finite element models were built: 1) a half reactor vessel with a central internal 

component, representing an upper internal structure (UIS)15, as shown in Figure 2.13a; and 2) a 

                                                 
15 Drawings of an upper internal structure (UIS), an intermediate heat exchanger (IHX), and a pump used in a 

prototype liquid sodium reactor are presented in Figure 1.2 (Gluekler 1997). 
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half reactor vessel with a central and 6 off-center components, representing 3 intermediate heat 

exchangers (IHXs)15 and 3 pumps15, as shown in Figure 2.13b. The models of the reactor took 

advantage of symmetry: only one half of the reactor was modeled, and the horizontal motion was 

parallel to the plane of symmetry. Only the upper part of the reactor was included in the models 

of Figure 2.13 because Ma et al. believed that the excluding part of the reactor did not affect 

wave action, which was the focus of the studies. A 10-second seismic motion with a PGA of 1 g 

was used for each model. Response-history analysis was performed for 60 seconds to investigate 

free-vibration wave action after the shaking had ended. Maximum wave heights calculated using 

the two models were compared. The maximum wave height in the two models occurred at 

different locations, noted using the red circles shown in Figures 2.13a and b. Without off-center 

components (Figure 2.13a), the maximum wave height occurred near the vessel wall. The 

maximum wave height occurred near component #6 in the model that included off-center 

components (Figure 2.13b). The maximum wave height in the vessel that included the off-center 

components was 40% smaller than in the vessel with only a central component. Ma et al. (1985a, 

1985b) concluded that the presence of off-center components changed the shapes of the waves 

and significantly reduced the maximum wave heights.  

coolant

coolant

vessel

central component
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(a) vessel, coolant, and central component 
(b) vessel, coolant, central component, and six 

off-center components 

Figure 2.13. Finite element models for a liquid sodium reactor, adapted from Ma et al. (1985b, 

1985a) 
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Chellapandi et al. (2012)16 performed seismic FSI analysis of a prototype liquid sodium reactor 

subjected to operating basis earthquake (OBE) shaking at an assumed site, with the consideration 

of a leak of the coolant. Figure 2.14a presents the liquid sodium reactor used in the study. In the 

event of a leak, the coolant would be retained in a space between the reactor vessel and the guard 

vessel. A 2-D and a 3-D model was constructed for the reactor, and seismic FSI analysis was 

performed using a finite element code, CAST3M (Commissariat Français à l'Energie Atomique 

(CEA) 2003). The analysis was performed to 1) judge the accuracy of the 2-D model by 

comparing results with the 3-D model, and 2) investigate the response of the guard vessel under 

OBE, after the main vessel leak and before decommissioning during relatively long shutdown 

condition. Figure 2.14b presents the 2-D and 3-D models, each including the reactor vessel, 

guard vessel, internal components, reactor vault, and liquid sodium in the reactor vessel and 

between the reactor and guard vessels. The 2-D model was computationally efficient and took 

advantage of axisymmetric geometries, and assumed the seismic shaking was either in the 

vertical direction or in the horizontal direction parallel to the plane of the model. The modal 

properties of the 2-D and 3-D models were characterized using their free-vibration response. The 

frequencies and modal shapes associated with global vibrations of the reactor and guard vessels 

calculated using the two models were in good agreement, but the 2-D model was unable to 

correctly identify local vibrations of the internal components.  

Reactor vessel

Guard vessel

 

reactor vessel

inner vessel

guard vessel

reactor vault

internal 

components

sodium

sodium

leaked sodium

 

(a) prototype liquid sodium reactor (b) 2-D axisymmetric and 3-D models 

Figure 2.14. Prototype liquid sodium reactor and the numerical models, adapted from 

Chellapandi et al. (2012) 

                                                 
16 Chellapandi et al. (2012) also performed bucking analysis at the support of the guard vessel on the reactor vault. 

This work is not related to the focus of this report, and so is not summarized here. 
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Response-history analysis was performed for the 2-D and 3-D models using OBE shaking. Since 

the 2-D model could only accommodate unidirectional input motion, the horizontal and the 

vertical components of the OBE shaking were input separately for both 2-D and 3-D models, to 

enable a comparison of results. Results were compared for 1) absolute and relative displacements 

of the reactor and guard vessels, at their crown-knuckle junctions, around the red ellipses drawn 

in Figure 2.14b, 2) reactions at the support of the guard vessel on the reactor vault, and 3) 

hydrodynamic pressures on the wall and at the mid-height of the guard vessel, at the orange solid 

circles denoted in Figure 2.14b. The time series of the reactions (i.e., shear force and moment) 

calculated using the two models were in good agreement, in both amplitude and frequency 

content. The time series of the displacement and hydrodynamic pressure calculated using the two 

models differed in their frequency contents but the maximum values were similar. The maximum 

relative displacements of the guard and reactor vessels around the red ellipses (see Figure 2.14b) 

generated using the horizontal input was insignificant (<3.2 mm), and that generated using the 

vertical input was negligible, by comparison with the nominal clear distance (∼250 mm). 

Chellapandi et al. (2012) concluded that the 2-D model predictions for the peak responses were 

reasonable by comparison with that of the 3-D model, and the guard and reactor vessels would 

not impact under the simultaneous occurrence of a coolant leak and OBE shaking. 

2.3 Experimental and validation studies on seismic FSI analysis of tanks and fluid-filled 

reactors 

Haroun and Housner (Haroun 1980a, b, 1983; Housner and Haroun 1980) performed ambient 

and forced vibration tests on base-supported, cylindrical, steel tanks filled with water. This 

experimental study was Phase 2 of their research project on seismic FSI analysis of tanks. Test 

data were used to validate the numerical models developed in Phase 1 of the project. (Phases 1 

and 3 are introduced in Section 2.2.1.) 

Figure 2.15 presents the three tanks used for the experiments, each of which was essentially full 

and close at its top by a tank roof. The radii R  of the three tanks were 7, 9, and 9 m, and the 

height-to-radius ratios /H R  ranged between 2 and 3. Seismometers were used to measure the 

velocity on the tanks in both ambient and forced vibration tests. A vibration generator (i.e., 

shaker) was used to generate horizontal sinusoidal motions for the forced vibration tests. Figure 

2.16 presents the test setup for Tank No. (1) presented in Figure 2.15. Per Figure 2.16, the 
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vibration generator was anchored to the concrete slab supporting the tank and resting on the 

ground. Six seismometers (denoted as 1 to 6 in Figure 2.16) were attached to the tank wall at 6 

different heights to measure motions in a horizontal direction (parallel to the input motion from 

the vibration generator in the forced vibration tests). Two seismometers (denoted as 7 and 8 in 

Figure 2.16) were placed on the concrete slab supporting the tank to measure vertical velocities 

associated with rocking motions of the tank due to horizontal excitation. Per detail (b) in Figure 

2.16, three seismometers were used to measure velocities in three orthogonal directions at a point 

on the tank roof. This set of three seismometers was moved from point to point to record data at 

10 different locations around the perimeter of the tank roof. 

 

Figure 2.15. Base-supported cylindrical tanks used for ambient and forced vibration 

tests (Haroun 1980b) 

 

    
Figure 2.16. Setup of seismometers for the ambient and forced vibration tests for 

Tank No. (1) presented in Figure 2.15, and vibration generator for the forced 

vibration tests, adapted from Haroun (1980b) 
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The frequencies of the lateral modes of the tank (see Figure 2.8b) were identified using data from  

the six seismometers on the tank wall, and those of the circumferential modes (see Figure 2.8c) 

were identified using seismometer data around the perimeter of the tank roof, generated from 

both ambient and forced vibration tests. The lateral frequencies of each tank measured from the 

ambient and forced vibration tests were lower than those calculated using the numerical 

formulation presented in Section 2.2.1. Haroun concluded that the reason for the lower 

frequencies measured in the tests was due to foundation flexibility. The frequencies of the 

cos − and cosn − types circumferential modes of each tank calculated using the numerical 

formulation agreed well with measurements from the ambient tests if the hydrostatic pressure of 

the fluid on the tank wall and the stiffness of the tank roof were considered in the numerical 

calculations. The frequencies of the cosn − type circumferential modes could not be identified 

from the forced vibration tests because the motion of the tank generated by the vibration 

generator was dominated by lateral deformation and the circumferential deformations associated 

with cosn -type modal shapes were insignificant. Haroun concluded that 1) the numerical 

models calculated using his formulation were validated, and 2) foundation flexibility, hydrostatic 

pressure, and stiffness of the tank roof played an important role in the modal properties of the 

tanks. 

Chalhoub and Kelly (1988, 1990) performed earthquake-simulator tests to investigate the 

effectiveness of horizontal seismic isolation on reducing the FSI response of base-supported 

tanks. Two rigid steel tanks with similar dimensions were tested. The radius and height of the 

tanks were both around 0.6 m, the wall thickness was 1 mm, and the height of the contained 

water was 0.45 m. As presented in Figure 2.17, tank #1 was anchored to the earthquake simulator 

and tank #2 was anchored to the base plate of a seismically isolated steel fame supported on the 

simulator. The steel frame was a 1/4th-scale, 9-story structure. Eight elastomeric isolators were 

installed beneath the steel frame. Weights were attached to each floor of the frame to achieve an 

isolated frequency of 0.7 Hz. 
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(a) plane view (b) side view from south 

Figure 2.17. Earthquake-simulator tests on two rigid, base-supported, cylindrical tanks filled 

with water, each anchored to the simulator or a base-isolated steel frame 

Time series of sinusoidal motions and earthquake records, with peak ground accelerations 

ranging between 0.07 g and 0.3 g, were input in the north direction identified in Figure 2.17. 

Identical instrumentation was used for each tank. Eight pressure gauges were installed on the 

wall of each tank: three gauges on each of the north and south faces of the tank wall at three 

different depths and one gauge on each of the east and west faces at the mid-height of the tank. 

One accelerometer was installed on each of the north and west faces of the wall and near the top 

for each tank. Two water level gauges were used to measure wave heights adjacent to the north 

and south faces of the wall of each tank. 

Convective frequencies were determined from Fourier amplitude spectra of the measured wave 

heights in the two tanks. The first convective frequency was 0.83 Hz for both tanks, which was 

very close to the isolated frequency of the steel frame supporting the tank (i.e., 0.7 Hz). 

Hydrodynamic pressures, accelerations, and wave heights measured for the two tanks were 

presented and compared for seven input motions. The peak hydrodynamic pressures and 

accelerations on the tank supported on the base plate of the isolated frame (i.e., tank #2) were 

15% to 80% smaller than those on the tank anchored to the simulator (i.e., tank #1) for the seven 

input motions. However, the peak wave heights measured in tank #2 were greater than those in 

tank #1 by 3% to 47%. Chalhoub and Kelly concluded that the use of seismic isolation reduced 
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the accelerations and hydrodynamic pressures of the base-supported tank but increased wave 

heights, which could be addressed by selecting an isolated frequency that was well separated 

from the first convective frequency. 

Data from the earthquake-simulator tests were also used to validate analytical solutions 

developed by Chalhoub and Kelly for FSI responses of a rigid, base-supported, cylindrical tank. 

The solutions addressed hydrodynamic pressures and wave heights. (Section 3 presents the 

derivation and calculates the FSI responses for a range of tank dimensions using the solutions.) 

The test and analytical results for hydrodynamic pressures and wave heights were compared for 

the two tanks and five earthquake records. The test and analytical results were in phase but 

differed in maximum pressures and wave heights by an average of 15% and 3%, respectively, for 

the two tanks and the five motions. The maximum differences in responses were not reported. 

Chalhoub and Kelly (1988, 1990) concluded that the test data and analytical results for the 

seismic FSI responses were in good agreement. 

Fujita et al. (1984) performed experiments for two scaled models of a loop-type17 liquid sodium 

nuclear reactor presented in Figure 2.18a. The goals of the tests were to 1) investigate seismic 

FSI response, 2) judge the effectiveness of a sloshing suppressing system used in the vessel, and 

3) validate a beam-column model and an in-house linear finite element model. The test 

specimens were a 1/8th-scale steel vessel and a 1/4th-scale plastic vessel, as presented in Figures 

2.18b and c, respectively.  

The 1/8th-scale vessel was tested using an electromagnetic shaker as presented in Figure 2.19a. 

The shapes and frequencies of the lateral and circumferential modes were identified for the 

vessel as empty and filled with water. The 1/8th-scale vessel did not include internal components. 

As presented in Figure 2.19a, the vessel was supported at both top and bottom: the top was 

supported by a head and the bottom was supported using a column to mimic the boundary 

conditions of the reactor vessel of Figure 2.18a. Test results for the shapes and frequencies of the 

lateral and circumferential modes of the vessel generated using the electromagnetic shaker 

showed good agreement with those calculated using analytical solutions (Fujita 1981). 

                                                 
17 Loop-type: the coolant pump and the heat exchanger are located outside the reactor vessel, in contrary to pool-

type (e.g., the prototype liquid metal reactor of Figure 1.2 (Gluekler 1997)). 
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(a) loop-type liquid sodium (b) 1/8th-scale steel vessel 
(c) 1/4th-scale plastic 

vessel 

Figure 2.18. Loop-type liquid sodium reactor, 1/8th- and 1/4th-scale test models, filled with water 

(Fujita et al. 1984) 

 

 

Dip plate

 

 

(a) test setup for the 1/8th-scale steel 

vessel 

(b) test setup for the 1/4th-

scale plastic vessel 

(c) 1/4th-scale vessel 

supported by a steel frame 

on an earthquake simulator 

Figure 2.19. Test setups for the 1/8th- and 1/4th-scale test models filled with water (Fujita et al. 

1984) 
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The 1/4th-scale vessel was supported at its top by a head on a frame, which was anchored to an 

earthquake simulator, as presented in Figures 2.19b and c. The base of the vessel was supported 

by a column attached to the simulator. As presented in Figure 2.19b, the 1/4th-scale vessel 

included a sloshing suppressing system (termed dip plate in the study) and internal components, 

representing a nuclear core, an upper structure, and an inner barrel. The modal shapes and 

frequencies of the lateral modes of the vessel, including the internal components and the dip 

plate, were identified as empty and filled with water. The circumferential modes of the vessel 

were not considered. The fluid sloshing in the vessel, generated by a horizontal harmonic motion, 

were investigated for three test configurations: 1) vessel only, 2) vessel, including all internal 

components and excluding the dip plate, and 3) vessel, including all internal components and the 

dip plate. Wave heights were measured adjacent to the tank wall. Results for the three test 

configurations were compared. Wave heights measured in Configuration 2 were significantly 

smaller than those in Configuration 1: the presence of the internal components reduced wave 

heights. When the dip plate was installed in the vessel (Configuration 3), the wave heights were 

too small to be measured. The convective frequencies in the first three modes were identified 

using Fourier amplitude spectra of wave heights measured for all three configurations. The 

convective frequencies for Configuration 2 were lower than those for Configuration 1: the 

internal components reduced the convective frequencies of the vessel. The convective 

frequencies for Configuration 3 (including the dip plate) could not be identified because the 

measured wave heights were too small to be measured, as noted above. 

A beam-column model and a finite element model was constructed for the 1/4th-scale vessel, as 

presented in Figure 2.20. In the beam-column model, the vessel and its internal components were 

modeled using beam-column elements and the contained water was modeled as a distributed 

mass attached to these elements. Springs were used to model the boundary conditions of the 

vessel and internal components. The dip plate was not included in the beam-column model. The 

finite element model was developed and analyzed using an in-house code. The vessel, contained 

water, internal components, and dip plate were included in the finite element model. 
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(a) beam-column model (b) finite element model 

Figure 2.20. Numerical models for the 1/4th-scale plastic vessel filled with water (Fujita et 

al. 1984) 

The modal shapes and frequencies of the first lateral modes of the 1/4th-scale vessel, empty and 

water-filled, were calculated using the beam-column and finite element models. The modal 

properties calculated using the models were both in good agreement with the test results: the 

differences in the frequencies were less than 10%. The convective frequencies of the 1/4th-scale 

vessel, excluding the internal components and dip plate, were calculated using the finite element 

model. The numerical results for the first three convective frequencies were essentially identical 

to those measured in the tests. Wave heights adjacent to the wall were calculated using the finite 

element model for horizontal motions used in the tests for 1) vessel, excluding internal 

components and the dip plate (Configuration 1), and 2) vessel, including the internal components 

and the dip plate (Configuration 3). The numerical results and the test data were compared. 

Figure 2.2118 presents results for a harmonic input: the predicted wave height was inaccurate.  

                                                 
18 The analytical results for wave heights presented in Figure 2.21a were calculated using solutions developed in a 

document written in Japanese, and so are not described here. 
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(a) configuration 1 (b) configuration 3 

Figure 2.21. Wave heights in the 1/4th-scale vessel calculated using the finite element 

model and measured in the earthquake-simulator tests (Fujita et al. 1984) 

Sakurai et al. (1989)19 used the 1/l0th-scale model presented in Figure 2.22a for earthquake-

simulator testing of a prototype pool-type liquid sodium reactor. The model included a) a 6 mm 

thick cylindrical tank (termed rigid) to represent the reactor vessel, b) a 1.2 mm thick cylinder 

(termed flexible) to represent a thermal baffle, and c) submerged components. The gap between 

the rigid and flexible vessels was 50 mm. The vessel, thermal baffle, and submerged components 

were head supported by a frame, which was anchored to an earthquake simulator. Tests were 

performed in the five configurations of Figure 2.22b. In configurations 3 and 4, water was 

contained by the flexible inner cylinder (which was presumably sealed at its base). The 

earthquake-simulator experiments were performed for the five configurations to investigate 

sloshing of the coolant, including the effects of wall flexibility and submerged components on 

wave action. 

Sinusoidal motions and an earthquake record were used as unidirectional horizontal inputs in the 

tests. Convective frequencies and damping ratios were determined using results for wave heights 

generated by sinusoidal motions. Wave heights were measured for the earthquake simulation at 6 

locations on the free surface, along the diameter in the direction of the input motion. The first 

convective frequencies and wave heights were compared for the five configurations. In general, 

the effect of wall flexibility on the frequencies and damping ratios in the convective modes and 

wave heights was insignificant. The presence of the submerged components reduced the  

                                                 
19 Sakurai et al. (1989) also performed experiments for a 1/3rd-scale model of the hot pool of a 1000 MWe reactor. 

The test data were used for bucking analysis of the pool. This work is not related to the focus of this report, and 

so is not summarized here. 
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(a) side view of the 1/10th-scale vessel, 

thermal baffle, and submerged components, 

supported at top 

(b) test configurations 

Figure 2.22. 1/10th-scale vessel for earthquake simulation tests (Sakurai et al. 1989) 

convective frequencies by about 5% and the maximum wave heights by about 40%. The 

damping ratios of the first convective mode of the vessel, excluding and including the submerged 

components, were 0.1% and 0.4% of critical, respectively: the presence of the internal 

components increased the damping ratios. 
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SECTION 3 

ANALYTICAL SOLUTIONS FOR SEISMIC FLUID-STRUCTURE 

INTERACTION RESPONSES OF CYLINDRICAL TANKS 

3.1 Introduction 

Earthquake shaking of a liquid metal nuclear reactor induces fluid-structure interaction (FSI) 

between the reactor vessel, the internal components, and the liquid metal coolant. As noted in 

Section 1, early reactor designs ignored the interaction between the vessel and the internal 

components to simplify the seismic analysis, which enabled FSI to be parsed into: 1) interaction 

of the vessel and its contained fluid and 2) interaction of the internal components and the 

surrounding fluid. This section addresses the first interaction and provides analytical solutions 

for seismic FSI responses, including modal properties of the vessel, hydrodynamic pressures on 

the vessel generated by the fluid, and global reactions at the vessel supports. (The second 

interaction is addressed in Section 5.) The analytical solutions are suitable for preliminary design 

and seismic qualification for vessels containing fluid, such as liquid metal reactors and other 

nuclear reactors that contain a large volume of fluid (e.g., pressurized water and boiling water 

reactors). The analytical solutions also support verification of the numerical models presented in 

Section 4.  

A liquid metal reactor vessel is generally cylindrical with a dish-shaped base. The tank is filled 

with fluid and closed by an air-tight head that supports the tank at its top. Analytical solutions for 

the seismic response of such head-supported cylindrical tanks have not been published at the 

time of this writing, but companion solutions for base-supported tanks have been developed in 

prior studies. Analytical solutions are derived in this section for head-supported cylindrical tanks, 

achieved by modifying published derivations for seismic response of base-supported cylindrical 

tanks and addressing the change in the boundary conditions (i.e., base- to head-supported). The 

shaped base is ignored in the derivations and the bottom of the tank is assumed to be flat and 

rigid. 

This section introduces a number of prior analytical studies of base-supported cylindrical tanks 

subjected to small-amplitude, unidirectional horizontal motion. The studies assumed the tank to 

be either rigid or elastic (flexible), the thickness of the tank wall to be constant, and the 
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contained fluid to be ideal20. The fluid adjacent to the wall and the base of the tank was attached 

to these surfaces because the amplitude of the input motion was assumed to be small. The 

analytical studies parsed the seismic response of a base-supported cylindrical tank into an 

impulsive and a convective component, which are introduced next. 

Impulsive response is generated by the part of the fluid accelerating with the tank. This fluid 

behaves like a distributed mass attached to the wall and the base of the tank, following the 

movement and deformation of the tank. The impulsive response is also described as an added 

mass effect on the tank. The impulsive response disregards fluid waves and assumes the pressure 

on the initial free surface21 to be zero as atmospheric pressure is not considered. Convective 

response is generated by the part of the fluid assumed theoretically not to move with the tank 

horizontally but oscillates vertically. The vertical oscillation is a wave action that induces 

vertical displacements of the free surface. The convective response considers the pressures 

generated by wave actions, and together with the impulsive response completes the 

hydrodynamic pressures in the tank.  

The analytical solutions for seismic FSI response of a head-supported cylindrical tank developed 

here adopt the same assumptions used previously for studies of base-supported cylindrical tanks. 

The assumptions include 1) rigid or elastic (flexible) tank, 2) constant thickness of the tank wall, 

3) ideal fluid, 4) fluid attached to the tank, and 5) small-amplitude, unidirectional horizontal 

input motion. Identical to the studies on base-supported tanks, the seismic response of a head-

supported tank is also parsed into impulsive and convective components. The analytical solutions 

for a head-supported cylindrical tank are derived by modifying the boundary condition used for 

the analysis of a base-supported cylindrical tank: 1) the seismic input is at the head of the tank, 

and 2) the base of the tank is free to vibrate when the deformation of the tank is taken into 

account. 

Section 3.2 introduces analytical solutions for the seismic FSI response of both rigid and flexible, 

base-supported, cylindrical tanks as derived previously. Seismic FSI responses calculated using 

the analytical solutions are compared for such tanks with a range of dimensions (i.e., height of 

                                                 
20 Ideal fluid: a fluid that is incompressible, irrotational, and inviscid. 
21 Initial free surface: open surface of a fluid at rest. 
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contained fluid and tank radius). Section 3.3 develops analytical solutions for seismic FSI 

responses of rigid and flexible, head-supported cylindrical tanks. Seismic FSI responses are 

calculated using the proposed analytical solutions for head-supported tanks with a range of 

dimensions and the results enable preliminary seismic design and qualification of such tanks 

(e.g., nuclear reactor vessels) by others at a later time. 

Appendix A summarizes the derivations and analytical solutions presented in this section, 

including governing equations, boundary conditions, and separation of variables. 

3.2 Base-supported cylindrical tank  

3.2.1 Impulsive responses 

3.2.1.1 Introduction 

Figure 3.1 illustrates impulsive responses in a vertical cross section through a base-supported 

cylindrical tank accelerating in the x  direction. The contained fluid is attached to the inner 

surfaces of the tank (i.e., wall and base) and generates impulsive pressures, impp , in the fluid and 

on the inner surfaces. The fluid adjacent to the x+  side of the wall and the base tends to be 

expanded by the tank accelerating to the x  direction, which generates a negative impp  on these 

surfaces; the fluid adjacent to the x−  side of the wall and the base tends to be compressed by the 

accelerating tank, which generates a positive impp  on these surfaces. These impulsive pressures, 

impp , on the inner surfaces of the tank are mechanically equilibrated by global impulsive 

reactions, including the impulsive shear force and moments, at the base of the tank, which is 

assumed to be rigid. The resultant force of the horizontal impp  on the wall (orange arrows) is 

balanced by the impulsive shear force at the base, impF , in the x  direction. The impulsive 

moment at the base is composed of: 1) ,imp wM , which balances the moment at the center of the 

base (red solid circle) generated by impp  on the wall (orange arrows); and 2) ,imp bM , which 

balances the moment at the center of the base generated by impp  on the base (pink arrows). The 

impulsive moments, ,imp wM  and ,imp bM , act in a clockwise direction about the y  axis. 

The impulsive responses are generated by the fluid accelerating with the wall and the base of the 

tank, under seismic motion of the base. The seismic response of the wall includes rigid-body 

displacements and deformations due to tank flexibility. Consequently, the flexibility of the wall 
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of the tank may play an important role in the calculation of the impulsive responses. Section 

3.2.1.2 introduces and compares analytical solutions for the impulsive responses of rigid tanks 

developed in a number of prior studies, in which deformation of the wall of the tank was ignored. 

Section 3.2.1.3 introduces analytical solutions for the impulsive responses of flexible tanks 

developed in a prior study, and the results are compared introduced in Section 3.2.1.2 with those 

of rigid tanks. 

Fimp

Mimp,w+Mimp,b

pimp

pimp

x

z Center

y

 

Figure 3.1. Impulsive responses: impulsive pressure, impp , on the walls and base of a tank; 

impulsive shear force at the base, impF ; and impulsive moments at the base, ,imp wM  and ,imp bM ; 

shown in a vertical cross section through a base-supported cylindrical tank accelerating in the x  

direction 

3.2.1.2 Rigid tank 

This section presents the analytical solutions for impulsive responses developed by 1) Jacobsen 

(1949), 2) Chalhoub and Kelly (1988), and 3) Housner (1957), for a rigid, base-supported 

cylindrical tank subjected to unidirectional horizontal motion of a small amplitude. Table 3.1 

lists the impulsive responses analytically derived in each of the three studies. 

Jacobsen, and Chalhoub and Kelly derived exact analytical solutions for the impulsive responses 

using similar methodologies, with both assuming a velocity potential for the ideal fluid in the 

tank. Different assumptions regarding the boundary conditions assigned to the contained fluid 

were made for solving the equation of the velocity potential, which led to different analytical 

solutions for the impulsive responses. Housner derived approximate analytical solutions for the 

impulsive responses using a 2-dimensional vertical cross section through a base-supported 
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cylindrical tank. He discretized the fluid in the vertical cross section into multiple vertical thin 

layers and derived the impulsive responses using Newton’s second law. 

The exact solutions per Jacobsen, and Chalhoub and Kelly are first summarized in this section, 

followed by the approximate solutions of Housner. Accordingly, the summary is not 

chronological. The equations used in the derivations and the solutions presented here are not 

identical to those in the original documents to enable use of a consistent set of variables and 

coordinate systems. 

Table 3.1. Impulsive responses of a rigid, base-supported cylindrical tank subjected 

to unidirectional horizontal seismic motion of a small amplitude, analytically derived 

in the studies listed in the first column 

 impp  impF  ,imp wM  ,imp bM  

Jacobsen (1949)1 √ √ √ √ 

Chalhoub and Kelly (1988) √    

Housner (1957)2 √ √ √ √ 

1. The paper contains calculation errors. The correct analytical solutions and their derivations presented 

in this section follow those in Yang (1976), Veletsos (1984), and Tang (1986) 

2. The paper contains calculation errors. The correct analytical solutions and their derivations presented 

in this section follow those in Thomas et al. (1963) 

 

Figure 3.2 introduces the variables for the analytical solutions used herein, shown on two cut-

away views of a base-supported cylindrical tank, together with a Cartesian coordinate system ( x , 

y , z ) and a cylindrical coordinate system ( r ,  , z ). The radius of the tank is R  and the height 

of the contained fluid is H . The tank moves with the rigid foundation at a horizontal 

displacement, velocity, and acceleration, 0 ( )u t , 0 ( )u t , and 0 ( )u t , in the x  direction, which 

generates impulsive responses on the tank and in the fluid. The velocities of an arbitrary point 

( pt ) in the fluid are u , v , and w  along the cylindrical coordinates, r ,  , and z , respectively. 



  48 

 

x

y

z

H

R
r

θ

u0(t), u0′(t), u0"(t)
z

pt

pt

u’v’

w’

 
Figure 3.2. Variables used in the analytical solutions of impulsive response shown on two cut-

away views of a base-supported cylindrical tank, a Cartesian coordinate system, and a 

cylindrical coordinate system 

Jacobsen (1949) 

Jacobsen derived analytical solutions for the impulsive responses listed in the second row of 

Table 3.1. The effects of hydrostatic pressure and fluid sloshing were not considered.  A velocity 

potential was first assumed for the contained fluid because mechanical behaviors of a fluid 

(whether hydrostatic or hydrodynamic) can be fully defined given a velocity potential. The 

pressure, p , and the velocity, vel , of the contained fluid are related to the velocity potential,  , 

in the following: 

 ( , , )p r z
t

 


= −


  (3.1) 

 
1

( , , )vel r z r z
r r z

 


  
= = + +

  
  (3.2) 

where   is the density of the fluid, t  is time, and   is the gradient operator with respect to a 

cylindrical coordinate system ( r ,  , z ). The fluid velocity, vel , includes the vectors of radial, 

angular, and vertical velocities. The pressure, p , and the velocity, vel , calculated using   are 

functions of r ,  , and z , which enable the determination of the responses for the contained 
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fluid. The velocity potential for the impulsive response, imp , derived by Jacobsen was a 

function of four variables: the three components of the cylindrical coordinate system ( r ,  , z ) 

shown in Figure 3.2 and the velocity of the horizontal seismic motion 0 ( )u t , which was a 

function of time, t . The velocity potential was the product of the four unknown functions, R ,  , 

Z , T , associated with the four variables, r ,  , z , t , respectively, since these variables were 

independent:  

 ( , , , ) ( ) ( ) ( ) ( )imp r z t R r Z z T t  =      (3.3) 

The velocity potential, imp , of the contained ideal fluid satisfied Laplace's equation, 

0= 22: 

 
2

1 1
0

R R Z

R r R r Z

   
+ + + =


  (3.4) 

Three boundary conditions were assumed for the impulsive responses of the fluid to solve the 

functions R ,  , Z , and T : 

1) Disregarding fluid waves on the free surface, the impulsive pressure on the initial free surface, 

( )impp z H= , was zero: 

 ( ) 0
imp

imp

z H

p z H
t


=


= = − =


  (3.5) 

where the impulsive pressure, impp , was calculated using Eq. (3.1). 

2) The fluid adjacent to the wall of the tank moved with the tank at the same radial velocity, 

( )u r R = , because the fluid was attached to the wall: 

 0( ) ( )cos
imp

r R

u r R u t
r


=


 = = =


  (3.6) 

                                                 
22 Laplace's equation:   equals vel  based on Eq. (3.2), defined as the divergence of the velocity in a fluid 

domain of interest. The divergence of the fluid velocity is zero when the fluid domain has no volume change, 

namely no inlet, outlet, and change of fluid density (i.e., incompressibility). 
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where 0( )cosu t   is the radial velocity of the rigid tank, and the radial velocity of the fluid, u , 

was calculated using Eq. (3.2). 

3) The vertical velocity of the fluid at the base of the tank, ( 0)w z = , was zero because the fluid 

was attached to the base of the tank, which was rigidly connected to the foundation that was 

subjected to horizontal motion only: 

 
0

( 0) 0
imp

z

w z
z =


 = = =


  (3.7) 

where the vertical velocity of the fluid, w , was calculated using Eq. (3.2). 

Solving functions, R ,  , Z , and T , using Eqs. (3.4), (3.5), (3.6), and (3.7) yields the velocity 

potential for the impulsive responses, imp : 

 
 

11

0 2
'1
1

(2 1)
8( 1) 2

( ) cos cos (2 1)
2(2 1) (2 1)

2

i

imp

i

r
I i

zH
u t H i

R Hi I i
H








+

=

 
− −    = −    − − 

 

   (3.8) 

where i  is the order of the terms in the infinite summation, 1I  is the modified Bessel function of 

the first kind with an integer order of 1, and 1I   is the first derivative of 1I  with respect to its 

variable (2 1)
2

R
i

H


− . The variables are defined in Figure 3.2. 

Given the velocity potential per Eq. (3.8), the impulsive pressure, impp , at an arbitrary location in 

the fluid or on the inner surfaces of the tank (i.e., wall and base) was determined using Eq. (3.1). 

The impulsive pressure on the wall of the tank (i.e., at r R= ), along the vertical and the 

circumferential directions, z  and  , was: 

 
 

11

, 0 2
'1
1

(2 1)
8( 1) 2

( ) ( ) cos cos (2 1)
2(2 1) (2 1)

2

i

imp w imp

i

R
I i

zH
p p r R u t H i

R Hi I i
H




 



+

=

 
− −   = = = − −    − − 

 

  (3.9) 

The impulsive pressure on the base of the tank (i.e., at 0z = ), along the radial and the 

circumferential directions, r  and  , was: 
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(2 1) (2 1)

2

i
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i
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H
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
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=

 
− −  = = = −
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   (3.10) 

The impulsive shear force at the base of the tank, impF , in the x  direction, which was the 

direction of seismic input, equilibrated the resultant force generated by ,imp wp  on the wall of the 

tank. The resultant force was the integral of , cosimp wp   over the area of the wall, wA . The 

impulsive shear force was given by: 

 
 

1

, 0 3
'1
1

(2 1)
16 2

cos ( )
(2 1) (2 1)

2
w

imp imp w w l

iA

R
I i

H H
F p dA u t m
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



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 
− 
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   (3.11) 

where lm  is the mass of the contained fluid. The impulsive pressure on the wall of the tank, 

,imp wp , with vertical distance z  above the base, created a moment about the y  axis at the center 

of the base (see Figure 3.1), which was equilibrated by the impulsive moment at the base of the 

tank, ,imp wM : 

 

12 1

, , 0 3
'1
1

(2 1)
16 2( 1)2

cos ( ) 1
(2 1)(2 1) (2 1)

2
w

i
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H H
M p z dA u t m

RR ii I i
H




 

+

=

 
−   − = −    = − 
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 

  (3.12) 

Similarly, the impulsive pressure on the base of the tank, ,imp bp , with horizontal distance cosr   

from the center of the base, created a moment about the y  axis at the center, which was 

equilibrated by the impulsive moment at the base of the tank, ,imp bM : 

 
 
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i
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where bA  is the area of the base of the tank. Note that Eqs. (3.12) and (3.13), as written in 

Jacobsen, contain calculation errors. 

Chalhoub and Kelly (1988) 

Chalhoub and Kelly used an assumed velocity potential to determine seismic FSI responses of a 

rigid, base-supported cylindrical tank, under unidirectional horizontal seismic motion of a small 

amplitude. Unlike Jacobsen, Chalhoub and Kelly derived a velocity potential, h , with 

considerations of both the impulsive and convective components of hydrodynamic response. The 

hydrostatic pressure generated by fluid below the level of the initial free surface was not 

considered, but the hydrostatic pressure at the level of the initial free surface generated by the 

fluid above the surface due to wave action was accounted for in the derivations. The solutions of 

the impulsive pressure are presented in this section and those of the convective responses are 

presented in Section 3.2.2.2. 

Chalhoub and Kelly assumed h  to be a function of the three components of the cylindrical 

coordinate system ( r ,  , z ) in Figure 3.2 at any given time, t . The velocity potential was the 

product of the three unknown functions, R ,  , and Z  associated with the three variables r ,  , 

and z , respectively, because these variables were independent:  

 ( ) ( ) ( )h R r Z z =     (3.14) 

The velocity potential, h , satisfied Laplace's equation since the ideal fluid was incompressible, 

which led to Eq. (3.4) used in Jacobsen (1949). Three boundary conditions were assumed for the 

hydrodynamic response of the fluid, including impulsive and convective components, to solve 

for R ,  , and Z . Different from the assumption made by Jacobsen in Eq. (3.5), in which the 

pressure on the initial free surface was zero, one of the three boundary conditions assumed by 

Chalhoub and Kelly accounted for the pressure on the initial free surface induced by wave 

actions. The vertical acceleration of the waves was assumed to be negligible. The vertical 

displacement of the free surface, wd , which was the height of the wave above the initial free 

surface, generated a hydrostatic pressure, sp , at the initial free surface: 

 s wp gd=   (3.15) 
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where g  is the gravitational acceleration. The hydrostatic pressure, wgd , calculated using Eq. 

(3.1) was: 

 
h

w

z H

gd
t

 
=


= −


  (3.16) 

Equation (3.16) was partially differentiated with respect to t  and the vertical velocity of the free 

surface, 
wd

t




, was calculated using Eq. (3.2): 

 
2

2

h h
g

z t

  
= −

 
, at z H=     (3.17) 

The other two boundary conditions used by Chalhoub and Kelly were identical to the boundary 

conditions of Eqs. (3.6) and (3.7) used in Jacobsen. These two boundary conditions were applied 

based on the assumption that the fluid was attached to the wall and the base of the tank. The 

functions, R ,  , and Z , were solved using the three boundary conditions of Eqs. (3.6), (3.7), 

and (3.17), and h  was determined: 

 0 1 0

1 0

cosh

( )cos ( ) ( ) cos ( ) cos

cosh

t i

h i i i

i
i

z
n

r Ru t t d J n u t r
HR

n
R

     


=

 
  = −  + 

 
    (3.18) 
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J n n
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 −
  (3.19) 

 tanh( )
i

i i

n g H
n

R R
 =    (3.20) 

where i  is the order of the terms in the infinite summation, 1J  is the Bessel function of the first 

kind with an integer order of 1, and in  is a root (solution) of 1( ) 0iJ n = . The values of in  for i =1 

to 10 are listed in Table 3.2. The other variables are defined in Figure 3.2. 
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Table 3.2. Values of in  for i =1 to 10, used in Eqs. (3.18) to (3.24) 

i  1 2 3 4 5 

in  1.84118 5.33144 8.53632 11.70600 14.86359 

i  6 7 8 9 10 

in  18.01553 21.16437 24.31133 27.45705 30.60192 

Given the velocity potential in Eq. (3.18), the hydrodynamic pressure, dp , including impulsive 

and convective components, was determined using Eq. (3.1), at any location in the fluid or on the 

inner surfaces of the tank: 

 0 0

1 1 0

( , , , ) ( ) cos cos ( )sin ( )

t

d i i i i

i i

p r z t u t B r B u t d         
 

= =

 
 = −  + + − 

 
     (3.21) 
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  (3.22) 

where i  is defined in Eq. (3.20). Although Chalhoub and Kelly did not parse dp  of Eq. (3.21) 

into impulsive and convective pressures, the first term on the right-hand side of Eq. (3.21) is 

assumed here to be the impulsive pressure impp , since the impulsive response of a rigid tank is 

associated with the fluid moving with the tank at the ground acceleration 0 ( )u t . (The second 

term in the right-hand side of Eq. (3.21) is associated with the convective pressure and is 

discussed in Section 3.2.2). The impulsive pressure on the wall of the tank (i.e., at r R= ) along 

the vertical and the circumferential directions, z  and  ,  was given as: 

 , 0 2
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cosh
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The impulsive pressure on the base of the tank (i.e., at 0z = ) along the radial and the 

circumferential directions, r  and  ,  was given as: 
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Housner (1957) 

Housner developed approximate analytical solutions for the impulsive responses listed in the 

fourth row of Table 3.1, which avoided the use of an infinite series of Bessel functions for 

calculating a velocity potential for the contained fluid (i.e., Jacobsen (1949) and Chalhoub and 

Kelly (1988)). The effects of hydrostatic pressure and fluid sloshing were not considered. The 

solutions were first derived for a broad tank with the ratio of fluid height to tank radius less than 

or equal to 1.5 (i.e., /H R  1.5), and the derivation was modified for a slender tank with 

/H R  1.5. Housner derived solutions for /H R  1.5 based on a 2-dimensional (2-D) vertical 

cross section through a cylindrical tank with a radius of R , filled with fluid to a height of H . 

The 2-D configuration is presented in Figure 3.3, showing a vertical cross section of width 

2 cosR   through the tank, a Cartesian coordinate system ( x , y , z ), and a cylindrical 

coordinate system ( r ,  , z ). The horizontal ground motion was input in the x  direction, 

parallel to the vertical cross section. The horizontal and vertical accelerations at an arbitrary 

point in the fluid on the vertical cross section were xu  and zu , respectively, shown in Figure 3.3. 

Housner expressed xu  and zu  as functions of both x  and z , which determined the acceleration 

field for all the fluid on the vertical cross section. 

The fluid in the vertical cross section was divided into multiple vertical layers of width dx  as 

shown in Figure 3.3. Figure 3.4a shows the horizontal and vertical accelerations on the four 

edges of the fluid in a single layer. The right side of the layer moved faster than the left side by a 

horizontal acceleration of 
xu

dx
x




. The difference between the horizontal accelerations at the two 

sides changed the thickness (width) of the layer. Because the volume of the incompressible ideal 

fluid was conserved, the height of the fluid in the layer changed at a vertical acceleration, zu . 

The horizontal and vertical accelerations of the fluid in the layer were related as follows: 

 
x

z

u
u dx dx z

x


  = 


  (3.25) 
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Figure 3.3. A base-supported cylindrical tank, showing the 2-D configuration used in the 

derivations of impulsive responses for /H R  1.5 in Housner, adapted from Figure F.8 in 

Thomas et al. (1963) 
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(a) accelerations on the four edges of the fluid 

in a fluid layer 

(b) impulsive pressures and a vertical 

acceleration of a fluid element in a fluid layer 

Figure 3.4. Responses of the fluid in a fluid layer, adapted from Figures F.2 and F.3 in Thomas 

et al. (1963) 

Figure 3.4b is a free-body diagram of a fluid element in a layer, showing the vertical impulsive 

pressures acting on the element and the acceleration of the element in the z  direction. The 

difference in the impulsive pressures on the top and the base of the element, 
impp

dz
z




, created a 
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force in the z  direction. The equilibrium of forces in the z  direction was calculated using 

Newton’s second law associated with the mass of the fluid element, dxdz , and its vertical 

acceleration, zu : 

 
imp

z

p
dz dx dxdz u

z



 = 


  (3.26) 

The vertical acceleration, zu , was related to the horizontal acceleration, xu , using Eq. (3.25). By 

taking the indefinite integral of Eq. (3.26) with respect to z  and adopting the boundary condition 

of zero pressure at z H= , the impulsive pressure was determined: 

 
2 2( )

2

x
imp

du
p H z

dx

 
= − −   (3.27) 

The equation for impp  was a function of x  and z  on the vertical cross section in Figure 3.3. 

Noting that cosx r = , impp  could be calculated at any location in the fluid or on the inner 

surfaces of the tank. The total horizontal force in a fluid layer generated by the impulsive 

pressure was the integral of impp  with respect to z  over the height of the layer:  

 
3

,
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1
cos  

3

H
x

imp layer imp

du
P p dz H

dx
 


=  = −   (3.28) 

The horizontal force, ,imp layerP , balanced the inertial force of the fluid layer in Figure 3.4a. The 

inertial force was calculated using Newton’s second law associated with the mass of the fluid in 

the layer, Hdx , and its horizontal acceleration ignoring higher order terms, xu : 

 ,imp layer xP Hdx u = −    (3.29) 

Equating the right-hand sides of Eqs. (3.28) and (3.29) gave a second-order differential equation 

for xu . The solution of xu  was derived with the boundary conditions that the fluid adjacent to 

the wall of the tank (i.e., at cosx R =  ) moved with the tank at the horizontal ground 

acceleration 0 ( )u t : 



  58 

 

 0

cosh 3

( )
cos

cosh 3

x

x

Hu u t
R

H


 =   (3.30) 

The horizontal acceleration of the fluid per Eq. (3.30) enabled the determination of impp  in Eq. 

(3.27). The impulsive pressure on the wall of the tank (i.e., at cosx R = ), along the vertical and 

the circumferential directions, z  and  , was given as:  

 2 2
, 0

3 cos
( cos ) ( ) ( ) tanh( 3 )

2
imp w imp

R
p p x R u t H z

H H

 
 = = = − −   (3.31) 

The impulsive pressure on the base of the tank (i.e., at 0z = ), along the radial and the 

circumferential directions, r  and  , was given as:  

 , 0

cos
sinh 3

3
( 0) ( )

cos2
cosh 3

imp b imp

r

Hp p z u t H
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H






= = = −   (3.32) 

The impulsive shear force at the base of the tank, impF , in the x  direction equilibrated the 

resultant force generated by ,imp wp  on wall of the tank. The resultant force was the integral of 

, cosimp wp   over the area of the wall wA . The impulsive shear force was: 

 2
, 0

1
cos ( ) tanh( 3 )

3
w

imp imp w w

A

R
F p dA u t RH

H
 = −   =   (3.33) 

The impulsive pressure on the wall of the tank, ,imp wp , at a vertical distance z  above the base, 

created a moment about the y  axis at the center of the base, which was equilibrated by the 

impulsive moment at the base of the tank, ,imp wM : 

 , ,

3
cos

8
w

imp w imp w w imp

A

M p z dA F H= −    =   (3.34) 

Similarly, the impulsive pressure on the base of the tank, ,imp bp , at a horizontal distance cosr   

from the center of the base, created a moment about the y  axis at the center, which was 

equilibrated by the impulsive moment at the base of the tank ,imp bM : 
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where bA  is the area of the base of the tank. 

Figure 3.5 presents the modification made for slender tanks with /H R  1.5. The fluid in the 

upper 1.5 R  of the tank (shown in green) was discretized into vertical layers as those used for the 

derivation for /H R  1.5. The impulsive pressure in this fluid and the associated reactions at the 

tank base were derived using boundary conditions and method identical to those used for the 

fluid in the broad tank shown in Figure 3.3. The fluid in the lower part of the slender tank of 

Figure 3.5 (shown in yellow), from the base to a height of 1.5H R− , was assumed to move with 

the tank as a rigid body. The pressure in the discretized fluid (green) at a height immediately 

above 1.5H R−  (the interface of the two fluids) was applied to the top of the rigid fluid (yellow), 

and the pressure in the rigid fluid was identical along the height. The resultant force and moment 

at the tank base generated by the rigid fluid were calculated per the inertial force associated with 

its acceleration and mass: 2
0( ) ( 1.5 )u t R H R − . The reactions at the base of the slender tank 

( /H R  1.5) balanced the total resultant forces and moments contributed by both the discretized 

(green) and rigid (yellow) fluids in Figure 3.5. Housner did not provide analytical solutions for 

/H R  1.5. Solutions for /H R  1.5 are derived here by the authors based on the modification 

to the derivation noted in Housner (1957). The analytical solutions of impp , impF , ,imp wM , and  

,imp bM  for /H R  1.5 are given as: 
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 (3.36) 

 2
0( ) ( 0.44 )impF u t R H R= −  (3.37) 

 ( )2 2
, 0 ( ) 0.5 (0.13 0.44 )imp wM u t R H R R H= +  −  (3.38) 

 4
, 0( ) 0.327imp bM u t R=    (3.39) 
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Discussion 

Jacobsen (1949), Chalhoub and Kelly (1988), and Housner (1957) developed analytical solutions 

for impulsive responses of rigid, base-supported cylindrical tanks, subjected to unidirectional 

horizontal motion of a small amplitude. The three studies assumed that the contained fluid was 

ideal and was attached to the tank. Table 3.1 lists the derived impulsive responses. These 

impulsive responses include impulsive pressure, impp , impulsive shear force at the base of the 

tank, impF , and the two components of impulsive moment at the base of the tank: ,imp wM , which 

is generated by ,imp wp  on the wall, and ,imp bM , which is generated by ,imp bp  on the base. Jacobsen, 

and Chalhoub and Kelly both derived exact analytical solutions for the impulsive responses 

using a velocity potential for the fluid. However, they made different assumptions regarding the 

pressure at the free surface of the fluid to solve for the velocity potential, leading to different 

exact solutions for the impulsive responses. Housner derived approximate analytical solutions for 

the impulsive responses by using Newton’s second law for discretized fluid in the tank. This 

section has presented the analytical solutions derived in the three studies, and their equation 

numbers assigned in this report are listed in Table 3.3.  

Below, impulsive responses are calculated and compared using the analytical solutions derived 

by Jacobsen, Chalhoub and Kelly, and Housner for rigid, base-supported cylindrical tanks with a 

range of dimensions. Time series of small-amplitude unidirectional horizontal ground 

acceleration, 0 ( )u t , is input at the base of the tank in the x  direction. The impulsive pressures on 

the wall and the base of the tank, ,imp wp  and ,imp bp , respectively, are calculated for /H R = 0.5, 1, 

H

2Rcosθ
z

.   .   .   .   .

1.5R

H-1.5Ru0"(t)
x

 
Figure 3.5. analytical solutions for /H R  1.5, modified from those for /H R  1.5 derived 

by Housner 
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Table 3.3. Equation numbers of the analytical solutions for impulsive responses of a rigid, base-

supported cylindrical tank subjected to unidirectional horizontal motion of a small amplitude, 

derived in the studies listed in the first column 

 ,imp wp  ,imp bp  impF  ,imp wM  ,imp bM  

Jacobsen (1949) (3.9) (3.10) (3.11) (3.12) (3.13) 

Chalhoub and Kelly (1988)1 (3.23) (3.24) -- -- -- 

Housner (1957) 
(3.31) 

(3.36) 

(3.32) 

(3.36) 

(3.33) 

(3.37) 

(3.34) 

(3.38) 

(3.35) 

(3.39) 

1. Analytical solutions for global impulsive reactions, impF , ,imp wM , and ,imp bM , were not presented in Chalhoub 

and Kelly (1988). 

and 2. The global reactions at the base of the tank, impF , ,imp wM , and ,imp bM , are calculated for 

0.2 /H R  3. The impulsive responses presented here are normalized to be unitless, which 

makes the amplitude of the input motion, 0u ; the dimensions of the tank and the fluid, R  and H ; 

and the density of the fluid,  , independent of the normalized results. The only variable for the 

normalized impulsive responses is the unitless ratio describing the dimensions of the tank, /H R . 

Consequently, R ,  H , and   do not need to be defined for calculating the normalized responses, 

although these variables are shown in the analytical solutions. 

As the tank accelerates to the x  direction, the greatest positive and negative impulsive pressures 

on the wall and the base of the tank are shown at angular directions  = 180° and 0°, respectively. 

Values of impulsive pressures at  =180° are presented here. The impulsive pressures on the 

wall of the tank, ,imp wp , along the z  direction, at r = R  and  = 180°, are calculated using Eqs. 

(3.9), (3.23), (3.31), and (3.36). Figures 3.6a, b, and c show values of ,imp wp  normalized by 

0Ru  , for /H R = 0.5, 1, and 2, respective. The z  direction in these figures is normalized by H . 

The solutions of Jacobsen and Chalhoub and Kelly are almost identical over the entire height of 

the fluid in the tank for the three values of /H R . The tiny differences between these two 

solutions close to the free surface (i.e., /z H 1) are due to the use of different assumptions 

regarding the pressure at the free surface. These differences in ,imp wp  are further diminished with 
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increasing /H R . The approximate analytical solution of Housner generally underestimates 

,imp wp  for /z H 0.5 (upper half of the fluid) and overestimates it for /z H 0.5 (lower half of 

the fluid), by comparison to the exact analytical solutions of Jacobsen and Chalhoub and Kelly. 

These differences increase with increasing /H R . At each value of /H R  (i.e., 0.5, 1, or 2), the 

impulsive pressures on the wall of the tank, ,imp wp , increase with decreasing z : the minimum 

and maximum ,imp wp  are at the levels of the free surface (i.e., at z H= ) and the base (i.e., at 

z = 0), respectively. Comparing the results for the three values of /H R  from each study, the 

values of , 0/imp wp Ru   along the entire fluid height are always greater at a larger value of /H R . 

This comparison indicates that impulsive pressures on the wall of a tank with a given radius, R , 

are generally greater when the tank is filled with fluid to a greater height, H . This outcome is 

expected because a greater volume of fluid (achieved by a greater H  and a constant R ) attached 

to and accelerating with the wall of the tank, will generate a greater inertial force and apply 

greater impulsive pressures to the wall. 

 

   

(a) /H R = 0.5 (b) /H R = 1 (c) /H R = 2 

Figure 3.6. Normalized impulsive pressures on the wall of a tank, , 0/imp wp Ru   , along the 

normalized vertical direction, /z H , at r R=  and  =180°, for /H R = 0.5, 1, and 2, calculated 

using Eqs. (3.9), (3.23), (3.31), and (3.36) 



  63 

 

The impulsive pressures on the base of the tank, ,imp bp , along the r  direction, at z = 0 and 

 =180°, are calculated using Eqs. (3.10), (3.24), (3.32), and (3.36). Figures 3.7a, b, and c show 

the values of ,imp bp  normalized by 0Ru  , for /H R = 0.5, 1, and 2, respectively; the distance r  

is normalized by R . The solutions of Jacobsen, and Chalhoub and Kelly, are identical. 

Housner’s solution generally overestimates ,imp bp  in the fluid close to the wall of the tank, 

namely at /r R  1, with respect to the exact solutions. For 0 /r R  0.9, ,imp bp  is 

underestimated by Housner for the tanks with smaller /H R  (i.e., 0.5 and 1) and overestimated 

for the tank with greater /H R  (i.e., 2), again with respect to the exact solutions. At each value 

of /H R , the impulsive pressures on the base of the tank, ,imp bp , increase with increasing r : the 

minimum and maximum ,imp bp  are at the center of the base (i.e., at r = 0) and adjacent to the 

wall (i.e., at r R= ), respectively. Comparing the results of each study for the three values of 

/H R  considered here (i.e., 0.5, 1, and 2), the values of , 0/imp bp Ru   along the entire radius are 

always greater at a larger value of /H R . Similar to ,imp wp , impulsive pressures on the base, 

,imp bp , of a tank with a given radius, R , are generally greater when the tank is filled with fluid to 

a greater height, H .  

Jacobsen and Housner derived solutions for the global reactions at the base of the tank associated 

with impulsive loadings. (Chalhoub and Kelly did not address global reactions.) The global 

reactions included impulsive shear force, impF , and the two components of impulsive moment, 

,imp wM  and ,imp bM . The impulsive shear forces, impF , for 0.2 /H R   3 in the x  direction are 

calculated using Eqs. (3.11) and (3.33) or (3.37). Figure 3.8 presents the values of impF  

normalized by 0u  and the mass of the contained fluid, lm . Housner’s approximate solution 

slightly underestimates impF  for /H R  1 but overestimates it for /H R  1, with respect to the 

exact solution of Jacobsen. The normalized impulsive force 0/imp lF mu  increases with increasing 

/H R . This indicates that given a mass of contained fluid, lm , (i.e., given a volume of fluid) the 

impulsive shear force, impF , at the base of a slender tank (i.e., with greater /H R ) is greater than 

that of a broad tank (i.e., with smaller /H R ). The two components of the impulsive moment at 

the base of the tank, ,imp wM  and ,imp bM , about the y  axis are calculated for 0.2 /H R   3. 
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(a) /H R=0.5 (b) /H R=1 

 

(c) /H R=2 

Figure 3.7. Normalized impulsive pressures on the base of a tank, , 0/imp bp Ru   , along the 

normalized radial direction, /r R , at z = 0 and  =180°, for /H R = 0.5, 1, and 2, calculated 

using Eqs. (3.10), (3.24), (3.32), and (3.36) 
 

 

Figure 3.8. Normalized impulsive shear forces at the base of a tank, 0/imp lF mu , in the x  

direction, for 0.2 /H R  3, calculated using Eqs. (3.11), (3.33), and (3.37) 
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Figure 3.9a shows ,imp wM  calculated using Eqs. (3.12) and (3.34) or (3.38); and Figure 3.9b 

shows ,imp bM  calculated using Eqs. (3.13) and (3.35) or (3.39), all normalized by 0lm Hu . 

Housner’s approximate solutions generally underestimate ,imp wM  but overestimate ,imp bM  for the 

range of /H R  considered here, again with respect to the exact solutions of Jacobsen. In terms of 

the total impulsive moment at the base of the tank, results in Figure 3.9 indicate that the 

contribution of ,imp wM  increases and the contribution of ,imp bM  decreases with increasing /H R . 

  

(a) , 0/imp w lM m Hu , calculated using Eqs. (3.12), 

(3.34), and (3.38) 

(b) , 0/imp b lM m Hu , calculated using Eqs. (3.13),  

(3.35), and (3.39) 

Figure 3.9. Normalized impulsive moments at the base of a tank, , 0/imp w lM m Hu  and 

, 0/imp b lM m Hu ,  about the y  axis, for 0.2 /H R  3 

3.2.1.3 Flexible tank 

This section introduces the analytical solutions of Veletsos (1984) for impulsive responses of a 

flexible, base-supported cylindrical tank subjected to horizontal seismic motion of a small 

amplitude. The impulsive responses addressed by Veletsos included impulsive frequency, impf ; 

impulsive pressure, impp ; impulsive shear force at the base of the tank, impF , and the two 

components of impulsive moment at the base of the tank, ,imp wM  and ,imp bM . A free-body 

diagram for these impulsive responses was introduced in Figure 3.1. The analytical solutions 

were drawn from the derivations in the dissertations of two of Veletsos’ PhD students, Yang 

(1976) and Tang (1986). The two dissertations included procedures similar to those in Jacobsen 
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(1949), which assumed a velocity potential for the contained fluid to derive impulsive responses 

of the tank, but the velocity potential was modified to account for the deformation of the tank. 

The derivations of Yang and Tang are summarized and the calculation errors contained therein 

are corrected in this section. The equations used in the derivations and the solutions presented 

here are not identical to those in the original documents to enable use of a consistent set of 

variables and coordinate systems presented in Section 3.2.1.2 (see Figure 3.2). 

Veletsos (1984)  

Veletsos presented analytical solutions for impulsive responses of a flexible, base-supported 

cylindrical tank subjected to unidirectional horizontal motion of a small amplitude. The wall of 

the tank was assumed to be elastic with a constant thickness 23 . The freeboard and the 

circumferential deformation24 of the tank were ignored. 

The analytical solutions represented modal impulsive responses. The modal responses were 

derived in Yang and Tang by performing modal analysis of the equation of motion for the 

impulsive responses of the tank. Lagrange’s equation was used to develop the equation of motion, 

considering virtual works (energies): 1) the kinetic energy of the fluid, lK , 2) the kinetic energy 

of the tank, sK , 3) the strain energy of the tank, sS , and 4) the external energy associated with 

the input ground motion, extW . The four virtual works/energies were expressed using assumed 

displacements on the wall of the tank. The assumed displacements were kinematically admissible, 

which accommodated the boundary condition of the tank. (More information about kinematically 

admissible displacements in the principles of virtual work can be found in Chapter 5 of 

Hjelmstad (2010).) A potential velocity was derived for calculating the responses of the fluid, 

which were also related to the displacements of the wall of the tank.  

To calculate the displacements on the wall of the tank, lateral displacements on the axial 

centerline of the tank were first assumed and were then extrapolated to the wall of the tank. Yang 

and Tang assumed the lateral displacements of the axial centerline, , ( )ac xu z , in the direction of 

                                                 
23 In practice, the thickness of the wall of a base-supported cylindrical tank decreases with the height from the base 

to the top (API 650 (American Petroleum Institute 2012) and Soules (2018)). An average value of varied 

thicknesses along the height can be used in Veletsos’ analytical solutions (Malhotra et al. 2000). 
24 Although Yang (1976) addressed effects of circumferential deformation on impulsive responses, the analytical 

solutions presented in both Veletsos (1984) and Tang (1986) did not take the effects into account. 
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seismic motions (i.e., in the x  direction) to be a linear superposition of multiple modal shapes, 

i , of a vertical cantilever with a length equal to the height of the tank, fixed at its base and free 

at its tip. The modal shapes of the cantilever, ( )i z , were those documented in Young and Felgar 

(1949). An example of superposing ( )i z  to be the lateral displacements of the axial centerline, 

, ( )ac xu z , is given in Figure 3.10. Note that this example is not based on a theoretical calculation 

but illustrates the generation of an assumed , ( )ac xu z . The red line in Figure 3.10a represents the 

lateral displacements of the axial centerline, , ( )ac xu z , of a base-supported cylindrical tank in the 

x  direction. Figure 3.10b presents the first and the second modal shapes of a cantilever (i.e., 

1( )z  and 2( )z ), with a length identical to the height of the tank in Figure 3.10a and fixed at 

the lower end. The , ( )ac xu z  of Figure 3.10c is the sum of twice the first modal shape and the 

second modal shape of the cantilever (i.e., 1 22   + ).  

us
vs

ws

x

z

r
θ

z

uac,x(z)

 

Ψ1(z) Ψ2(z)

x

z

 

uac,x(z), axial centerline of the tank

Ψ2(z), cantilever beam

Ψ1(z), cantilever beam

 
(a) deformations of the tank, 

displacements of the axial 

centerline and the wall 

(b) first and second modal 

shapes of the cantilever  

(c) axial centerline in panel (a) 

and superposition of the modal 

shapes in panel (b) 

Figure 3.10. Lateral displacements on the axial centerline of a flexible, base-supported 

cylindrical tank in the x  direction, assumed to be a linear superposition of multiple modal shapes 

of a cantilever with a length identical to the height of the tank 
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The radial, tangential and axial displacements, su , sv , and sw , on the wall of the tank, shown in  

Figure 3.10a, were calculated based on the lateral displacements of the axial centerline in the x  

direction, projected on the wall along the three components of the cylindrical coordinate system, 

r ,  , z . The calculations assumed that the horizontal cross sections of the tank remained plane 

and circular as the tank deformed laterally.  
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( , , ) ( ) ( ) coss i i

i

u t z U t z  


=

=    (3.40) 

 
1

( , , ) ( ) ( )sins i i

i

v t z V t z  


=

=   (3.41) 

 
1

( , , ) ( ) ( )coss i i

i

w t z W t z  


=

=   (3.42) 

where the infinite series represent the linear superposition of the modal shapes, ( )i z , of a 

cantilever with a length equal to the height of the tank; ( )i z  is the i th modal shape of the 

cantilever; ( )i z   is the first derivative of ( )i z  with respective to z ; iU , iV , and iW  are 

coefficients for the modal shapes in the i th mode for the linear superposition; and sin  and 

cos  project the displacements of the axial centerline in the x  direction to the wall in the 

cylindrical coordinates shown in Figure 3.10a. Other parameters have been defined previously. 

The equation of motion represented the impulsive responses of the tank and the contained fluid 

as a multi-degree of freedom system. Note that the degrees of freedom in the equation of motion 

used in Yang and Tang did not represent the considered motions (displacements, velocities, or 

accelerations) in different directions or at different locations on the wall of the tank. Each degree 

of freedom in Yang and Tang’s equation of motion represented a coefficient (i.e., iU , iV , or iW ) 

for a modal shape, ( )i z , for the superposition. The motions of the tank were determined by 

solving iU , iV , and iW  in the equation of motion and applying them in Eqs. (3.40), (3.41), and 

(3.42). 

The four energies, lK , sK , sS , and extW  were calculated as follows to construct the equation of 

motion: 
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1) The kinetic energy of the fluid, lK , was associated with the velocities of the fluid, u , v , and 

w , in the whole fluid volume, lV : 

 2 2 2( )
2

l

l l

V

K u v w dV


  = + +   (3.43) 

where the velocities of the fluid were calculated using Eq. (3.2) with a velocity potential. The 

velocity potential for the impulsive responses of the fluid, imp , was derived by modifying the 

methodology of Jacobsen to account for the flexibility of the tank. Yang and Tang assumed the 

fluid adjacent to the wall of the tank (i.e., at r R= ) to move with the wall at the same radial 

velocity. The radial velocity of the fluid u  was calculated using Eq. (3.2) and the radial velocity 

of the tank was the first derivative of su  in Eq. (3.40) with respect to t : 

 ( ) ( ) ( )cos
imp

i i

r R

u r R U t z
r

 
=


 = = =


  (3.44) 

The other two boundary conditions used for deriving imp  in Yang and Tang were identical to 

the boundary conditions of Eqs. (3.5) and (3.7) used in Jacobsen (1949), which assumed zero 

pressure on the initial free surface and zero vertical velocity in the fluid adjacent to the base of 

the tank, respectively. The velocity potential for the impulsive responses, imp , was derived 

using Eqs. (3.44), (3.5) and (3.7) as follows: 
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where i  and j  are the order of the terms in each of the infinite summations. Other parameters in 

imp  have been defined previously. Given the velocity potential of Eq. (3.45), the velocities of 

the fluid were calculated using (3.2), and then lK  was determined per Eq. (3.43). 
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2) The kinetic energy of the tank, sK , was associated with the velocities on the wall of the tank:  

 2 2 2( )
2

s

s
s s s s s

V

K u v w dV


  = + +   (3.47) 

where sV  is the volume of the wall of the tank (the thickness of the wall was considered), and su , 

sv , and sw  are the radial, tangential, and axial velocities at an arbitrary location on the wall 

calculated by differentiating Eqs. (3.40), (3.41), and (3.42) with respect to t , respectively. 

3) The strain energy of the tank, sS , was calculated by assuming the wall of the tank to be a thin 

cylindrical shell, which obeyed the plane stress constitutive law: 
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where E  and   are the elastic modulus and Poisson’s ratio of the material forming the wall of 

the tank, respectively; z  is the axial normal strain,   is the tangential normal strain, and z  is 

the shear strain on the wall of the tank. The strain energy expressions for thin cylindrical shells in 

Bleich and DiMaggio (1952) were used to relate the strains z ,  , and z  to the displacements 

of the wall of the tank, su , sv , and sw . Those expressions are not repeated here, but are 

documented in Eqs. (2) and (3) in Bleich and DiMaggio. 

4) The external energy, extW , created by the ground motion, 0 ( )u t , was calculated using the 

principle of virtual work assuming the tank to be rigid. The external energy comprised the virtual 

work generated by external forces acting on the tank and the contained fluid, calculated using the 

inertial force of the tank and the impulsive pressure on the wall of the tank: 

    0 0 ,( ) cos ( ) sin

s w

ext s s s s imp r s w

V A

W u t u u t v dV p u dA      = − + −     (3.49) 

where the first term in the right-hand side, which is the integral with respect to sV , is the virtual 

work generated by the inertial force of the tank in the x  direction, associated with the virtual 

radial displacement, su , and the virtual tangential displacements, sv , on the wall. The second 

term, which is the integral with respect to the area of the wall, wA , is the virtual work generated 
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by the impulsive pressure ,imp rp  on the wall associated with su , where ,imp rp  was calculated 

using Eq. (3.9) since the tank was assumed to be rigid. 

The equation of motion of the tank was derived using Lagrange’s equation, including lK , sK , 

sS , and extW : 

 
( ) ( )l s l s s ext

i i i i

d K K K K S W

dt d d d d

 +  +  
− + =

   
  (3.50) 

where id  represents the degrees of freedom in the equation of motion, iU , iV , and iW ; and id   is 

the first derivative of id  with respect to time, t . The number of degrees of freedom depended on 

the number of the modal shapes, ( )i z , considered in su , sv , and sw  (Eqs. (3.40), (3.41), and 

(3.42)). Considering 1N  modes for su , 2N  modes for sv , and 3N  modes for sw , the general 

form of the equation of motion calculated using Eq. (3.50) was: 
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  (3.51) 

where 1 2 3N N N N= + + ,  M and  K  are the mass and stiffness matrices of the tank, 

 0( ) extu t P  is the external force vector associated with the ground motion, and 

 11 2,, ...,
T

i NU U U U= ,  21 2,, ...,
T

i NV V V V= , and  31 2,, ...,
T

i NW W W W= . Given the mass and 

stiffness matrices, the frequencies and modal shapes of impulsive modes of the tank were 

calculated as follows: 

      
2
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imp k
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f
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

 
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 

  (3.52) 

where ,imp kf  and  k  are the frequency and modal shape in the k th impulsive mode. 

To perform modal analysis for the impulsive responses of the tank, the degrees of freedom, id , 

namely iU , iV , and iW , in the equation of motion of Eq. (3.51) were transformed to modal 

coordinates, kq , using the modal shape, ik : 
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 i ik kd q=    (3.53) 

Transforming the degrees of freedom, iU , iV , and iW , in the equation of motion in Eq. (3.51) to 

the modal coordinates using Eq. (3.53),  M  and  K  were diagonalized to the modal mass and 

modal stiffness matrices, respectively, and  0( ) extu t P  was transformed to the modal force vector, 

to represent multiple independent impulsive modes. As the equation of motion was decoupled 

into modes, kq  was calculated using Duhamel’s integral: 
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1
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t

k k imp k

imp k
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where ke  is the modal participation factor: 
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The second derivation of the modal coordinate, kq , was approximated using a pseudo quantity 

back calculated from kq : 

 2
, ( )k imp k k k kq q e A t   =    (3.56) 

 , 0 ,

0

( ) ( ) sin ( )

t

k imp k imp kA t u t d    =  −   (3.57) 

where ,imp k  is , / 2imp kf  ; ( )kA t  is the acceleration time series of a single degree-of-freedom 

(SDOF) system with a natural frequency of ,imp kf , subjected to the ground motion, 0 ( )u t . (More 

information about modal analysis for multi-degree-of-freedom system can be found in Chapter 

12 of Chopra (2012)). The acceleration calculated per Eq. (3.57) provided in Veletsos assumed 

zero damping in the impulsive modes. However, in practice, damping ratios of 2% and 5% are 

recommended for calculating the impulsive responses of steel and concrete tanks, respectively 

(Malhotra et al. 2000). Appendix B presents calculations using the Veletsos solutions adjusted 

for non-zero damping in the impulsive modes. 

According to Eqs. (3.53) and (3.56), id   was related to kq  as the following: 
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 ( )i ik k ik k kd q e A t  =       (3.58) 

The velocity potential associated with the k th impulsive mode was computed by substituting Eq. 

(3.58) for iU   in Eq. (3.45). The impulsive pressure impp  at an arbitrary location in the fluid and 

on the wall and the base of the tank were determined using Eq. (3.1). The impulsive pressure on 

the wall (i.e., at r R= ) of the tank associated with the k th mode, along the vertical and the 

circumferential directions, z  and  , was given as: 
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where ij  is defined in Eq. (3.46). The impulsive pressure on the base of the tank (i.e., at 0z = ) 

associated with the k th mode, along the radial and the circumferential directions, r  and  , was 

given as: 
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where ke  is defined in Eq. (3.55). The impulsive shear force at the base of the tank, ,imp kF , 

associated with the k th mode in the x  direction, equilibrated the resultant force generated by 

, ,imp w kp  on wall of the tank. The resultant force was the integral of , , cosimp k wp   over the area of 

the wall, wA . The impulsive shear force in the k th mode was: 
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where lm  is the mass of the contained fluid. The impulsive pressure on the wall of the tank,  

, ,imp w kp , at a vertical distance z  above the base, created a moment about the y  axis at the center 
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of the base (see Figure 3.1), which was equilibrated by the impulsive moment at the base of the 

tank, , ,imp w kM : 
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Similarly, the impulsive pressure on the base of the tank, , ,imp b kp , at a horizontal distance 

cosr   from the center of the base, created a moment about the y  axis at the center, which was 

equilibrated by the impulsive moment at the base of the tank, , ,imp b kM : 

 
 

1
2

, , , , 2
'1 1
1

(2 1)
8 2

cos ( )
(2 1) (2 1)

2
b

N

imp b k imp b k b k l k ik ij

i jA

R
I j

H
M p r dA A t m He

Rj I j
H



  




= =

 
− 

 = −    =  
 − − 
 

   (3.63) 

where bA  is the area of the base of the tank. 

Discussion 

Veletsos (1984) presented analytical solutions for impulsive responses of a flexible, base-

supported cylindrical tank, subjected to unidirectional horizontal motion of a small amplitude. 

The impulsive responses were decoupled into modal contributions and solutions were provided 

for each mode. Solutions were provided for impulsive frequency, impf , impulsive pressure, impp , 

impulsive shear force at the base of the tank, impF , and the two components of impulsive moment 

at the base of the tank: ,imp wM , generated by ,imp wp  on the wall of the tank, and ,imp bM , generated 

by ,imp bp  on the base. This section presented the analytical solutions of these impulsive responses 

with equation numbers listed in Table 3.4.  
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Table 3.4. Equation numbers of the analytical solutions of Veletsos for impulsive 

responses of a flexible, base-supported cylindrical tank subjected to unidirectional 

horizontal motion of a small amplitude 

impf  ,imp wp  ,imp bp  impF  ,imp wM  ,imp bM  

(3.52) (3.59) (3.60) (3.61) (3.62) (3.63) 

Impulsive responses are calculated below using Veletsos’ solutions for flexible, base-supported 

cylindrical tanks with a range of dimensions. Results are presented and compared with those of 

Jacobsen. Impulsive responses are calculated for a flexible tank with multiple values of /H R : 

,imp wp  and ,imp bp  are calculated for /H R = 0.5, 1, and 2; impf , impF , ,imp wM , and ,imp bM  are 

calculated for 0.2 /H R  3. The tank with typical dimensions is used in the calculations: a 

radius R  of 30 m and a thickness of the wall h  of 0.001 R . Per Table K-1a of API 650 

(American Petroleum Institute (API) 2012), a radius, R , between 25 m to 60 m and a ratio of 

wall thickness to radius, /h R , of the order of 0.001 are practical for a steel base-supported 

cylindrical tank. The tank used here is assumed to be fabricated from carbon steel and the 

contained fluid is assumed to be water. The mechanical properties used in the calculations are 

listed in Table 3.5, including the elastic modulus, E , Poisson’s ratio,  , and density, s , of the 

steel, and the density of the contained fluid,  . The impulsive responses presented here are 

appropriately normalized to be unitless, which makes the results insensitive25 to the dimensions 

(i.e., h , R , and H ) and the mechanical properties (i.e., E ,  , s , and  ) of the tank and the 

fluid, and independent of the modal acceleration time series, kA , at the impulsive frequency, 

,imp kf . The only variable considered for the normalized impulsive responses is the unitless 

dimension of the tank, /H R . Normalizing the impulsive responses enables the results to be 

generalized. 

 

                                                 
25  The normalization assumes s   and 2 1 and disregards the effect of s  and   in the results. The 

normalized results are not fully independent of but insensitive to the dimensions and the mechanical properties of 

the tank and the fluid. 
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Table 3.5. Mechanical properties of the tank and the contained fluid used 

for the calculations of impulsive responses 

Carbon steel 

Elastic modulus, E  1.941011 (N/m2) 

Poisson’s ratio,   0.27 

Density, s  7875 (kg/m3) 

Water Density,   1000 (kg/m3) 

Figure 3.11a shows the impulsive frequencies, ,imp kf , associated with the first three modes (i.e., 

k =1 to 3), for the carbon steel tank with R = 30 m, /h R =  0.001, and 0.2 /H R  3. The 

impulsive frequency in each mode, ,imp kf , reduces with increasing /H R , namely, ,imp kf  is lower 

when the tank is filled with fluid to a greater height H . The first impulsive frequencies, ,1impf , 

are between 1.5 Hz and 7 Hz (i.e., first impulsive period, ,1impT , ranges from 0.14 sec to 0.7 sec), 

and those in the higher mode (i.e., ,2impf  and ,3impf ) are between 2 Hz and 16 Hz, for the range of 

/H R  considered here.  

  

(a) ,imp kf , R =30m, h =0.001 R , and the 

mechanical properties listed in Table 3.5, 

calculated using Eq. (3.52) 

(b) ,imp kC , calculated using Eq. (3.64) and 

,imp kf  in panel (a) 

Figure 3.11. Impulsive frequencies, ,imp kf , and coefficients of impulsive frequency, ,imp kC , 

associated with the first three impulsive modes (i.e., k =1 to 3), for 0.2 /H R  3 
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For the purpose of generalizing over different mechanical properties and dimensions of the tank 

and the contained fluid, the impulsive frequency of each mode is expressed as follows: 

 , ,

1
imp k imp k

Eh
f C

R R
=   (3.64) 

where ,imp kC  is the coefficient of the impulsive frequency in the k th mode. The coefficient is a 

function of /H R , unitless and insensitive to h , E ,  , s , and   (see footnote 25 on page 75). 

Figure 3.11b presents values of ,imp kC  for the first three impulsive modes (i.e., k = 1 to 3) 

calculated using Eq. (3.64) with results presented in Figure 3.11a.  

Two important observations can be drawn from Eq. (3.64) and Figure 3.11. First, ,imp kC  in each 

mode reduces with increasing /H R . For a given value of R , ,imp kf  calculated per Eq. (3.64)

reduces with increasing H , indicating that ,imp kf  in a mode of a tank with a given radius, R , 

reduces when the tank is filled with fluid to a greater height, H . Second, per Eq. (3.64) the 

impulsive frequency, ,imp kf , in a mode is inversely proportional to R  when the mechanical 

properties of the tank and the contained fluid (i.e., E  and  ) and /h R  are held constant. For 

example, the impulsive frequency of a water-filled carbon-steel tank with R = 60 m and 

/h R =0.001 can be calculated by multiplying ,imp kf  for R = 30 m (see Figure 3.11a) by the 

reciprocal of the ratio of their radii, namely 1/2 (=30/60). As a result, the values of the first 

impulsive frequency, ,1impf , are between 0.75 Hz and 3.5 Hz (i.e., ,1impT  ranges from 0.3 sec to 

1.3 sec) for R = 60 m and 0.2 /H R  3.  

The impulsive pressure on the wall of the tank, , ,imp w kp , and that on the base, , ,imp w bp , are 

calculated using Eqs. (3.59) and (3.60), respectively, for /H R = 0.5, 1, and 2. Figure 3.12 

presents , ,imp w kp  in the first three modes (i.e., k =1 to 3), along the z  direction, at r = R  and 

 =180°; and Figure 3.13 presents , ,imp b kp  in the first three modes ( k = 1 to 3), along the r  

direction, at z = 0 and  =180°. The values of , ,imp w kp  and , ,imp b kp  in the figures are each 

normalized by kHA , the z  direction in Figure 3.12 is normalized by H , and the r  direction in 

Figure 3.13 is normalized by R .  
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Given an order of the impulsive mode (i.e., k =1, 2, or 3), the maximum value of the normalized 

impulsive pressure on the wall, , , /imp w k kp RA , increases with increasing of /H R , whereas the 

results for , , /imp b k kp RA  do not show this trend. Consider , , /imp w k kp RA  in each of the first 

three modes, for each /H R  in Figure 3.12. The amplitude in the first mode is the greatest over 

the height of the fluid. Similarly, in Figure 3.13, the amplitude of , , /imp b k kp RA  is the greatest in 

the first mode, across the radius of the tank, for each value of / .H R Namely, 

,1 1 ,2 2 ,3 3/ / /imp imp impp RA p RA p RA     for 0 /z H 1 on the wall and 0 /r R 1 on the 

base. However, this comparison of the amplitudes for the normalized impulsive pressures, 

, /imp k kp RA , in the first three modes must not be used to compare the amplitudes of the 

impulsive pressures, ,imp kp , since the values of kA  used for the normalization will be different. 

The value of kA  is associated with the impulsive frequency, ,imp kf , in the mode of interest and 

the input motion, 0 ( )u t . A greater (smaller) value of , /imp k kp RA  does not necessarily result in a 

greater (smaller) value of ,imp kp . 

   

(a) /H R=0.5 (b) /H R=1 (c) /H R=2 

Figure 3.12. Normalized impulsive pressures on the wall of a tank, , , /imp w k kp RA , associated 

with the first three modes (i.e., k =1 to 3), along the normalized vertical direction, /z H , at 

r = R  and  =180°, for /H R = 0.5, 1, and 2, calculated using Eq. (3.59) 
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(a) /H R=0.5 (b) /H R=1 

 

(c) /H R=2 

Figure 3.13. Normalized impulsive pressure on the base of a tank, , , /imp b k kp RA , associated 

with the first three modes (i.e., k =1 to 3), along the normalized radial direction, /r R , at z = 0 

and  =180°, for /H R = 0.5, 1, and 2, calculated using Eq. (3.60) 

The impulsive shear force and the two components of the impulsive moment at the base of the 

tank, impF , ,imp wM , and ,imp bM , are calculated using Eqs. (3.61), (3.62), and (3.63), respectively, 

for 0.2 /H R  3. Figure 3.14 shows ,imp kF  in the first three impulsive modes, in the x  direction, 

normalized by l km A . Figures 3.15a and b show , ,imp w kM  and , ,imp b kM , respectively, in the first 

three impulsive modes, about the y  axis, normalized by l km HA . Identical to the discussion 

above on the impulsive pressure, ,imp kp , the normalized data presented in Figures 3.14 and 3.15 

must be interpreted carefully because kA  will be different in each mode. A discussion of the 

modal contributions of impulsive responses calculated using the solutions of Veletsos is 

presented in Appendix B. 
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Figure 3.14. Normalized impulsive shear force at the base of a tank, , /imp k l kF m A , associated with 

the first three modes (i.e., k =1 to 3), in the x  direction for 0.2 /H R  3, calculated using Eq. 

(3.61) 

 

  

(a) , , /imp w k l kM m HA , calculated using Eq. (3.62) (b) , , /imp b k l kM m HA , calculated using Eq. (3.63) 

Figure 3.15. Normalized impulsive moments at the base of a tank, , , /imp w k l kM m HA  and 

, , /imp b k l kM m HA , associated with the first three modes (i.e., k =1 to 3), about the y  axis for 

0.2 /H R  3 
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The analytical solutions of Veletsos (1984) for a flexible tank and the analytical solutions of 

Jacobsen (1949) for a rigid tank are compared below. Impulsive responses are calculated using 

both sets of solutions for a rigid and a flexible tank for the same range of /H R . The mechanical 

properties listed in Table 3.5 and the thickness of the wall, h = 0.001 R , are used in the 

calculations for the flexible tank. The results of impulsive responses presented here are 

normalized using the methods identical to those used in Section 3.2.1.2 for a rigid tank and those 

used earlier in this section for a flexible tank, to make the normalized results dependent on only 

one variable, /H R . Consequently, normalizations associated with acceleration responses of the 

rigid and the flexible tanks are different: the results of the rigid tank are normalized by the input 

motion, 0u ; and the results of the flexible tank are normalized by the acceleration time series, kA , 

at the impulsive frequency, ,imp kf . 

Figures 3.16 to 3.19 present normalized impulsive responses of a rigid tank and those of a 

flexible tank in multiple modes. The variable A  shown in the label for the horizontal or vertical 

axes of each figure for normalizing results is 0 ( )u t  for the rigid tank and ( )kA t  for the flexible 

tank. The normalized impulsive responses of a flexible tank are algebraic sums of normalized, 

modal responses composed of 1) the first impulsive mode ( k = 1) only, 2) the first three 

impulsive modes ( k =1 to 3), and 3) the first 10 impulsive modes ( k =1 to 10). The impact of 

normalized, responses in the 11th and higher impulsive modes is negligible in the algebraic sums 

for the range of /H R  presented here. Figure 3.16 presents the normalized impulsive pressures 

on the wall of the tank, , /imp wp HA , along the /z H  direction at r R=  and  = 180°; and 

Figure 3.17 presents the normalized impulsive pressures on the base, , /imp bp HA , along the 

/r R  direction at z = 0 and  = 180°, both for /H R = 0.5, 1, and 2. Figure 3.18 presents the 

normalized, impulsive shear forces, /imp lF m A , and Figure 3.19 presents the normalized, 

impulsive moments, , /imp w lM m HA  and , /imp b lM m HA , at the base of a tank for 0.2 /H R  3. 

The results shown in the figures indicate that as more modes are included in the algebraic sum, 

the normalized, modal impulsive responses of a flexible tank gradually recover the 

corresponding impulsive responses of a rigid tank. The algebraic sums of the normalized 

impulsive responses in the first ten modes of the flexible tank (red lines) are almost identical to 

the corresponding normalized impulsive responses of the rigid tank (black dashed lines) for the 
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values of /H R  considered here. If the acceleration time series used to normalize the modal 

responses data in Figures 3.16 to 3.19 are assumed to be identical, namely 

1 2 10( ) ( )... ( ) ( )A t A t A t acc t= = = , the algebraic sum of the modal impulsive responses in the first 

ten modes recovers the impulsive responses of the corresponding rigid tank accelerating at 

( )acc t . 

 

 

   

(a) /H R = 0.5 (b) /H R = 1 (c) /H R = 2 

Figure 3.16. Impulsive responses of a flexible tank (Veletsos) and those of a rigid tank (Jacobsen), 

in terms of normalized impulsive pressure on the wall of the tank, , /imp wp RA , along the 

normalized vertical direction, /z H , at r R=  and  =0°, for /H R = 0.5, 1, and 2 
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(a) /H R = 0.5 (b) /H R = 1 

 

(c) /H R = 2 

Figure 3.17. Impulsive responses of a flexible tank (Veletsos) and those of a rigid tank 

(Jacobsen), in terms of normalized impulsive pressure on the base of the tank, , /imp bp RA , 

along the normalized radial direction, /r R , at z = 0 and  = 0°, for /H R = 0.5, 1, and 2 
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Figure 3.18. Impulsive responses of a flexible tank (Veletsos) and those of a rigid tank 

(Jacobsen), in terms of normalized impulsive shear force at the base of the tank, /imp lF m A , in 

the x  direction for 0.2 /H R  3 

 

  

(a) , /imp w lM m HA  (b) , /imp b lM m HA  

Figure 3.19. Impulsive responses of a flexible tank (Veletsos) and those of a rigid tank 

(Jacobsen), in terms of normalized impulsive moments at the base of the tank, , /imp w lM m HA  and 

, /imp b lM m HA , about the y  axis for 0.2 /H R  3 
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3.2.2 Convective responses 

3.2.2.1 Introduction 

Figure 3.20 shows convective responses in a vertical cross section through a base-supported 

cylindrical tank accelerating in the x  direction. Waves are generated in the contained fluid: the 

free surface of the fluid oscillates vertically at a convective frequency, conf , with a small 

displacement, wd . This displacement also describes the height of a wave above the initial free 

surface. The wave action induces convective pressures, conp , in the fluid and on the inner 

surfaces of the tank (i.e., the wall and the base). The part of the free surface with a negative 

vertical displacement reduces the depth of the fluid (with respect to the base) at the x+  side of 

the tank and generates a negative conp  on the wall and the base. The part of the free surface with 

a positive displacement increases the depth of the fluid at the x−  side of the tank and generates a 

positive conp  on the wall and the base. Similar to the impulsive responses in the base-supported 

tank, these convective pressures, conp , on the inner surfaces of the tank are mechanically 

equilibrated by global convective reactions at the base, including a convective shear force and 

moments.  The resultant force of the horizontal conp  on the wall (green arrows) is balanced by 

the convective shear force at the base, conF , in the x  direction. The convective pressure on the 

wall (green arrows) and that on the base (blue arrows) generate resultant moments at the center 

of the base (solid red circle), which are balanced by the convective moments, ,con wM  and ,con bM , 

in a clockwise direction about the y  axis, respectively. 

The convective responses of a tank subjected to small-amplitude horizontal seismic motion are 

generated by the part of the fluid assumed theoretically not to move horizontally with the tank 

but to oscillate vertically to form waves on the free surface. Since this part of the fluid does not 

follow the movement or the deformation of the tank, the convective responses are considered 

independent of the flexibility of the wall of the tank (Haroun 1980; Veletsos 1984).  

Consequently, this section introduces analytical solutions for convective responses of rigid tanks 

developed in a number of prior studies, but these solutions can also be applied to flexible tanks. 
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Figure 3.20. Convective responses: vertical displacement of the free surface, wd ; convective 

frequency, conf ; convective pressure, conp , on the walls and base of a tank; convective shear 

force, conF , at the base; and convective moments, ,con wM  and ,con bM , at the base; shown in a 

vertical cross section through a base-supported cylindrical tank accelerating in the x  direction 

3.2.2.2 Rigid tank 

This section presents the analytical solutions for convective responses developed by 1) Veletsos 

(1984), 2) Chalhoub and Kelly (1988), and 3) Housner (1957) for a rigid, base-supported 

cylindrical tank subjected to unidirectional horizontal motion of a small amplitude. All three 

studies assumed that the contained fluid is ideal (footnote 20 on page 11). The damping of the 

fluid was not considered in the analytical solutions because an ideal fluid is inviscid. In inviscid 

flow, the viscous forces (or damping) are very small in comparison with the inertial forces. Table 

3.6 lists the convective responses analytically derived in each of the three studies, including conf , 

conp , wd , conF , ,con wM , and ,con bM . 

Veletsos’ analytical solutions were drawn from the derivations in the PhD dissertation of Yang 

(1976). (The dissertation also derived the analytical solutions of impulsive responses of a flexible 

tank; see Section 3.2.1.3). A velocity potential was assumed for the convective responses of the 

fluid subjected to harmonic motion, and then the exact solutions for the convective responses 

generated by earthquake shaking were derived using a frequency-domain method. Chalhoub and 

Kelly derived analytical solutions for the convective responses using procedures different from 

those used in Veletsos but the two solutions were identical. Housner derived approximate 

analytical solutions for the convective responses using a 2-dimensional vertical cross section 

through a base-supported cylindrical tank. He discretized the fluid in the vertical cross section 
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into multiple thin horizontal layers, which were free to rotate with respect to the axis normal to 

the cross section (e.g., the y  axis for the vertical cross section of the tank presented in Figure 

3.20). The analytical solutions were derived using Newton’s second law on the inertial forces 

and Hamilton’s principle on the kinetic and potential energies the motion of these horizontal 

fluid layers. 

Table 3.6. Convective responses of a rigid, base-supported cylindrical tank subjected to 

unidirectional horizontal seismic motion of a small amplitude, addressed in the studies listed in 

the first column 

 conf  conp  wd  conF  ,con wM  ,con bM  

Veletsos (1984)1 √ √ √ √ √ √ 

Chalhoub and Kelly (1988) √ √ √    

Housner (1957)2 √ √ √ √ √ √ 

1. This paper did not present complete derivations for the analytical solutions. The derivations in Yang (1976) 

are used in this section. 

2. The paper contains calculation errors. The correct analytical solutions and their derivations presented in this 

section in part follow those in Housner (1954) and Thomas et al. (1963). 

These analytical solutions and their derivations are not introduced chronologically in this section: 

the exact solutions of Veletsos, and Chalhoub and Kelly are summarized first, followed by the 

approximate solutions of Housner. The equations used in the derivations and the solutions 

presented here are not identical to those in the original documents to enable the use of a 

consistent set of variables and coordinate systems. 

The variables used in this section are the same as those used in the derivations and the solutions 

for impulsive responses, shown in Figure 3.2, including: radius of the tank, R ; height of the 

contained fluid, H ; horizontal ground displacement, 0 ( )u t , velocity, 0 ( )u t , and acceleration, 

0 ( )u t ; velocities of an arbitrary point, pt , in the fluid, u , v , and w , along the three 

components of a cylindrical coordinate system ( r ,  , z ); and a Cartesian coordinate system ( x , 

y , z ). 
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Veletsos (1984) 

Veletsos presented analytical solutions for the convective responses listed in the second row of 

Table 3.6. The analytical solutions represented modal convective responses derived in Yang. The 

derivations assumed the tank to be rigid and the contained fluid to be ideal. The vertical 

displacement of the free surface (i.e., the heights of waves above the free surface) was assumed 

to be small. Hydrostatic pressure generated by fluid below the level of the initial free surface was 

not considered, whereas hydrostatic pressure at the level of the initial free surface generated by 

the fluid above the surface due to wave action was accounted for in the derivations of the 

convective responses.  

The analytical solutions were derived in three steps: 1) using a velocity potential, con , to derive 

the steady-state convective pressure, ,con hp  , in a tank subjected to unidirectional, horizontal 

harmonic motion of a unit amplitude, 2) applying an inverse Fourier transform on ,con hp  to 

calculate the convective pressure, ,conp   , of the tank subjected to a unidirectional, horizontal 

impulse with a unit amplitude, and 3) using Duhamel’s integral on ,conp   to calculate the 

convective responses of the tank subjected to small-amplitude, unidirectional, horizontal seismic 

motion. Herein, the derivations in Yang are reworked for reasons of clarity. 

The unit-amplitude harmonic motion is ground acceleration time series, 
i te 

, with an excitation 

radial frequency of  . The velocity potential, con , for convective responses of the fluid 

subjected to the harmonic input motion was assumed to be a function of four variables: the three 

components of the cylindrical coordinate system, r ,  , and z , shown in Figure 3.2, and the 

velocity of the horizontal ground motion (1/ ) i ti e  . The velocity potential was the product of 

the four unknown functions, R ,  , Z , and T , associated with the four variables, r ,  , z , and 

t , respectively, since these variables were independent:  

 ( , , , ) ( ) ( ) ( ) ( )con r z t R r Z z T t  =      (3.65) 

The velocity potential, ,con  satisfied Laplace's equation since the ideal fluid was 

incompressible, which led to Eq. (3.4) used in Jacobsen (1949). Three boundary conditions were 
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assumed for the fluid in the tank subjected to the horizontal harmonic motion to solve R ,  , Z , 

and T : 

1) The pressure on the initial free surface was induced by wave actions. The vertical acceleration 

of the waves was assumed to be negligible. The vertical displacement of the free surface, wd , 

which was the height of the wave above the initial free surface, generated hydrostatic pressure, 

sp , at the initial free surface: 

 s wp gd=   (3.66) 

where   is the density of the fluid and g  is the gravitational acceleration. The hydrostatic 

pressure, sp , (i.e., wgd ) calculated using Eq. (3.1) was: 

 
con

w

z H

gd
t

 
=


= −


  (3.67) 

Equation (3.67) was partially differentiated with respect to t , and the term, 
wd

t




, on the left-

hand side of the equation was the vertical velocity of the free surface (i.e., at z H= ). The fluid 

velocity at z H=  was calculated using Eq. (3.2) with the velocity potential of impulsive and 

convective responses, imp  and con : 

 
( ) 2

2

imp con con

z Hz H

g
z t

==

  +  
= −

 
 (3.68) 

where imp  was calculated per Eq. (3.8) and 0 ( )u t  used in the equation was the velocity of the 

harmonic motion, (1/ ) i ti e  . 

2) The radial velocity of the fluid adjacent to the wall, ( )u r R = , was zero because the fluid was 

assumed not to move horizontally with the tank: 

 ( ) 0
con

r R

u r R
r =


 = = =


  (3.69) 

where Eq. (3.2) was used for the calculation of the radial velocity of the fluid, u . 
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3) The vertical velocity of the fluid at the base of the tank, ( 0)w z = , was zero because the fluid 

was attached to the base, rigidly connected to the foundation that was subjected to horizontal 

motion only: 

 
0

( 0) 0
con

z

w z
z =


 = = =


  (3.70) 

where Eq. (3.2) was used for the calculation of the vertical velocity of the fluid, w . 

Solving R ,  , Z , and T , using Eqs. (3.68), (3.69), and (3.70) yielded the velocity potential, 

con : 

 
1

2
2 1

( ) cosh( )
2

cos tanh( )
1 ( )

tanh( ) cosh( )

j j
ji t

con j
j j j

j j

r z
J n n

g n HR Re n
n g H Hi n J n R

n n
R R R

 
 

 =
−

−

  (3.71) 

where 1J  is the Bessel function of the first kind with an integer order of 1, and jn  is a root 

(solution) of 1( ) 0jJ n = . The values of jn  for j =1 to 10 are listed in Table 3.2, which were also 

used by Chalhoub and Kelly (1988) (see Section 3.2.1.2). The other parameters were defined 

previously. 

Given the velocity potential per Eq. (3.71), the convective pressure, ,con hp , at an arbitrary 

location in the fluid or on the inner surfaces of the tank (i.e., wall and base), subjected to the 

unit-amplitude harmonic motion (i.e., 0 ( ) i tu t e  = ) was determined using Eq. (3.1): 

 
1

, 2
2 1

( ) cosh( )
2

cos tanh( )
1 ( )

tanh( ) cosh( )

j j
ji t

con h j
j j j

j j

r z
J n n

n HR Rp g e n
n g H Hn J n R

n n
R R R

  



= − 
−

−

  (3.72) 

When the excitation radial frequency of the harmonic motion,  , was identical to a natural 

radial frequency of a convective mode, ,con j  (or ,2 con jf ), the amplitude of the pressure, ,con hp , 

was theoretically unbounded (i.e., → ). Per Eq. (3.72), the amplitude of ,con hp  is infinite when 

2 tanh( )
j

j

n g H
n

R R
 = , and so the frequency of the convective mode was: 
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 ,

1
tanh( )

2

j
con j j

n g H
f n

R R
=   (3.73) 

where each value of jn  (see Table 3.2) refers to a frequency, ,con jf , associated with the j th 

convective mode.  

Given ,con hp  per Eq. (3.72), a frequency-domain method was used to calculate the convective 

pressure, ,conp   , in the tank subjected to a unidirectional, horizontal impulse of a unit amplitude, 

( )t . (More information can be found in the appendix A of Chopra (2012); per Eqs. (A.1.5) and 

(A.4.3) in Chopra (2012), ,conp   and 
,con h

i t

p

e 
 are a Fourier transform pair). The convective 

pressure, ,conp   , generated by ( )t  was the inverse Fourier transform of 
,con h

i t

p

e 
:  

 
,1

,
con h

con i t

p
p

e
 

−  
=  

 
F   (3.74) 

where 1−F  is the operator of the inverse Fourier transform. The convective pressure, ,conp  , 

calculated using Eq. (3.74) was given as: 

 
1

, , ,2
1

( ) cosh( )
2

cos tanh( ) sin
1 ( )

cosh( )

j j
j

con j con j con j

j j
j

r z
J n n

n HR Rp g n t
Hn J n R

n
R

    = −   
−

  (3.75) 

Using Duhamel’s integral on ,conp  , the convective pressure, conp , in the tank subjected to 

unidirectional horizontal seismic acceleration of a small amplitude, 0 ( )u t , was determined to be: 

 0 ,

0

( ) ( )

t

con conp u p t d  = −   (3.76) 

which yields: 

 
1

, 2
1

cosh( ) ( )
2

( ) cos
1 ( )

cosh( )

j j

con j j

j j
j

z r
n J n

R Rp A t R
Hn J n

n
R

 = − 
−

  (3.77) 
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 , 0 ,

0

( ) ( ) sin ( )

t

j con j con jA t u t d    =  −   (3.78) 

where each value of jn  refers to ,con jp  associated with the j th convective mode; and ( )jA t  is 

the pseudo-acceleration time series in the j th convective mode, represented as a SDOF system 

with a natural frequency of ,con jf , subjected to the ground motion, 0 ( )u t . The time series, ( )jA t , 

calculated per Eq. (3.78) provided in Veletsos assumed zero damping in the convective modes. 

However, in practice, a damping ratio of 0.5% is recommended for calculating the convective 

responses of steel and concrete tanks (Malhotra et al. 2000). Appendix B presents calculations 

using the Veletsos solutions adjusted for non-zero damping in the convective modes. 

The convective pressure on the wall of the tank (i.e., at r R= ) associated with the j th mode, 

along the vertical and the circumferential directions, z  and  , was given as: 

 , , , 2

cosh( )
2

( ) ( ) cos
1

cosh( )

j

con w j con j j

j
j

z
n

Rp p r R A t R
Hn

n
R

 = = = − 
−

  (3.79) 

The convective pressure on the base of the tank (i.e., at 0z = ) associated with the j th mode, 

along the radial and the circumferential directions, r  and  , was given as: 

 
1

, , , 2
1

( )
2 1

( 0) ( ) cos
1 ( )

cosh( )

j

con b j con j j

j j
j

r
J n

Rp p z A t R
Hn J n

n
R

 = = = − 
−

   (3.80) 

The vertical displacement of the free surface, which was the height of the wave above the initial 

free surface, generated hydrostatic pressure at the initial free surface (see Eq. (3.66)). The 

hydrostatic pressure was the convective pressure at z H= . The vertical displacement of the free 

surface, ,w jd , associated with the j th mode, along the radial and the circumferential directions, 

r  and  , was given as: 

 
1

,
, 2

1

( )
( ) 2

( ) cos
1 ( )

j
con j

w j j

j j

r
J n

p z H R Rd A t
g g n J n




=
= = − 

−
   (3.81) 
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where , ( )con jp z H=  was calculated using Eq. (3.77). 

The convective shear force at the base of the tank, ,con jF , associated with the j th mode in the x  

direction, equilibrated the resultant force generated by , ,con w jp  on wall of the tank. The resultant 

force was the integral of , , coscon w jp   over the area of the wall, wA . The convective shear force 

in the j th mode was: 

 , , , 2

2
cos ( ) tanh( )

( 1)
w

con j con w j w j l j

j jA

R H
F p dA A t m n

H n n R
= −   = 

−   (3.82) 

where lm  is the mass of the contained fluid. The convective pressure on the wall of the tank, 

, ,con w jp , at a vertical distance z  above the base, created a moment about the y  axis at the center 

of the base (see Figure 3.20), which was equilibrated by the convective moment at the base of 

the tank, , ,con w jM : 

, , , , 2

2
cos z ( ) tanh( ) 1 tanh( )

( 1) 2
w

con w j con w j w j l j j

j j jA

H R H
M p dA A t m R n n

n n R n H R


 
= −    =  − 

−  
  (3.83) 

Similarly, the convective pressure on the base of the tank, , ,con b jp , at a horizontal distance 

cosr   from the center of the base, created a moment about the y  axis at the center, which was 

equilibrated by the convective moment at the base of the tank, , ,con b jM : 

 
2

2
, , , , 2

1

2 ( ) 1
cos ( )

( 1) ( )
cosh( )b

j
con b j con b j b j l

j j jA
j

R J n
M p r dA A t m

HH n n J n
n

R

= −    = 
−   (3.84) 

where bA  is the area of the base of the tank. 

Chalhoub and Kelly (1988) 

Chalhoub and Kelly determined FSI responses of a rigid, base-supported cylindrical tank, 

subjected to unidirectional horizontal seismic motion of a small amplitude by using a velocity 

potential, h , with considerations of both the impulsive and convective components. Section 

3.2.1.2 presented the derivations of h  and the analytical solutions of the impulsive pressure. 

This section presents the analytical solutions of convective responses, including convective 
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frequency, conf , convective pressure, conp , and vertical displacement of the free surface, wd . The 

derivations are not repeated here.   

As noted in Section 3.2.1.2, Chalhoub and Kelly did not parse hydrodynamic pressure, dp , per 

Eq. (3.21) into impulsive and convective components, but here the first term on the right-hand 

side of Eq. (3.21) is considered to be the impulsive pressure, impp , and the second term the 

convective pressure, conp : 

 
1

02
11 0

cosh( ) ( )
2

cos ( )sin ( )
1 ( )

cosh( )

tj j

con j j

j jj
j

z r
n J n

R R Rp u t d
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n
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      

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= −
−

    (3.85) 

 tanh( )
j

j j

n g H
n

R R
 =    (3.86) 

The frequency of the convective mode was the frequency of the sinusoidal function in Eq. (3.85): 

 ,

1
tanh( )

2 2

j j
con j j

n g H
f n

R R



 
= =    (3.87) 

The convective pressure per Eq. (3.85) was an algebraic sum of modal pressures for 1j =  to  . 

The convective pressure in the j th mode, with was the j th term in the infinite series in Eq. 

(3.85), was identical to Veletsos’s analytical solution per Eq.(3.77). Therefore, the convective 

pressures on the wall and the base of the tank, , ,con w jp  and , ,con b jp , in the j th mode were 

identical to Eqs. (3.79) and (3.80), respectively. The vertical displacements of the free surface 

calculated using the convective pressure at z H=  were identical to Eq. (3.81). Those equations 

are not repeated herein. 

Housner (1957) 

Housner developed approximate analytical solutions for the convective responses listed in the 

fourth row of Table 3.6, which avoided having to use Bessel’s functions for calculating a 

velocity potential for the contained fluid (e.g., Veletsos (1984) and Chalhoub and Kelly (1988)). 

The derivations assumed the tank to be rigid and the contained fluid to be ideal. The vertical 

displacements of the free surface were assumed to be small. Identical to the solutions of Veletsos, 
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and Chalhoub and Kelly, hydrostatic pressures below the level of the initial free surface were not 

considered, whereas the derivations accounted for the effect of hydrostatic pressure on the initial 

free surface due to wave actions. The analytical solutions were derived for the convective 

responses in the first mode. Some of these solutions were extended to the higher modes based on 

an assumption regarding wavelengths of fluid waves on the free surface. The solutions for 

convective responses were derived based on a 2-dimensional (2-D) vertical cross section through 

a cylindrical tank, but the fluid velocities in three orthogonal directions were all considered. 

Figure 3.21 presents a vertical cross section through a tank with radius R  and filled with fluid to 

height H , a Cartesian coordinate system ( x , y , z ), and a cylindrical coordinate system ( r ,  , 

z ). The horizontal ground motion, 0 ( )u t , was input in the x  direction, parallel to the vertical 

cross section. The fluid in the vertical cross section was divided into multiple thin horizontal 

layers that were free to rotate with respect to the y  axis. The rotational angle of a fluid layer,  , 

was associated with the vertical displacement of the fluid due to wave actions. The velocities at 

an arbitrary point in the fluid were xu , yu  and zu , in the x , y , and z  directions, respectively, as 

shown in Figure 3.21. These velocities and rotational angle obeyed boundary conditions given as: 

 ( cos ) 0xu x R  =  =   (3.88) 

 ( 0) 0z = =   (3.89) 

 ( 0) 0yu y = =   (3.90) 

The boundary conditions per Eqs. (3.88) and (3.89) were similar to those per Eqs. (3.69) and 

(3.70) used in Veletsos, which assumed the part of the fluid associated with convective responses 

not to move horizontally with the tank and the vertical velocity of the fluid adjacent to the base 

of the tank to be zero. The boundary condition per Eq. (3.90) assumed the velocity of the fluid in 

the y  direction was zero on the plane of symmetry for the tank (i.e., the x - z  plane) accelerating 

in the x  direction. 
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Figure 3.21. A base-supported cylindrical tank, showing the 2-D configuration used in the 

derivations of convective responses in Housner (1957), adapted from Figure F.4 in Thomas 

et al. (1963) 

Housner used Hamilton’s principle, including the kinetic energy of the fluid, lK , and the 

potential energy of the fluid, lP , to derive the convective responses: 

 ( ) 0l lK P dt− =   (3.91) 

 2 2 21
( )

2
l

l x y z l

V

K u u u dV  = + +   (3.92) 

 

l

l z l

V

P gu dV=    (3.93) 

where lV  is the volume of the contained fluid, and other parameters have been defined 

previously. The kinetic energy and the potential energy could be calculated given the velocities 

of the fluid, xu , yu  and zu .  These velocities were functions of x , y , and z , which determined 

the velocity field for all of the fluid in the tank. Housner related these velocities to the rotational 

angles of the fluid layers,  . The vertical velocity of the fluid, zu , was given as: 

 zu x = −   (3.94) 
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To determine xu , Housner derived the mass balance for a fluid element in a horizontal layer, 

shown red in Figure 3.21. Figure 3.22 presents the horizontal and vertical velocities on the four 

edges of the fluid element, together with the dimensions of the fluid element. The fluid element 

was approximately rectangular with lengths dx , 2b , and dz  in the x , y , and z  directions, 

respectively. The horizontal and vertical net volume flow rates of the fluid element shown in 

Figure 3.22b were 2 ( )xu b dxdz
x


−


 and 2

zu
b dxdz

z


−


, respectively. The volume of the 

incompressible ideal fluid was conserved. Accordingly, the sum of the net volume flow rates was 

zero, which related xu  and zu : 

 ( ) 0
z

x

u
u b b

x z

 
− − =

 
  (3.95) 

The velocity of the fluid in the x  direction, xu , was determined by taking indefinite integral Eq. 

(3.95) with respect to x  and zu  in the equation was expressed using Eq. (3.94): 

 
1

xu bxdx
b z


 =

    (3.96) 
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(a) dimensions, x - y  plane  (b) volume flow rates and dimensions, x - z  plane 

Figure 3.22. Volume flow rates and dimensions of a fluid element shown as red in Figure 3.21, 

adapted from Figures F.5 in Thomas et al. (1963) 

Since the volume of the incompressible ideal fluid was conserved, the divergence of the 

velocities of the fluid was zero, 0vel =  (see footnote 22 on page 49): 
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  
  (3.97) 

The velocity of the fluid in the y  direction, yu , was determined by taking indefinite integral for 

Eq. (3.97) with respect to y , and xu  and zu  in the equation were defined using Eqs. (3.96) and 

(3.94), respectively:  

 
2

1
y

db
u y bxdx

dx b y


 =

    (3.98) 

The kinetic energy and the potential energy of the fluid, lK  and lP , were calculated using, xu , 

yu , and zu , determined in Eqs. (3.96), (3.98), and (3.94). Using Hamilton’s principle per Eq. 

(3.91) and the boundary conditions per Eqs. (3.88), (3.89), and (3.90), the rotational acceleration 

of a horizontal layer of the fluid was determined to be a sinusoidal function: 

 , ,1

27
sinh( )

8
sin

27
sinh( )

8

H a con

z

R
t

H

R

   =   (3.99) 

where ,H a  is the maximum rotational acceleration at the free surface (i.e., z H= ), and ,1con  is 

the radial frequency in the first convective mode given as: 

 

1

2
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27 27
tanh( )

8 8
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g H

R R


 
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 

  (3.100) 

and so the first convective frequency was: 

 

1

2

,1

1 27 27
tanh( )

2 8 8
con

g H
f

R R

 
=  

 
  (3.101) 

The derivations for the convective pressures, ,1conp , in the first mode presented here follow those 

in Housner (1954) for simplicity, which considered only the accelerations of the fluid in the x  

direction, xu : 
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 ,1

0

x

con xp u dx = −   (3.102) 

where xu  was determined per Eq. (3.96). The convective pressures, ,1conp , at an arbitrary 

location in the fluid or on the inner surfaces of the tank was given as: 

 2 3
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3 1 8
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8 3 27
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  (3.103) 

where cosx r =  based on the cylindrical coordinate system shown in Figure 3.21. The 

convective pressure on the wall of the tank (i.e., at cosx R = ) associated with the first 

convective mode, along the vertical and the circumferential directions, z  and  , was given as: 

 2 2
, ,1 , ,1

27
cosh( )

3 1 8
sin (1 cos )cos

8 3 27
sinh( )

8

con w H a con

z

R
p t R

H

R

    = −   −   (3.104) 

The convective pressure on the base of the tank (i.e., at 0z = ) associated with the first 

convective mode, along the radial and the circumferential directions, r  and  , was given as: 
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3 1 1
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8 3 27
sinh( )

8
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p t R
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    = −   −   (3.105) 

The vertical displacement of the free surface, which was the height of the wave above the initial 

free surface, generated hydrostatic pressure at the initial free surface. Assuming the vertical 

acceleration of the free surface, x , was negligible, the hydrostatic pressure was the convective 

pressure at z H= . The vertical displacement of the free surface, ,1wd , associated with the first 

mode, along the radial and the circumferential directions, r  and  , was given as: 

 
,1

,1

( )con
w

p z H
d

g

=
=    (3.106) 

where ,1( )conp z H=  was calculated using Eq.(3.103). 
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The convective shear force at the base of the tank, ,1conF , in the x  direction equilibrated the 

resultant force generated by , ,1con wp  on the wall of the tank. The resultant force was the integral 

of , ,1 coscon wp   over the area of the wall, wA . The convective shear force was: 

 4
,1 , .1 , ,1

1 27
cos sin

4 8
w

con con w w H a con

A

F p dA t R   = −   =    (3.107) 

The convective pressure on the wall of the tank, , ,1con wp , at a vertical distance z  above the base, 

created a moment about the y  axis at the center of the base, which was equilibrated by the 

convective moment at the base of the tank, , ,1con wM : 
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8 8
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   (3.108) 

Similarly, the convective pressure on the base of the tank, , ,1con bp , at a horizontal distance 

cosr   from the center of the base, created a moment about the y  axis at the center, which was 

equilibrated by the convective moment at the base of the tank , ,1con bM : 

 , ,1 , ,1 ,1

5 3

6 8
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27
sinh( )

8
b

con b con b b con

A

R

M p r dA F
H

R

= −    =   (3.109) 

where bA  is the area of the base of the tank. Note that Eq. (3.109) as written in Housner (1954) 

contains calculation errors. 

The analytical solutions for the convective responses per Eqs. (3.103) to (3.106) included the 

variable, ,H a . To derive ,H a , Housner (1957) represented wave actions in the first convective 

mode using a SDOF system with a frequency of ,1conf , subjected to the ground motion, 0 ( )u t . 

Unlike Veletsos, and Chalhoub and Kelly using Eq. (3.78), Housner assumed the acceleration of 

the SDOF system to be a sinusoidal function: 

 1 ,1( ) sinm conA t A t=   (3.110) 
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where the amplitude, mA , was suggested to be considered to be the spectral acceleration, 

( ),1conSa f , due to the ground motion, 0 ( )u t . The inertial force of the part of the fluid associated 

with wave actions was assumed to equal the horizontal force generated by ,1,con wp : 

 ,1,( )

w

con con w w

dA

m A t p dA =    (3.111) 

where conm  is the mass of the part of the fluid associated with wave actions. The right-hand side 

of Eq. (3.111) was ,1conF−  per Eq. (3.107). The kinetic energy of conm  was assumed to equal the 

kinetic energy of the fluid in the horizontal layers, lK , shown in Figure 3.21: 

 
21

( )
2

con lm V t K=   (3.112) 

where ( )V t  is the velocity of the SDOF system calculated by the integration of 1( )A t  with 

respect to t . Equation (3.92) was used to calculate lK . Eqs. (3.111) and (3.112) related the 

maximum rotational acceleration at the free surface, ,H a , and the amplitude of the acceleration 

of the SDOF system, mA  : 

 ,

27 27
tanh

8 8

m
H a

A H

R R
 =   (3.113)  

The convective responses per Eqs. (3.103) to (3.106) were determined given ,H a .  

To calculate the convective responses in higher modes, Housner assumed the wavelength of the 

fluid wave on the free surface in the j th mode was 1/ (2 1)j −  of that of the first mode. Figure 

3.23 presents the assumed shapes of the fluid wave in the second and third convective modes 

(i.e., j =2 and 3) in a vertical cross section through a tank. The wavelengths in the second and 

third modes are 1/3 and 1/5 of the wavelength of the first convective mode (shown in Figure 

3.21), respectively. The convective frequency and the global convective reactions at the base of 

the tank, ,con jf , ,con jF , , ,con w jM , and , ,con b jM , in the j th mode were computed by substituting 

/ (2 1)R j −  for R  in the analytical solutions for ,1conf , ,1conF , , ,1con wM , and , ,1con bM , respectively:  
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The convective pressures and the vertical displacement of the free surface in the higher 

convective modes were not addressed. 
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(a) second mode, j =2 (b) third mode, j =3 

Figure 3.23. Shapes of the fluid wave on the free surface shown in a vertical cross section 

through a tank 
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Discussion 

Veletsos (1984), Chalhoub and Kelly (1988), and Housner (1957) developed analytical solutions 

for convective responses of rigid, base-supported cylindrical tanks subjected to unidirectional 

horizontal motion of a small amplitude. The derived convective responses include convective 

frequency, conf ; convective pressure, conp ; vertical displacement of the free surface (i.e., wave 

height above the initial free surface), wd ; convective shear force at the base of the tank, conF ; and 

the two components of convective moment, ,con wM  and ,con bM . Veletsos derived exact analytical 

solutions for the convective responses (i.e., conf , conp , wd , conF , ,con wM , and ,con bM ) in different 

modes by using an assumed velocity potential for the fluid and a frequency-domain method. 

Chalhoub and Kelly derived analytical solutions for conf , conp , and wd , which were identical to 

the corresponding solutions of Veletsos. Housner derived approximate analytical solutions for 

the convective responses by applying Newton’s second law to the inertial forces and Hamilton’s 

principle to the potential and kinetic energies of fluid discretized into multiple horizontal layers. 

The convective pressure, conp , and the vertical displacement of the free surface, wd , were only 

addressed for the first convective mode. Other convective responses, including conf , conF , ,con wM , 

and ,con bM , were addressed for different convective modes. This section has presented the 

analytical solutions derived in the three studies, and their equation numbers assigned in this 

report are listed in Table 3.7.  

Table 3.7. Equation numbers of the analytical solutions for convective responses of a rigid, base-

supported cylindrical tank subjected to unidirectional horizontal motion of a small amplitude, 

derived in the studies listed in the first column 

 conf  ,con wp  ,con bp  wd  conF  ,con wM  ,con bM  

Veletsos (1984) (3.73) (3.79) (3.80) (3.81) (3.82) (3.83) (3.84) 

Chalhoub and Kelly (1988)1 (3.87) (3.79) (3.80) (3.81) -- -- -- 

Housner (1957) (3.114) (3.104) (3.105) (3.106) (3.115) (3.116) (3.117) 

1. The analytical solutions for ,con wf , ,con wp , ,con dp , and wd  in Chalhoub and Kelly were identical to those in 

Veletsos. Analytical solutions for global convective reactions, conF , ,con wM , and ,con bM , were not presented in 

Chalhoub and Kelly. 
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Below, convective responses are calculated and compared using the analytical solutions derived 

by Veletsos, Chalhoub and Kelly, and Housner for a rigid tank subjected to small-amplitude 

ground motion, 0 ( )u t , in the x  direction. The convective responses calculated using the 

solutions of Veletsos, and Chalhoub and Kelly are presented just once because their equations 

are identical. Multiple values of /H R  are considered in the calculations: ,con wp , ,con bp , and wd  

are calculated for /H R = 0.5, 1, and 2; and conf , conF , ,con wM , and ,con bM  are calculated for 

0.2 /H R  3. The radius of the tank, R , is assumed to be 30 m. The contained fluid is assumed 

to be water, with a density,  , is 1000 kg/m3. (The same values for R  and   are assumed for 

calculating impulsive responses of a rigid and a flexible tank, presented in Sections 3.2.1.2 and 

3.2.1.3, respectively). Other dimensions (e.g., thickness of the wall of the tank) and mechanical 

properties (e.g., density and elastic modulus of the material) of the tank do not need to be defined 

for the calculations because the tank is assumed to be rigid. The convective responses presented 

herein are normalized to be unitless. The normalized results are independent of the dimensions of 

the tank and the fluid, R  and H , the density of the fluid,  , and the acceleration time series in 

the convective mode, jA . The only variable for the normalized convective responses is the 

unitless ratio describing the dimensions of the tank, /H R . (The convective pressure is 

normalized using the same method used for the impulsive pressure, and the convective reactions 

are normalized using the same methods used for the corresponding impulsive reactions; see 

Sections 3.2.1.2 and 3.2.1.3 for the normalizations of impulsive responses). 

Figure 3.24a shows the convective frequencies, ,con jf , associated with the first three convective 

modes (i.e., j =1 to 3), calculated for a tank with 0.2 /H R  3 using Eqs. (3.73) and (3.114). 

Per the two equations, the only two variables in ,con jf  are the radius of the tank, R , and the 

unitless ratio describing the dimensions of the tank, /H R . (Note that ,con jf  is independent of the 

density of the fluid,  ). A radius of 30 m is used in the calculations. In the legend for the figure, 

"V and C&K" denotes Veletsos (1984) and Chalhoub and Kelly (1988), and the "H" denotes 

Housner (1957). The convective frequencies for the first mode calculated using the solution of 

Veletsos, and Chalhoub and Kelly and the solution of Housner are identical over the range of 

/H R  considered here. The solution of Housner slightly overestimates the convective 
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frequencies in the second and the third modes for the range of /H R , with respect to the solution 

of Veletsos, and Chalhoub and Kelly. For the tank with R = 30 m, the values of ,1conf  range from 

0.07 Hz to 0.12 Hz (i.e., the convective periods in the first mode range from 8 to 14 sec) for 

0.2 /H R  0.9; and the value of ,1conf  is 0.13 Hz for 0.9 /H R  3. The values of ,2conf  range 

from 0.18 Hz to 0.21 Hz and of ,3conf  range from 0.26 Hz to 0.28 Hz for 0.2 /H R  3.  

For the purpose of generalizing over different tank radii, ,con jf  is expressed as follows: 

 , ,con j con j

g
f C

R
=   (3.119) 

where ,con jC  is the coefficient of the convective frequency in the j th convective mode. The 

coefficient is a function of /H R , unitless and independent of R . Figure 3.24b presents values 

of ,con jC  associated with the first three convective modes (i.e., j =1 to 3), calculated based on 

the analytical solutions for ,con jf  in Veletsos, Chalhoub and Kelly, and Housner.  

  

(a) ,con jf , R =30 m, calculated using Eqs. 

(3.73) and (3.114) 

(b) ,con jC , calculated using Eq. (3.119) and 

,con jf  in panel (a) 

Figure 3.24. Convective frequencies, ,con jf , and coefficients of convective frequency, ,con jC , 

associated with the first three convective modes (i.e., j =1 to 3), for 0.2 /H R  3 

Two important observations can be drawn from Eq. (3.119) and Figure 3.24. First, the height of 

the fluid, H , in a tank with a given R  has an insignificant influence on the convective 

frequencies, ,con jf , when /H R  1 because 1) the values of ,con jC  in each mode shown in Figure 
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3.24b are almost constant for /H R  1 and 2) the relationship of ,con jf  and ,con jC  is independent 

of H  per Eq. (3.119). Second, the convective frequency, ,con jf , in a given mode is inversely 

proportional to R  per Eq. (3.119), namely, ,con jf  is lower for a tank with a greater R . For 

example, the convective frequency of a tank with R = 60 m can be calculated by multiplying 

,con jf  for R = 30 m (see Figure 3.24a) by the reciprocal of the square root of the ratio of their 

radii, namely 1/ 2  ( 1/ 30 / 60= ). As a result, the values of the first convective frequencies, 

,1conf , are between 0.06 Hz and 0.09 Hz (i.e., ,1conT  ranges from 11 sec to 18 sec) for R = 60 m 

and 0.2 /H R  3. 

The first impulsive frequency, ,1impf , shown in Figure 3.11a, decreases from 7 to 1.5 Hz and the 

first convective frequency, ,1conf , shown in Figure 3.24a, increases from 0.07 to 0.12 Hz, as 

/H R  increases from 0.2 to 3 for a tank with R = 30 m. The value of ,1impf  is greater than ,1conf  

by a factor of about 20 at a given /H R  for R = 30 m. As noted in Section 3.2.1.3, the impulsive 

frequency in a mode is inversely proportional to R  per Eq. (3.64), and the convective frequency 

in a mode is inversely proportional to R  per Eq. (3.119). As a result, for a wide range of tank 

radius, say 2 m R  90 m (i.e., 1/15 to 3 times the radius of 30 m), ,1impf  is expected to be 

greater than ,1conf  by a factor of between 12 and 77 (i.e., 20 / 3  and 20 15 , in which 3  is 

the square root of the ratio of 90 m to 30 m and 15  is the square root of the ratio of 30 m to 2 

m). The first impulsive mode is generally well separated from the first convective mode, in terms 

of frequency. 

Veletsos, and Chalhoub and Kelly addressed convective pressures, conp , and vertical 

displacements of the free surface, wd , in all modes, whereas Housner only provided equations 

for the first mode. Below, Veletsos, and Chalhoub, and Kelly’s solutions are used to calculate 

conp  and wd  in the first three modes, and Housner’s solutions are used to calculate only those in 

the first mode.  

Identical to the impulsive pressure, the greatest positive and negative convective pressures on the 

wall and the base of the tank are generated at  = 180° and 0°, respectively, as the tank 

accelerates in the x  direction. Values of the convective pressures at  =180° are presented here. 
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The convective pressures on the wall of the tank, , ,con w jp  along the z  direction, at r = R  and 

 =180°, are calculated using Eq. (3.79) for the first three modes (i.e., j =1, 2, and 3) and Eq. 

(3.104) for the first mode (i.e., j = 1). Figures 3.25a, b, and c present values of , ,con w jp  

normalized by jRA , for /H R = 0.5, 1, and 2, respectively. The z  direction in the figures is 

normalized by H . The approximate solution of Housner generally underestimates , ,1con wp  for the 

entire height of the fluid for all three values of /H R  by comparison to the exact solution of 

Veletsos, and Chalhoub and Kelly. These differences reduce with increasing /H R . For a given 

value of /H R  (i.e., 0.5, 1, or, 2) and an order of the convective mode (i.e., j =1, 2, or, 3), the 

maximum convective pressure on the wall of the tank, , ,con w jp , is at the initial free surface (i.e., at 

z H= ). The values of , , /con w j jp RA  at z H=  in a given convective mode are identical for all 

three values of /H R , for both the approximate and exact solutions. The values of , , /con w j jp RA  

decrease with increasing distance from the free surface (i.e., at z H= ), and the reduction is more 

significant for larger values of /H R  (i.e., 2). The amplitudes of , , /con w j jp RA  in the first 

convective mode are the greatest of the three over the height of the fluid (i.e., 

, ,1 1 , ,2 2 , ,3 3/ / /con w con w con wp RA p RA p RA    ), for each value of /H R .  

The convective pressures on the base of the tank, , ,con b jp  along the r  direction, at z = 0 and 

 =180°, are calculated using Eq. (3.80) for the first three modes (i.e., j =1, 2, and 3) and Eq. 

(3.105) for the first mode (i.e., j = 1). Figures 3.26a, b, and c present values of , ,con b jp  

normalized by jRA , for /H R = 0.5, 1, and 2, respectively. The r  dimension in these figures is 

normalized by R . The approximate solution of Housner generally underestimates , ,1con bp  along 

the entire radius of the tank for all three values of /H R  by comparison to the exact solution of 

Veletsos, and Chalhoub and Kelly. These differences decrease with increasing /H R . Given a 

value of /H R  (i.e., 0.5, 1, or, 2) and an order of the convective mode (i.e., j =1, 2, or, 3), the 

maximum convective pressure on the base of the tank, , ,con b jp , is adjacent to the wall (i.e., 

r R= ). The amplitude of , , /con b j jp RA  in a given mode (i.e., j = 1, 2, or 3) decreases with 

increasing /H R  (i.e., 2). Identical to , , /con w j jp RA , the normalized pressures on the base, 

, , /con b j jp RA , for each /H R , are the greatest in the first mode across the radius of the tank (i.e., 
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, ,1 1 , ,2 2 , ,3 3/ / /con b con b con bp RA p RA p RA    ). The comparison of the amplitudes for the 

normalized convective pressures, , /con j jp RA , in the first three modes must not be used to 

compare the amplitudes of the convective pressures, ,con jp , since the values of jA  used for the 

normalization will be different. The value of jA  is associated with the convective frequency, 

,con jf , in the mode of interest and the input motion, 0 ( )u t . A greater (smaller) value of 

, /con j jp RA  does not necessarily result in a greater (smaller) value of ,con jp . 

 

 

 

   

(a) /H R=0.5 (b) /H R=1 (c) /H R=2 

Figure 3.25. Normalized convective pressures on the wall of a tank, , , /con w j jp RA , associated 

with the first three modes (i.e., j =1 to 3), along the normalized vertical direction, /z H , at r = R  

and  =180°, for /H R = 0.5, 1, and 2, calculated using Eqs. (3.79) and (3.104) 
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(a) /H R=0.5 (b) /H R=1 

 

(c) /H R=2 

Figure 3.26. Normalized convective pressures on the base of a tank, , , /con b j jp RA , associated 

with the first three modes (i.e., j =1 to 3), along the normalized radial direction, /r R , at z = 0 

and  =180°, for /H R = 0.5, 1, and 2, calculated using Eqs. (3.80) and (3.105) 

The vertical displacements of the free surface, ,w jd , along the entire range of the r  axis (i.e., 

R r R−   ), at  =0°, are calculated using Eq. (3.81) for the first three modes (i.e., j =1, 2, and 

3) and Eq. (3.106) for the first modes (i.e., j =1). Figures 3.27a, b, and c present values of ,w jd  

normalized by /jRA g , for /H R = 0.5, 1, and 2, respectively. Identical to , ,1con wp  and , ,1con bp , 

the approximate solution of Housner generally underestimates ,1wd  for all three values of /H R , 

by comparison to the exact solution. The values of , /w j jd g RA  in the j th convective mode are 

identical for all three values of /H R . These results agree with values of , , /con w j jp RA  at z H=  

that are identical for the three /H R  presented in Figure 3.25 because , ( )con jp z H=  is a factor of 
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,w jd  per Eqs. (3.81) and (3.106). The vertical displacements of the free surface shown in Figure 

3.27 are antisymmetric with respect to the r z−  plane at  = 90° of the cylindrical coordinate 

system (see Figure 3.2). The wavelengths of ,w jd  in the first, second, and third modes (i.e., j =1, 

2, and 3) are 4R , 4 / 3R , and 4 / 5R , respectively. The amplitudes of ,w jd  in the second and 

third modes reduce from the center of the free surface (i.e., r = 0) to the wall of the tank 

(i.e., r R= ). 

 

  

(a) /H R=0.5 (b) /H R=1 

 

(c) /H R=2 

Figure 3.27. Normalized vertical displacements of the free surface in a tank, , /w j jd g RA , 

associated with the first three modes (i.e., j =1 to 3), along the normalized radial direction, 

/r R , at  =0°, for /H R = 0.5, 1, and 2, calculated using Eqs. (3.81) and (3.106) 
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Veletsos and Housner derived solutions for the global reactions on the foundation associated 

with the convective loadings in all modes, generated by unidirectional horizontal motion of a 

small amplitude. (Chalhoub and Kelly did not address global reactions.) The global reactions 

included convective shear force, ,con jF , and the two components of convective moment, , ,con w jM  

and , ,con b jM . These global reactions associated with the first three convective modes (i.e., j =1, 

2, and 3) are calculated here for a tank with 0.2 /H R  3. Figure 3.28 shows ,con jF  in the x  

direction, calculated using Eqs. (3.82) and (3.115), normalized by l jm A . The values of ,con jF  in 

the first three modes calculated using the solutions of Veletsos and Housner are almost identical 

for the range of /H R  considered here.  

Equations (3.83) and (3.116) are used to calculate , ,con w jM  about the y  axis; and Eqs. (3.84) and 

(3.117) are used to calculate , ,con b jM  about the y  axis. Figures 3.29a and b show the calculated 

, ,con w jM  and , ,con b jM  normalized by l jm HA , respectively. The values of , ,con w jM  in the first three 

modes calculated using the solutions of Veletsos and Housner are almost identical for the range 

of /H R  considered here. Veletsos and Housner’s solutions are almost identical in , ,1con bM  for 

0.2 /H R  3 and in , ,2con bM  and , ,3con bM  for /H R  0.5. Housner’s solution overestimates 

, ,2con bM  and , ,3con bM  for /H R  0.5, with respect to the Veletsos’ solution.  

Although these normalized, global convective reactions in a lower mode (i.e., j =1) seem to be 

greater than those in higher modes (i.e., j =2 and 3) in Figures 3.28 and 3.29, the amplitudes of 

lines in different modes should not be compared since jA  used for the normalization is different 

for each line. A discussion regarding modal contributions in convective responses calculated 

using Veletsos’ solutions is presented in Appendix B. 
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Figure 3.28. Normalized convective shear force at the base of a tank, , /con j l jF m A , associated 

with the first three modes (i.e., j =1 to 3), in the x  direction for 0.2 /H R  3, calculated using 

Eqs. (3.82) and (3.115) 

 

 

  

(a) , , /con w j l jM m HA , calculated using Eqs. (3.83) 

and (3.116) 

(b) , , /con b j l jM m HA , calculated using Eqs. (3.84) 

and (3.117) 

Figure 3.29. Normalized convective moments at the base of a tank, , , /con w j l jM m HA  and 

, , /con b j l jM m HA , associated with the first three modes (i.e., j =1 to 3), about the y  axis for 

0.2 /H R  3 
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3.2.3 Closing remarks 

Section 3.2.1 presents analytical solutions for impulsive responses of a base-supported 

cylindrical tank subjected to unidirectional horizontal motion of a small amplitude. Section 

3.2.1.2 presents and compares the solutions for the impulsive responses of a rigid tank developed 

by Jacobsen (1949), Chalhoub and Kelly (1988), and Housner (1957). The impulsive responses 

are calculated for tanks with different dimensions, in terms of the ratio of the height of the fluid 

to the radius of the tank, /H R . The impulsive pressures on the wall and the base of the tank are 

calculated for /H R = 0.5, 1, and 2; the impulsive shear force and moments at the base of the 

tank are calculated for 0.2 /H R  3. The analytical solutions of Jacobsen, and Chalhoub and 

Kelly agree well for the range of /H R  considered here. The analytical solutions of Housner are 

in reasonable agreement with the solutions of Jacobsen, and Chalhoub and Kelly, but differences 

increase with increasing values of /H R . The impulsive responses of a tank with a given radius, 

calculated using the three solutions, are generally greater when the tank is filled with fluid to a 

greater height. Section 3.2.1.3 presents the solutions for impulsive responses of a flexible tank 

developed by Veletsos (1984). The impulsive responses are calculated using Veletsos’ solutions 

for a tank with different /H R : the impulsive pressures on the wall and the base of the tank are 

calculated for /H R = 0.5, 1, and 2; the impulsive frequency and the impulsive reactions 

including shear force and moments at the base of the tank are calculated for 0.2 /H R  3. The 

amplitudes of the normalized impulsive responses (i.e., the pressures and reactions) in the first 

mode are greater than those in the second and third modes. The impulsive frequency in a mode 

of a tank: 1) decreases with increasing fluid height, H , as the radius and material of the tank and 

the fluid are constant and 2) decreases with increasing radius, R , of the tank within the range of 

/H R  considered here. The impulsive frequency affects the acceleration of a flexible tank, 

which is generally greater than the ground, whereas a rigid tank is assumed to accelerate with the 

ground acceleration. Veletsos’ solutions are compared with Jacobsen’s solutions developed for 

rigid tanks. The acceleration of the flexible tank leads to greater impulsive responses than the 

rigid tank. If the accelerations of the flexible tank in different modes are assumed to be constant, 

the algebraic sum of the modal impulsive responses in the first ten modes recovers the impulsive 

response of the corresponding rigid tank.  
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Section 3.2.2 presents analytical solutions for convective responses of a rigid, base-supported 

cylindrical tank subjected to unidirectional horizontal motion of a small amplitude, developed by 

Veletsos (1984), Chalhoub and Kelly (1988), and Housner (1957). The convective responses are 

calculated using the solutions of the three studies for a tank with different /H R : the convective 

pressures on the wall and the base of the tank and the vertical displacement of the free surface 

are calculated for /H R = 0.5, 1, and 2; the convective frequency and the convective reactions 

including shear force and moments at the base of the tank are calculated for 0.2 /H R  3. The 

solutions of Veletsos, and Chalhoub and Kelly are identical. The solutions of Housner show a 

reasonable agreement with the solutions of Veletsos, and Chalhoub and Kelly, for the values of 

/H R  considered here. The amplitudes of the normalized convective responses (i.e., the 

pressures, vertical displacement of the free surface, and reactions) in the first mode are greater 

than those in the second and third modes. The convective frequency in a mode of a tank: 1) is 

loosely related to the fluid height, H , when the radius of the tank is given and 2) decreases with 

increasing radius, R , of the tank within the range of /H R  considered here. 

Veletsos (1984) presented solutions for fluid-structure responses, including the impulsive and 

convective frequencies, the impulsive and convective components of the pressure and the global 

reactions at the base of the tank, and the vertical displacement of the free surface in different 

modes. Based on the data in Veletsos, Malhotra et al. (2000) proposed a simplified procedure for 

analyzing seismic FSI responses of a flexible base-supported cylindrical tank. Veletsos’ solutions 

were modified to enable the use of only one impulsive mode and one convective mode to 

calculate global reactions at the base of a tank for engineering applications. A discussion on the 

procedures and a comparison of responses calculated using Malhotra and Veletsos for tanks with 

different dimensions is presented in Appendix B. 

3.3 Head-supported cylindrical tank 

3.3.1 Impulsive responses 

Figure 3.30 shows impulsive responses in a vertical cross section through a head-supported 

cylindrical tank accelerating in the x  direction. Similar to a base-supported tank shown in Figure 

3.1, the impulsive pressure, impp , is generated on the wall and the base of the tank and 

mechanically equilibrated by global impulsive reactions at the support. Different from a base-
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supported tank, the location of the support moves from the base to the top. The resultant force of 

the horizontal impp  acting on the wall (orange arrows) is balanced by the impulsive shear force at 

the top, impF , in the x  direction. The impulsive pressure on the wall (orange arrows) generates a 

resultant moment at the center of the head (solid red circle) about the y  axis (in a clockwise 

direction on the figure based on the right-hand rule), which is balanced by the impulsive moment, 

,imp wM . The impulsive pressure on the base (pink arrows) generates a resultant moment at the 

center of the head in a counterclockwise direction, which is balanced by the impulsive moment, 

,imp bM . Note that the impulsive moments, ,imp wM  and ,imp bM , in Figure 3.30 are both presented in 

a clockwise direction for reasons of consistency, although ,imp wM  has to be counterclockwise to 

balance the moment generated by impp  on the wall. The analytical solutions of ,imp wM  presented 

in Sections 3.3.1.1 and 3.3.1.2 accommodate the direction defined in Figure 3.30, and so the 

values of ,imp wM  calculated using these solutions are generally negative. 

 

Fimp

pimp

pimp

Center

Mimp,w+Mimp,b

x

z

y
 

Figure 3.30. Impulsive responses: impulsive pressure, impp , on the walls and base of a tank; 

impulsive shear force at the top, impF ; and impulsive moments at the top, ,imp wM  and ,imp bM ; 

shown in a vertical cross section through a head-supported cylindrical tank accelerating in the x  

direction 

 



  116 

 

Analytical solutions for the impulsive responses of a rigid and a flexible head-supported tank 

subjected to small-amplitude unidirectional horizontal motion are derived in this section, 

following the methodologies of Jacobsen (1949) and Veletsos (1984), respectively. A velocity 

potential for the contained fluid is used to derive exact solutions for both the rigid and flexible 

head-supported tanks. The fluid is assumed to be ideal. Modifications to Jacobsen’s and 

Veletsos’ methodologies are made to address the change in the boundary condition, where the 

support is moved from the base to the head. For a rigid tank, only the analytical solution for 

,imp wM  is modified to accommodate the change in the vertical distance (i.e., the moment arm) 

from the center of impp  on the wall to the support (i.e., base- to head-supported). For a flexible 

tank, the assumed lateral deformation of the tank used in the derivations is modified to recognize 

that the base is free to vibrate. This modification requires a complete analysis of the impulsive 

responses for the head-supported tank to derive the analytical solutions. 

The variables used in this section are similar to those used in the derivations and the solutions for 

impulsive responses of a base-supported tank. The variables are presented here again in two 

views of a head-supported cylindrical tank in Figure 3.31, including: the radius of the tank, R ; 

the height of the contained fluid, H ; horizontal seismic motion input at the top, in terms of 

displacement, 0 ( )u t , velocity, 0 ( )u t , and acceleration, 0 ( )u t ; velocities of an arbitrary point, pt , 

in the fluid, u , v , and w , along the three components of a cylindrical coordinate system ( r ,  , 

z ); and a Cartesian coordinate system ( x , y , z ). An additional variable used here is the height 

of the tank, sH , which was not considered in the derivations for the impulsive responses of base-

supported tanks in Jacobsen and Veletsos. 
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Figure 3.31. Variables used in the analytical solutions for impulsive response shown on two 

views of a head-supported cylindrical tank, a Cartesian coordinate system, and a cylindrical 

coordinate system 

3.3.1.1 Rigid tank 

Analytical solutions for the impulsive responses of a rigid, head-supported cylindrical tank are 

developed by modifying the solutions of Jacobsen (1949) for a rigid, base-supported cylindrical 

tank. The seismic input in the x  direction at the support is moved from the base to the head of 

the tank. With no deformations in the rigid tank, the impulsive pressures on the inner surfaces of 

the tank are not affected by the location of the seismic input, and so the impulsive pressure on 

the wall and the base, ,imp wp  and ,imp bp , are identical to the solutions of Jacobsen per Eqs. (3.9) 

and (3.10) presented in Section 3.2.1.2, respectively. These impulsive pressures generate 

resultant forces and moments at the top of the tank. The impulsive shear forces at the top, impF , 

in the x  direction equilibrates the resultant force calculated by integrating , cosimp wp   over the 

area of the wall per Eq. (3.11). The impulsive moment at the top, ,imp bM , about the y  axis 

equilibrates the resultant moment generated by the impulsive pressure on the base, ,imp bp . This 

resultant moment is the integral of ,imp bp  with a horizontal distance cosr   from the center of 
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the head over the area of the base, which makes ,imp bM  identical to Eq. (3.13). The impulsive 

moment at the top, ,imp wM , about the y  axis equilibrates the resultant moment generated by the 

impulsive pressure on the wall, ,imp wp . The resultant moment is the integral of , cosimp wp   with 

a vertical distance ( )sH z−  below the head over the area of the wall. The direction of ,imp wM  

defined here is identical to the direction of the resultant moment generated by ,imp wp  (see Figure 

3.30), and so ,imp wM  equals the resultant moment: 

   , , , ,cos ( ) cos cos

w w w

imp w imp w s w s imp w w imp w w

A A A

M p H z dA H p dA p z dA  =   −  =   −        (3.120) 

where the first integral on the right-hand side of Eq. (3.120) is impF−  per Eq. (3.11), and the 

second integral (including the minus sign at the front of the integral operator) is identical to 

,imp wM  of a base-supported tank per Eq. (3.12). Applying Eqs. (3.11) and (3.12) to Eq. (3.120), 

the analytical solution of ,imp wM  is given as: 
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Discussion 

Impulsive responses are calculated using the analytical solutions for a rigid, head-supported 

cylindrical tank subjected to small-amplitude seismic motion, 0 ( )u t , at the top in the x  direction. 

The radius of the tank, R , is assumed to be 30 m. The contained fluid is assumed to be water, 

with a density,  , of 1000 kg/m3. (The same values for R  and   are assumed for calculating 

impulsive responses of a rigid, base-supported tank, presented in Section 3.2.1.2). Other 

dimensions (e.g., thickness of the wall of the tank) and mechanical properties (e.g., density and 

elastic modulus of the material) of the tank do not need to be defined for these calculations 

because the tank is rigid. The impulsive responses presented herein are normalized to be unitless 

using the method for normalizing the corresponding impulsive responses of the rigid base-

supported tank in Section 3.2.1.2. The normalized results of ,imp wp , ,imp bp , impF , and ,imp bM  are 

independent of the dimensions of the tank and the fluid, H  and R , the density of the fluid,  , 
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and the acceleration of the seismic motion, 0u . The only variable for these normalized impulsive 

responses is the unitless ratio describing the dimensions of the tank and the fluid, /H R . 

However, the normalized results of ,imp wM  are independent of   and 0u  but dependent on H  

and R  because an additional variable representing the height of the tank, sH , is introduced for 

the head-supported tank and makes the analytical solution of ,imp wM  not proportional to H  and 

R  (see Eq. (3.121)). The values of ,imp wM  are calculated and presented here for multiple 

dimensions of the tank and the fluid (i.e., H , R , and sH ) to populate the results. 

The analytical solutions for ,imp wp , ,imp bp , impF , and ,imp bM  of a head-supported tank are identical 

to those of a base-supported tank derived in Jacobsen (1949), which the results were presented in 

Section 3.2.1.2 to be compared with other analytical solutions in prior studies (i.e., from 

Chalhoub and Kelly (1988), and Housner (1957)). These results are repeated here for the purpose 

of presenting a complete set of data for a head-supported cylindrical tank. 

The impulsive pressures are calculated for a tank with /H R = 0.5, 1, and 2. Identical to the 

impulsive pressures in a base-supported tank, as the tank accelerates to the x  direction, the 

greatest positive and negative impulsive pressures on the wall and the base of the tank are shown 

at  = 180° and 0°, respectively. Values of the impulsive pressures at  = 180° are presented 

here. The normalized impulsive pressures on the wall of the tank, , 0/imp wp Ru  , along the 

normalized vertical direction, /z H , at r R=  and  = 180°, are presented in Figure 3.32a. The 

normalized impulsive pressures on the base of the tank, , 0/imp bp Ru  , along the normalized 

radial direction, /r R , at z = 0 and  =180°, are presented in Figure 3.32b. 

The global impulsive reactions are calculated for a tank with 0.2 /H R  3. The normalized 

impulsive shear forces at the top of the tank, 0/imp lF mu , in the x  direction are presented in 

Figure 3.33. The two components of the impulsive moments at the top of the tank, ,imp wM  and 

,imp bM , about the y  axis, normalized by 0lm Hu , are presented in Figures 3.34a and b, 

respectively. The results of ,imp wM  in Figure 3.34a for a tank with 0.2 /H R  3, are calculated 

based on two unitless variables: 1) /sH R , which describes the dimensions of the tank (i.e., the 

aspect ratio of the tank), and 2) / sH H , which is the ratio of the fluid height to the tank height, 
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termed hereafter the fill ratio of the tank. Six values of /sH R  in the range between 0.5 and 3 

and nine values of / sH H  in the range between 0.2 and 1 (i.e., full tank) are considered in the 

calculation of ,imp wM . Given the dimensions of a tank, sH  and R , and ground motion, 0 ( )u t , the 

impulsive moment, ,imp wM , at the top of the tank can be determined based on Figure 3.34a for a 

range of fluid heights, H .  

 

 

 

 

 

(a) , 0/imp wp Ru   along the normalized 

vertical direction, /z H , at r R=  and 

 =180°, calculated using Eq. (3.9) 

(b) , 0/imp bp Ru   along the normalized radial 

direction, /r R , at z = 0 and  = 180°, 

calculated using Eq. (3.10) 

Figure 3.32. Normalized impulsive pressures on the wall and the base of a head-supported 

tank,  , 0/imp wp Ru  , and , 0/imp bp Ru  , for /H R = 0.5, 1, and 2 
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Figure 3.33. Normalized impulsive shear forces at the top of a head-supported tank, 0/imp lF mu , 

in the x  direction, for 0.2 /H R  3, calculated using Eq. (3.11) 

 

 

 

  

(a) , 0/imp w lM m Hu  for 0.2 / sH H  1 and 

0.5 /sH R  3, calculated using Eq. (3.121) 
(b) , 0/imp b lM m Hu , calculated using Eq. (3.13)  

Figure 3.34. Normalized impulsive moments at the top of a head-supported tank, , 0/imp w lM m Hu  

and , 0/imp b lM m Hu , about the y  axis, for 0.2 /H R  3 
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3.3.1.2 Flexible tank 

Analytical solutions for the impulsive responses of a flexible head-supported cylindrical tank are 

derived following the methodologies of Veletsos (1984) for a flexible base-supported cylindrical 

tank. Veletsos’ methodology includes three main steps: 1) establishing an equation of motion for 

the impulsive responses of the tank, 2) decoupling the impulsive responses to modes using the 

equation of motion, and 3) deriving analytical solutions representing the modal impulsive 

responses. Moving the support from the base to the head changes the lateral deformation of the 

tank and the vertical distance (i.e., moment arm or lever arm) from the center of the impulsive 

pressure on the wall to the support, which generates a resultant moment at the top. The change in 

lateral deformation of the tank is addressed in the first step and the change in lever arm for 

generating moment at the support is addressed in the third step. The derivation presented here 

focuses on addressing these changes since a complete derivation for the flexible base-supported 

tank in Veletsos has been presented in Section 3.2.1.3. 

The equation of motion for the impulsive responses of the head-supported tank is established 

using Lagrange’s equation, considering 1) the kinetic energy of the fluid, lK , 2) the kinetic 

energy of the tank, sK , 3) the strain energy of the tank, sS , and 4) the external energy associated 

with the input ground motion, extW . To calculate four energies using Eqs. (3.43), (3.47), (3.48), 

and (3.49), displacements of the wall of the tank need to be determined.   

The radial, tangential and axial displacements, su , sv , and sw , on the wall of the head-supported 

tank are calculated by extrapolating the assumed lateral displacements of the axial centerline of 

the tank to the wall. The calculations assume that the horizontal cross section of the tank remains 

plane and circular as the tank deforms laterally. Veletsos assumed the lateral displacements of 

the axial centerline of a base-supported tank to be a linear superposition of multiple modal 

shapes of a cantilever, ( )i z , fixed at the bottom, with a length identical to the height of the tank, 

presented in Figure 3.10. For a head-supported tank, the modal shapes of a cantilever fixed at the 

top, with a length identical to the height of the tank, are used in the calculation of the lateral 

displacements of the axial centerline of the tank. The modal shapes used for the base-supported 

tank in Veletsos are inverted for the head-supported tank, which is achieved by substituting 

SH z−  for z  in the function of the modal shapes, ( )i z . The modal shapes used for the head-
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supported tank, ( )i sH z − , in the first two modes (i.e., i =1 and 2) are presented in Figure 3.35, 

together with ( )i z  in the first two modes. 

Ψ1(z)

x

z

Ψ1(Hs-z)

 

Ψ2(z)Ψ2(Hs-z)

x

z

 

(a) first mode (b) second mode 

Figure 3.35. Modal shapes of the cantilever for the displacement of the axial centerline of 

a head-supported tank, ( )i sH z −  and those of a base-supported tank, ( )i z , used in 

Veletsos  

Accordingly, the radial, tangential and axial displacements, su , sv , and sw , on the wall of the 

head-supported tank are calculated by substituting ( )i sH z −  for ( )i z  in Eqs. (3.40), (3.41), 

and (3.42), respectively: 

 
1

( , , ) ( ) ( )coss i i S

i

u t z U t H z  


=

= −    (3.122) 

 
1

( , , ) ( ) ( )sins i i S

i

v t z V t H z  


=

= −   (3.123) 

 
1

( , , ) ( ) ( ) coss i i S

i

w t z W t H z  


=

= −   (3.124) 

where iU , iV , and iW  are coefficients for the modal shapes in the i th mode for the linear 

superposition, which are the degrees of freedom in the equation of motion. The motions of the 
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tank are determined by solving iU , iV , and iW  in the equation of motion and applying them to 

Eqs. (3.122), (3.123), and (3.124). (More details can be found in Section 3.2.1.3).  

The kinetic energy of the tank, sK , the strain energy of the tank, sS , and the external energy 

associated with the input ground motion, extW  are calculated using the displacements of the wall 

(i.e., su , sv , and sw ) through Eq. (3.47), (3.48), and (3.49), respectively. The velocities of the 

fluid, u , v , and w  are needed for the calculations of the kinetic energy of the fluid, lK , per Eq. 

(3.43). A velocity potential for the impulsive response of the fluid, imp , is used to calculate the 

velocities of the fluid. The velocity potential, imp , is assumed to be the product of the four 

unknown functions, R ,  , Z , and T , associated with the four variables, r ,  , z , and t , 

respectively (i.e., three components of the cylindrical coordinate system and time). Three 

boundary conditions for the fluid are used to solve these four functions. The fluid adjacent to the 

wall of the tank (i.e., at r R= ) is assumed to move with the wall at the same radial velocity. The 

radial velocity of the fluid u  is calculated using Eq. (3.2) and the radial velocity of the tank is 

the first derivative of su  in Eq. (3.122) with respect to t : 

 ( ) ( ) ( )cos
imp

i i s

r R

u r R U t H z
r

 
=


 = = = −


  (3.125) 

The other two boundary conditions used here are identical to two of the boundary conditions 

used in Veletsos: 1) zero impulsive pressure on the initial free surface per Eq. (3.5), and 2) zero 

vertical velocity of the fluid adjacent to the base of the tank per Eq. (3.7), which is applied to the 

head-supported tank based on the assumption that the rocking motion of the base due to small-

amplitude horizontal input motion at the head is negligible. 

The functions, R ,  , Z , and T , are solved using Eqs. (3.125), (3.5) and (3.7),  and the velocity 

potential for the impulsive responses, imp , is: 

 

1

'1 1
1

(2 1)
4 2

cos ( ) cos (2 1)
(2 1) 2

(2 1)
2

imp i ij

i j

r
I j

zH
H U t j

Rj H
I j

H




 



 

= =

 
−     = −  −    − 

 

    (3.126) 
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0

1
( ) cos (2 1)

2

H

ij i s

z
H z j dz

H H


 

 
= −  − 

 
   (3.127) 

Given the velocity potential, the velocities of the fluid are calculated using Eq. (3.2), and then 

lK  is determined through Eq. (3.43). 

The equation of motion of the tank is derived using Lagrange’s equation with the four virtual 

energies, lK , sK , sS , and extW , per Eq. (3.50), where id  in the equation represents a degree of 

freedom (i.e., iU , iV , or iW ). Given the mass and stiffness matrices of the equation of motion, 

 M  and   K , frequencies and modal shapes in different impulsive modes are calculated using 

Eq. (3.128).  

      
2

,

2

imp k
k k

f
K M 



 
=  
 

  (3.128) 

where ,imp kf  and  k  are the frequency and the modal shape in the k th impulsive mode, 

respectively. The modal shape,  k , enables a transformation of the mass matrix,  M , the 

stiffness matrix,  K , and the external force vector (associated with the input motion), 

 0( ) extu t P , in the equation of motion to modal coordinates and yields the modal mass matrices, 

modal stiffness matrices, and the modal force vectors, respectively, to represent multiple 

independent impulsive modes. The degree of freedom, id , is related to the modal coordinate, iq , 

using the modal shape, ik , in the k th mode: 

 0 ,

, 0

1
( ) sin ( )

t

i ik k ik k imp k

imp k

d q e u t d     


=  =   −   (3.129) 

where kq  is calculated using Duhamel’s integral (the third term in the equation), ,imp k  is 

, / 2imp kf  , and ke  is the modal participation factor: 

 
   

    

T

k ext

k T

k k

P
e

M



 
=   (3.130) 
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According to Eq. (3.129), id   is related to kq  per Eq. (3.131), and kq  is approximated using a 

pseudo quantity back calculated from kq  per Eq. (3.132): 

 i ik kd q =    (3.131) 

 2
, ( )k imp k k k kq q e A t   =    (3.132) 

 , 0 ,

0

( ) ( ) sin ( )

t

k imp k imp kA t u t d    =  −   (3.133) 

The velocity potential associated in the k th impulsive mode is computed by substituting id   per 

Eq. (3.131) for iU   in Eq. (3.126). The impulsive pressure, impp , at an arbitrary location in the 

fluid and on the wall or the base of the tank is determined using Eq. (3.1). The impulsive 

pressure on the wall (i.e., at r R= ) of the tank associated with the k th mode, along the vertical 

and the circumferential directions, z  and  , is given as: 

 
1

1

, ,

'1 1
1

(2 1)
4 2

( ) cos cos (2 1)
(2 1) 2

(2 1)
2

N

imp w k k k ik ij

i j

R
I j

zH
p A t H e j

Rj H
I j

H




   





= =

 
−    = −  −  −    − 

 

   (3.134) 

where ij  is defined in Eq. (3.127). The impulsive pressure on the base of the tank (i.e., at 0z = ) 

associated with the k th mode, along the radial and the circumferential directions, r  and  , is 

given as: 

 
1

1

, ,

'1 1
1

(2 1)
4 2

( ) cos
(2 1)

(2 1)
2

N

imp b k k k ik ij

i j

r
I j

H
p A t H e

Rj
I j

H



   




= =

 
− 

 = −  
−  

− 
 

    (3.135) 

The impulsive shear force at the top of the tank, ,imp kF , associated with the k th mode in the x  

direction, equilibrates the resultant force generated by , ,imp w kp  on wall of the tank: 

 

1
11

, , , 2
'1 1
1

(2 1)
8( 1) 2

cos ( )
(2 1) (2 1)

2
w

jN

imp k imp w k w k l k ik ij

i jA

R
I j

H H
F p dA A t m e

RR j I j
H



  


+

= =

 
− −  = −   =  

 − − 
 

    (3.136) 
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where wA  is the area of the wall. The impulsive moment at the top of the tank, , ,imp b kM , in the 

k th mode about the y  axis, equilibrates the resultant moment generated by , ,imp b kp  on the base 

of the tank with a horizontal distance cosr   from the center of the head: 

 

1
2

, , , , 2
'1 1
1

(2 1)
8 2

cos ( )
(2 1) (2 1)

2
b

N

imp b k imp b k b k l k ik ij

i jA

R
I j

H
M p r dA A t m He

Rj I j
H



  




= =

 
− 

 = −    =  
 − − 
 

   (3.137) 

These analytical solutions for , ,imp w kp , , ,imp b kp , ,imp kF , and , ,imp b kM  of the head-supported tank 

presented here seem identical to the corresponding solutions of Veletsos for the base-supported 

tank per Eqs. (3.59), (3.60), (3.61), and (3.63), respectively. However, ij  used in the solutions 

for the head-supported tank is associated with ( )i sH z −  per Eq. (3.127) and the values of ke  

and ik  used in the solutions for the head-supported tank, which are calculated through modal 

analysis of the equation of motion, are different from those used for the base-supported tank. The 

results of , ,imp w kp , , ,imp b kp , ,imp kF , and , ,imp b kM  in Veletsos for the base-supported tank do not 

apply to the head-supported tank. 

The impulsive moment at the top, , ,imp w kM , about the y  axis equilibrates the resultant moment 

generated by the impulsive pressure on the wall, , ,imp w kp , with a vertical distance sH z−  below 

the head. The direction of , ,imp w kM  defined here and the direction of the resultant moment are 

identical (see Figure 3.30), and so , ,imp w kM  equals the resultant moment: 

 , , , , , , , ,cos  ( ) cos cos

w w w

imp w k imp w k s w s imp w k w imp w k w

A A A

M p H z dA H p dA p z dA  =  −  =  −      (3.138) 

The first integral on the right-hand side of Eq. (3.138) is ,imp kF−  per Eq. (3.136) and the second 

integral (including the minus sign at the front of the integral operator) is identical to , ,imp w kM  of a 

base-supported tank per Eq. (3.62). Substituting Eqs. (3.136) and (3.62) into Eq. (3.138), 

, ,imp w kM  of the head-supported tank is given as: 
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1
12 1 1

, , 2
'1 1
1

(2 1)
8( 1) 2( 1)2
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(2 1)(2 1) (2 1)
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imp w k k l k ik ij
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M A t m e

RR H jj I j
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

 
 

+ +
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 
−   − − =    − + − 

− −  − 
 

   (3.139) 

Discussion 

Impulsive responses are calculated using the analytical solutions for a flexible, head-supported 

cylindrical tank subjected to small-amplitude seismic motion, 0 ( )u t , of the head in the x  

direction. The dimensions and mechanical properties of the tank and the fluid considered here 

are identical to those in the calculations of impulsive responses of a flexible, cylindrical base-

supported tank presented in Section 3.2.1.3. The tank is assumed to be fabricated from carbon 

steel and the contained fluid is assumed to be water, for which the mechanical properties are 

listed in Table 3.5, including the elastic modulus, E , Poisson’s ratio,  , the density, s , of the 

steel, and the density of the contained fluid,  . The radius of the tank, R , is assumed to be 30 m, 

and the thickness of the wall of the tank, h , is assumed to be 0.001 R .  

The impulsive responses presented herein are normalized to be unitless using the method for 

normalizing the corresponding impulsive responses of a flexible, base-supported tank in Section 

3.2.1.3. The normalized results are insensitive (see footnote 25 on page 75) to the mechanical 

properties of the tank and the fluid (i.e, E ,  , s , and  ) and independent of the acceleration 

time series, ( )kA t , of the k th impulsive mode associated with the seismic motion, 0 ( )u t . The 

normalized results are dependent on the dimensions of the tank and the fluid, H  and R , because 

the derivations for the head-supported tank include a variable representing the height of the tank, 

sH , which makes the analytical solutions not proportional to H  and R . The impulsive 

responses are calculated and presented here for multiple dimensions of the tank and the fluid (i.e., 

H , R , and sH ) to populate the results. The impulsive pressures, ,imp wp  and ,imp bp , are 

calculated for /H R = 0.5, 1, and 2; the impulsive frequency, impf , and a unitless coefficient, 

impC , representing impf , the impulsive shear force, impF , and the impulsive moments, ,imp wM  and 

,imp bM , are calculated for 0.2 /H R  3. For this range of /H R , six aspect ratios of the tank, 

/sH R , between 0.5 and 3 and nine fill ratio, / sH H , between 0.2 and 1 (i.e., full tank) are 
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considered in these calculations. This section presents values of ,imp kf , ,imp kC , , ,imp w kp , , ,imp b kp , 

,imp kF , , ,imp w kM , and , ,imp b kM  in the first three modes (i.e., k = 1 to 3) for sH H=  (i.e., 

/ sH H = 1, full tank). The coefficient of the impulsive frequency, ,1impC , and the global 

impulsive reactions, ,1impF , , ,1imp wM , and , ,1imp bM , in the first mode are presented for multiple 

values of /sH R  and / sH H . 

Figures 3.36a and b present the impulsive frequencies, ,imp kf , and the coefficients of the 

impulsive frequency, ,imp kC , respectively, associated with the first three impulsive modes (i.e., 

k =1 to 3), calculated for a tank with 0.2 /H R  3 and / sH H = 1. The impulsive frequency, 

,imp kf , in the k th mode is related to the coefficient, ,imp kC , as follows: 

 , ,

1
imp k imp k

Eh
f C

R R
=   (3.140) 

where ,imp kC  is unitless and dependent on only the variable /H R . Comparing the impulsive 

frequencies, ,imp kf , in the first three modes (i.e., k =1 to 3) of a head-supported tank shown in 

Figure 3.36a and those of a base-supported tank shown in Figure 3.11a, with both tanks full 

( / 1sH H = ), R = 30 m, and h =0.001 R , the values of ,imp kf  of the head-supported tank are 

generally lower than those of a base-supported tank for the range of /H R  considered here. The 

coefficients of the impulsive frequency in the first mode, ,1impC , for multiple values of /sH R  

and / sH H  are presented in a linear format in Figure 3.37a, and also a linear-logarithmic format 

in Figure 3.37b to better differentiate results for different values of / sH H . 
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(a) ,imp kf , R = 30 m, h =0.001 R , and the 

mechanical properties listed in Table 3.5, 

calculated using Eq. (3.128) 

(b) ,imp kC , calculated using Eq. (3.140) and 

,imp kf  in panel (a) 

Figure 3.36. Impulsive frequencies, ,imp kf , and coefficients of impulsive frequency, ,imp kC , 

associated with the first three impulsive modes (i.e., k =1 to 3), for 0.2 /H R  3, / sH H = 1, 

head-supported tank 

 

 

  

(a) linear scale (b) linear-logarithmic scale 

Figure 3.37. Coefficients of impulsive frequency in the first mode, ,1impC , for 0.2 /H R  3, 

0.5 /sH R  3, 0.2 / sH H  1, head-supported tank  
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The impulsive pressures, ,imp kp , in the first three modes (i.e., k =1, 2, and 3) are presented in 

Figures 3.38 and 3.39 for a tank with /H R = 0.5, 1, and 2 and / sH H = 1. The normalized 

impulsive pressures on the wall of the tank, , , /imp w k kp RA , along the normalized vertical 

direction, /z H , at r R=  and  =180°, are presented in Figure 3.38. The normalized impulsive 

pressures on the base of the tank, , , /imp b k kp RA , along the normalized radial direction, /r R , at 

z = 0 and  =180°, are presented in Figure 3.39. The results presented in Figures 3.38 and 3.39 

indicate that 1) given an order of the impulsive mode (i.e., k =1, 2, or 3), the amplitudes of 

, , /imp w k kp RA  and , , /imp b k kp RA  increase with increasing /H R , and 2) given a value of  /H R  

(i.e., 0.5, 1, or 2), the amplitudes of , , /imp w k kp RA  and , , /imp b k kp RA  are the greatest in the first 

mode. These two conclusions are also drawn for the impulsive pressures on the wall and the base 

of a base-supported tank: see Figures 3.12 and 3.13. Different from the base-supported tank, the 

greatest impulsive pressures in the first mode of the head-supported tank are always at the edge 

of the wall and the base (i.e., z = 0 and r R= ) for all three values of /H R . 

   

(a) /H R=0.5 (b) /H R=1 (c) /H R=2 

Figure 3.38. Normalized impulsive pressures on the wall of a head-supported tank, , , /imp w k kp RA , 

associated with the first three modes (i.e., k =1 to 3), along the normalized vertical direction, 

/z H , at r = R  and  =180°, for /H R = 0.5, 1, and 2 and / sH H = 1, calculated using Eq. (3.134) 
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(a) /H R=0.5 (b) /H R=1 

 

(c) /H R=2 

Figure 3.39. Normalized impulsive pressure on the base of a head-supported tank, 

, , /imp b k kp RA , associated with the first three modes (i.e., k =1 to 3), along the normalized 

radial direction, /r R , at z = 0 and  =180°, for /H R = 0.5, 1, and 2, and / sH H = 1, 

calculated using Eq. (3.135) 

The global impulsive reactions, ,imp kF , , ,imp w kM , and , ,imp b kM , in the first three impulsive modes 

(i.e., k =1 to 3) are presented for a tank with 0.2 /H R  3 and / sH H = 1 (i.e., full tank). The 

reactions in the first mode, ,1impF , , ,1imp wM , and , ,1imp bM , are further presented for a tank with 

multiple aspect ratios, /sH R , and fill retios, / sH H . The normalized impulsive shear forces at 

the top of the tank, , /imp k l kF m A , in the x  direction are presented in Figure 3.40. Figure 3.40a 

presents results for the first three impulsive modes for a full tank and Figure 3.40b presents 

results in the first impulsive mode for multiple values of /sH R  and / sH H . Figure 3.40b shows 

that the influence of /sH R  and / sH H  on ,1 1/imp lF m A  is insignificant. Labels for / sH H  0.6 
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are not shown in the figure. The impulsive moments at the top of the tank, , ,imp w kM  and , ,imp b kM , 

about the y  axis, normalized by l km HA , are presented in Figures 3.41 and 3.42, respectively. 

Figures 3.41a and 3.42a present results in the first three impulsive modes for a full tank. The 

results of , ,1 1/imp w lM m HA  in the first impulsive mode for multiple values of /sH R  and / sH H  

are presented in a linear format in Figure 3.41b, and also a linear-logarithmic format in Figure 

3.41c to better differentiate results for / sH H = 0.8, 0.9, and 1. Given the dimensions of a tank, 

sH  and R , and ground motion, 0 ( )u t , the impulsive moment, , ,1imp wM , at the top of the tank can 

be determined using Figures 3.41b and c for a range of fluid heights, H . Figure 3.41b presents 

the normalized impulsive moments in the first mode, , ,1 1/imp b lM m HA , calculated for multiple 

values of /sH R  and / sH H . The results show that the influence of /sH R  and / sH H  on 

, ,1 1/imp b lM m HA  to be negligible. Labels are presented only for / sH H  equal to 0.2 and 1 in the 

figure. 

 

  

(a)  first three modes ( k =1 to 3), / sH H = 1 
(b)  first mode, for 0.5 /sH R  3 and 

0.2 / sH H  1 

Figure 3.40. Normalized impulsive shear force at the top of a head-supported tank, , /imp k l kF m A , 

in the x  direction for 0.2 /H R  3, calculated using Eq. (3.136) 
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(a) first three modes ( k =1 to 3), / sH H = 1 

  

(b) first mode, linear scale, 0.5 /sH R  3 and 

0.2 / sH H  1 

(c) first mode, linear-logarithmic scale, 

0.5 /sH R  3 and 0.2 / sH H  1 

Figure 3.41. Normalized impulsive moments at the top of a head-supported tank, , , /imp w k l kM m HA , 

about the y  axis for 0.2 /H R  3, calculated using Eq. (3.139) 
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(a) first three modes ( k =1 to 3), / sH H = 1 
(b) first mode, 0.5 /sH R  3 and 

0.2 / sH H  1 

Figure 3.42. Normalized impulsive moments at the top of a head-supported tank, , , /imp b k l kM m HA , 

about the y  axis for 0.2 /H R  3, calculated using Eq. (3.137) 

3.3.2 Convective responses 

Figure 3.43 shows convective responses in a vertical cross section through a head-supported 

cylindrical tank accelerating in the x  direction. Similar to the base-supported tank shown in 

Figure 3.20, the free surface vertically displaces, wd  , and the convective pressure, impp , is 

generated on the wall and the base of the tank. Identical to the impulsive responses in a head-

supported tank, these convective pressures, conp , on the wall and the base of the tank are 

mechanically equilibrated by global convective reactions at the top. The resultant force of the 

horizontal conp  on the wall (green arrows) is balanced by the convective shear force at the top, 

conF , in the x  direction. The convective pressure on the wall (green arrows) and that on the base 

(blue arrows) generate resultant moments at the center of the head (solid red circle), which are 

balanced by the convective moments, ,con wM  and ,con bM , about the y  axis (in a clockwise 

direction), respectively. The direction of ,con wM  is counterclockwise to balance the resultant 

moment at the top generated by conp  on the wall. The analytical solution of ,con wM  presented in 

Section 3.3.2.1 accommodates the direction defined in Figure 3.43, and so the values of ,con wM  

calculated using this solution are negative. 
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Analytical solutions for the convective responses of a rigid, head-supported cylindrical tank 

subjected to unidirectional horizontal motion of a small amplitude are adapted from the solutions 

of Veletsos (1984) for a rigid, base-supported cylindrical tank. The convective pressures on the 

wall and the base of a rigid tank are not affected by the change of boundary conditions (i.e., 

base- to head-supported). Only the analytical solution for ,con wM  is modified to accommodate the 

change of the vertical distance (i.e., moment arm) from the center of conp  on the wall to the 

support. The analytical solutions developed for a rigid tank can also be applied to a flexible tank 

since convective responses are independent of the flexibility of the tank. The variables used in 

the solutions here are identical to those used in the solutions of impulsive responses shown in 

Figure 3.31. 

pcon

pcon

Center

Fcon

Mcon,w+Mcon,b

dw

x

z

y
 

Figure 3.43. Convective responses: vertical displacement of the free surface, wd ; convective 

pressure, conp , on the walls and base of a tank; convective shear force, conF , at the top; and 

convective moments, ,con wM  and ,con bM , at the top; shown in a vertical cross section through a 

head-supported cylindrical tank accelerating in the x  direction 

3.3.2.1 Rigid tank 

The analytical solutions for convective responses of a rigid, head-supported cylindrical tank are 

developed by modifying the solutions of Veletsos (1984) for a rigid, base-supported cylindrical 

tank. Only the analytical solution for the convective moment at the top generated by the 

convective pressure on the wall is affected by moving the support (i.e. base- to head-supported), 

due to the change in the lever arm. Other convective responses of the head-supported tank are 

identical to the corresponding solutions of Veletsos presented in Section 3.2.2.2, and so the 
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convective frequency of the head-supported tank, ,con jf  in the j th mode is Eq. (3.73); the 

convective pressure on the wall, , ,con w jp , is Eq. (3.79); the convective pressure on the base, 

, ,con b jp , is Eq. (3.80); the vertical displacement of the free surface, ,w jd , is Eq. (3.81); the 

convective shear force at the top of the tank, ,con jF , in the x  direction is Eq. (3.82); the 

convective moment at the top of the tank, , ,con b jM , about the y  axis that equilibrates the resultant 

moment generated by , ,con b jp  is Eq. (3.84). Those equations are not repeated here. The 

convective moment at the top, , ,con w jM , about the y  axis equilibrates the resultant moment 

generated by , ,con w jp  with a vertical distance ( )sH z−  below the head. The direction of , ,con w jM  

defined here is identical to the direction of the resultant moment (see Figure 3.43), and so ,con wM  

is given as: 

, , , , , , , ,cos ( ) cos cos

w w w

con w j con w j s w s con w j w con w j w

A A A

M p H z dA H p dA p z dA  =   −  =   −       (3.141) 

where the first integral on the right-hand side of Eq. (3.141) is ,con jF−  per Eq. (3.82), and the 

second integral (including the minus sign at the front of the integral operator) is identical to 

, ,con w jM  of a base-supported tank per Eq. (3.83). Applying Eqs. (3.82) and (3.83) to Eq. (3.141), 

the analytical solution of , ,con w jM  is given as: 

 , , 2

2
( ) tanh( ) 1 tanh( )

( 1) 2

s
con w j j l j j

j j j

H H R H
M A t m R n n

n n R H n H R

 
=  − + − 

−  
  (3.142) 

where ( )jA t  is the acceleration time series in the j th convective mode with a natural frequency 

of ,con jf . 

Discussion 

Convective responses are calculated using the analytical solutions for a rigid, head-supported 

cylindrical tank subjected to small-amplitude seismic motion, 0 ( )u t , at the head in the x  

direction. The radius of the tank, R , is assumed to be 30 m. The contained fluid is assumed to be 

water, with a density,  , is 1000 kg/m3. (The same values for R  and   are assumed for 

calculating convective responses of a rigid base-supported tank, presented in Section 3.2.2.2). 
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Other dimensions (e.g., thickness of the wall of the tank) and mechanical properties (e.g., density 

and elastic modulus of the material) of the tank do not need to be defined for the calculations 

because the tank is assumed to be rigid. The convective responses presented herein are 

normalized to be unitless using the method for normalizing the corresponding convective 

responses of the base-supported tank in Section 3.2.2.2. The normalized results of the convective 

frequency, ,con jf , in the j th mode (i.e., the coefficient of the convective frequency, ,con jC ); the 

convective pressures, , ,con w jp  and , ,con b jp ; the vertical displacement of the free surface, ,w jd ; the 

convective shear force, ,con jF ; and the convective moment, , ,con b jM  is independent of the 

dimensions of the tank and the fluid, R  and H , the density of the fluid,  , and the acceleration 

time series, ( )jA t , in the j th convective mode with respect to the seismic motion, 0 ( )u t . The 

only variable for these normalized convective responses is the unitless ratio describing the 

dimensions of the tank and the contained fluid, /H R . Similar to ,imp wM  presented in Section 

3.3.1.1, the normalized results of , ,con w jM  are independent of   and ( )jA t  but dependent on H  

and R  because an additional variable representing the height of the tank, sH , is introduced for 

the head-supported tank and makes the analytical solution of , ,con w jM  not proportional to H  and 

R  (see Eq. (3.142)). The values of , ,con w jM  are calculated and presented here for multiple 

dimensions of a tank and its fluid (i.e., H , R , and sH ) to populate the results. 

The analytical solutions for ,con jf , , ,con w jp , , ,con b jp , ,con jF , and , ,con b jM  in the j th mode of a 

head-supported tank are identical to the solutions of Veletsos for a base-supported tank. Results 

are presented in Section 3.2.2.2 for comparison with other analytical solutions (i.e., from 

Chalhoub and Kelly (1988), and Housner (1957)). These results are repeated here for the purpose 

of presenting a complete set of data for the convective responses of a head-supported cylindrical 

tank. 

Figures 3.44a and b present the convective frequencies, ,con jf , and the coefficients of the 

convective frequency, ,con jC , respectively, associated with the first three convective modes (i.e., 

j =1 to 3), calculated for a tank with 0.2 /H R  3. The convective frequency, ,con jf , in the 

j th mode is related to the coefficient, ,con jC , as follows: 
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 , ,con j con j

g
f C

R
=   (3.143) 

where ,con jC  is unitless and only dependent on /H R . 

  

(a) ,con jf , R =30 m, calculated using Eq. (3.73) 
(b) ,con jC , calculated using Eq. (3.143) and 

,con jf  in panel (a) 

Figure 3.44. Convective frequencies, ,con jf , and coefficients of convective frequency, ,con jC , 

associated with the first three convective modes (i.e., j =1 to 3), for 0.2 /H R  3, head-

supported cylindrical tank 

The convective pressures in the first three modes (i.e., j =1, 2, and 3) are presented for a tank 

with /H R = 0.5, 1, and 2. The normalized convective pressures on the wall of the tank, 

, , /con w j jp RA , along the normalized vertical direction, /z H , at r R=  and  = 180°, are 

presented in Figure 3.45. The normalized convective pressures on the base of the tank, 

, , /con b j jp RA , along the normalized radial direction, /r R , at z = 0 and  = 180°, are presented 

in Figure 3.46.  

The normalized vertical displacements of the free surface, , /w j jd g RA , in the first three modes 

(i.e., j =1, 2, and 3) for 1 / 1r R−   , at  =0°, are presented in Figure 3.47. (The values of 

, /w j jd g RA  are independent of the value of /H R ; see Figure 3.27 in Section 3.2.2.2.)
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(a) /H R=0.5 (b) /H R=1 (c) /H R=2 

Figure 3.45. Normalized convective pressures on the wall of a tank, , , /con w j jp RA , associated 

with the first three modes (i.e., j =1 to 3), along the normalized vertical direction, /z H , at r = R  

and  =180°, for /H R = 0.5, 1, and 2, calculated using Eq. (3.79), head-supported tank 
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(a) /H R=0.5 (b) /H R=1 

 

(c) /H R=2 

Figure 3.46. Normalized convective pressures on the base of a tank, , , /con b j jp RA , associated 

with the first three modes (i.e., j =1 to 3), along the normalized radial direction, /r R , at z = 0 

and  =180°, for /H R = 0.5, 1, and 2, calculated using Eq. (3.80), head-supported tank 
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Figure 3.47. Normalized vertical displacements of the free surface in a head-supported tank, 

, /w j jd g RA , associated with the first three modes (i.e., j =1 to 3), along the normalized radial 

axis, /r R , at  =0°, calculated using Eqs. (3.81) 

The global convective reactions in the first three modes ( j =1, 2, and 3) are presented for a tank 

with 0.2 /H R  3. The normalized convective shear forces at the top of the tank, , /con j l jF m A , 

in the x  direction are presented in Figure 3.48. The convective moments at the top of the tank, 

, ,con w jM  and , ,con b jM , about the y  axis, normalized by l jm HA , are presented in Figures 3.49a and 

b, respectively. The values of , ,con w jM  in the first three modes in Figure 3.49a are calculated for a 

full tank, namely, sH H=  is used in Eq. (3.142). The values of the convective moment in the 

first mode, , ,1con wM , are calculated for six values of /sH R  in the range between 0.5 and 3 and 

nine values of / sH H  in the range between 0.2 and 1 (i.e., full tank). The values of the 

normalized convective moment in the first mode, , ,1 1/con w lM m HA , are presented in a linear 

format in Figure 3.50a, and also a linear-logarithmic format in Figure 3.50b to better differentiate 

results for / sH H = 0.8, 0.9, and 1. 
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Figure 3.48. Normalized convective shear force at the top of a head-supported tank, , /con j l jF m A , 

associated with the first three modes (i.e., j =1 to 3), in the x  direction for 0.2 /H R  3, 

calculated using Eq. (3.82) 

 

  

(a) , , /con w j l jM m HA  for / sH H = 1, calculated 

using Eq. (3.141) 
(b) , , /con b j l jM m HA , calculated using Eq. (3.84) 

Figure 3.49. Normalized convective moments at the top of a head-supported tank, , , /con w j l jM m HA  

and , , /con b j l jM m HA , associated with the first three modes (i.e., j =1 to 3), about the y  axis for 

0.2 /H R  3 
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(a) linear scale (b) logrithmic scale 

Figure 3.50. Normalized convective moments at the top of a head-supported tank in the first mode, 

, ,1 1/con w lM m HA , about the y  axis for 0.2 /H R  3, 0.5 /sH R  3, and 0.2 / sH H  1, calculated 

using Eq. (3.141) 

3.3.3 Closing remarks 

Analytical solutions for FSI responses of head-supported cylindrical tanks subjected to small-

amplitude, unidirectional, horizontal seismic motion are developed in Section 3.3. The solutions 

are derived using the work of prior studies on base-supported cylindrical tanks presented in 

Section 3.2 and address the change in the boundary condition (i.e., base- to head-supported). The 

FSI response is parsed into an impulsive and a convective component. Section 3.3.1 presents 

analytical solutions for impulsive responses: Section 3.3.1.1 develops solutions for rigid tanks 

using the method of Jacobsen (1949), and Section 3.3.1.2 developed those for flexible tanks 

using the method of Veletsos (1984). The analytical solutions address impulsive frequencies 

associated with lateral motions of the flexible tank, and impulsive pressures, shear force and 

moment at the head support (for both rigid and flexible tanks). Section 3.3.2 develops analytical 

solutions for convective responses of a rigid tank using the method of Veletsos (1984). The 

analytical solutions address convective frequencies, pressures, shear force and moment at the 

head support and wave heights. 

The frequencies and responses are calculated for a tank with different dimensions, in terms of the 

ratio of the fluid height to the tank radius, /H R , the aspect ratios of the tank, /sH R , and the 
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fill ratio, / sH H . The results are normalized to be unitless, enabling their use for tanks and 

contained fluids with different dimensions and mechanical properties. In general, the impulsive 

frequency in a mode: 1) reduces with increasing fluid height H  and tank height sH  for a given 

radius R , and 2) reduces proportionally with R  if the material of the tank and length ratios, 

/h R , /H R , and / sH H , are held constant. The convective frequency in a mode: 1) is loosely 

related to the fluid height H  of a tank, for the considered range of /H R  (i.e., between 0.2 and 

3), and 2) reduces proportionally with R  for a given /H R . The amplitudes of the normalized 

impulsive and convective responses (i.e., pressures, wave heights, and reactions) in the first 

mode are the greatest, in comparison with those in the higher modes (i.e., second and third). The 

impulsive component for the reactions at the head support increases and the convective 

component reduces with increasing /H R . Namely, the impulsive reactions are generally more 

significant in a tall tank (i.e., greater /H R ), and the convective reactions are generally more 

significant in a broad tank (i.e., smaller /H R ). 
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SECTION 4 

VERIFICATION OF NUMERICAL MODELS FOR SEISMIC FLUID-

STRUCTURE-INTERACTION ANALYSIS OF CYLINDRICAL TANKS 

4.1 Introduction 

Fluid-structure-interaction (FSI) analysis for seismic design and qualification of liquid-filled 

advanced nuclear reactors will rely on numerical models. There are no analytical solutions for 

FSI responses that can address realistic geometries and boundary conditions of the nuclear 

reactor and three-directional seismic input. If the reactor is subjected to extreme earthquake 

shaking, the responses of the fluid will be nonlinear, including sloshing and disengagement from 

the inner surfaces of the vessel, none of which can be calculated analytically. Numerical models 

that accommodate these nonlinear responses use fluid-mechanics solvers, including adaptive 

meshing routines or defining fluid in a control volume (fluid domain) without discretizing the 

fluid. Table 4.1 introduces solvers capable of simulating nonlinear fluid responses: Fluent and 

CFX, compatible with ANSYS (ANSYS Inc. 2005); Computational Fluid Dynamics (CFD) and 

Coupled Eulerian and Lagrangian (CEL), compatible with ABAQUS (Dassault Systèmes 2018); 

Arbitrary Lagrangian-Eulerian (ALE), Incompressible Computational Fluid Dynamics (ICFD), 

and Smoothed Particle Hydrodynamics (SPH), compatible with LS-DYNA (Livermore Software 

Technology Corporation (LSTC) 2018a); and the particle finite element method (PFEM) in 

OpenSeesPy (Zhu et al. 2018), which is an extension of the open-source code, OpenSees 

(Mazzoni et al. 2009). If fluid responses are linear, a structural mechanics solver compatible with 

fluid elements and/or fluid materials could be used for FSI analysis. The last column of Table 4.1 

presents fluid elements and fluid materials in finite element codes for linear FSI analysis, 

including fluid elements, Fluid30, Fluid38, Fluid80, and Fluid130 in ANSYS; and fluid materials, 

MAT_ELASTIC_FLUID and MAT_ACOUSTIC in LS-DYNA. A challenge with the use of 

these fluid elements and materials is justifying the assumption of linear fluid response, which 

will depend on the intensity and frequency content of the input, the vessel dimensions, fluid 

freeboard, and the presence of components inside the vessel. 
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Table 4.1. Nonlinear and linear FSI analysis using computer codes, fluid-mechanics 

solvers, and fluid elements and materials used in a structural mechanics solver 

Computer code 
Fluid-mechanics solvers: 

nonlinear fluid response 

Fluid elements and materials: 

linear fluid response 

ANSYS Fluent and CFX 
Fluid30, Fluid38, Fluid80, and 

Fluid130 

ABAQUS CFD and CEL -- 

LS-DYNA ICFD, ALE, and SPH 
MAT_ELASTIC_FLUID and 

MAT_ACOUSTIC 

OpenSees PFEM in OpenSeesPy -- 

Numerical models for FSI analysis need to be first verified and validated before being used for 

seismic design and qualification of liquid-filled advanced reactors (or other nuclear facilities that 

contain a large volume of liquid; e.g., boiling water reactors and spent fuel pools). Numerical 

models can be verified by comparing analysis results with those generated using analytical 

solutions (e.g., Jacobsen (1949); Veletsos (1984a); Chen and Rosenberg (1975)). A verified 

numerical model can be validated using data from physical testing. This section presents the 

verification of numerical models of cylindrical tanks by comparing their FSI responses with 

those calculated using the analytical solutions presented in Section 3. To enable the comparison, 

simplifying assumptions used for the analytical solutions are applied to the models herein, 

including 1) rigid or elastic tank, 2) ideal fluid, 3) base- and head-supported boundary conditions, 

4) small-amplitude, unidirectional, horizontal seismic motion, and 5) no interaction between the 

tank and its internal components. The verification of numerical models for internal components 

submerged in the fluid is presented in Section 5. Validation of the verified models is presented in 

Section 6, using data from earthquake-simulator tests of a base-supported cylindrical tank, 

fabricated from carbon steel and filled with water. Two solvers capable of predicting nonlinear 

fluid responses are considered: ALE and ICFD in the code LS-DYNA. 

The first set of numerical models is used to predict fluid responses in a cylindrical vessel (or 

tank). Loosely based on a prototype advanced reactor and a length scale of around 1/10, the 

radius, R , of the test tank is 0.79 m, the height sH  is 2 m, and the wall thickness h  is 7.92 mm. 
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(More information on the test tank and the experiment are presented in Section 6.2.) The first 

impulsive frequency of the test tank, assumed to be full (i.e., fluid height sH H= , /H R = 2.5), 

is 108 Hz, estimated using Eq. (3.64)26 (Veletsos 1984). The test tank is very stiff based on this 

frequency, and so the numerical models of the tank are constructed assuming a rigid material, 

and the numerical results are compared using analytical solutions for rigid tanks. Two boundary 

conditions are considered for the analysis: base- and head-supported. 

The second set of numerical models is used to predict fluid responses in a flexible cylindrical 

vessel (or tank). The models are verified using analytical solutions developed for flexible tanks. 

The height and radius of the tank are identical to those used in the first set of models (i.e., 

R = 0.79 m and sH =2 m), but the wall thickness h  is reduced to 0.4 mm to achieve flexibility27. 

Although this wall thickness is too thin to be used for physically constructing a tank, the use of 

h =0.4 mm for the tank in the models results in a first impulsive frequency, which is reasonable 

by comparison with a 1/10th-length-scale model of an advanced reactor vessel. The first 

impulsive frequency of the flexible tank ( R = 0.79 m, sH =2 m, and h =0.4 mm), assumed to be 

full ( H = 2 m) and supported at the base, is 24.1 Hz per Eq. (3.64)26 (Veletsos 1984), and that 

supported at the head is 20.2 Hz, per Eq. (3.140)26. Figure 4.1 presents the prototype fast reactor 

(PFR) in Dounreay, Scotland, including a head-supported vessel with /sH R = 2.5, similar to the 

test tank. The first impulsive frequency of the PFR vessel is about 5.4. Hz, estimated using Eq. 

(3.140)28. If a 1/10 length scale is used for the PFR vessel, the frequencies are scaled by a factor 

of 10 : 17.2 Hz. The first impulsive frequencies of the flexible tank (i.e., 24.1 Hz for base-

supported and 20.2 Hz for head-supported) used for the numerical models here are comparable to 

that of the 1/10th-scale PFR vessel (i.e., 17.2 Hz).  

 

                                                 
26 Calculated using a water density of 1000 kg/m3 and the following mechanical properties of carbon steel: elastic 

modulus of 2 1011 N/m2, Poisson’s ratio of 0.27, and density of 7850 kg/m3. 
27 There are different numerical methods to increase the flexibility of the tank wall, including 1) reducing the elastic 

modulus, 2) increasing the density, and 3) reducing the wall thickness. However, reducing the elastic modulus 

increases the run time of the analysis significantly, and increasing the density increases the inertial force of the 

tank, which is not considered in the analytical solutions used for the verification herein. 
28 Calculated using the dimensions of the vessel (i.e., R = 6.1 m, 

s
H = 15.2 m, H 0.9

s
H = 13.7 m, and h = 12.7 

mm), a liquid-sodium density of 968 kg/m3, and the following mechanical properties of stainless steel: elastic 

modulus of 1.9 1011 N/m2, Poisson’s ratio of 0.3, and density of 8000 kg/m3. 
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Figure 4.1. Prototype fast reactor (PFR), Dounreay, Scotland, constructed using stainless steel 

and filled with liquid sodium; dimensions of the vessel: R = 6.1 m, sH = 15.2 m, 

H 0.9 sH = 13.7 m, and h =12.7 mm (International Atomic Energy Agency (IAEA) 2012; 

Jensen and Ølgaard 1995)  

The response-history analysis for the rigid and flexible tanks are performed using the ALE and 

the ICFD solvers in LS-DYNA (2018b, 2019)29 , both capable of calculating nonlinear FSI 

responses. The ALE solver uses an explicit analysis and models fluids using Eulerian elements. 

These elements do not deform with the fluid; rather, they serve together as a grid for the fluid 

domain through which the fluid can flow. Integration points for calculating fluid responses are 

located in each grid cell (i.e., each Eulerian element). Accordingly, the Eulerian elements are not 

distorted by large deformation of the fluid. The ICFD solver adopts an implicit analysis to model 

fluids using Lagrangian elements. These elements can deform to a defined tolerance, and then a 

number of smaller elements are automatically generated by an adaptive meshing routine to 

accommodate large deformation of the fluid.  

Sections 4.2 and 4.3 verify the numerical models for the rigid and the flexible tanks, respectively, 

by comparing results with the analytical solutions presented in Section 3. The tanks are subjected 

to small-amplitude, unidirectional, horizontal motions. The sources of the analytical solutions 

used in this section are listed in Table 4.2, for rigid and flexible cylindrical tanks with the two 

                                                 
29 Different versions of LS-DYNA are used here: SMP_d_Dev_126632 (2018b) is used for the ALE analysis and 

SMP_d_R11_139066 (2019) is used for the ICFD analysis. 
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boundary conditions, base- and head-supported. Each of the two sections (4.2 and 4.3) presents 

descriptions for the numerical models, input motions for response-history analysis, and FSI 

results for verification. 

Table 4.2. Sources of analytical solutions for rigid and flexible cylindrical tanks subjected to 

unidirectional horizontal motion of a small amplitude, base- and head-supported, impulsive and 

convective components 

  Impulsive Convective 

Base-

supported 

Rigid Jacobsen (1949) per Section 3.2.1.2. Veletsos (1984) per Section 3.2.2.2 

Flexible Veletsos (1984) per Section 3.2.1.3 -- 

Head-

supported 

Rigid Derived in Section 3.3.1.1 Derived in Section 3.3.2.1 

Flexible Derived in Section 3.3.1.2 -- 

 

4.2 Rigid tank 

Numerical models of rigid, base- and head-supported cylindrical tanks are developed. The 

response-history analysis is performed using the ALE and ICFD solvers for x -directional 

seismic inputs, based on the coordinate system of Figure 4.2. (Other information shown in Figure 

4.2 will be presented and used in Sections 4.2.3 and 4.3.3.) Numerical results of FSI responses 

are compared to those calculated using analytical solutions, in terms of hydrodynamic 

pressures30, reactions (i.e., shear forces and moments) at the support (i.e., base or head), and 

wave heights. 

                                                 
30 Hydrodynamic pressure: the load applied by a fluid to surrounding structures, generated by dynamic motions, 

including earthquake shaking. 
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Figure 4.2. Cartesian coordinates and cylindrical coordinates shown on two cut-away views 

of a base-supported cylindrical tank, together with locations for reporting responses: 

hydrodynamic pressures at the red and yellow solid circles and along the green line, and 

vertical displacements of the free surface at the purple triangle and along the blue dashed line 

4.2.1 Numerical models 

Numerical models are constructed for a rigid cylindrical tank, with R = 0.79 m and sH =2 m, 

and filled with water to heights H  of 1.2 and 1.8 m. With no deformation in the rigid tank, the 

responses of the contained fluid are not affected by the location of the support for horizontal 

seismic input, whether at the base or top. Accordingly, one set of models is used for the analysis 

of the base- and head-supported tanks, but their support reactions are output at different locations 

(i.e., base or head). Figure 4.3 presents the ALE models and global coordinates ( x , y , z ) 

consistent with those in Figure 4.2. Figures 4.3a, b, and c present different parts of the model for 

the tank filled with water to a depth of 1.2 m. Figures 4.3d, e, and f present parts of the tank 

filled with water to a depth of 1.8 m. The tank is shown in blue, and the water is shown in yellow. 

A vacuum space shown in grey is built above the water. The water and vacuum in each model 

together define a fluid domain. Air is not included in the models since the analytical solutions 

used for the verification (see Table 4.2 and Section 3) do not consider the effect of the 

atmospheric pressure on the FSI responses. The nodes of the tank, water, and vacuum are merged 

on their interfaces. 
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(a) tank and vacuum, H = 1.2 

m 

(b) water and vacuum, 

H = 1.2 m 

(c) water in the tank at t = 0, 

H = 1.2 m  

   
(d) tank and vacuum, 

H = 1.8 m 

(e) water and vacuum, 

H = 1.8 m 

(f) water in the tank at t = 0, 

H = 1.8 m 

Figure 4.3. ALE models of a rigid cylindrical tank with R = 0.79 m, sH =2 m, and H = 1.2 

and 1.8 m, isometric view 

The sizes of the elements shown in Figures 4.3a, b, d, and e are optimized, resulting in smaller 

elements for the fluid domain adjacent to the tank wall, around the boundary between the water 

and the vacuum (i.e., free surface), and along the direction of the seismic input (i.e., x  direction) 

across the diameter of the tank. The tank is modeled using Lagrangian, four-node, shell elements 

(i.e., quadrilateral elements), and the water and vacuum are modeled using Eulerian, eight-node, 

solid elements (i.e., brick elements). The types and numbers of elements used for the ALE 

models are listed in Table 4.3 for H = 1.2 and 1.8 m. Figures 4.3c and f present the contained 

water with depths of 1.2 and 1.8 m, respectively, at the first step of the analysis (i.e., time t = 0). 
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Table 4.3. Types and numbers of elements used in the ALE models shown in Figure 4.3 

 Tank Water Vacuum  

Element type 
Lagrangian four-node 

shell 

Eulerian eight-node 

solid 

Eulerian eight-node 

solid 

H = 1.2 m 5732 56928 37952 

H = 1.8 m 5816 80648 14232 

Figure 4.4 presents the ICFD models and the global coordinate system ( x , y , z ). The model of 

the tank presented in Figure 4.4a is used for both the analyses for H = 1.2 and 1.8 m. Three 

surfaces are used to define a fluid domain for the contained fluid. Figure 4.4b (d) presents a half 

domain for the water of H = 1.2 m (1.8 m) built using surfaces: 1) adjacent to the tank base 

(shown in pink), 2) adjacent to the tank wall (shown in yellow), and 3) horizontally closing the 

top of the domain (shown in grey). The domain provides sufficient height for wave actions. The 

height of the fluid domain shown in Figure 4.4b is 1.4 m for H = 1.2 m and that shown in Figure 

4.4d is 2 m for H = 1.8 m, providing a freeboard of 0.2 m. (The vertical displacement of the free 

surface in the tank subjected to small motions is expected to be significantly less than 0.2 m; see 

results presented in Figures 4.16 and 4.17.) The tank and the fluid surfaces do not share nodes at 

their interfaces. The interaction between the tank and water is activated by the 

*ICFD_BOUNDARY_FSI card in the LS-DYNA deck. 

An ICFD model with a finer mesh for fluid surfaces results in more accurate FSI responses but 

also a longer analysis time. The mesh shown in Figures 4.4b and d is determined by a trade-off 

between the accuracy of results and the analysis time, which is bounded by around two weeks for 

a 13-second input motion, namely the longest motion shown in Figure 4.5d used in this section. 

(Information of the analysis computer: 7th Gen (i7) 4-core Intel processor, 32 GB RAM, and 512 

GB SSD.) Smaller elements are used along the direction of the seismic input (i.e., x  direction) 

across the diameter of the fluid domain. Both the tanks and the fluid surfaces are models using 

Lagrangian three- or four-node shell elements. The initial height of the free surface (i.e., H = 1.2 

m or 1.8 m) is defined using the *ICFD_INITIAL_LEVELSET card. The finite element model 

of the water enclosed by the yellow and pink surfaces in Figures 4.4b and d and the free surface 
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defined in the *ICFD_INITIAL_LEVELSET card is automatically generated by the ICFD solver 

at the first step of the analysis (i.e., t = 0). The water is constructed using four-node solid 

elements (i.e., tetrahedral elements), as shown in Figures 4.4c and e for H = 1.2 and 1.8 m, 

respectively. The *MESH_BL card is used to generate finer water elements adjacent to the inner 

surfaces of the tank. The types and numbers of elements used for the ICFD models are listed in 

Table 4.4. 

 

   

(a) tank 
(b) surfaces for a half fluid domain 

with a height of 1.4 m, H = 1.2 m 
(c) water, H = 1.2 m, t = 0 

  

(d) surfaces for a half fluid domain with a 

height of 2 m, H = 1.8 m 
(e) water, H = 1.8 m, t = 0 

Figure 4.4. ICFD models of a rigid cylindrical tank with R = 0.79 m, sH =2 m, and H = 1.2 and 

1.8 m, isometric view 
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Table 4.4. Types and numbers of elements used for the ICFD models shown in Figure 4.4 

 Tank Fluid surface Water 

Element 

type 

Lagrangian three/four-

node shell 

Lagrangian three/four-

node shell 

Lagrangian four-node 

solid 

H = 1.2 m 4761 12688  Automatically 

generated by the solver H = 1.8 m 4761 14030 

The results of the response-history analysis are compared with the analytical solutions for 

hydrodynamic pressures, reactions at the support (i.e., base or head), and wave heights. The 

analytical solutions address the reactions at the support associated with hydrodynamic loadings 

and do not consider those associated with the inertial force of the tank. Accordingly, the inertial 

force of the tank in the numerical models must be removed to generate reactions consistent with 

those analytically calculated. To make the inertial force negligible, a tiny thickness, h , of 0.5 

mm and a tiny density, s , of 100 kg/m3 is assigned to the shell elements, both of which reduce 

the mass of the tank. Although the tank used in the earthquake simulation tests is built using 7.92 

mm-thick carbon steel, of which the generic density is 7850 kg/m3, the reduced thickness and 

density used in the numerical analysis in this section (4.2.1) do not affect the responses since the 

tank is assumed to be rigid. Other mechanical properties consistent with carbon steel are 

assigned to the elements of the tank, including the elastic modulus sE  of 2 1011 N/m2 and 

Poisson’s ratio s  of 0.27. These values do not affect the responses of the rigid tank but must be 

defined in the models. No damping is applied to the tank (i.e., damping ratio=0).  

The analytical solutions assumed the fluid is ideal, which is inviscid and incompressible. A 

density w  of 1000 kg/m3 and a viscosity w  of 0 is assigned to the water elements in the ALE 

models shown as yellow in Figure 4.3 and the pink and yellow fluid surfaces in the ICFD models 

shown in Figure 4.4. The ICFD solver can accommodate only incompressible fluids, whereas the 

ALE solver addresses the compressibility of the fluid through the 

*EOS_LINEAR_POLYNOMIAL card. To achieve incompressibility, the bulk modulus, wK , 

defined in the card (termed 1C ) for the water must be sufficiently large. A sensitivity analysis is 
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performed for the bulk modulus using values of 2.15109 N/m2 (i.e., the bulk modulus of water 

at 25°C), 5109 N/m2, and 21010 N/m2. The differences in the results are negligible, but the run 

time of the analysis significantly increases with an increasing value of the bulk modulus, and so 

the value consistent with water, 2.15109 N/m2, is used for the ALE models. The analytical 

solutions did not consider the effect of the atmospheric pressure on the FSI responses. The 

elements of the vacuum space in the ALE models shown as grey in Figure 4.3 are assigned void 

properties through the *INITIAL_VOID card. The elements of the top surface of the fluid 

domain in the ICFD models, shown as grey in Figure 4.4, are assigned vacuum properties with 

zero density and viscosity (i.e., a = 0 and a = 0). The mechanical properties assigned to the 

elements in the numerical models of the tank, water, and vacuum are listed in Table 4.5. The 

masses of the numerical models are listed in Table 4.6. The gravitational acceleration g  of 9.81 

m/s2 is assigned to the z  direction. 

 

 

Table 4.5. Mechanical properties assigned to the elements in the numerical models 

of the tank, water, and vacuum, the ALE and ICFD models 

  ALE ICFD 

Tank 

Density, s   100 kg/m3 

Elastic modulus, sE  21011 N/m2 

Poisson’s ratio, s  0.27 

Water 

Density, w  1000 kg/m3 

Viscosity, w  0 

Bulk modulus, wK  2.15109 N/m2 --1 

Vacuum  
Density,  a  

--2 
0 

Viscosity, a  0 

1. The ICFD solver analyzes only incompressible fluids, and so wK  is not used in the models. 

2. The vacuum is assigned void properties through the *INITIAL_VOID card for the ALE analysis. 
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Table 4.6. Masses the tank and water in the ALE and ICFD models 

Component 
Mass (kg) 

H = 1.2 m H = 1.8 m 

Tank (including the wall and the base) 0.6 

Water 2352 3527 

4.2.2 Input motions 

Four input motion time series are used for the response-history analysis of the rigid tanks in the 

x  direction: two sinusoidal motions, S-1 and S-2, and two earthquake motions, E-1 and E-2. The 

four motions are all small-amplitude, unidirectional, and horizontal, to accommodate 

assumptions used for the analytical solutions and enable verification. Their time series are 

presented in Figure 4.5, and information is listed in Table 4.7.  

  

(a) sinusoidal motion, S-1, PGA=0.2 g (b) sinusoidal motion, S-2, PGA=0.025 g 

  

(c) earthquake motion, E-1, time scale of 

1/ 10 , PGA=0.2 g 

(d) earthquake motion, E-2, time scale of 

1/ 10 , PGA=0.025 g 

Figure 4.5. Unidirectional, horizontal input for the response-history analysis of the rigid tanks 
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Table 4.7. Information on the time series shown in Figure 4.5 for the response-history analysis 

of the rigid tanks 

a. sinusoidal motions 

 Frequency (Hz) Amplitude/PGA (g) Number of cycles 

S-1 20 0.2 8 

S-2 0.5 0.025 2 

b. earthquake motion records1 

 Event Year Station Direction 
Original 

PGA (g) 

Scaled 

PGA (g) 

Time 

scale 

E-1 
El Centro Earthquake 

(Imperial Valley-02) 
1940 

El Centro 

Array #9 
180 0.28 0.2 1/ 10  

E-2 Chi-Chi Earthquake 1999 TCU052 EW 0.36 0.025 1/ 10   

1. Ground motions are extracted from the PEER Ground Motion Database (http://ngawest2.berkeley.edu/, 

accessed on March 18, 2019), Pacific Earthquake Engineering Research (PEER) Center, University of 

California, Berkeley, CA. 

Figures 4.6a and b show typical, horizontal acceleration spectra in black, at a site in the U.S., in 

the period and the frequency axes, respectively. Per the U.S. Geological Survey 

(https://earthquake.usgs.gov/hazards/interactive/, accessed on Dec 11, 2018), horizontal 

acceleration spectra generally have a peak value at a period of between 0.1 and 0.2 second (i.e., 

frequency of 5 to 10 Hz), as shown in Figure 4.6. To be consistent with the 1/10 length scale for 

the tank, the period axis of a spectrum is compressed by a factor of 10 , and the peak spectral 

acceleration is between periods of 0.03 and 0.06 second after scaling, namely, at frequencies 

between 16 and 30 Hz, as shown in the red spectra in Figure 4.6. The frequency of motion S-1 is 

chosen accordingly: 20 Hz. Motion S-1 includes eight cycles of a 20-Hz sine wave with an 

amplitude (i.e., peak ground acceleration, PGA) of 0.2 g. 

https://earthquake.usgs.gov/hazards/interactive/


  160 

 

 

S
p

e
c
tr

a
l 
a

c
c
e

le
ra

ti
o

n

Period (Sec)

0.1-0.2 sec

0.03-0.06 sec

Typical spectrum

Scaled spectrum

 

S
p

e
c
tr

a
l 
a

c
c
e

le
ra

ti
o

n

Frequency (Hz)

5-10Hz

16-30 Hz

Typical spectrum

Scaled spectrum

 
(a) period axis (a) frequency axis 

Figure 4.6. Typical horizontal acceleration spectra and scaled acceleration spectra based on the 

1/10 length scale: period axis compressed and frequency axis expanded by a factor of 10  

The sinusoidal motion, S-2, is used to drive wave actions of the contained fluid. Accordingly, a 

frequency of 0.5 Hz is selected to be sufficiently close to the first convective frequency of the 

tank of 0.76 Hz, estimated using Eq. (3.119)26 (Veletsos 1984). (A frequency of the sinusoidal 

motion greater than 0.5 Hz and closer to the first convective frequency could induce sloshing 

instability, for which numerical results cannot be verified by the analytical solution derived 

based on linear response (Veletsos).) Motion S-2 includes two cycles of a 0.5-Hz sine wave with 

an amplitude of 0.025 g. This wave-driving motion uses a tiny PGA of 0.025 g to reduce the 

vertical accelerations of the free surface in the numerical models since the analytical solution 

used herein for verification assumed this acceleration to be zero.  

The two earthquake motion time series, E-1 and E-2, are records of the 1940 El Centro 

earthquake in California, U.S. and the 1999 Chi-Chi earthquake in Taiwan, respectively. 

Consistent with the length scale of the tank, the time scale of each earthquake motion i s 

compressed by a factor of 10 . The PGAs of E-1 and E-2 are scaled to 0.2 g and 0.025 g, 

respectively. Figure 4.7 presents spectral accelerations for both E-1 and E-2 with the time scale 

and the amplitude scale, calculated using a damping ratio of 2%, with respect to period in a 

linear format and frequency in a logarithmic-linear format. These two ground motions have very 

different frequency contents and their peak spectral accelerations are well separated in terms of 

period/frequency. Identical to S-2, the PGA of E-2 is scaled to 0.025 g since the spectral 

acceleration around the first convective frequency (i.e. 0.76 Hz) is relatively high, which could 
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(a) E-1, PGA=0.2g, period axis in a linear 

format  

(b) E-1, PGA=0.2g, frequency axis in a 

logarithmic format 

  

(c) E-2, PGA=0.025g, period axis in a linear 

format 

(d) E-2, PGA=0.025g, frequency axis in a 

logarithmic format 

Figure 4.7. Spectral accelerations of the earthquake motion time series, E-1 and E-2, shown in 

Figures 4.5c and d, time scale of 1/ 10 , damping ratio of 2% 

induce intense waves with large vertical accelerations that need to be avoided for verification, for 

the reason given above. 

4.2.3 Results and verification  

Seismic responses of the rigid, base- and head-supported cylindrical tanks with two fluid heights 

are extracted from the response-history analysis calculated using the ALE and ICFD models 

presented in Section 4.2.1. The response-history analysis of each tank is performed for the four 

motions listed in Table 4.7 in the x  direction, and the analysis continues for 1 to 2 seconds after 

the seismic shaking has ended to investigate the post-shaking sloshing response. 

4.2.3.1 Base-supported tank 

The analytical solutions used to verify the numerical models of the rigid, base-supported tank 

( R = 0.79 m, sH = 2 m, H = 1.2 and 1.8 m) were derived by Jacobsen and Veletsos for impulsive 
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and convective responses, respectively, per Table 4.2. These analytical solutions were derived 

based on the cylindrical coordinate system ( r ,  , z ) shown in Figure 4.2. The impulsive 

responses (Jacobsen, Section 3.2.1.2) include the pressure on the inner surfaces of the tank, impp , 

shear force at the base of the tank, impF , and two components of the moment at the base of the 

tank: ,imp wM , generated by ,imp wp  on the wall, and ,imp bM , generated by ,imp bp  on the base. The 

convective responses (Veletsos, Section 3.2.2.2) were decoupled into modal contributions. The 

solutions address the convective frequency, ,con jf , of the j th mode ( j = 1, 2, … ) and the 

modal convective responses including , ,con w jp , , ,con b jp , ,con jF , , ,con w jM , and , ,con b jM  (counterparts of 

,imp wp , ,imp bp , impF , ,imp wM , and ,imp bM , respectively), and the vertical displacement of the free 

surface, ,w jd . The equation numbers used in Section 3.2.1.2 for the impulsive responses are listed 

in Table 4.8a, and those used in Section 3.2.2.2 for the modal convective response are listed in 

Table 4.8b. 

Table 4.8. Equation numbers of the analytical solutions for rigid, base-supported tanks 

a. impulsive responses (Jacobsen 1949) 

,imp wp  ,imp bp  impF  ,imp wM  ,imp bM  

(3.9) (3.10) (3.11) (3.12) (3.13) 

b. modal convective responses (Veletsos 1984) 

,con wp  ,con bp  wd  conF  ,con wM  ,con bM  

(3.79) (3.80) (3.81) (3.82) (3.83) (3.84) 

The time series of the hydrodynamic pressure, wp , on the tank wall, the shear force, F , at the 

tank base in the x  direction, the moment, wbM , at the tank base about the y  axis, and the 

vertical displacement of the free surface, wd , calculated using the numerical models are 

compared with those calculated using the analytical solutions. The analytical solutions for the 

impulsive and convective components of wp , F , and wbM  were derived separately (Veletsos 

1984; Jacobson 1949), but numerical analysis combines both components. To compare the 

analytical and numerical results, the analytical solution of each impulsive response and that of 
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the corresponding convective response are algebraically summed. Note that each convective 

response is the infinite algebraic sum of modal responses (i.e., j =1 to  ).  
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where the impulsive responses ,imp wp , impF , ,imp wM  and ,imp bM  are calculated using the equations 

listed in Table 4.8a; and the modal convective responses , ,con w jp , ,con jF , , ,con w jM , , ,con b jM , and ,w jd  

are calculated using the equations listed in Table 4.8b. The moment at the tank base, wbM , 

calculated by numerical analysis includes the components, wM  and bM , associated with both the 

hydrodynamic pressures on the wall and the base, respectively. Accordingly, Eq. (4.3) sums the 

analytical solutions of wM  and bM  to be consistent with the numerical results. (Equation (4.3) is 

also used for a rigid head-supported tank in Section 4.2.3.2, but ,imp wM , ,imp bM , , ,con w jM , and 

, ,con b jM  are calculated per the equations listed in Table 4.12.) Per Eqs. (4.1) to (4.4), the algebraic 

sums for the convective responses include N  modes. Theoretically, an infinite number of 

convective modes are required (i.e., N = , j = 1 to  ), but only the first ten modes (i.e., 

N =10) are included in the calculation herein since the contributions of the eleventh and higher 

modes are negligible for the tanks and the ground motions used for this analysis.  

Hydrodynamic pressure 

The time series of hydrodynamic pressure, wp , calculated using the numerical models and Eq. 

(4.1) are compared at the location of the red solid circle on the tank presented in Figure 4.2. The 

cylindrical coordinates of the circle are used for Eq. (4.1): ( , , )r z = (0.79 m, 0, 0). Figure 4.8 

enables a comparison of ALE model results and analytical solutions for the two fluid heights (i.e., 
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H = 1.2 or 1.8 m) and the four input motions (i.e. S-1, S-2, E-1, or E-2). Figure 4.9 presents 

companion results for the ICFD models. 

The distributions of wp  calculated using the numerical models and Eq. (4.1) are compared along 

the green line on the tank wall shown in Figure 4.2. The cylindrical coordinates of the green line 

are used for Eq. (4.1): ( , , )r z = (0.79 m, 0, 0 to H ), where H = 1.2 or 1.8 m. Figures 4.10a to h 

present the comparison at the time step t  of peak response in the wp  time series for the ALE: see 

the open red circles in the corresponding panels of Figure 4.8. Figure 4.11 presents the 

comparison at the time step of peak response in the wp  time series for the ICFD models: see the 

open red circles in panels of Figure 4.9. 

Reactions: shear force and moment at the base 

The time series of shear force, F , in the x  direction at the tank base, calculated using the 

numerical models can be compared with the solutions of Eq. (4.2) in Figures 4.12 and 4.13. 

Figure 4.12 enables a comparison for the ALE models for the two fluid heights (i.e., H = 1.2 and 

1.8 m) and the four input motions (i.e. S-1, S-2, E-1, and E-2). Figure 4.13 presents companion 

results for the ICFD models. The time series of moment, wbM , about the y  axis at the tank base, 

calculated using the numerical models can be compared with the results of Eq. (4.3) in Figures 

4.14 and 4.15. Figure 4.14 enables a comparison for the ALE models for the two fluid heights 

(i.e., H = 1.2 and 1.8 m) and the four input motions (i.e. S-1, S-2, E-1, and E-2). Figure 4.15 

presents companion results for the ICFD models. 

Vertical displacement of the free surface, wave height 

The vertical displacement of the free surface, wd , is the height of the wave above the initial free 

surface at z H= . As noted in Section 3.2.2.2, Veletsos (1984) derived ,w jd  in the j th mode by 

assuming 1) the vertical acceleration of the wave to be zero, generating a hydrostatic pressure31 

at z H= , and 2) the hydrostatic pressure to be equal to the convective pressure ,con jp  at z H= . 

As a result, ,con jp  is related to the depth of the fluid ,w jd  above the initial free surface at z H=  as 

, ,con j w jp gd= , where   is the density of the fluid, and g  is the gravitational acceleration. 

                                                 
31 Hydrostatic pressure: pressure created by fluid at rest under gravity. 
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(a) S-1, H = 1.2 m (b) S-1, H = 1.8 m 

  
(c) S-2, H = 1.2 m (d) S-2, H = 1.8 m 

  
(e) E-1, H = 1.2 m (f) E-1, H = 1.8 m 

  

(g) E-2, H = 1.2 m (h) E-2, H = 1.8 m 

Figure 4.8. Time series of the hydrodynamic pressure, wp , at the location of the red solid circle 

shown in Figure 4.2, calculated using the ALE models and Eq. (4.1) 
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(a) S-1, H = 1.2 m (b) S-1, H = 1.8 m 

  
(c) S-2, H = 1.2 m (d) S-2, H = 1.8 m 

  
(e) E-1, H = 1.2 m (f) E-1, H = 1.8 m 

  

(g) E-2, H = 1.2 m (h) E-2, H = 1.8 m 

Figure 4.9. Time series of the hydrodynamic pressure, wp , at the location of the red solid circle 

shown in Figure 4.2, calculated using the ICFD models and Eq. (4.1) 
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(a) S-1, H = 1.2 m, t = 0.0125 sec (b) S-1, H = 1.8 m, t = 0.0125 sec 

  
(c) S-2, H = 1.2 m, t = 2.45 sec (d) S-2, H = 1.8 m, t = 2.45 sec 

  
(e) E-1, H = 1.2 m, t = 0.53 sec (f) E-1, H = 1.8 m, t = 0.53 sec 

  

(g) E-2, H = 1.2 m, t = 3.22 sec (h) E-2, H = 1.8 m, t = 3.22 sec 

Figure 4.10. Distributions of the hydrodynamic pressure, wp , along the green line on the tank 

wall shown in Figure 4.2, at the time step of a peak response (open red circle) shown in the 

corresponding panels of Figure 4.8, calculated using the ALE models and Eq. (4.1) 

 

 



  168 

 

 

  
(a) S-1, H = 1.2 m, t = 0.013 sec (b) S-1, H = 1.8 m, t = 0.013 sec 

  
(c) S-2, H = 1.2 m, t = 1.55 sec (d) S-2, H = 1.8 m, t = 1.55 sec 

  
(e) E-1, H = 1.2 m, t = 0.53 sec (f) E-1, H = 1.8 m, t = 0.53 sec 

  
(g) E-2, H = 1.2 m, t = 3.22 sec (h) E-2, H = 1.8 m, t = 3.22 sec 

Figure 4.11. Distributions of the hydrodynamic pressure, impp , along the green line on the 

tank wall shown in Figure 4.2, at the time step of a peak response (open red circle) shown in 

the corresponding panels of Figure 4.9, calculated using the ICFD models and Eq. (4.1) 
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(a) S-1, H = 1.2 m (b) S-1, H = 1.8 m 

  
(c) S-2, H = 1.2 m (d) S-2, H = 1.8 m 

  
(e) E-1, H = 1.2 m (f) E-1, H = 1.8 m 

  
(g) E-2, H = 1.2 m (h) E-2, H = 1.8 m 

Figure 4.12. Time series of the shear force, F , in the x  direction at the tank base, calculated 

using the ALE models and Eq. (4.2) 
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(a) S-1, H = 1.2 m (b) S-1, H = 1.8 m 

  
(c) S-2, H = 1.2 m (d) S-2, H = 1.8 m 

  
(e) E-1, H = 1.2 m (f) E-1, H = 1.8 m 

  

(g) E-2, H = 1.2 m (h) E-2, H = 1.8 m 

Figure 4.13. Time series of the shear force, F , in the x  direction at the tank base, calculated 

using the ICFD models and Eq. (4.2) 
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(a) S-1, H = 1.2 m (b) S-1, H = 1.8 m 

  
(c) S-2, H = 1.2 m (d) S-2, H = 1.8 m 

  
(e) E-1, H = 1.2 m (f) E-1, H = 1.8 m 

  
(g) E-2, H = 1.2 m (h) E-2, H = 1.8 m 

Figure 4.14. Time series of the moment, wbM , about the y  axis at the tank base, calculated 

using the ALE models and Eq. (4.3) 
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(a) S-1, H = 1.2 m (b) S-1, H = 1.8 m 

  
(c) S-2, H = 1.2 m (d) S-2, H = 1.8 m 

  
(e) E-1, H = 1.2 m (f) E-1, H = 1.8 m 

  
(g) E-2, H = 1.2 m (h) E-2, H = 1.8 m 

Figure 4.15. Time series of the moment, wbM , about the y  axis at the tank base, calculated 

using the ICFD models and Eq. (4.3) 
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For numerical calculations, it is not physically possible to generate waves without vertical 

accelerations, but the accelerations can be reduced by scaling down the amplitude of the input 

motion. As noted in Section 4.2.2, the input motions, S-2 and E-2, are expected to induce 

significant vertical motions on the free surface, and so their amplitudes are both scaled to a tiny 

PGA, namely, 0.025 g. 

The relationship between ,con jp  and ,w jd  assumed by Veletsos (i.e., , ,con j w jp gd=  at z H= ) is 

not valid in the numerical models as the free surface moves downward (i.e., , 0w jd  ) because 

there is no fluid existing at z H=  to produce the pressure, ,con jp . The vertical displacements of 

the free surface are tracked in the ALE models through the *DATABASE_TRACER card. The 

card records the time series of the coordinates ( x , y , z ) of assigned points that float on the free 

surface and move with the velocities of the fluid in the three directions. For the ICFD analysis, 

the Floater option in the graphical user interface (GUI) of LS-Prepost (2018c) is used to create 

points that are fixed at the assigned x  and y  coordinates and float on the free surface. The GUI 

is used to output the time series of the z  coordinates of the assigned points. The vertical 

displacements of the free surface, wd , in the ALE and ICFD models are calculated using the z  

coordinates of a set of floating points assigned along the direction of the seismic input (i.e., x  

direction) across the diameter of the tank. 

The time series of wd  calculated using the numerical models and Eq. (4.4) are presented at the 

location of the purple triangle on the free surface shown in Figure 4.2. The purple triangle is 

located 0.1 R  from the tank wall because the ALE and ICFD solvers cannot properly calculate 

the position of the free surface at the boundary of the fluid domain (i.e., interface of the fluid and 

the tank wall; more details will be presented together with Figures 4.18 and 4.19). The purple 

triangle is located at the cylindrical coordinates ( , , )r z = (0.7 m, 0, H ), used in Eq. (4.4), and at 

the global coordinates ( , , )x y z = (0.7 m, 0, H ), at t = 0, used for extracting numerical results. 

The x  coordinate of the purple triangle changes in the numerical analysis with the horizontal 

displacement of the tank subjected to seismic motions. Wave heights at the purple triangle are 

calculated by interpolating the z  coordinates of its two adjacent floating points at each time step. 

Figure 4.16 enables a comparison of the time series of wd  for the ALE models for the two fluid 
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heights (i.e., H = 1.2 or 1.8 m) and the four input motions (i.e. S-1, S-2, E-1, or E-2). Figure 4.17 

presents companion information for the ICFD models. 

The distributions of wd  calculated using the numerical models and Eq. (4.4) are presented along 

the blue dashed line on the free surface shown in Figure 4.2. Numerical results are calculated 

using the z  coordinates of the floating points assigned across the diameter of the tank in the x  

direction. The coordinates of the blue line are used in Eq. (4.4): ( , , )r z = (-0.79 to 0.79 m, 0, 

H ), where H = 1.2 or 1.8 m. Figures 4.18a to h present distributions of wd  at the time of peak 

response, identified using an open red circle in the time series for the ALE models, shown in the 

corresponding panels of Figure 4.16. (For each of the E-1 and E-2 time series presented in 

Figures 4.16e to h, the open red circle is at a peak in the first 5 seconds because thereafter the 

ALE results gradually diverge from the analytical results, as discussed on pages 221 through 

226.) Figure 4.19 presents distributions of wd  at the time of the peak response, identified using 

an open red circle in the time series for the ICFD models, shown in each panel of Figure 4.17. 

(The open red circle is at a peak in an early stage of each time series when the ICFD and 

analytical results are in-phase. The accuracy of the ICFD predictions of wave height is discussed 

on pages 226 and 227.) The blue dots in each panel of Figures 4.18 and 4.19 present the vertical 

displacements of floating points on the free surface at a time step. In Figure 4.18, the vertical 

displacements of the free surface at /r R = 1 (i.e., interface of the fluid and the wall) calculated 

using the ALE models are all zero for the two fluid heights and the four input motions. The 

vertical displacements of the free surface fluctuate near /r R = 1 due to the boundary effect of 

the fluid velocity calculated by the ALE solver (Do 2019) and gradually stabilize by /r R = 0.9. 

In Figure 4.19, which presents results of analysis of the ICFD models, the vertical displacements 

of the free surface adjacent to the tank wall (i.e., /r R = 1) are zero. No fluctuation is seen in 

the ICFD results near the wall (i.e., 0.9 /r R  1). 
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(a) S-1, H = 1.2 m (b) S-1, H = 1.8 m 

  
(c) S-2, H = 1.2 m (d) S-2, H = 1.8 m 

  
(e) E-1, H = 1.2 m (f) E-1, H = 1.8 m 

  
(g) E-2, H = 1.2 m (h) E-2, H = 1.8 m 

Figure 4.16. Time series of the vertical displacement of the free surface, wd , at the location 

of the purple triangle presented in Figure 4.2, calculated using the ALE models and Eq. (4.4) 
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(a) S-1, H = 1.2 m (b) S-1, H = 1.8 m 

  
(c) S-2, H = 1.2 m (d) S-2, H = 1.8 m 

  
(e) E-1, H = 1.2 m (f) E-1, H = 1.8 m 

  

(g) E-2, H = 1.2 m (h) E-2, H = 1.8 m 

Figure 4.17. Time series of the vertical displacement of the free surface, wd , at the location of the 

purple triangle presented in Figure 4.2, calculated using the ICFD models and Eq. (4.4) 
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(a) S-1, H = 1.2 m, t = 1.56 sec  (b) S-1, H = 1.8 m, t = 1.56 sec 

  
(c) S-2, H = 1.2 m, t = 1.61 sec (d) S-2, H = 1.8 m, t = 1.61 sec 

  
(e) E-1, H = 1.2 m, t = 1.45 sec (f) E-1, H = 1.8 m, t = 1.45 sec 

  

(g) E-2, H = 1.2 m, t = 4.82 sec (h) E-2, H = 1.8 m, t = 4.82 sec 

Figure 4.18. Distribution of the vertical displacement of the free surface, wd , along the blue 

dashed line shown in Figure 4.2, at the time step of a peak response (open red circle) shown in 

the corresponding panels of Figure 4.16, calculated using the ALE models and Eq. (4.4) 

 

 



  178 

 

 

  
(a) S-1, H = 1.2 m, t = 0.8 sec  (b) S-1, H = 1.8 m, t = 0.8 sec 

  
(c) S-2, H = 1.2 m, t = 1.59 sec (d) S-2, H = 1.8 m, t = 1.59 sec 

  
(e) E-1, H = 1.2 m, t = 1.45 sec (f) E-1, H = 1.8 m, t = 1.45 sec 

  

(g) E-2, H = 1.2 m, t = 3.95 sec (h) E-2, H = 1.8 m, t = 3.95 sec 

Figure 4.19. Distribution of the vertical displacement of the free surface, wd , along the blue 

dashed line shown in Figure 4.2, at the time step of a peak response (open red circle) shown in 

the corresponding panels of Figure 4.17, calculated using the ICFD models and Eq. (4.4) 
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Discussion 

Figures 4.8 to 4.19 enable comparisons of the numerical and analytical FSI responses of a rigid, 

base-supported, cylindrical tank ( R = 0.79 m, sH = 2m), filled with water to depths of H = 1.2 

and 1.8 m, and subjected to input motions S-1, S-2, E-1, and E-2. The four motions are small-

amplitude, unidirectional, and horizontal. The reported FSI responses include wp  at the location 

of the red circle and along the green line shown in Figure 4.2, F  and wbM  at the tank base, and 

wd  at the location of the purple triangle and along the blue dashed line shown in Figure 4.2. 

Table 4.9 presents the maximum absolute values (amplitudes) of the analytical, ALE, and ICFD 

results of wp , F , wbM , and wd , for the two fluid heights and the four motions. The results are 

extracted from the time series presented in Figures 4.8, 4.9, and 4.12 to 4.17. The percentage 

differences between the ALE (and ICFD) and analytical results are presented in parentheses in 

Table 4.9.  

Per Table 4.9, for an ALE or ICFD model and an input motion, the listed percentage differences 

of each response ( wp , F , wbM , or wd ) for the two fluid heights (1.2 and 1.8 m) are similar. This 

outcome indicates that the effect of the fluid height (volume) on the degree of accuracy of the 

ALE and ICFD models used here is insignificant. 

The ALE and analytical results for wp , F , and wbM  for each of the four motions are in excellent 

agreement, as seen in Figures 4.8, 4.10, 4.12, and 4.14. Per Table 4.9, the differences of the ALE 

and analytical results in these responses are less than  5%. For wd , per Figures 4.16 and 4.18, 

the ALE and analytical results are in excellent agreement for S-1 and S-2 (in panels a to d), and 

their percentage differences, listed in Table 4.9, are small (  4%). However, as shown in 

Figure 4.16, the E-1 and E-2 time series of wd  (in panels e to h) calculated using the ALE 

models are reasonable for the first 5 to 8 seconds, but thereafter the amplitudes diverge from the 

analytical results. The ALE models underestimate the peak amplitudes of wd  for E-1 and E-2 by  

-12% to -22%, as presented in Table 4.9. The underestimation of the amplitudes for the longer 

duration motions, E-1 and E-2, is in part due to the limitation of outputting wave heights using 

floating points for the ALE analysis. This limitation is discussed in Appendix C. Although the 
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Table 4.9. Maximum absolute FSI responses of the rigid base-supported tank calculated using the 

numerical models and the analytical solutions, extracted from Figures 4.8, 4.9, and 4.12 to 4.17, 

H = 1.2 and 1.8 m, input motions S-1, S-2, E-1, and E-2 

Motion Response 
H = 1.2 m H = 1.8 m 

A.S.1 ALE (diff)2 ICFD (diff)2 A.S.1 ALE (diff)2 ICFD (diff)2 

S-1 

wp  (kN/m2) 1.4 1.41 (1%) 1.44 (4%) 1.5 1.53 (1%) 1.53 (0%) 

F  (kN) 3.2 3.35 (5%) 3.29 (5%) 5.5 5.63 (3%) 5.61 (1%) 

wbM  (kN-m) 2.1 2.21 (3%) 2.19 (5%) 4.9 4.91 (1%) 4.94 (1%) 

wd  (mm) 8.0 7.92 (-1%) 7.88 (-2%) 8.0 7.66 (-4%) 9.05 (12%) 

S-2 

wp  (kN/m2) 0.2 0.23 (3%) 0.23 (5%) 0.2 0.21 (4%) 0.20 (-1%) 

F  (kN) 0.9 0.87 (-1%) 0.85 (1%) 1.2 1.15 (-1%) 1.14 (-2%) 

wbM  (kN-m) 0.7 0.68 (2%) 0.67 (4%) 1.3 1.26 (-1%) 1.24 (-3%) 

wd  (mm) 47.4 47.56 (0%) 45.73 (-4%) 47.3 47.36 (0%) 46.08 (-3%) 

E-1 

wp  (kN/m2) 1.4 1.37 (-2%) 1.37 (4%) 1.5 1.49 (-1%) 1.50 (0%) 

F  (kN) 3.2 3.22 (2%) 3.17 (4%) 5.4 5.50 (1%) 5.48 (2%) 

wbM  (kN-m) 2.1 2.11 (0%) 2.10 (4%) 4.8 4.82 (0%) 4.80 (1%) 

wd  (mm) 24.8 19.31 (-22%) 22.15 (-10%) 24.9 19.59 (-21%) 23.48 (-4%) 

E-2 

wp  (kN/m2) 0.2 0.17 (-4%) 0.16 (-10%) 0.2 0.18 (-2%) 0.18 (-7%) 

F  (kN) 0.4 0.39 (-3%) 0.39 (-3%) 0.7 0.67 (1%) 0.67 (-1%) 

wbM  (kN-m) 0.3 0.30 (-1%) 0.30 (0%) 0.6 0.57 (-3%) 0.58 (-2%) 

wd  (mm) 26.9 23.24 (-14%) 19.32 (-28%) 26.7 23.40 (-12%) 18.50 (-31%) 

1. Analytical solution 

2. Percentage difference of FSI responses calculated using the numerical models with respect to those calculated using 

the analytical solutions, to the nearest 1% 
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amplitudes of wd  are underestimated for E-1 and E-2 (after 5 to 8 seconds of the analysis) by the 

ALE models, the phases of the time series shown in Figures 4.16e to h are in good agreement 

with the analytical solution. The phases of the time series are associated with the 

periods/frequencies of waves (i.e., convective periods/frequencies). The first three convective 

frequencies, ,con jf , of the tank in the ALE models are identified from the times series of wd  for 

E-1 and E-2, at 18 locations across the tank diameter in the x  direction at  0.1 R ,  0.2 R , …, 

 0.9 R . The time series are transformed into the frequency domain using the Fast Fourier 

Transform (FFT). The convective frequencies are identified from the Fourier amplitude spectra. 

Figure 4.20 presents spectra for the two input motions (E-1 and E-2), the two fluid heights (1.2 

and 1.8 m), and the 18 locations, together, normalized by their maximum ordinates, for 

frequencies ranging between 0 and 3 Hz. The peaks identified using open red circles are 

associated with the first three convective modes. (These spectra are presented together in one 

figure because the convective frequencies are independent of seismic motions, fluid heights32, 

and locations on the free surface if the amplitude of the input motion is small.) Table 4.10 

presents the frequencies calculated using the analytical solution per Eq. (3.73) (Veletsos 1984) 

and the ALE models. The percentage differences are tiny (i.e., 2%). 

 

 
Figure 4.20. Normalized Fourier amplitude spectra for wave heights, wd , at 18 locations along 

the x  direction, H = 1.2 and 1.8 m, motions E-1 and E-2, calculated using the ALE models 

 

                                                 
32 The effect of fluid height H  on the convective frequencies in a tank with a given radius R  is negligible if 

/H R  1; see Figure 3.24. 
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Table 4.10. Convective frequencies, ,con jf , of the base-supported tank, calculated 

using Eq. (3.73) and the ALE models, and their percentage differences 

 Frequency (Hz) 

Mode Analytical solution ALE models Difference1 (%) 

First  0.76 0.76 0 

Second 1.29 1.27 -2 

Third 1.64 1.61 -2 

1. Percentage differences of the numerical results with respect to those calculated using the 

analytical solution 

Table 4.11 compares the maximum absolute values of wd  in the first 5 seconds of each time 

series presented in Figure 4.16, for which the amplitudes calculated using the ALE models and 

the analytical solution are consistent. (All results for S-1 and S-2 are used here because the 

durations of both motions are less than 5 seconds. Consequently, those data presented in Tables 

4.9 and 4.11 are identical.) Using the percentage differences listed in Table 4.11, the greatest 

underestimation reduces to -9% from -22% (see Table 4.9).  

Table 4.11. Maximum absolute values of wd  in the first 5 seconds of the time series 

presented in Figure 4.16, ALE and analytical results, H = 1.2 and 1.8 m, input 

motions S-1, S-2, E-1, and E-2 

  wd  (mm) 

  1.2 m 1.8 m 

Motion 
Analytical 

solution 

ALE 

(diff)1 

Analytical 

solution 

ALE 

(diff)1 

S-1 8.0 7.9 (-1%) 8.0 7.7 (-4%) 

S-2 47.4 47.6 (0%) 47.3 47.4 (0%) 

E-1 21.1 19.3 (-9%) 21.4 19.6 (-8%) 

E-2 19.9 19.5 (-2%) 19.8 19.4 (-2%) 

1. Percentage difference of FSI responses calculated using the numerical models with respect to those 

calculated using the analytical solutions, to the nearest 1% 
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In the E-1 time series of wd , shown in Figures 4.16e and f, the analytical solution for 5 t  8 

seconds includes higher mode response, which is not predicted by the ALE models. This higher 

mode response is identified using green circles in Figure 4.21a, which is repeated from Figure 

4.16f. The two consecutive crests of the higher mode response are separated (i.e., period) by 0.6 

second, which is associated with the third convective mode that has a frequency of 

approximately 1.6 Hz (see Table 4.10). The absence of response in the third convective mode in 

the ALE results could be associated with 1) the use of linear interpolation of the z  coordinates 

of the floating points for calculating wave heights, and/or 2) suppression of the higher modes by 

numerical damping.  

Wave heights are calculated here by interpolating between the z  coordinates of the two floating 

points on the free surface closest to each monitoring location (i.e., r = 0.7 m; purple triangle 

presented in Figure 4.2) at each time step. The interpolation assumes a linear change in the free 

surface displacement between two floating points. Per Figure 3.27, the wavelength of the vertical 

displacement of the free surface in the third convective mode is 4 / 5R =632 mm. The maximum 

distance between two floating points adjacent to the location of the purple triangle is 22 mm, for 

0 t  14 seconds. The wavelength of 632 mm is significantly longer than the maximum distance 

(= 22 mm) between the two floating points adjacent to r = 0.7 m. The use of linear interpolation 

for calculating wave heights is therefore not the reason why the third mode response is 

suppressed in the ALE analysis. For additional information, Figure 4.21b presents the 

z − displacement history of the floating point that was located at r = 0.7 m at time t = 0 second. 

This point moves with the velocity of the fluid in three directions, and at 5 and 8 seconds has 

moved 24 mm and 47 mm horizontally, respectively, from its original position (at r = 0.7 m) 

toward the center of the free surface. The analytical results are output at the same spatial 

coordinate of the floating point at each time step. The third mode response is also suppressed at 

t  5 seconds in the ALE prediction of wd  in this alternate presentation. 



  184 

 

  

(a) wd  at r = 0.7 m, Figure 4.16f (b) z − displacement of the floating point 

initially at r = 0.7 m at time t = 0 second 

Figure 4.21. Time series of wd  at r = 0.7 m (the location of the purple triangle presented in 

Figure 4.2) and z − displacement of the floating point initially located at r = 0.7, calculated using 

the ALE model and Eq. (4.4) 

Figure 4.22 presents Fourier amplitude spectra of the time series of wd  for E-1, at 18 locations 

across the tank diameter in the x  direction at  0.1 R ,  0.2 R , …,  0.9 R , calculated using the 

ALE model and Eq. (4.4). The amplitudes are normalized by their maximum ordinates for 

frequencies ranging between 0 and 3 Hz. The ALE and analytical spectra are enveloped using 

blue and grey dashed lines, respectively. The three significant peaks in the enveloped spectra are 

associated with the first three convective modes, with frequencies noted in Table 4.10. The width 

of a peak is associated with the damping ratio (Chopra 2012): the greater the width of a peak, the 

greater the damping ratio. As shown in Figure 4.22, the widths of the peaks calculated using the 

ALE model and the analytical solution are similar for the first and second modes (at 0.76 and 1.3 

Hz). The width of the peak associated with the third mode (at 1.6 Hz) calculated using the ALE 

model is broader than that calculated using the analytical solution. Consequently, numerical 

damping is the most likely cause of the suppression of higher mode response of wd  in the ALE 

analysis. In this case, the higher mode response does not affect the maximum amplitude of wd . 

On the basis of the comparisons presented above, the authors concludes that the ALE models of 

the rigid base-supported tank are verified for calculating wp , F , wbM , and ,con jf , but are limited 

to the analysis of short duration (i.e., 5 to 8 seconds in the analysis here) motions for calculating 

wd , until the issues discussed in Appendix C are resolved. 
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(a) ALE (b) analytical solution Eq. (4.4) 

Figure 4.22. Normalized Fourier amplitude spectra for wave heights, wd , at 18 locations along 

the x  direction, H = 1.8 m, E-1, calculated using the ALE model and Eq. (4.4) 

As presented in Figures 4.9, 4.11, 4.13, and 4.15, the ICFD and analytical results of wp , F , and 

wbM  for motions S-1, S-2, and E-1 are in excellent agreement, but those for E-2 agree 

reasonably only for the first 6 seconds. (The maximum absolute values of wp , F , and wbM  for 

E-2 are attained in the first 6 seconds.) Per Table 4.9, the differences between the ICFD and 

analytical results are less than  10%. Per Figure 4.17, the ICFD results for the time series of wd  

are reasonably consistent with the analytical results for the first cycle (i.e., a crest and a trough) 

only: the first 1.2, 2, 1.6, and 4.5 seconds for S-1, S-2, E-1 and E-2, respectively. Subsequently, 

the amplitudes and periods of waves are generally underestimated by the ICFD models. Per 

Table 4.9, the differences between the ICFD and analytical results range between -31% and 12%. 

The differences between the ICFD and analytical results for wp , F , and wbM  and motion E-2, 

as presented in panels g and h of Figures 4.9, 4.13, and 4.15, are linked to the inaccurate 

calculation of wd  and the long duration of the analysis (i.e., 14 seconds). Motion E-2 drives 

waves in the tank (see Section 4.2.2), and so wp , F , and wbM  include a significant convective 

component. The inaccurate wd  calculated by the ICFD solver affects the results of wp , F , and 

wbM , and their inaccuracies (errors) accumulate with time. For the ICFD analysis, the free 

surface is defined through *ICFD_INITIAL_LEVELSET and its mesh is automatically 

generated by the solver. The calculation of wave actions on the free surface is a subject of LSTC 

development at the time of this writing (Caldichoury 2020). Accordingly, at the time of this 

writing, the ICFD models of the rigid base-supported tank are verified for calculating wp , F , 
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and wbM , if the wave action is not significant (e.g., for S-1, S-2, and E-1). The ICFD models are 

not verified for calculating waves (neither heights wd  nor frequencies). 

4.2.3.2 Head-supported tank 

The analytical solutions used to verify the numerical models of the rigid, head-supported tank 

( R = 0.79 m, sH = 2 m, H = 1.2 and 1.8 m) are derived in Sections 3.3.1.1 and 3.3.2.1 for the 

impulsive and the convective responses, respectively, per Table 4.2. As noted in those two 

sections, the location of the seismic input, whether at the base or the top, does not affect the 

hydrodynamic pressures in a rigid tank, with no deformation of its wall. For a head-supported 

tank, hydrodynamic pressures on its inner surfaces generate a resultant force and moment at the 

head support. The shear force, F , which balances the resultant force of the pressure on the wall, 

wp , is identical to that of a base-supported tank. The moment at the head support, wbM , includes 

two components: wM  and bM . The moment, wM , which balances the pressure on the wall, wp , 

is dependent on the location of the support (i.e., base or head). Moving the supported from the 

base to the top changes the vertical lever arm from the center of wp  to the support. The moment, 

bM , which balances the pressures on the base, bp , with horizontal lever arm to the center of the 

head, is identical to that at the base of a base-supported tank. The wave height, wd , is generated 

by the hydrodynamic pressure on the initial free surface, and so is not affected by the change in 

the boundary condition (i.e., base- to head-supported). Consequently, this section compares wbM  

at the head of the tank calculated using the numerical models and the analytical solutions. Other 

responses, namely, wp , F , and wd , are identical to those presented in Section 4.2.3.1 for the 

base-supported tank and are not repeated here. 

Reaction: moment at the head 

As noted in Section 4.2.3.1, the moment at the support, wbM , calculated using the numerical 

models cannot be separated into wM  and bM , nor can the impulsive and convective components 

of these moments (i.e., ,imp wM , ,con wM , ,imp bM , and ,con bM ) be identified. Consequently, the 

analytical solutions for wM  and bM , including their impulsive and convective components, must 

be summed for a comparison with numerical results: Eq. (4.3). The impulsive moments, ,imp wM  
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and ,imp bM , and the convective moments, , ,con w jM  and , ,con b jM , used for Eq. (4.3) are calculated 

using the solutions developed in Sections 3.3.1.1 and 3.3.2.1, and their equation numbers are 

listed in Table 4.12. 

Table 4.12. Equation numbers for the analytical solutions for impulsive and 

convective moments at the head of a rigid, head-supported cylindrical tank 

,imp wM  ,imp bM  , ,con w jM  , ,con b jM  

 (3.121) (3.13) (3.141) (3.84) 

The time series of wbM  about the y  axis at the head of the tank calculated using the numerical 

models and Eq. (4.3) are presented in Figures 4.23 and 4.24. Figure 4.23 enables a comparison 

for the ALE models, the two fluid heights (i.e., H = 1.2 and 1.8 m), and the four input motions 

(i.e. S-1, S-2, E-1, and E-2). Figure 4.24 presents companion information for the ICFD models. 

Discussion 

The numerical (both ALE and ICFD) and analytical results for the time series of wbM  at the head 

of the rigid head-supported tank ( R = 0.79 m, sH = 2 m) are presented in Figures 4.23 and 4.24, 

for fluid heights H = 1.2 and 1.8 m and input motions S-1, S-2, E-1, and E-2. The numerical and 

analytical results agree well, except for those shown in Figure 4.24g and h, for the ICFD models 

and E-2. These wbM  time series for E-2 agree reasonably for the first 6 seconds only; 

subsequently, the ICFD results are smaller than and out of phase, with those calculated using the 

analytical solution. As identified in Section 4.2.3.1: E-2 drives significant convective response 

and the calculation of wave height by the ICFD solver is challenged. (Software developers at 

LSTC are seeking to improve this predictive capability (Caldichoury 2020).) Table 4.13 presents 

the maximum absolute values of the analytical, ALE, and ICFD results extracted from Figures 

4.23 and 4.24. The percentage differences between the ALE (and ICFD) and analytical results 

are presented in parentheses in Table 4.13. The differences are less than  5%. (The listed 

percentage differences for the ICFD models and E-2 are small because the maximum absolute 

values of wbM  occur in the first 6 seconds of the time series, for which agreement with the 

analytical solution is reasonable.) 
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(a) S-1, H = 1.2 m (b) S-1, H = 1.8 m 

  
(c) S-2, H = 1.2 m (d) S-2, H = 1.8 m 

  
(e) E-1, H = 1.2 m (f) E-1, H = 1.8 m 

  
(g) E-2, H = 1.2 m (h) E-2, H = 1.8 m 

Figure 4.23. Time series of the moment, wbM , about the y  axis at the head of the tank, 

calculated using the ALE models and Eq. (4.3) 
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(a) S-1, H = 1.2 m (b) S-1, H = 1.8 m 

  
(c) S-2, H = 1.2 m (d) S-2, H = 1.8 m 

  
(e) E-1, H = 1.2 m (f) E-1, H = 1.8 m 

  
(g) E-2, H = 1.2 m (h) E-2, H = 1.8 m 

Figure 4.24. Time series of the moment, wbM , about the y  axis at the head of the tank, 

calculated using the ICFD models and Eq. (4.3) 
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Table 4.13. Maximum absolute moments, wbM , at the head of the head-supported tank 

calculated using the numerical models and the analytical solutions, extracted from Figures 

4.23 and 4.24, H = 1.2 and 1.8 m, input motions S-1, S-2, E-1, and E-2 

 wbM  (kN-m) 

Motion 

1.2 m 1.8 m 

Analytical 

solution 

ALE 

(diff)1 

ICFD 

(diff)1 

Analytical 

solution 

ALE 

(diff)1 

ICFD 

(diff)1 

S-1 4.4 4.39 (1%) 4.38 (0%) 6.3 6.39 (2%) 6.28 (0%) 

S-2 1.1 1.06 (-3%) 1.04 (-5%) 1.1 1.05 (-1%) 1.04 (-2%) 

E-1 4.3 4.34 (2%) 4.25 (0%) 6.2 6.20 (1%) 6.16 (0%) 

E-2 0.5 0.51 (0%) 0.51 (-3%) 0.8 0.77 (1%) 0.76 (-3%) 

1. Percentage difference of FSI responses calculated using the numerical models with respect to those 

calculated using the analytical solutions, to the nearest 1% 

The differences in wbM  calculated using the numerical models and the analytical solution here 

are similar to those for the rigid base-supported tank presented in Section 4.2.3.1. Other 

responses, namely, wp , F , and wd , for the rigid head-supported tank here are identical to those 

for the rigid base-supported tank in Section 4.2.3.1. Consequently, the conclusions drawn in 

Section 4.2.3.1 are appropriate here, namely, 1) the ALE models are verified for calculating wp , 

F , and wbM , but are limited to short-duration analysis for calculating wd ; and 2) the ICFD 

models are not verified for calculating wd , but are verified for calculating wp , F , and wbM , if 

the wave action is not significant. 

4.3 Flexible tank 

Numerical models of flexible, base-supported and head-supported cylindrical tanks subjected to 

x -directional seismic motion of a small amplitude are analyzed using the ALE and ICFD solvers. 

The models are verified using the analytical solutions with the sources listed in Table 4.2: the 

solutions developed by Veletsos (1984) presented in Section 3.2.1.3 for base-supported tanks and 

those developed in Section 3.3.1.2 for head-supported tanks. These analytical solutions address 

only the impulsive component of FSI responses for flexible tanks. To the knowledge of the 
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authors, no prior analytical has work addressed convective responses in flexible tanks33. To 

enable comparisons between the numerical and analytical results, the convective component in 

the FSI responses is disregarded using a numerical method, for which details are presented in 

Section 4.3.1. The numerical results of the impulsive pressures and reactions (i.e., shear forces 

and moments) at the support (i.e., base or head) are compared with those calculated using the 

analytical solutions.  

4.3.1 Numerical models 

Numerical models are constructed for a flexible, base- and head-supported, cylindrical tank, with 

R = 0.79 m, sH = 2 m, and h = 0.4 mm. The analytical solutions for base-supported tanks 

(Veletsos 1984) used for the verification here assumed the tank to be full, while the analytical 

solutions for head-supported tanks account for freeboard (i.e., not required to be full). 

Accordingly, fluid heights of H = 2 and 1.8 m are used for the base- and head-supported tanks, 

respectively. The numerical models are analyzed using the ALE and ICFD solvers, and the 

numerical results are compared with those calculated using the analytical solutions. Figures 4.25 

and 4.26 present the ALE models for the base- and head-supported tanks, respectively, and the 

global coordinates ( x , y , z ). The tank is shown in blue, the water is shown in yellow. A 0.2-m 

deep vacuum space shown in grey is modeled at the top of the water. With the presence of a 

vacuum space, a free surface is formed at the top of the water, where the pressure is zero as the 

atmospheric pressure not considered. Since the base-supported tank is full, the vacuum space is 

modeled beyond the height of the tank, as shown in Figure 4.25a. The nodes of the tank, water, 

and vacuum are merged at their interfaces. The sizes of the elements shown in Figures 4.25 and 

4.26 are similar to those used for the rigid tanks presented in Figure 4.3: smaller fluid elements 

adjacent to the tank wall and along the direction of the seismic input (i.e., x  direction) across the 

diameter of the tank. The types and numbers of elements used for the ALE models are listed in 

Table 4.14 for the base- and head-supported tanks. Figures 4.25c and 4.26c present the water in 

the base- and head-supported tanks, respectively, at the first step of the analysis ( t = 0).  

                                                 
33 Analytical studies (e.g. Veletsos (1984), and Chalhoub and Kelly (1988)) assumed that the convective response of 

a tank subjected to a small-amplitude, horizontal motion is generated by the part of the fluid not moving 

horizontally with the tank but oscillating vertically to form waves. Since this part of the fluid was assumed not to 

follow the movement or the deformation of the tank, the convective response was independent of the flexibility of 

the tank wall. Consequently, the analytical solutions were derived for rigid tanks only. 
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(a) tank and vacuum (b) water and vacuum (c) water in the tank at t = 0 

Figure 4.25. ALE model of a flexible base-supported tank with R = 0.79 m, sH =2 m, and 

H = 2 m, isometric view 

 

   

(a) tank and vacuum (b) water and vacuum (c) water in the tank at t = 0 

Figure 4.26. ALE model of a flexible head-supported tank with R = 0.79 m, sH =2 m, and 

H = 1.8 m, isometric view 
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Table 4.14. Types and numbers of elements used in the ALE models shown in Figures 4.25 

and 4.26, base- and head-supported tanks 

 Tank Water Vacuum  

Element type 
Lagrangian four-node 

shell 

Eulerian eight-node 

solid 

Eulerian eight-node 

solid 

Base-supported 5228 80648 9488 

Head-supported 5312 73532 9488 

Figures 4.27 and 4.28 present the ICFD models for the base- and head-supported tanks, 

respectively. The models of the tanks are shown in blue in Figures 4.27a and 4.28a. Figures 

4.27b and 4.28b present half domains for the fluid, each defined using three surfaces: 1) adjacent 

to the tank base (shown in pink), 2) adjacent to the tank wall (shown in yellow), and 3) 

horizontally closing the top of the domain (shown in grey). The tank and the fluid surfaces do not 

share nodes at their interfaces. The interaction between the tank and water is activated by the 

*ICFD_BOUNDARY_FSI card in the LS-DYNA deck. 

The sizes of the elements for these fluid surfaces are larger than those used for the rigid tanks 

presented in Figure 4.4 because wave action, which requires fine meshes, is not included for the 

analysis of the flexible tanks here. The height of the fluid domain of Figure 4.27b for the base-

supported tank is 2.2 m and that shown in Figure 4.28b for the head-supported tank is 2 m, 

namely a freeboard of 0.2 m is provided. Different from the models for the rigid tanks (Figure 

4.4), the freeboard here is not used for developing waves, but providing a vacuum space so that a 

free surface of zero pressure is generated on the top of the water. The height of the free surface 

(i.e., H = 2 m or 1.8 m) is defined using the *ICFD_INITIAL_LEVELSET card. The 

*MESH_BL is assigned to the yellow and pink surfaces in Figures 4.27b and 4.28b to generate 

finer water elements adjacent to the inner surfaces of the tank. Four-node solid elements for the 

water are automatically generated by the ICFD solver at the first step of the analysis (i.e., t = 0), 

as shown in Figures 4.27c and 4.28c. The types and numbers of elements used for the ICFD 

model are listed in Table 4.15 for the base- and head-supported tanks. 
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(a) tank 
(b) surfaces for a half fluid 

domain with a height of 2.2 m 
(c) water, t = 0 

Figure 4.27. ICFD model of a flexible base-supported tank with R = 0.79 m, sH =2 m, 

H = 2 m, isometric view 

 

   

(a) tank 
(b) surfaces for a half fluid domain with a 

height of 2 m 
(c) water, t = 0 

Figure 4.28. ICFD model of a flexible head-supported tank with R = 0.79 m, sH =2 m, H = 1.8 

m, isometric view 

 

Table 4.15. Types and numbers of elements used for in the ICFD models shown in Figures 

4.27 and 4.28, base- and head-supported tanks 

 Tank Fluid surfaces Water 

Element type 
Lagrangian three/four-

node shell 

Lagrangian three/four-

node shell 

Lagrangian four-node 

solid 

Base-supported 4448 6016 Automatically 

generated by the solver Head-supported 4448 5696 
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Seismic motions are input in the x  direction at the nodes of the base for the base-supported tank 

and at the top of the wall for the head-supported tank. These nodes are constrained in the y  and 

z  directions and the rotational directions with respect to x , y , and z  axes. 

The analytical solutions used for the verification assume the wall of the tank is elastic and the 

base is rigid. The elements of the wall and base are assigned elastic and rigid materials, 

respectively, with the mechanical properties consistent with carbon steel, including the density 

s  of 7850 kg/m3, the elastic modulus sE  of 21011 N/m2, and Poisson’s ratio s  of 0.27. (The 

values of sE  and s  do not affect the responses of the rigid base but must be defined in the 

models.) A damping ratio of 2% is assigned to the elements of the wall for a frequency range of 

15 to 250 Hz using the *DAMPING_FREQUENCY_RANGE_DEFORM card (Huang et al. 

2019). (Variables assigned in the card are: CDAM = 0.02, FLOW =15, and FHIGH =250.) The 

assigned frequency range covers the first five impulsive modes of the base- and head-supported 

tanks (i.e., 21 Hz to 160 Hz, estimated using the analytical solutions). The damping model 

implemented by the card is a function of frequency (Huang 2019). Figure 4.29 presents the 

damping achieved by the card (blue line), which is used for the numerical calculation of both the 

ALE and ICFD models, and the assigned damping (red line), namely 2% for 15 to 250 Hz. This 

frequency-dependent damping model shown in blue is used for the analytical solutions in Section 

4.3.3 to enable a comparison with numerical results. (No damping is applied to the tank base 

since it is rigid; damping ratio=0.)  

 

Figure 4.29. Damping ratio achieved by *DAMPING_FREQUENCY_RANGE_DEFORM 

card and used for the numerical calculation, damping ratio of 2% for 15 to 250 Hz assigned 

in the card  
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The models of the water are assigned the mechanical properties identical to those described in 

Section 4.2.1 for the analysis of the rigid tanks, and so are not repeated here. Table 4.16 lists the 

mechanical properties assigned to the elements in the numerical models of the tank, water, and 

vacuum. The masses of the numerical models are listed in Table 4.17. Note that the analytical 

solutions used to verify the models address the reactions at the support associated with 

hydrodynamic loadings and do not consider those associated with the inertial force of the tank. 

Per Table 4.17, the mass of the tank is less than 1% of that of the water for the numerical models. 

Accordingly, the contribution of the inertial force of the tank to the reactions calculated using the 

models is negligible. 

Table 4.16. Mechanical properties assigned to the elements in the numerical models 

of the base- and head-supported tanks, ALE and ICFD models 

  ALE ICFD 

Tank 

Density, s  7850 kg/m3 

Elastic modulus, sE  21011 N/m2 

Poisson’s ratio, s  0.27 

Water 

Density, w   1000 kg/m3 

Viscosity, w  0 

Bulk modulus, wK   2.15109 N/m2 --1 

Vacuum  
Density,  a  

--2 
0 

Viscosity, a  0 

1. The ICFD solver analyzes only incompressible fluids, and so wK  is not used in the models. 

2. The vacuum is assigned void properties through the *INITIAL_VOID card for the ALE analysis. 

 

Table 4.17. Masses of the tank and water in the ALE and ICFD models 

Component 
Mass (kg) 

Base-supported Head-supported 

Tank 

(including the wall and the base) 
38 

Water 3921 3527 
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The analytical solutions used here address only the impulsive component of FSI responses. The 

convective component must be removed from the numerical analysis to generate results 

consistent with those analytically calculated. Convective responses are generated by the part of 

the fluid oscillates vertically in a tank. The vertical oscillation changes the potential energy of the 

fluid34, which is transformed from the kinetic energy generated by fluid velocities. The potential 

energy can only appear if the gravitational acceleration g  exists35. Accordingly, to remove the 

convective component from the FSI responses, g  is not assigned in the numerical model. 

4.3.2 Input motions 

Three small-amplitude time series are used for the response-history analysis of the tanks in the x  

direction: a sine-sweep motion, S-S, a sinusoidal motion, S-1, and an earthquake motion, E-1. 

The sine-sweep motion is used for calculating the impulsive frequencies of the tanks, and S-1 

and E-1 are used for calculating impulsive responses, including pressures and reactions. Table 

4.18 presents information on the three motions. 

The frequencies of the tanks are identified from the responses for the sine-sweep motion, S-S, 

since the ALE and ICFD solvers cannot perform eigenvalue analysis. The frequency band of S-S 

ranges between 0.25 and 150 Hz, and enables identification of the first three impulsive 

frequencies for the base- and head-supported tanks (i.e., 21 to 105 Hz, estimated using the 

analytical solutions). The identified frequencies are compared with those calculated using the 

analytical solutions. The fourth and higher modes are not identified because fluid-structure 

responses in these modes are considered rigid and not affected by the calculated frequencies, 

which are greater than 100 Hz. Figures 4.30a and b present the time series and the Fourier 

amplitude spectrum of S-S, respectively. 

                                                 
34 The potential energy is generated by an object elevating in a gravity field. For the fluid in a tank, the potential 

energy increases as the wave going upwards and decreases as the wave going downwards. 
35 Per Eqs. (3.73), (3.87), and (3.114) derived by Veletsos (1984), Chalhoub and Kelly (1988), and Housner (1957), 

respectively, the analytical solutions for the convective frequencies include the gravitational acceleration g . 
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Table 4.18. Unidirectional, horizontal ground motion time series for the response-history 

analysis of the flexible tanks 

a. sine-sweep motion 

 Frequency band (Hz) Amplitude/PGA (g) 

S-S 0.25 to 150 0.2 

b. sinusoidal motion 

 Frequency (Hz) Amplitude/PGA (g) Number of cycles 

S-1 20 0.02 8 

c. earthquake motion record1 

 Event Year Station Direction 
Original 

PGA (g) 

Scaled 

PGA (g) 

Time 

scale 

E-1 
El Centro Earthquake 

(Imperial Valley-02) 
1940 

El Centro 

Array #9 
180 0.28 0.05 1/ 10  

1. Ground motions are extracted from the PEER Ground Motion Database (http://ngawest2.berkeley.edu/, 

accessed on March 18, 2019), Pacific Earthquake Engineering Research (PEER) Center, University of 

California, Berkeley, CA. 

 

  

(a) time series (b) Fourier amplitude spectrum 

Figure 4.30. Sine-sweep motion, S-S, unidirectional horizontal input, PGA=0.2g 

The time series of motions S-1 and E-1 are presented in Figure 4.31, both of which are used for 

the analysis of the rigid tanks presented in Section 4.2, but their amplitudes are reduced to 

smaller values in this section (4.3). Motion S-1 is a sinusoidal function with a frequency of 20 

Hz, which is close to the first impulsive mode of the base- and head-supported tanks (i.e., 25 and 

21 Hz, respectively) and could induce nonlinear responses or instability that cannot be verified 
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using analytical solutions. Consequently, the amplitude of S-1 is reduced to a very small value 

(i.e., 0.02 g). Motion E-1 is a record of the 1940 El Centro Earthquake in California, U.S. The 

time scale of E-1 is compressed by a factor of 10  to be consistent with the length scale for the 

tank, and the PGA is scaled to 0.05 g. Figure 4.32 presents the acceleration response spectra for 

the time- and amplitude-scaled E-1, calculated using a damping ratio of 2%, using a linear period 

axis and a logarithmic frequency axis. The spectral acceleration around the first impulsive modes 

(i.e., 25 and 21 Hz, respectively) is relatively high, which could induce nonlinear responses or 

instability, and so a small PGA (i.e., 0.05 g) is used here. (Motions S-2 and E-2, which are used 

in Section 4.2 to drive waves in the rigid tanks, are not used because convective responses are 

not the subject of inquiry here for flexible tanks.) 

 

  

(a) sinusoidal motion, S-1, PGA=0.02 g 
(b) earthquake motion, E-1, time scale of 1/ 10 , 

PGA=0.05 g 

Figure 4.31. Unidirectional, horizontal input motion time series for the response-history analysis 

of the flexible tanks 

 

  
(a) period axis in a linear format  (b) frequency axis in a logarithmic format 

Figure 4.32. Spectral accelerations of the earthquake motion time series, E-1, shown in Figure 

4.31b, time scale of 1/ 10 , PGA=0.05 g, damping ratio of 2% 
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4.3.3 Results and verification 

Response-history analysis is performed for the ALE and ICFD models of the flexible, base- and 

head-supported cylindrical tanks presented in Section 4.3.1. The motions listed in Table 4.18 are 

input to the x  direction of the models, including a sine-sweep motion, S-S, a sinusoidal motion, 

S-1, and an earthquake motion, E-1. Motion S-S is used for calculating the impulsive frequencies 

of the tanks, and S-1 and E-1 are used for calculating impulsive responses, including pressures 

and reactions. As noted previously, convective responses are not considered in this section (4.3). 

4.3.3.1 Base-supported tank 

The analytical solutions used to verify the ALE and ICFD models of the flexible, base-supported 

tank ( R = 0.79 m, sH H= = 2 m, h = 0.4 mm) shown in Figures 4.25 and 4.27, respectively, 

were derived by Veletsos for impulsive responses presented in Section 3.2.1.3, per Table 4.2. 

These analytical solutions were derived based on the cylindrical coordinate system ( r ,  , z ) 

shown in Figure 4.2. Veletsos decoupled each impulsive response into modal contributions and 

provided a solution for each mode. The solutions address the impulsive frequency, ,imp kf  of the 

k th mode ( k =1, 2, … ), and the associated modal responses, including the pressure on the 

inner surfaces of the tank, ,imp kp  , shear force at the tank base, ,imp kF , and two components of the 

moment at the tank base: , ,imp w kM , which is generated by , ,imp w kp  on the wall, and , ,imp b kM , which is 

generated by , ,imp b kp  on the base. The equation numbers used in Section 3.2.1.3 for the frequency 

and the modal responses are listed in Table 4.19.  

Table 4.19. Equation numbers of the analytical solutions of Veletsos for the impulsive 

frequency of the k th mode and the modal responses for flexible, base-supported 

cylindrical tanks 

,imp kf  , ,imp w kp  , ,imp b kp  ,imp kF  , ,imp w kM  , ,imp b kM  

(3.52) (3.59) (3.60) (3.61) (3.62) (3.63) 

Per the equations listed in Table 4.19, the modal responses are functions of a time series, ( )kA t , 

which is the acceleration of a single degree-of-freedom (SDOF) system with a frequency ,imp kf , 

subjected to a horizontal motion, 0 ( )u t . The acceleration, ( )kA t , is calculated using Duhamel’s 

integral: 
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−   −=   −  (4.5) 

where   is a time variable, k , ,imp k , and , ,imp d k  are the damping ratio, radial frequency, and 

damped radial frequency of the k th impulsive mode, respectively (i.e., , ,2imp k imp kf = ; 

2
, , , 1imp d k imp k k  = − ). To enable the verification, the damping ratio, k , used in Eq. (4.5) here 

is consistent with the damping model used for the numerical calculation shown as the blue line in 

Figure 4.29. The value of k  for the k th impulsive mode is extracted from the blue line per the 

analytically calculated frequency ,imp kf . 

The first three impulsive frequencies, ,imp kf , of the base-supported tank calculated using the 

numerical models and Eq. (3.52) are compared. The frequencies of the tank in the numerical 

models are identified from the hydrodynamic pressure, ,imp wp , for sine-sweep motion S-S, at the 

yellow solid circle presented in Figure 4.2. The yellow solid circle is at a height of 0.6 H  (with 

respect to the tank base) where the impulsive pressure is expected to be the greatest along the 

tank wall per the first modal response shown in Figure 3.12c, calculated using the analytical 

solution of Veletsos for /H R = 2. The pressure time series at the yellow circle calculated using 

the ALE and ICFD models are transformed into the frequency domain using the Fast Fourier 

Transform (FFT). The impulsive frequencies are identified from the Fourier amplitude spectrum. 

Figures 4.33a and b present the spectrum for the ALE model, normalized by its maximum 

ordinate, for frequencies ranging between 0 and 120 Hz, in a linear format and a linear-

logarithmic format, respectively. Figures 4.33c and d present those calculated using the ICFD 

model. The peaks in the spectra at the three lowest frequencies are associated with the first three 

impulsive modes. The third mode cannot be identified from the ICFD result, but the fluid-

structure responses in the mode (90.2 Hz per the analytical solution) are considered rigid and not 

affected by the calculated frequency. Table 4.20 presents the frequencies calculated using Eq. 

(3.52) and the numerical models, and their percentage differences. The results are essentially 

identical. 
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(a) ALE, linear (b) ALE, linear-logarithmic 

  
(c) ICFD, linear (d) ICFD, linear-logarithmic 

Figure 4.33. Normalized Fourier amplitude spectra for the hydrodynamic pressure, ,imp wp , at the 

location of the yellow solid circle shown in Figure 4.2, calculated using the ALE and ICFD 

models 

 

Table 4.20. Impulsive frequencies of the flexible base-supported tank, calculated using Eq. 

(3.52) and the ALE and ICFD models, and their percentage differences 

Mode 

Frequency (Hz) Difference1 (%) 

Analytical 

solution 
ALE model ICFD model ALE model ICFD model 

First  24.1 24.1 24.4 0 4 

Second 62.9 62.8 63.8 0 1 

Third 90.2 91.1 -- 1 -- 

1. Percentage differences of the numerical results with respect to those calculated using the analytical solution 

The time series of the impulsive pressure, ,imp wp , on the tank wall, the shear force, impF , at the 

tank base in the x  direction, and the moment, ,imp wbM , at the tank base about the y  axis 

calculated using the numerical models are compared with those calculated using the analytical 
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solutions. Each impulsive response is the infinite algebraic sum of the modal responses (i.e., 

k =1 to  ): 

 , , ,

1

( , , )
N

imp w imp w k

k
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=   (4.6) 
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where the modal responses , ,imp w kp , ,imp kF , , ,imp w kM  and , ,imp b kM  are calculated using the equations 

listed in Table 4.19. The moment at the tank base, ,imp wbM , calculated using the numerical models 

includes the components, ,imp wM  and ,imp bM , associated with the hydrodynamic pressures on the 

wall and the base, respectively. Accordingly, Eq. (4.8) sums the analytical solutions of ,imp wM  

and ,imp bM , to be consistent with the numerical results. (Equations (4.6) to (4.8) are also used for 

the flexible head-supported tank in Section 4.3.3.2, but , ,imp w kp , ,imp kF , , ,imp w kM  and , ,imp b kM  are 

calculated per the equations listed in Table 4.22.) 

Per Eqs. (4.6) to (4.8), the algebraic sums for the impulsive responses include N  modes. 

Theoretically, infinite impulsive modes are required (i.e., N = , k =1 to  ), but only the first 

ten modes (i.e., N =10) are included in the calculations herein since the contributions of the 

eleventh and higher modes are negligible for the tanks and the ground motions used in the 

analysis. 

Impulsive pressure 

The time series of ,imp wp  calculated using the numerical models and Eq. (4.6) are presented at the 

location of the yellow solid circle on the tank wall shown in Figure 4.2. The cylindrical 

coordinates of the circle are used for Eq. (4.6): ( , , )r z = (0.79 m, 0, 1.2 m). Figure 4.34 enables 

a comparison of results for the ALE model and the analytical solution for the two input motions 

(i.e. S-1 and E-1). As seen in Figure 4.34b, significant response to motion E-1 is realized in the 

first 2 seconds. To reduce run time, the ICFD analysis for E-1 is performed for 2.5 seconds only. 
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(The run time of this analysis is about 8 days.) Figure 4.35 enables a comparison of results for 

the ICFD model and the analytical solution for S-1 and (the first 2.5 seconds of) E-1. 

The distributions of ,imp wp  calculated using the numerical models and Eq. (4.6) are presented 

using the green line on the tank wall shown in Figure 4.2. The cylindrical coordinates of the 

green line are used for Eq. (4.6): ( , , )r z = (0.79 m, 0, 0 to 2 m). Figures 4.36a and b present 

results at peak response in the ,imp wp  time series for the ALE model: see the open red circles in 

the corresponding panels of Figure 4.34. Figure 4.37 presents results at peak response in the 

,imp wp  time series for the ICFD model: see the open red circles in panels of Figure 4.35. The 

presented distributions in Figures 4.36 and 4.37 confirm that the greatest ,imp wp  on the wall is at a 

height of around 0.6 H , where the yellow solid circle is located. 

  
(a) S-1 (b) E-1 

Figure 4.34. Time series of the impulsive pressure, ,imp wp , at the location of the yellow solid 

circle shown in Figure 4.2, calculated using the ALE model and Eq. (4.6) 

 

  
(a) S-1 (b) E-1 

Figure 4.35. Time series of the impulsive pressure, ,imp wp , at the location of the yellow solid 

circle shown in Figure 4.2, calculated using the ICFD model and Eq. (4.6) 
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(a) S-1, t = 0.112 sec (b) E-1, t = 0.694 sec 

Figure 4.36. Distributions of the impulsive pressure, ,imp wp , along the green line on the tank wall 

shown in Figure 4.2, at the time step of a peak response (open red circle) shown in the 

corresponding panels of Figure 4.34, calculated using the ALE model and Eq. (4.6) 

 

  
(a) S-1, t = 0.114 sec (b) E-1, t = 0.696 sec 

Figure 4.37. Distributions of the impulsive pressure, ,imp wp , along the green line on the tank wall 

shown in Figure 4.2, at the time step of a peak response (open red circle) shown in the 

corresponding panels of Figure 4.35, calculated using the ICFD model and Eq. (4.6) 

Reactions: shear force and moment at the base 

The time series of impF  in the x  direction at the tank base, calculated using the numerical models 

and Eq. (4.7), are presented in Figures 4.38 and 4.39. Figure 4.38 presents results for the ALE 

model and the two input motions (i.e. S-1 and E-1). Figure 4.39 presents companion data for the 

ICFD model. For the reason given above (in the section on impulsive pressure), only the first 2.5 

seconds of motion E-1 is used.  

The time series of ,imp wbM  about the y  axis at the tank base calculated using the numerical 

models and Eq. (4.8), are presented in Figures 4.40 and 4.41. Figure 4.40 presents results for the 
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ALE model and the two input motions (i.e. S-1 and E-1). Figure 4.41 presents companion data 

for the ICFD model. Again, only the first 2.5 seconds of motion E-1 is used. 

  
(a) S-1 (b) E-1 

Figure 4.38. Time series of the impulsive shear force, impF , in the x  direction at the tank base, 

calculated using the ALE model and Eq. (4.7) 

 

  
(a) S-1 (b) E-1 

Figure 4.39. Time series of the impulsive shear force, impF , in the x  direction at the tank base, 

calculated using the ICFD model and Eq. (4.7) 

 

  
(a) S-1 (b) E-1 

Figure 4.40. Time series of the impulsive moment, ,imp wbM , about the y  axis at the tank base, 

calculated using the ALE model and Eq. (4.8) 
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(a) S-1 (b) E-1 

Figure 4.41. Time series of the impulsive moment, ,imp wbM , about the y  axis at the tank base, 

calculated using the ICFD model and Eq. (4.8) 

Discussion 

To verify the ALE and ICFD models, Figures 4.34 through 4.41 present results for the numerical 

and analytical impulsive responses of a flexible, base-supported, cylindrical tank ( R = 0.79 m, 

sH = 2m, h =0.4 mm), fully filled with fluid, and subjected to small-amplitude, unidirectional, 

horizontal motions, S-1 and E-1. The reported impulsive responses include ,imp wp  at the location 

of the yellow circle and along the green line in Figure 4.2, and impF  and ,imp wbM  at the tank base. 

For the time series presented in Figures 4.34, 4.35, and 4.38 to 4.41, the results of the analysis 

using the ALE and ICFD models are in excellent agreement with the analytical results for both 

input motions. For the distributions of ,imp wp  presented in Figures 4.36 and 4.37, the ALE and 

ICFD results show reasonable agreement with the analytical results along the wall, but both 

slightly overestimate ,imp wp  near the base.  

Table 4.21 presents the maximum absolute values of the analytical, ALE, and ICFD responses 

for ,imp wp , impF  and ,imp wbM , and the two motions. The results are extracted from the time series 

presented in Figures 4.34, 4.35, and 4.38 to 4.41. The percentage differences between the ALE 

(and ICFD) and analytical results are presented in parentheses in Table 4.21. The percentage 

differences are all less than  10%. Accordingly, the ALE and ICFD models are verified for 

calculating impulsive responses of a flexible base-supported cylindrical tank subjected to 

unidirectional horizontal motion of a small amplitude. 
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Table 4.21. Maximum absolute impulsive responses of the flexible base-supported 

tank calculated using the numerical models and the analytical solutions, extracted 

from Figures 4.34, 4.35, and 4.38 to 4.41, input motions S-1, and E-1 

Motion Response 
Analytical 

solution 
ALE (diff)1 ICFD (diff)1 

S-1 

,imp wp  (kN/m2) 0.64 0.67 (4%) 0.64 (-1%) 

impF  (kN) 2.51 2.71 (8%) 2.60 (4%) 

,imp wbM  (kN-m) 2.66 2.92 (10%) 2.83 (6%) 

M-1 

,imp wp  (kN/m2) 1.18 1.16 (-2%) 1.16 (-2%) 

impF  (kN) 4.56 4.86 (7%) 4.49 (-2%) 

,imp wbM  (kN-m) 4.88 5.30 (9%) 4.93 (1%) 

1. Percentage difference of FSI responses calculated using the numerical models with respect to 

those calculated using the analytical solutions, to the nearest 1% 

4.3.3.2 Head-supported tank 

The analytical solutions used to verify the ALE and ICFD models of the flexible, head-supported 

tank ( R = 0.79 m, sH = 2 m, H = 1.8 m, h = 0.4 mm) shown in Figures 4.26 and 4.28, 

respectively, are derived in Section 3.3.1.2 for impulsive responses, per Table 4.2. Similar to 

Veletsos (1984) for flexible base-supported tanks, the solutions used here address the impulsive 

frequency, ,imp kf  of the k th mode ( k = 1, 2, …  ), and the associated modal responses, 

including the pressure on the inner surfaces of the tank, ,imp kp  , shear force at the head of the tank, 

,imp kF , and two components of the moment at the head: , ,imp w kM , generated by , ,imp w kp  on the wall, 

and , ,imp b kM , generated by , ,imp b kp  on the base. The equation numbers used in Section 3.3.1.2 for 

the analytical solutions of the frequency and the modal responses are listed in Table 4.22. 

Table 4.22. Equation numbers of the analytical solutions for the impulsive frequency of 

the k th mode and the modal responses for flexible, head-supported cylindrical tanks, 

developed in Section 3.3.1.2 

,imp kf  , ,imp w kp  , ,imp b kp  ,imp kF  , ,imp w kM  , ,imp b kM  

(3.128) (3.134)  (3.135) (3.136) (3.139) (3.137) 
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Identical to the solutions of Veletsos (1984), the equations listed in Table 4.22 for modal 

responses are functions of an acceleration time series, ( )kA t  per Eq. (4.5). The damping ratio, k , 

used for calculating ( )kA t  is extracted from the blue line in Figure 4.29, per the analytically 

calculated frequency ,imp kf . The blue line is the damping model implemented for the numerical 

calculation (see Section 4.3.1). 

The first three impulsive frequencies, ,imp kf , of the tank calculated using the numerical models 

and Eq. (3.128) are compared. The frequencies of the tank in the numerical models are identified 

from the hydrodynamic pressure, ,imp wp , for sine-sweep motion S-S, at the red solid circle 

presented in Figure 4.2. The red solid circle is on the edge of the base and the wall of the tank, 

where the impulsive pressure is expected to be the greatest along the tank wall per the first modal 

response shown in, calculated per Eq. (3.134) for /H R = 2. The impulsive frequencies are 

identified from the Fourier amplitude spectrum of ,imp wp  calculated using Fast Fourier Transform 

(FFT). Figures 4.42a and b present the spectrum for the ALE model, normalized by its maximum 

ordinate, for frequencies ranging between 0 and 120 Hz, in a linear format and a linear-

logarithmic format, respectively. Figures 4.42c and d present those calculated using the ICFD 

model. The peaks in the spectra at the three lowest frequencies are associated with the first three 

impulsive modes. The second and third modes cannot be identified from the ICFD result, but the 

fluid-structure responses in the two modes (68 and 103.1 Hz per the analytical solution) are 

considered rigid and not affected by the calculated frequencies. Table 4.23 presents the 

frequencies calculated using Eq. (3.128) and the numerical models. The differences are less than 

4%. 

The time series of the impulsive pressure, ,imp wp , on the tank wall, the shear force, impF , at the 

head of the tank in the x  direction, and the moment, ,imp wbM , at the head about the y  axis 

calculated using the numerical models are compared with those calculated using the analytical 

solutions per Eqs. (4.6) to (4.8), in which , ,imp w kp , ,imp kF , , ,imp w kM  and , ,imp b kM  are calculated per 

the equations listed in Table 4.22. 
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(a) ALE, linear (b) ALE, linear-logarithmic 

  
(c) ICFD, linear (d) ICFD, linear-logarithmic 

Figure 4.42. Normalized Fourier amplitude spectra for the hydrodynamic pressure, ,imp wp , at the 

location of the red solid circle shown in Figure 4.2, calculated using the ALE and ICFD models 

 

 

Table 4.23. Impulsive frequencies of the flexible head-supported tank calculated using Eq. 

(3.128) and the ALE and ICFD models, and their percentage differences 

Mode 

Frequency (Hz) Difference1 (%) 

Analytical 

solution 
ALE model ICFD model ALE model ICFD model 

First  20.9 21.4 20.8 2 0 

Second 68.0 70.4 -- 4 -- 

Third 103.1 102.3 -- -1 -- 

1. Percentage differences of the numerical results with respect to those calculated using the analytical solution 
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Impulsive pressure 

The time series of ,imp wp  calculated using the numerical models and Eq. (4.6) are presented at the 

location of at the red solid circle on the tank shown in Figure 4.2. The cylindrical coordinates of 

the circle are used for Eq. (4.6): ( , , )r z = (0.79 m, 0, 0). Figure 4.43 presents results for the ALE 

model and the two input motions (i.e. S-1 and E-1). As seen in Figure 4.43b, significant response 

to motion E-1 is realized in the first 2.5 seconds. To reduce run time, the ICFD analysis for E-1 

is performed for 3 seconds only. (The run time of this analysis is about 9 days.) Figure 4.44 

enables a comparison of results for the ICFD model and the analytical solution for S-1 and (the 

first 3 seconds of) E-1. 

 

  
(a) S-1 (b) E-1 

Figure 4.43. Time series of the impulsive pressure, ,imp wp , at the location of the red solid circle 

shown in Figure 4.2, calculated using the ALE model and Eq. (4.6) 

 

  
(a) S-1 (b) E-1 

Figure 4.44. Time series of the impulsive pressure, ,imp wp , at the location of the red solid circle 

shown in Figure 4.2, calculated using the ICFD model and Eq. (4.6) 
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The distributions of ,imp wp  calculated using the numerical models and Eq. (4.6) are presented 

using the green line on the tank wall shown in Figure 4.2. The cylindrical coordinates of the 

green line are used for Eq. (4.6): ( , , )r z = (0.79 m, 0, 0 to 1.8 m). Figures 4.45a and b present 

results at peak response in the ,imp wp  time series for the ALE model: see the open red circles in 

the corresponding panels of Figure 4.43. Figure 4.46 presents results at peak response in the 

,imp wp  time series for the ICFD model: see the open red circles in panels of Figure 4.44. 

 

  
(a) S-1, t = 0.395 sec (b) E-1, t = 0.986 sec 

Figure 4.45. Distributions of the impulsive pressure, ,imp wp , along the green line on the tank wall 

shown in Figure 4.2, at the time step of a peak response shown in the corresponding panels of 

Figure 4.43, calculated using the ALE model and Eq. (4.6) 

 

  
(a) S-1, t = 0.365 sec (b) E-1, t = 0.988 sec 

Figure 4.46. Distributions of the impulsive pressure, ,imp wp , along the green line on the tank wall 

shown in Figure 4.2, at the time step of a peak response shown in the corresponding panels of 

Figure 4.44, calculated using the ICFD model and Eq. (4.6) 
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Reactions: shear force and moment at the head 

The time series of impF  in the x  direction at the head of the tank calculated using the numerical 

models and Eq. (4.7), are presented in Figures 4.47 and 4.48. Figure 4.47 presents results for the 

ALE model and the two input motions (i.e. S-1 and E-1). Figure 4.48 presents companion data 

for the ICFD model. For the reason given above (in the section on impulsive pressure), only the 

first 3 seconds of motion E-1 is used. 

  
(a) S-1 (b) E-1 

Figure 4.47. Time series of the impulsive shear force, F , in the x  direction at the head of the 

tank, calculated using the ALE model and Eq. (4.7) 

 

  
(a) S-1 (b) E-1 

Figure 4.48. Time series of the impulsive shear force, F , in the x  direction at the head of the 

tank, calculated using the ICFD model and Eq. (4.7) 

The time series of ,imp wbM  about the y  axis at the head of the tank calculated using the numerical 

models and Eq. (4.8), are presented in Figures 4.49 and 4.50. Figure 4.49 presents results for the 

ALE model and the two input motions (i.e. S-1 and E-1). Figure 4.50 presents companion data 

for the ICFD model. Again, only the first 3 seconds of motion E-1 is used. 
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(a) S-1 (b) E-1 

Figure 4.49. Time series of the moment, ,imp wbM , about the y  axis at the head of the tank, 

calculated using the ALE model and Eq. (4.8) 

 

  
(a) S-1 (b) E-1 

Figure 4.50. Time series of the impulsive moment, ,imp wbM , about the y  axis at the head of the 

tank, calculated using the ICFD model and Eq. (4.8) 

Discussion 

Figures 4.43 through 4.50 enable comparisons of numerical and analytical FSI responses to 

verify the ALE and ICFD models of a flexible, head-supported, cylindrical tank ( R = 0.79 m, 

sH = 2 m, h = 0.4 mm), filled with fluid to H = 1.8 m and subjected to small-amplitude, 

unidirectional, horizontal motions S-1 and E-1. The reported FSI responses include ,imp wp  at the 

location of the red circle and along the green line shown in Figure 4.2, and impF  and ,imp wbM  at 

the head. Similar to the comparisons made for the flexible base-supported tank presented in 

Section 4.3.3.1, the results of the analysis using the ALE and ICFD models are in excellent 

agreement with the analytical solutions, as shown in Figures 4.45 to 4.46.  

Table 4.24 presents the maximum absolute values of the analytical, ALE, and ICFD responses 

for ,imp wp , impF  and ,imp wbM , for the two input motions, extracted from the time series in Figures 
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4.43, 4.44, and 4.47 to 4.50. The percentage differences between the ALE (and ICFD) and the 

analytical results are presented in parentheses in Table 4.24. The percentage differences are all 

less than  10%. Accordingly, the ALE and ICFD models are verified for calculating impulsive 

responses of a flexible head-supported cylindrical tank subjected to unidirectional horizontal 

motion of a small amplitude. 

Table 4.24. Maximum absolute impulsive responses of the flexible head-supported 

tank calculated using the numerical models and the analytical solutions, extracted 

from Figures 4.43, 4.44, and 4.47 to 4.50, input motions S-1, and E-1 

Motion Response 
Analytical 

solution 
ALE (diff)1 ICFD (diff)1 

S-1 

,imp wp  (kN/m2) 1.63 1.76 (8%) 1.66 (2%) 

impF  (kN) 5.39 5.70 (6%) 4.98 (-8%) 

,imp wbM  (kN-m) 6.48 6.86 (6%) 5.81 (-10%) 

M-1 

,imp wp  (kN/m2) 1.09 1.06 (-3%) 1.18 (8%) 

impF  (kN) 3.59 3.77 (5%) 3.60 (0%) 

,imp wbM  (kN-m) 4.32 4.55 (5%) 4.26 (-2%) 

1. Percentage difference of FSI responses calculated using the numerical models with respect to 

those calculated using the analytical solutions, to the nearest 1% 

4.4 Closing remarks 

Earthquake shaking of a fluid (liquid)-filled advanced reactor induces fluid-structure interaction 

(FSI) between the reactor vessel, the submerged internal components, and the contained fluid. 

Verified and validated numerical models for FSI analysis will be required for the seismic design 

and qualification of the advanced reactors. Many prototype advanced reactor vessels are 

cylindrical and filled with liquid: the PFR of Figure 4.1 (International Atomic Energy Agency 

(IAEA) 2012; Jensen and Ølgaard 1995) and the liquid sodium reactor of Figure 1.2 (Gluekler 

1997). In this section, fluid-filled cylindrical tanks are analyzed using the ALE and ICFD solvers 

in LS-DYNA (2018a), and the numerical models are verified using analytical solutions presented 

in Section 3. (Verification of ALE and ICFD models for internal components are presented in 

Section 5.) 
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To verify the ALE and ICFD models, this section compares numerical and analytical results for 

impulsive and convective components of hydrodynamic pressures, reactions (i.e., shear forces 

and moments) at the support (i.e., base or head), and wave heights in tanks. Response-history 

analysis of the tanks is performed for unidirectional horizontal input motion of a small amplitude. 

No internal components are included in the analysis, namely, the interaction of the tank and its 

internal components due to the presence of the contained fluid is not considered here. The tank is 

supported at either the base or the top, and its wall is either rigid or flexible. The material used 

for the tank is carbon steel, and the contained liquid is water. According to the comparisons 

presented in Sections 4.2.3 and 4.3.3, the ALE models are verified for calculating hydrodynamic 

pressures, reactions, and convective frequencies for rigid and flexible cylindrical tanks, but are 

limited to short-duration analysis (e.g., 5 seconds) for calculating wave heights. The ICFD 

models are not verified for calculating waves (neither heights nor frequencies) but verified for 

calculating hydrodynamic pressures and reactions for rigid and flexible cylindrical tanks, if the 

wave action is not significant. Accordingly, the use of ICFD models is limited to FSI analysis 

with no wave action (e.g., full tank) or for input motions with frequency contents not significant 

at the first convective mode of the tank. 

Figure 4.1 presents the PFR, for which the vessel was constructed using stainless steel and filled 

with liquid sodium. The vessel includes multiple internal components, which are not considered 

in the verification studies of this section. Accordingly, to develop a numerical model for the 

seismic design and qualification of this reactor, a verification study would have to be performed 

beforehand, and separately, for models of: 1) fluid-structure responses of the vessel (excluding 

the internal components), and 2) interaction responses of the vessel and its internal components. 

Verification for (1) can follow the work of this section and the recommendation presented below, 

and information on verification for (2) is presented in Section 5. To verify a model for the fluid-

structure responses (i.e., model (1)), the dimensions, geometries, and materials of the vessel of 

Figure 4.1 must be idealized to accommodate the assumptions used for the analytical solutions. 

Per Table 4.2, the analytical solutions presented in Sections 3.3.1.1, 3.3.2.1, and 3.3.1.2 are 

suitable for this head-supported vessel, and their assumptions include 1) rigid or elastic vessel, 2) 

ideal fluid, and 3) small-amplitude unidirectional horizontal motions. The vessel (tank), idealized 

in the model to accommodate the assumptions, would be constructed using a rigid/elastic 
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material assigned the mechanical properties of the stainless steel, and filled with an ideal fluid 

with the density of the liquid sodium at the assumed operating temperature. The geometries and 

dimensions used for the idealized tank should represent the vessel and be adapted for the 

analytical solutions. The analytical solutions use constant values for dimensions (e.g., R , h , sH , 

and H ), and so the dish-shaped base shown in Figure 4.1 would be set aside from the model of 

the idealized tank. The dimensions of the idealized tank (that represent the vessel and 

accommodate the solutions) would be the radius R  at the head support of the vessel, its thinnest 

wall thickness h , the maximum height of the vessel sH , and the greatest depth of the contained 

fluid H . Fluid-structure responses (i.e., hydrodynamic pressures, reactions at the support, and 

wave heights) of the idealized tank subjected to small-amplitude, unidirectional, horizontal 

motions would be calculated using the model and compared with the analytical solutions. If the 

differences are less than  10%, the model should be considered to be verified. 

After verifying the model of the idealized tank (and models for interaction responses of the 

vessel and its internal components; see Section 5), a validation study would have to be performed 

using data from physical testing on a specimen representing the reactor of Figure 4.1. 

(Information on validation study is presented in Section 6.) Thereafter, a comprehensive 

numerical model for the reactor (including internal components) could be developed using the 

realistic boundary conditions and geometries shown in Figure 4.1. This comprehensive model 

would be used for calculating fluid-structure responses to three-directional seismic inputs for 

seismic design, qualification, and probabilistic risk assessment. 
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SECTION 5 

VERIFICATION OF NUMERICAL MODELS FOR SEISMIC FLUID-

STRUCTURE-INTERACTION ANALYSIS OF SUBMERGED 

COMPONENTS 

5.1 Introduction 

Figures 5.1a (Gluekler 1997) and 5.1b (TerraPower 2018) show cutaway views of prototype 

advanced reactors, each including a reactor vessel (i.e., vertical cylindrical tank), a contained 

fluid, and components internal to the vessel. Earthquake shaking of such fluid-filled advanced 

reactors induces interactions between the vessel, the contained fluid, and the internal components. 

Seismic design and qualification of the advanced reactors will require verified and validated 

numerical models for fluid-structure-interaction (FSI) analysis. These numerical models need to 

accommodate 1) realistic geometries and boundary conditions of the vessel and internal 

components, 2) three-directional seismic input, and 3) nonlinear responses of the fluid, none of 

which is possible with analytical solutions. The Arbitrary Lagrangian-Eulerian (ALE) and 

Incompressible Computational Fluid Dynamics (ICFD) solvers in LS-DYNA (Livermore 

Software Technology Corporation (LSTC) 2018) are capable of nonlinear FSI calculations for 

three-directional seismic loading.  

Section 4 presented seismic analysis using the two solvers for numerical models of vertical 

cylindrical tanks. The numerical models of the tanks were verified using the analytical solutions 

presented in Section 3, and are validated using data from earthquake-simulator tests of a 1/10th-

scale base-supported cylindrical tank, as presented in Section 6. This section develops ALE and 

ICFD models for components internal to a cylindrical tank and submerged in the contained fluid. 

Numerical results are compared with those calculated using analytical solutions to verify the 

models. Validation of the verified models will be presented in Mir (in progress), using data from 

earthquake-simulator tests of the 1/10th-scale tank including internal components supported at 

the head of the tank.  
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(a) liquid metal reactor, General Electric Company, Boston, MA, Figure 5 in Gluekler 

(1997) 

Reactor core

IHXReactor vessel

Guard vessel

RC containment

Liquid sodium pool

Top support

 

(b) liquid metal reactor, TerraPower, Bellevue, WA, 

http://terrapower.com/technologies/twr, accessed on July 4, 2018 

Figure 5.1. Prototype advanced reactors, each including a reactor vessel, internal 

components, and a contained fluid 

 

http://terrapower.com/technologies/twr
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Per Figure 5.1, internal components are generally vertical, cylindrical, pipe-type structures, such 

as the upper internal 36 , the immediate heat exchanger (IHX) 37 , and electromagnetic (EM) 

pumps38. For application to design and analysis of components in a nuclear reactor, Chen and 

Rosenberg (1975) derived analytical solutions for frequencies of two concentric pipes filled with 

fluid, as shown in Figure 5.2. The inner pipe is an internal component, and the outer pipe refers 

to the wall of the reactor vessel. The lengths and boundary conditions of the two pipes are 

identical. The pipes are filled fully: there is no free surface. When the pipes displace (e.g., due to 

seismic motions), the fluid adjacent to them generates hydrodynamic pressures on their surfaces. 

The solutions assumed the mass of the fluid contributing to the hydrodynamic pressures to be 

attached to and move with the pipes, which reduced their frequencies (i.e., the so-called added 

mass effect). Although 1) a reactor vessel and its internal components are generally not 

concentric, 2) their boundary conditions and lengths are not identical, and 3) the fluid does not 

fully fill the vessel, Chen and Rosenberg provided the most relevant information for design and 

analysis of internal components in an advanced reactor39, to the knowledge of the authors of this 

report. 

 

Figure 5.2. Two concentric cylindrical pipes with fluid fully filling the inside of the inner pipe 

and the annulus between the two pipes (Figure 1 in Chen and Rosenberg (1975)) 

To use the analytical solutions (Chen and Rosenberg) to verify numerical models herein, each 

model is composed of two fluid-filled concentric cylindrical pipes. To adopt the assumptions 

                                                 
36 Upper internal: to suspend control rods above the reactor core; the control rods can be inserted to the reactor core 

to adjust the rate of nuclear fission; see Section 1.1 for information on nuclear fission 
37 Immediate heat exchanger (IHX): to transfer hot sodium from the reactor core to other systems (e.g., steam 

turbines and energy generators) to produce electricity and transfer cold sodium to cool the core  
38 Electromagnetic (EM) pump: to circulate sodium in the reactor 
39 Section 3.6 of ASCE/SEI 4-16 (2017) uses the analytical solutions of Chen and Rosenberg, in part, to provide 

guidance for the analysis and design of submerged nuclear components. 
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used in the study (Chen and Rosenberg), the two pipes in each model are both top-supported, 

which is similar to the boundary condition of the vessel and the internal components of some 

advanced reactors (see Figure 5.1), and their heights (i.e., lengths) are identical. Two sets of 

numerical models of two fluid-filled concentric pipes with different dimensions are analyzed. In 

the first set of the models, denoted M1, the dimensions are based on those of the 1/10th-scale 

tank and the central internal component used for the earthquake-simulator tests. Loosely based 

on a prototype advanced reactor, the radius of the 1/10th-scale test tank is 0.79 m, the height is 2 

m, and the wall thickness is 7.92 mm: the outer pipe in M1. (The height and radius were also 

used for the numerical models of the tanks in Section 4.) The central internal component used for 

the earthquake-simulator tests is a round HSS 12.750.25 steel pipe (American Institute of Steel 

Construction (AISC) 2011) with a radius of 0.162 m (i.e., 12.75/2=6.375 inches) and a wall 

thickness of 6.35 mm (i.e., 0.25 inch). This radius is about 1/5th of that of the test tank (i.e. 

0.162/0.79= 0.205 1/5), selected based on the dimensions used for prototype advanced reactors. 

Per Figure 5.1a, the ratio of the radii of the internal components (e.g., EM pump and upper 

internal) to the containing vessel is about 1/5, identified using red lines. The radius and the wall 

thickness of the inner pipe in M1 are identical to those of the central internal component used for 

the tests: 0.162 m and 6.35 mm, respectively. The height of the inner pipe in M1 is 2 m, which is 

identical to that of the outer pipe to be consistent with the assumption used for the analytical 

solutions. Figure 5.3a illustrates the dimensions and boundary condition of M1. 

If the radii of the two concentric pipes are similar, the fluid-filled annulus is narrow and the 

frequencies of the inner pipe are significantly affected by the movement of the outer pipe (Chen 

and Rosenberg). Two coupled frequencies describe the motions of the two pipes displacing 

laterally in either the same or opposite directions. Additional information on the coupled 

frequencies is presented in Section 5.2.1. The second set of the models, denoted as M2, enables 

calculations of the coupled frequencies of a submerged pipe internal to an outer pipe with a 

similar radius. The inner pipe is identical to that used for M1: the radius, height, and wall 

thickness are 0.162 m, 2 m, and 6.35 mm, respectively. The height and the wall thickness of the 

outer pipe are identical to those used for M1 (i.e., 2 m and 7.92 mm, respectively), but the radius 

is reduced to 0.2 m. Figure 5.3b illustrates the dimensions and boundary conditions for M2. 
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(a) M1 (b) M2 

Figure 5.3. Dimensions and boundary conditions for two sets of numerical models of two 

fluid-filled concentric pipes 

The frequencies of the internal component (i.e., inner pipe) in both M1 and M2 are calculated by 

FSI analysis using the ALE and ICFD solvers in LS-DYNA. The two solvers cannot perform 

eigenvalue analysis. Rather, the frequencies are identified from the response history of the inner 

pipe undergoing free vibration. To achieve free vibration response, a small horizontal 

displacement is applied at the free (i.e., bottom) end of the inner pipe, and the pipe is then 

released to vibrate. Since this displacement generates the first lateral modal shape of the inner 

pipe, the associated frequencies are the focus of the analysis and verification. The 

circumferential, axial, and torsional modes are not considered. If the fluid is not included in the 

models, the frequencies of the inner pipe (involving no fluid) are dependent on its mass and 

stiffness. The frequencies of the submerged inner pipe (involving fluid), as shown in Figure 5.3, 

are dependent on its mass and stiffness, and also the added mass contributed by hydrodynamic 

pressures. To benchmark the analysis for structures (without fluid) prior to the FSI analysis, 

numerical models for the inner pipe used for M1 and M2 involving no fluid are prepared. The 

models are verified by comparing the first lateral frequencies of the inner pipe (involving no 

fluid) calculated using eigen analysis numerically and the analytical solutions with the fluid 
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density assigned to zero40, as presented in Table 5.1. (The models for the inner pipe (involving 

no fluid) are presented in Section 5.3; see Figures 5.16a, d and 5.17a, d. The eigen analysis is not 

presented.) Accordingly, for the submerged inner pipe, if the frequencies calculated using the 

numerical models and the analytical solutions are in good agreement, the added mass contributed 

by the hydrodynamic pressures on their surfaces is correctly calculated. The models that 

calculate the pressures correctly are considered verified here since other seismic FSI responses 

are all generated by the pressures: the hydrodynamic shear force and moment at the support of 

the inner pipe are associated with the integration of the pressure with respect to its surface. Since 

the free surface and the base of the pipes are not included in the numerical and analytical 

calculations, wave heights and pressures on the base are not available for a comparison. 

Section 5.2 presents the analytical solutions of Chen and Rosenberg. Calculation errors made in 

Chen and Rosenberg are corrected, and the revised analytical solutions are used hereafter in this 

section. Analytical solutions for lateral frequencies of submerged cylindrical pipes are calculated, 

including those used for M1 and M2 in Figure 5.2. Section 5.3 presents the ALE and ICFD 

models for M1 and M2. Section 5.4 verifies the models of Section 5.3 by comparing the 

numerically calculated frequencies of the inner pipes with those calculated using the analytical 

solutions (Section 5.2). Section 5.5 identifies and quantifies the calculation errors made in Chen 

and Rosenberg. Section 5.6 presents closing remarks for this section. 

Table 5.1. First lateral frequency of the inner pipe1, no fluid involved, used for M1 and M2 

shown in Figure 5.3, numerical models and analytical solution 

Numerical models2: eigen analysis 78.4 Hz 

Analytical solutions3 78.4 Hz 

Difference 0% 

1. Dimensions shown in Figure 5.3 and generic mechanical properties of carbon steel are used for the analysis. 

2. The frequencies of the inner pipe in the models presented in Figures 5.16a, d and 5.17a, d are almost 

identical. 

3. See footnote 40 on page 224. 

 

                                                 
40 The analytical solutions of Chen and Rosenberg for the frequencies of the pipes presented in Figure 5.2 involved 

the use of the densities of the fluids: 1  for the fluid inside the inner pipe and 2  for the fluid in the annulus 

between the two pipes. Assigning to for both densities achieves the frequencies for the pipes involving no fluid, 

namely, only the mechanical properties of the pipes are used in the calculation. See Section 5.2 for more 

information on the analytical solutions. 
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5.2 Analytical solutions 

Chen and Rosenberg (1975) derived analytical solutions for frequencies of two fluid-filled 

concentric pipes shown in Figure 5.2. The lengths and the boundary conditions of the two pipes 

are identical. The pipes are filled fully: there is no free surface. When the pipes displace (e.g., 

due to seismic motions), the fluid adjacent to them generates hydrodynamic pressures on their 

surfaces. The solutions assumed the mass of the fluid contributing to the hydrodynamic pressures 

to be attached to and move with the pipes, which reduced their frequencies (i.e., the so-called 

added mass effect). The hydrostatic pressure on the pipes was not included in the analysis 

because gravity was not considered. The pipes were assumed to be either elastic or rigid with a 

constant thickness; the fluid was assumed to be ideal, namely, inviscid and incompressible. Chen 

and Rosenberg derived the analytical solutions for the frequencies of lateral, circumferential, 

axial, and torsional motions of the pipes. However, only the frequencies of lateral motions are 

discussed herein, to be used to verify the results of the numerical models.  Section 5.2.1 presents 

the derivation of the analytical solutions, and the calculation errors made in Chen and Rosenberg 

are identified and corrected. Section 5.2.2 presents the results calculated using the analytical 

solutions for two fluid-filled concentric pipes with a range of dimensions. Section 5.2.3 exercises 

the calculation of frequencies using the analytical solutions for three sets of two fluid-filled 

concentric pipes. The three examples are associated with typical nuclear components in an 

advanced reactor and those used in the numerical models presented in Section 5.3. 

5.2.1 Derivation 

Figure 5.4 presents the concentric pipes in two cutaway views and introduces the variables used 

in the derivation for the analytical solutions, together with a Cartesian coordinate system ( x , y , 

z ) and a cylindrical coordinate system ( r ,  , z ). In the figure, “Pipe 1” refers to the inner pipe, 

“Pipe 2” refers to the outer pipe, “Fluid 1” refers to the fluid filling the inside of the inner pipe, 

and “Fluid 2” refers to the fluid filling the annulus between the two pipes. This numbering 

system is consistent with the subscripts of the variables using in the derivation here and those in 

Chen and Rosenberg. For the inner pipe (i.e., Pipe 1), the radius, height, and wall thickness are 

1R , 1H , and 1h , respectively; for the outer pipe (i.e., Pipe 2), the radius, height, and wall 

thickness are 2R , 2H , and 2h , respectively. Since the heights of the two pipes are identical, a 

variable H  is used for both pipes (i.e., 1 2H H H= = ). The radial, tangential, and axial 
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displacements (i.e., along the r ,  , and z  coordinates) on the wall of the inner pips are 1su , 1sv , 

and 1sw , respectively, and the counterparts for the outer pipe are 2su , 2sv , and 2sw . The radial, 

tangential, and axial velocities in the fluid inside the inner pipe (i.e., Fluid 1) are 1u , 1v , and 1w , 

respectively, and the counterparts for the fluid between the two pipes (i.e., Fluid 2) are 2u , 2v , 

and 2w 41. 
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Figure 5.4. Variables used in the analytical solutions shown on two cutaway views of two 

concentric pipes, a Cartesian coordinate system, and a cylindrical coordinate system 

Chen and Rosenberg used the equations of equilibrium for cylindrical shells provided by Flugge 

(1960) to relate the displacements of the pipes to the inertial forces and hydrodynamic forces (i.e., 

resultant forces of hydrodynamic pressures) on the pipes. Flugge equilibrated the stresses of and 

external forces on a unit area of a cylindrical shell using three differential equations42 (Eq. (13a-c) 

on page 219 in Flugge): 

                                                 
41 In Chen and Rosenberg (1975), the radial, tangential, and axial displacements along the r ,  , and z  coordinates 

were denoted as w , v , and u , respectively. However, in this report, u ,  v , and w , respectively, are used (i.e., 

u  and w  are exchanged) for the purpose of consistency with the derivations for FSI responses of cylindrical 

tanks presented in Section 3. 
42 In Flugge (1960), the radial, tangential, and axial displacements along the r ,  , and z  coordinates were denoted 

as w , v , and u , respectively. However, in this report, u ,  v , and w  are used, respectively. 
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where E ,  , R , and h  are the elastic modulus, Poisson's ratio, radius, and wall thickness of the 

cylindrical shell; su , sv , and sw  are displacements of the shell along the r ,  , and z  

coordinates, respectively; and uF , vF , and wF  are forces per unit area on the shell along the r ,  , 

and z  coordinates, respectively. Eqs. (5.1) to (5.3) can be used for any general cylindrical shell. 

In the derivation of Chen and Rosenberg, for the inner pipe shown in Figure 5.4, E ,  , R , h , 

su , sv , sw , uF , vF , and wF  in the equations were replaced by 1E , 1 , 1R , 1h , 1su , 1sv , 1sw , 1uF , 

1vF , and 1wF  (e.g., a subscript “1” was added for each variable), respectively. The corresponding 

variables for the outer pipe in Figure 5.4 were 2E , 2 , 2R , 2h , 2su , 2sv , 2sw , 2uF , 2vF , and 2wF  

(e.g., a subscript “2” was added for each variable). 

The forces (per unit area) on the inner and outer pipes included inertial forces (per unit area) and 

hydrodynamic pressures. The inertial forces were associated with the accelerations of the pipes 

in the r ,  , and z  coordinates. The hydrodynamic pressures generated by the fluid were in the 

r  direction normal to the walls of the pipes, and so were included in 1uF  and 2uF . Accordingly, 

1uF , 1vF , and 1wF  of the inner pipe were: 

 1 1 1 1 1,1 1,2u s sF h u p p = −  + −   (5.4) 

 1 1 1 1v s sF h v = −    (5.5) 

 1 1 1 1w s sF h w = −    (5.6) 

where 1s  is the density of the material of the inner pipe; 1su , 1sv , and 1sw  are the accelerations 

of the inner pipe; and 1,1p  is the hydrodynamic pressure on the inner surface of the inner pipe 
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exerted by Fluid 1, and 1,2p  is that on the outer surface exerted by Fluid 2. Figure 5.5 shows 1,1p  

and 1,2p  on a cutaway view of the two pipes accelerating in the x  direction. The forces 2uF , 2vF , 

and 2wF  on the outer pipe were: 

 2 2 1 2 2,2u s sF h u p = −  +   (5.7) 

 2 2 2 2v s sF h v = −    (5.8) 

 2 2 2 2w s sF h w = −    (5.9) 

where 2s  is the density of the material of the outer pipe; 2su , 2sv , and 2sw  are the accelerations 

of the outer pipe; and 2,2p  is the hydrodynamic pressure on the inner surface of the outer pipe 

exerted by Fluid 2, as shown in Figure 5.5. 
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Figure 5.5. Hydrodynamic pressures generated by Fluids 1 and 2 on Pipes 

1 and 2, accelerating in the x  direction 

 

The accelerations of the inner and outer pipes (i.e., 1su , 1sv , 1sw , 2su , 2sv , and 2sw ) were the 

second derivatives of corresponding displacements with respect to time. The radial, tangential, 

and axial displacements, 1su , 1sv , and 1sw , on the wall of the inner pipe were assumed to be:  
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where 1su , 1sv , and 1sw  are coefficients for the displacements;   and l  are the angular 

frequencies and the wavelength43 of the pipe in a given eigen mode. The displacements, 2su , 2sv , 

and 2sw , on the wall of the outer pipe were expressed by replacing the subscript “1” of each 

variable in Eqs. (5.10) to (5.12) with “2”: 
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As noted in Section 3, the responses of a fluid can be defined using a velocity potential. The 

pressure, p , and the velocity, vel , of the fluid are related to its velocity potential,  , per Eqs. 

(3.1) and (3.2), respectively. Eqs. (3.1) and (3.2) are repeated here: 

 ( , , )p r z
t

 


= −


  (5.16) 

 
1

( , , )vel r z r z
r r z

 


  
= = + +
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  (5.17) 

                                                 
43 The wavelength l  of a pipe is not the length (e.g., height) of the pipe, which was misused in many prior studies. 

The wavelength represents the shape in a given mode of an elastic beam with a uniform cross section. 

Timoshenko (1937) derived wavelengths in different lateral modes for a beam with the two ends 1) pinned-pinned 

(i.e., simply supported), 2) fixed-fixed, 3) fixed-free (i.e., cantilever beam), and 4) fixed-pinned. The wavelengths 

of the first lateral modal shapes (blue) of a cantilever and a simply-supported beam (black) are illustrated below: 

l=3.351H

H

 

(a) cantilever beam, l = 3.351 H  

l=2H
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(b) simple-supported beam, l = 2 H  
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where   is the density of the fluid, t  is time, and   is the gradient operator with respect to a 

cylindrical coordinate system ( r ,  , z ). The fluid velocity, vel , includes the vectors of radial, 

angular, and vertical components. The pressure, p , and the velocity, vel , calculated using   

are functions of r ,  , and z , which enables the determination of the responses for any location 

in the fluid. Given assumed fluid velocities (i.e., boundary conditions), Eqs. (5.16) and (5.17) 

were used by Chen and Rosenberg to derive the velocity potentials for the fluids filling the two 

concentric pipes (see Figure 5.2) and to calculate the fluid pressures. Chen and Rosenberg 

assumed the expression of the velocity potentials to be the form of the radial displacements of 

the pipes (i.e., 1su  and 2su ). The velocity potentials for Fluids 1 and 2, 1  and 2 , respectively, 

were: 
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where 1  and 2  are functions of r , to be solved using the assumed fluid velocities. Since 

Fluids 1 and 2 were assumed to be incompressible, 1  and 2  must satisfy Laplace's equation, 

1 2 0 = =  (see footnote 22 on page 49). Subjected to small-amplitude seismic 

motions, the fluids immediately adjacent to the wall of the pipes (i.e., at 1r R=  or 2R ) were 

assumed to move with the wall at the same radial velocities: 
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where 1u  and 2u  are the radial velocities of the two fluids calculated using Eq. (5.17), which 

leads to the second terms of Eqs. (5.20) to (5.22); 1su  and 2su  are the radial velocities of the wall 
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of the inner and outer pipes, respectively. Applying the boundary conditions per Eqs. (5.20) to 

(5.22), 1  and 2  were solved, and the velocity potentials 1  and 2  were then calculated: 
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where 1 12 /R l = , 2 22 /R l = , and 2 /r l = ; 1I  and 1K  are modified Bessel’s functions 

of the first and second kind, respectively; 1I   and 1K   are the first derivatives of 1I  and 1K  with 

respect to r , respectively (i.e., 
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). The hydrodynamic 

pressure 1,1p  generated by Fluid 1 was calculated using 1  per Eq. (5.16): 
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where 1  is the density of Fluid 1. The hydrodynamic pressures 1,2p  and 2,2p  generated by Fluid 

2 were calculated using 2  per Eq. (5.16): 
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  (5.27) 

where 2  is the density of Fluid 2. Equation (5.26) includes both 1su  and 2su , namely, the 

hydrodynamic pressure 1,2p  on the inner pipe is associated with the radial displacements of both 

the inner pipe and the outer pipe. Similarly, Eq. (5.27) includes both 1su  and 2su , and so 2,2p  on 

the outer pipe is associated with the radial displacements of both the inner pipe and the outer 
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pipe. Accordingly, the hydrodynamic pressure on each pipe generated by the fluid in the annulus 

(i.e., 1,2p  and 2,2p  in Fluid 2) is affected by the response of the other pipe, which indicates that 

Fluid 2 couples the responses of the two pipes. (If there is no fluid in the annulus between the 

two pipes, the responses of the two pipes are independent.) 

Given the displacements 1su , 1sv , and 1sw  (Eqs. (5.10) to (5.12)) and the forces 1uF , 1vF , and 1wF  

(Eqs. (5.4) to (5.6)), Chen and Rosenberg derived three equations of equilibrium for the inner 

pipe using Flugge’s equation per Eqs. (5.1) to (5.3). Similarly, given the displacements 2su , 2sv , 

and 2sw  (Eqs. (5.13) to (5.15)) and the forces 2uF , 2vF , and 2wF  (Eqs. (5.7) to (5.9)), three 

equations of equilibrium for the outer pipe were yielded. The six equations of equilibrium were 

then reformatted as Eq. (5.28). The first three rows of matrix  F  in Eq. (5.28) are associated 

with the inner pipe and the last three rows are associated with the outer pipe: 

  

1 11 12 13 14 1

1 12 22 23 1

1 13 23 33 1

6 6
2 41 44 45 46 2

2 45 55 56 2

2 46 56 66 2

0 0

0 0 0

0 0 0
0

0 0

0 0 0

0 0 0

s s

s s

s s

s s

s s

s s

u f f f f u

v f f f v

w f f f w
F

u f f f f u

v f f f v

w f f f w



     
     
     
     
 =  =    
    
    
    
     

  (5.28) 

To explain the composition and arrangement of the entries in  F , the matrix is parsed here into 

two 33 submatrices,  1F  and  2F , and other two nonzero entries, 14f  and 41f : 

  

14

1

6 6
41

2

0 0

0 0 0

0 0 0

0 0

0 0 0

0 0 0

f

F

F
f

F



  
  
  
   
 =

  
  
  
    

  (5.29) 

Matrices  1F  and  2F  are symmetric. Matrix  1F  relates the inertial forces on Pipe 1 to its 

displacements, 1su , 1sv , and 1sw , and relates the hydrodynamic pressures, 1,1p  and 1,2p , to the 
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radial displacement 1su  through 11f . All entries in  1F  are functions of the dimensions and 

mechanical properties of Pipe 1. Entry 11f  also includes dimensions and densities of Fluids 1 and 

2, both of which generate hydrodynamic pressures on Pipe 1. The entries in  1F  are: 

 
2 4 2 2 2 2

1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2
11 2

1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2

( 2 ) (1 ) ( ) ( ) ( ) ( ) ( )
1 (1 )

12 ( ) ( ) ( ) ( ) ( )

s

s s

h R I I K K I
f

R E h I h I K K I

           

      

 + − −
= + −  + −

    −
 (5.30) 

 
2

1 2
12 1 12

1

1 (3 )
24

h
f

R
 = + −   (5.31) 

 
2

1 13
13 1 1 1 1

1

1
( )

12 2

h
f i

R


  
 −

= −  + − 
 

  (5.32) 

 
2 2 2

1 1 1 1 12 2
22 1 2

1 1

1 (1 )
1 ( )(1 )

2 4

sh R
f

R E

  
 

− −
= + + −    (5.33) 

 
1

23 1

1

2
f i




+
= −    (5.34) 

 
2 2 2

1 1 1 1 12 2
33 1 2

1 1

1 (1 )
(1 )

2 12

sh R
f

R E

  
 

− −
= − − + +    (5.35) 

Matrix  2F  relates the inertial forces on Pipe 2 to its displacements, 2su , 2sv , and 2sw , and 

relates the hydrodynamic pressures, 2,2p , to the radial displacement 2su  through 44f . All entries 

in  2F  are functions of the dimensions and mechanical properties of Pipe 2, and the form of 44f  

further includes the dimensions and density of Fluid 2. Entry 44f  is: 

 
2 2 2 2
2 2 2 2 2 1 2 1 1 1 2 1 14 2

44 2 22
2 2 2 2 1 1 1 2 1 1 1 2

(1 ) ( ) ( ) ( ) ( )
1 ( 2 ) (1 )

12 ( ) ( ) ( ) ( )

s

s

h R K I I K
f

R E h I K K I

       
 

    

 − −
= + + −  +

   −
  (5.36) 

Entries 45f , 46f , 55f , 56f , and 66f  in  2F  are counterparts of 12f , 13f , 22f , 23f , and 33f  in  1F , 

respectively. Accordingly, entries 45f , 46f , 55f , 56f , and 66f  are calculated by replacing the 

dimensions and mechanical properties of Pipe 1 in Eqs. (5.31) to (5.35) with those of Pipe 2 (i.e., 

substituting the subscript “1” of each variable with “2”).  
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Entries 14f  and 41f  couple the responses of the two pipes due to the presence of Fluid 2 in the 

annulus between them. Entry 14f  relates the hydrodynamic pressure on Pipe 1 to the radial 

displacement 2su  of Pipe 2, which is associated with the second term in the second line of 1,2p  

per Eq. (5.26): 

 
2 2 2

1 1 1 2 1 1 1 1 1 1 1 1
14

1 1 1 1 1 1 2 1 1 1 2

(1 ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

s

s

R K I I K
f

E h I K K I

       

    

 − −
=

   −
  (5.37) 

Similarly, entry 41f  relates the hydrodynamic pressure on Pipe 2 to the radial displacement 1su  

of Pipe 1, which is associated with the first term in the second line of 2,2p  per Eq. (5.27): 

 
2 2 2

2 2 2 2 1 2 1 2 1 2 1 2
41

2 2 2 1 1 1 2 1 1 1 2

(1 ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

s

s

R I K K I
f

E h I K K I

       

    

 − −
= − 

   −
  (5.38) 

Note that Eqs. (5.30), (5.36), (5.37), and (5.38), as written in Chen and Rosenberg, contain 

calculation errors. These errors are identified and quantified in Section 5.5. 

The entries in  F  are rearranged here into a mass matrix,  M , and a stiffness matrix,  K , for 

the two fluid-filled concentric pipes: 

      2

6 6 6 6 6 6
F K M

  
= −   (5.39) 

The mass matrix,  M , includes the masses of the pipes and the added masses attached to the 

pipes generated by the hydrodynamic pressures. The stiffness matrix,  K , is formed by the two 

pipes only since the fluids have no stiffness. A wavelength, l , is used for the entries of  F  

based on the modal shape of interest for the two pipes (see footnote 43 on page 229). (Because 

the modal shapes of the two pipes are identical, one value of l  is used in  F .) The angular 

frequencies,  , of the two fluid-filled pipes can be calculated using either Eq. (5.40), which was 

used by Chen and Rosenberg, or Eq. (5.41), which is an alternative introduced here: 

  ( ( ) ) 0det F  =   (5.40) 

    ( )1 2( , )eig M K  
−

→   (5.41) 
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where ( )det   is the operator for calculating the determinant of a matrix, and ( )eig   is the 

operator for calculating the eigenvalues and eigenvectors of a matrix. The determinant of  ( )F   

is a six-degree polynomial function of   and so Eq. (5.40) generates six roots (solutions) for the 

angular frequencies   of the two fluid-filled pipes. The dimensions of    
1

M K
−

 are 66, and 

so Eq. (5.41) generates six eigenvalues and six eigenvectors. The square roots of the eigenvalues 

are the angular frequencies   of the pipes, and the corresponding frequencies are / 2f  = . 

The six values of   calculated using Eqs. (5.40) and (5.41) are identical. Chen and Rosenberg 

calculated   using Eq. (5.40), but the use of Eq. (5.41) is recommended here because it is 

computationally more efficient and provides six eigenvectors  , which are the modal shapes of 

the two fluid-filled pipes. The modal shapes,  , account for the interaction of the pipes and the 

fluids. The modal shapes,  , associated with the lowest two values of   involve coupled lateral 

movements of the two pipes due to entries 14f  and 41f  in  F . Entry 14f  ( 41f ) relates the 

hydrodynamic pressure on Pipe 1 (Pipe 2) to the radial displacement of Pipe 2 (Pipe 1). These 

two modes, with the two lowest values of  , are termed “coupled modes” hereafter. The other 

four modal shapes are associated with axial and torsional motions of each pipe, which are not the 

focus of this section and not discussed further. The shapes of the first and second coupled modes 

involve out-of-phase and in-phase motions of the two pipes, respectively. The motions of the two 

pipes accommodate the lateral deformations associated with the assumed wavelength l . Figure 

5.6 illustrates the two coupled modes given eigenvectors per Eq. (5.41) using an example: two 

concentric pipes supported at their tops with l = 3.351 H  (i.e., the first wavelength for a 

cantilever; footnote 43 on page 229). In the out-of-phase mode (first coupled mode; Figure 5.6a), 

the inner pipe displaces opposite to and more than the outer pipe. In the in-phase mode (second 

coupled mode; Figure 5.6b), the two pipes displace in the same direction with amplitudes that are 

effectively identical. Additional discussion on the modal lateral displacements of the two pipes in 

the two coupled modes is presented in Section 5.2.2 and Figure 5.13.  
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(a) out-of-phase (b) in-phase 

Figure 5.6. Modal shapes of coupled lateral motions, out-of-phase and in-phase, two 

fluid-filled concentric pipes, supported at the tops, l = 3.351 H  

If the outer pipe is rigid relative to the inner pipe44, the degrees-of-freedom of the outer pipe (i.e., 

2su , 2sv , and 2sw ) in the equations of equilibrium per Eq. (5.28) are set to zero. Accordingly, the 

submatrix  1F  (see Eq. (5.29)), which is extracted from  F  and associated with the degrees-of-

freedom of the inner pipe (i.e., 1su  1sv , and 1sw ), is used for the calculation of the frequencies. 

The dimensions of  1F  are 3 3, and so three values for   are generated per Eqs. (5.40) or 

(5.41). The lowest value of   is associated with a lateral mode of the inner pipe and the other 

two are associated with an axial and a torsional mode. The frequencies of the inner pipe are 

affected only by the added mass generated by the hydrodynamic pressures due to its movement 

because the rigid outer pipe does not displace and induce hydrodynamic pressures. Although 

 1F  does not consider the degrees-of-freedom of the rigid outer pipe, the calculation of the 

frequencies of the inner pipe involves the use of the radius of the outer pipe: 2R  is involved in 

                                                 
44 This assumption is made in ASCE 4-16 for FSI analysis of internal components (i.e., inner pipe) submerged in a 

fluid contained in a tank or reactor vessel (i.e., outer pipe). The tank/vessel is assumed to be rigid relative to the 

internal components. 
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the entries of  1F  (see 2  in 11f  per Eq. (5.30)). Figure 5.7 shows two sets of two fluid-filled 

concentric pipes, including identical flexible inner pipes and rigid outer pipes with different radii. 

The frequencies of the two inner pipes are different, and depend on the radii of the outer pipes, 

which defines the dimensions of the fluid in the annulus. The frequency of the inner pipe of 

Figure 5.7b is lower than that of Figure 5.7a due to a greater added mass, although the volume of 

the annular fluid of Figure 5.7b is smaller (i.e., 2 1/R R  is smaller). Additional discussion is 

presented in Section 5.2.2: frequencies and added masses for a range of 2 1/R R  are calculated 

and compared. 

Rigid outer pipe 1

Inner pipe

Rigid outer pipe 2

Inner pipe

 
Rigid outer pipe 1

Inner pipe

Rigid outer pipe 2

Inner pipe

 

(a) greater outer pipe (b) smaller outer pipe 

Figure 5.7. Two sets of two concentric pipes, including identical inner pipes and rigid 

outer pipes with different radii 

5.2.2 Results 

The corrected analytical solutions of Chen and Rosenberg are used herein to calculate 

frequencies for two fluid-filled, concentric, cylindrical pipes, as shown in Figure 5.2. Two 

boundary conditions are considered for the two concentric pipes: 1) both cantilever and 2) both 

simply-supported. Since the focus of this section is to verify numerical models for internal 

components undergoing free vibration of the first lateral modal shape, the associated frequencies 

are calculated. The first wavelengths l  for the cantilever and simply-supported pipes are 

3.351 H  and 2 H , respectively (see footnote 43 on page 229). The lateral frequencies are 

calculated for 1) the two coupled modes of the two pipes (out-of-phase and in-phase) and 2) the 

uncoupled mode of the inner pipe considering the outer pipe is rigid. To calculate the frequencies 

of the two coupled modes, the 66 matrix  F  per Eq. (5.29) is used in Eq. (5.41) to solve for 

the eigenvalues, and their square roots are the angular frequencies of the pipes,  . Six values of 
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  are obtained, and the smallest two are associated with the two coupled lateral modes, and 

denoted as lat . To calculate the frequencies of the uncoupled mode of the inner pipe, the 33 

submatrix  1F  per Eq. (5.29) is used in Eq. (5.41). Three values of   are obtained, and the 

smallest frequency is associated with the uncoupled lateral mode, lat .  

The two pipes are assumed to be fabricated using an identical material. This assumption is 

reasonable for fluid-filled advanced reactors because the vessels (the outer pipe here) and their 

internal components (referred to as inner pipes) are generally fabricated using stainless and alloy 

steels (e.g., Gluekler (1997) and Chellapandi et al. (2010)), for which the mechanical properties 

considered in the analytical solutions are almost identical. Consequently, the subscripts “1” and 

“2” for the mechanical properties of the inner and outer pipes, respectively, used in the analytical 

solutions are set aside hereafter in this section (i.e., 1 2E E E= = , 1 2  = = , 1 2s s s  = = ). 

The inner pipe is submerged in a fluid confined by the outer pipe, and so the densities of Fluids 1 

and 2 used in the analytical solutions are identical and noted as   (i.e., 1 2  = = ).  

To generalize the analytical results for different dimensions and mechanical properties of pipes 

and fluids, the frequencies of the lateral modes are expressed as follows: 

 
1

1 1

1

2

lat
lat lat

Eh
f C

R R



 
= =   (5.42) 

where latC  is a coefficient for lateral frequencies. Other variables in Eq. (5.42) were introduced 

previously. Per Eq. (5.42), the coefficient, latC , is a unitless frequency normalized using the 

elastic modulus and dimensions of the inner pipe (i.e., E , 1R , and 1h ) and the density of the fluid 

(i.e.,  ). (Equation (5.42) relates latf  and latC  using the form for the impulsive frequency and its 

coefficient for a cylindrical tank presented in Section 3.2.1.) The density of the pipes, s , is not 

included in this normalization because latf  and latC  are not sensitive to their masses. Although 

s  is involved in the calculation of latf  (see the entries in  F  per Eqs. (5.29) to (5.38)), the 

masses of the pipes are negligible by comparison to the added mass generated by the fluid, for 

the dimensions and mechanical properties used for a nuclear vessel (i.e., outer pipe) and its 
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internal component (i.e., inner pipe). Additional discussion on the added mass is presented later 

in this section (5.2.2) and Figure 5.11.  

The coefficient, latC , is insensitive45 to or independent of the mechanical properties (i.e., E ,  , 

s , and  ) of the pipes and the fluid, but dependent on the radii and height of the pipes (i.e., 1R , 

2R , and H ). Accordingly, the values of latC  are presented here for a range of radius ratios, 

2 1/R R , and height-to-radius ratios, 1/H R : 5 1/H R  30, and 2 1/R R = 1.2, 2, 5, and 10.  

Table 5.2 lists the radius ratios for internal components and the reactor vessel, 2 1/R R , (see red, 

greed, and purple lines in Figure 5.8) and the height-to-radius ratios for the internal components, 

1/H R  (see orange and blue lines in Figure 5.8), for the prototype advanced reactor shown in 

Figure 5.8 (Gluekler 1997). For the ratios listed in Table 5.2, the ranges, 5 1/H R  30 and 

2 1/R R = 1.2, 2, 5, and 10, used for the calculations here are practical. The ratios of wall 

thickness to radius for reactor vessels and the internal components typically range between 

0.0025 and 0.004 (i.e., ratios of diameter to wall thickness are between 500 and 800 (Chellapandi 

et al. 2008)). Accordingly, 1 1/h R  and 2 2/h R  used in the calculation of latC  are both assumed to 

be 0.003. However, for the dimensions (i.e., 5 1/H R  30, and 2 1/R R = 1.2, 2, 5, and 10) and 

the boundary conditions (i.e., cantilever and simply-supported) considered here, the values of 

latC  are not sensitive to thickness-to-radius ratios ranging from 0.0005 to 0.00846, if an identical 

ratio is used for both pipes (i.e., 1 1 2 2/ /h R h R= ). The two concentric pipes used here are 

assumed to be fabricated from stainless steel and the contained fluid is assumed to be water, for 

which the mechanical properties used in the calculations are listed in Table 5.3. Again, latC , is 

insensitive to or independent of the mechanical properties of the pipes and the fluid, and so the 

results presented here can be applied to pipes of a different material, and filled with a different 

fluid. 

                                                 
45 The normalization assumes the density of the pipes is significantly greater than the density of the fluid (i.e., 

1 2 1 2s s   = = ) and square of Poission’s ratios of the pipes is significantly smaller than one (i.e., 

2 2
1 2s s = 1). The effects of 1s  ( 2s ) and 1s  ( 2s ) in the normalized results are negligible. The normalized 

results are not fully independent of but rather are insensitive to the dimensions and the mechanical properties of 

the pipes and the fluid. 
46 Given a value of 1/H R  and 2 1/R R  and a boundary condition, the difference in the values of latC  calculated 

using wall thickness-to-radius ratios of 0.0005 and 0.008 is less than 10%. 
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Figure 5.8. Prototype advanced reactor (Gluekler 1997), showing the radius ratios for the 

internal components to the reactor vessel ( 2 1/R R ; red, green, and purple lines), and the 

height-to-radius ratios for the internal components ( 1/H R ; orange and blue lines)  

Table 5.2. Radius ratios for the internal components to the reactor vessel, 2 1/R R , and 

height-to-radius ratios for the internal components, 1/H R , for the advanced reactor of 

Figure 5.8 

Internal 

component 
Support cylinder (blue) 

Immediate heat exchanger (IHX) 

(orange) 

1/H R  7 23 

Internal 

component 

Upper internal 

(red) 
EM pump (red) 

Support cylinder 

(green) 
IHX (purple) 

2 1/R R  5 5 1.5 9 

 

Table 5.3. Mechanical properties of the pipes and the fluid used for the 

analytical solutions of Chen and Rosenberg 

Carbon steel 

Elastic modulus, E  1.91011 (N/m2) 

Poisson’s ratio,   0.27 

Density, s  8000 (kg/m3) 

Water Density,   1000 (kg/m3) 
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Figures 5.9 and 5.10 present the values of latC  for two cantilever and simply-supported, fluid-

filled, concentric pipes, respectively. Each panel in Figures 5.9 and 5.10 presents results for the 

two coupled modes (out-of-phase and in-phase) and the uncoupled mode, given a value of 

2 1/R R  (i.e., 1.2, 2, 5, or 10) and 5 1/H R  30. The frequencies of the out-of-phase modes (red 

solid lines) are appreciably lower than those of the in-phase modes (blue solid lines). The values 

of latC  for the uncoupled modes (i.e., black dotted lines) lie between the values of the two 

coupled modes, at a given 1/H R  and 2 1/R R .  

  

(a) 2 1/R R = 1.2 (b) 2 1/R R = 2 

  

(c) 2 1/R R = 5 (d) 2 1/R R = 10 

Figure 5.9. Frequency coefficients for two fluid-filled concentric pipes, cantilever, the first 

wavelength l = 3.351 H , coupled modes and uncoupled mode of the inner pipe  
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(a) 2 1/R R = 1.2 (b) 2 1/R R = 2 

  

(c) 2 1/R R = 5 (d) 2 1/R R = 10 

Figure 5.10. Frequency coefficients for two fluid-filled concentric pipes, simply-supported, the 

first wavelength l = 2 H , coupled modes and uncoupled mode of the inner pipe 

For all three modes (i.e., two coupled and one uncoupled) and a given 2 1/R R , the frequency 

reduces with increasing 1/H R . This outcome is expected because the stiffness of a slenderer 

pipe (i.e., greater 1/H R ) is smaller and so the frequency is lower. Given a value of 1/H R , the 

frequency increases with increasing 2 1/R R  for all three modes. Accordingly, for a given inner 

pipe of a radius 1R , the frequencies are higher if the radius of the outer pipe is increased (i.e., 

greater 2R ). The added masses on the pipes generated by the hydrodynamic pressures are 



  243 

 

calculated to investigate the reason why the frequency increases with increasing 2 1/R R . As 

presented in Figure 5.5, if the two pipes displace in the x+  direction, the hydrodynamic 

pressures, 1,1 1,2( )p p−  on the inner pipe and 2,2p  on the outer pipe, generate resultant shear 

forces in the x−  direction (i.e., against the movement of the pipes). These hydrodynamic shear 

forces (i.e., contribution of the inertial forces on the pipes are not included) per unit length on the 

inner and outer pipes, termed 1,xV  and 2,xV , respectively, are the integrals of the pressures with 

respect to their perimeters: 

 
2

1, 1,1 1,2 1

0

( ) cosxV p p R d


 = −  (5.43) 

 
2

2, 2,2 2

0

cosxV p R d


 =   (5.44) 

Given 1,1p , 1,2p , and 2,2p  per Eqs. (5.25), (5.26), and (5.27), respectively, 1,xV  and 2,xV  are 

calculated and both functions of the radial displacements of the two pipes, 1su  and 2su . The 

hydrodynamic shear forces, which are opposite in sign to the movement of the pipes, are 

equivalent to the inertial forces of the fluid that is attached to and accelerates with the pipes in 

the x  direction47. The mass of this involved fluid is the added mass on the pipes, which reduces 

their lateral frequencies. Accordingly, the hydrodynamic shear forces (per unit length), 1,xV  and 

2,xV , are related to the added masses (per unit length) and the x -directional accelerations of the 

pipes, 1 / cossu   and 2 / cossu  : 

 1, 1,1 1 1,2 2/ cos / cosx s sV M u M u  =  +   (5.45) 

 2, 2,1 1 2,2 2/ cos / cosx s sV M u M u  =  +   (5.46) 

where 1,1M , 1,2M , 2,1M , and 2,2M  are the added masses. Both 1,1M  and 1,2M  contribute to the 

shear force on the inner pipe, 1,xV , and are associated with the motion of the inner pipe and its 

interaction with the outer pipe, respectively. Similarly, the shear force on the outer pipe, 2,xV , is a 

                                                 
47 Per Newton’s law, the direction of the inertial force on a moving mass, m , is opposite to that of its acceleration, 

a . If the mass accelerates in the x+  direction, the inertial force, F ma= , is in the x−  direction. 
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function of 2,1M  and 2,2M , which are associated with its interaction with the inner pipe and the 

motion of the outer pipe, respectively.  

Per Eqs. (5.43), (5.44), (5.45), and (5.46), these added masses are calculated here for 1/H R = 20 

and 1.2 2 1/R R  10. Consistent with the calculation for latC  in Figures 5.9 and 5.10, 1 1/h R  and 

2 2/h R  of 0.003 and the mechanical properties listed in Table 5.3 are used for calculating the 

added masses. Two boundary conditions are considered for the two concentric pipes: cantilever 

and simply-supported, for which the first wavelengths, l , are 3.351 H  and 2 H , respectively. 

Figure 5.11 presents the ratios of the added mass to the mass of the corresponding pipe (termed 

hereafter the added-mass ratio). The masses of the inner and outer pipes (per unit length) are 

1 1 12s sm R h =  and 2 2 22s sm R h = , respectively. Per Figure 5.11, 1,1M  and 2,2M  are positive, 

and 1,2M  and 2,1M  are negative: the added mass on each pipe associated with its motion is 

positive, and that associated with the interaction with the other pipe is negative. Accordingly, if a 

pipe moves in the x+  direction (i.e., positive 1 / cossu   or 1 / cossu  ), the added mass on this 

pipe (i.e., 1,1M  or 2,2M ) generates a positive inertial force, and that on the other pipe (refers to 

1,2M  or 2,1M ) generates a negative inertial force. The positive and negative inertial forces are in 

the x−  and x+  directions (see footnote 47 on page 239). The absolute values of the added-mass 

ratios, 1,1 1/ sM m , 1,2 1/ sM m , 2,1 2/ sM m , and 2,2 2/ sM m , all reduce with increasing 2 1/R R . 

Accordingly, the frequencies, for which the coefficients latC  are presented in Figures 5.9 and 

5.10, increase with increasing 2 1/R R  due to the reduced added-mass ratio. The added masses 

(per unit length) are calculated for the upper internal of Figure 5.8, assumed here to be 

submerged in a fluid contained by a cylindrical tank (i.e., outer pipe) with a range of radius. The 

radius, 1R , of the upper internal (i.e., inner pipe) is around 1 m, the radius, 2R , of the outer pipe 

is assumed to range between 1.2 m and 5 m, the heights of the two pipes are assumed to be 20 m. 

(The radius and height of the reactor vessel of Figure 5.8 are around 5 m and 20 m, respectively.) 

Again, 1 1 2 2/ /h R h R= = 0.003 and the mechanical properties listed in Table 5.3 are used for the 

calculation. Both the inner and outer pipes are assumed to be head-supported, and the first modal 

wavelength for cantilevers is used for the calculation: l = 3.351 H . Figure 5.12 presents the 

added masses (per unit length): 1,1M  and 1,2M  for the upper internal (i.e., inner pipe), and 2,1M , 
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and 2,2M  for the outer pipe, together with their summation (i.e., total added mass; 

1,1 1,2 2,1 2,2( )M M M M+ + + , shown as a black dash-dotted line. The total added mass increases 

with increasing 2 1/R R  due to the greater volume of the fluid in the annulus between the pipes. 

The total added mass is almost identical to but less than the total fluid mass (per unit length), 

2

2R , shown as a light blue line in Figure 5.12: a significant fraction of the fluid is involved in 

the first modal motion of the two pipes. The absolute values of 1,1M , 1,2M , and 2,1M  all reduce 

with increasing 2 1/R R , whereas 2,2M  increases significantly and is the greatest of the four. 

Accordingly, a majority mass of the involved fluid contributes to the hydrodynamic shear force 

on the outer pipe. 

 

 

  

(a) cantilever, l = 3.351 H  (b) simply-supported, l = 2 H  

Figure 5.11. Ratios of the added masses to the masses of the pipes ( 1 1 12s sm R h =  and 

2 2 22s sm R h = ), 1.2 2 1/R R  10, 1/H R = 20, 1 1 2 2/ /h R h R= = 0.003, mechanical properties 

per Table 5.3 
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Figure 5.12. Added mass per unit length, 1R = 1 m, H = 20 m, 1.2 m 2R  5 m, 

1 1 2 2/ /h R h R= = 0.003, mechanical properties per Table 5.3, l = 3.351 H  

Per Figures 5.9 and 5.10, the values of latC  for the out-of-phase coupled mode move closer to 

those of the uncoupled mode with increasing values of 2 1/R R  and becomes identical at 

2 1/R R = 5 and 10, for both boundary conditions. To investigate why the frequency (calculated 

using latC  per Eq. (5.42)) of the out-of-phase coupled mode is similar to that in the uncoupled 

mode with 2 1/R R  5, the lateral displacements of the pipes in these two modes are compared. 

The amplitudes of the modal lateral displacements (see Eqs. (5.10) and (5.13)) are the 1su - and 

2su -components of the eigenvectors (i.e., modal shapes). Figure 5.13 presents the amplitudes of 

the two pipes in the out-of-phase coupled mode (red solid and dashed lines) and the inner pipe in 

the uncoupled mode (black dotted lines) for 1/H R = 20 and 1.2 2 1/R R  10, together with 

those in the in-phase coupled mode (blue solid and dashed lines). For each boundary condition, 

the presented amplitudes of the modal lateral displacements are normalized by the value for the 

inner pipe in the uncoupled mode at a given 2 1/R R . (Consequently, the amplitudes for the inner 

pipe in the uncoupled mode are unity.) For each boundary condition, in the out-of-phase mode, 

the amplitude of the inner pipe (red solid line) is greater than that of the outer pipe (red dashed 

line). The amplitude of the modal lateral displacement of the inner pipe in the out-of-phase mode 

increases and moves closer to that in the uncoupled mode (black dotted line), whereas the 

displacement of the outer pipe reduces to zero for 2 1/R R  4. Consequently, the outer pipe can  
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(a) cantilever, l = 3.351 H  

 
(b) simply-supported, l = 2 H  

Figure 5.13. Normalized amplitudes of modal lateral displacements of the two fluid-filled 

concentric pipes, out-of-phase coupled, in-phase coupled, and uncoupled modes, 1/H R = 20 

and 1.2 2 1/R R  10, the first wavelength 

be considered as rigid if 2 1/R R  4. (The directions of the lateral movements of the two pipes in 

the out-of-phase mode are opposite, as shown in Figure 5.6a, and so the amplitudes of the inner 

pipe are positive and those of the outer pipe are negative for both boundary conditions.) In the in-

phase mode, the amplitudes of the two pipes shown in Figure 5.13 are similar for a small value 
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of 2 1/R R  (e.g., 2 1/R R  4). The amplitude of the outer pipe (blue dashed lines) increases, but 

that of the inner pipe (blue solid lines) decreases with increasing 2 1/R R . Consequently, the 

movement of the outer pipe becomes more significant with respect to that of the inner pipe with 

increasing 2 1/R R .  

If the value of 2 1/R R  for two flexible concentric pipes is greater than 4, namely, the distance 

between the walls of the two pipes is significant, the hydrodynamic pressure on the inner pipe is 

not affected by the motion of the outer pipe. Accordingly, the entries 14f  and 41f  in  F  (see Eq. 

(5.29)), which couple the responses of the two pipes due to the hydrodynamic pressures of Fluid 

2, can be disregarded: 

  

1

2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

F

F

F
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  
   
 =

  
  
  
    

  (5.47) 

Per Eq. (5.47), the three equations of equilibrium (see Eq. (5.28)) for the inner pipe, which are 

associated with the first three rows of  F , are then independent of those for the outer pipe, 

which are associated with the last three rows of  F . Since there is no seismic interaction 

between the two pipes, the outer pipe can be considered as rigid to calculate the frequency of the 

inner pipe. Consequently, if the radii of two flexible concentric pipes are significantly different, 

the frequency (see Figures 5.9 and 5.10) and modal amplitude (see Figure 5.13) of the inner pipe 

of the first coupled mode are identical to those of the uncoupled mode. 

5.2.3 Calculations of frequencies for submerged components 

In this section, the lateral frequencies for three sets of two fluid-filled, concentric, cylindrical 

pipes are calculated using the corrected analytical solutions of Chen and Rosenberg. The lateral 

frequencies associated with the first modal shape of the pipes are calculated for 1) the two 

coupled modes, and 2) the uncoupled mode of the inner pipe (assuming the outer pipe to be 

rigid). The two pipes in the first set are based on sample nuclear components: a reactor vessel 
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and a reactor jacket48 in the prototype fast reactor (PFR) in Dounreay, Scotland, presented in 

Figure 5.14a. The other two sets are identical to the pipes used for the numerical models 

presented in Section 5.3: M1 and M2, for which the schematic views were presented in Figure 

5.3. Analytical results for M1 and M2 are used to verify the corresponding numerical models.  
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(a) PFR, Dounreay, Scotland (Figure 2.44 in 

IAEA (2012)) 

(b) N1, simplifying the reactor vessel and 

reactor jacket in panel (a) 

Figure 5.14. Sample nuclear components and their simplified geometries and boundary 

conditions used for the analytical solutions 

The reactor vessel and the reactor jacket in the PFR are identified in blue and red, respectively, 

in Figure 5.14a. The reactor vessel was constructed using stainless steel with a diameter of 12.2 

m, a height of 15.2 m, and a wall thickness of 12.7 mm, and was filled with liquid sodium 

(Jensen and Ølgaard 1995). The reactor vessel was supported at its top by a head. The reactor 

jacket in the reactor vessel was a stainless steel shell (Jensen and Ølgaard 1995). The dimensions 

and boundary condition of the reactor jacket were not available in prior studies and documents, 

to the knowledge of the authors, but the dimensions can be estimated based on the drawing of 

Figure 5.14a. More information on the PFR can be found in Jensen and Ølgaard (1995) and 

                                                 
48 The reactor jacket in the PFR of Figure 5.14a separates the hot liquid sodium surrounding the reactor core and the 

cold liquid sodium released from the intermediate heat exchanger shown in Figure 5.14a (Jensen and Ølgaard 

1995). 
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IAEA (2012). To employ the corrected analytical solutions of Chen and Rosenberg, the 

geometries of the reactor vessel and the reactor jacket of the PFR are simplified to two fluid-

filled, concentric, cylindrical pipes shown in Figure 5.14b, denoted here as N1. Other 

components internal to the reactor vessel are ignored, and the free surface of the liquid sodium is 

not considered. The dimensions and the mechanical properties of the two pipes used in the 

analytical solutions are listed in Tables 5.4 and 5.5, respectively. Generic mechanical properties 

for stainless steel are used for the two pipes (i.e., 1 2E E= = 1.9 1011 N/m2, 1 2s s = = 8000 

kg/m3, and 1 2s s = = 0.3); the density of liquid sodium is assigned to the fluid (i.e., 

1 2  = = =968 kg/m3). The radius, height, and wall thickness of the reactor vessel of the PFR 

are applied to the outer pipes (i.e., 2R = 6.1 m, 2H = 15.2 m, and 2h =12.7 mm). The radius of 

the inner pipe, 1R , is assumed to be 2.9 m, estimated based on the bottom end of the reactor 

jacket in the drawing of Figure 5.14a. The wall thickness of the reactor jacket is not available in 

Figure 5.14a. Somewhat arbitrarily, the wall thickness of the inner pipe, 1h , is assumed to be 6 

mm, to achieve a wall thickness-to-radius ratio identical to that of the outer pipe (i.e., 

1 1 2 2/ /h R h R= =0.0021). To be consistent with the assumptions used in the analytical solutions, 

the height of the inner pipe 1H  is 15.2 m, identical to that of the outer pipe (i.e., 

1 2H H H= = = 15.2 m). The boundary conditions for the outer and inner pipes must be identical 

for comparison with analytical solutions. Given that the reactor vessel is supported at its head, 

the two pipes in N1 are top-supported, namely, cantilevers fixed at the top end and free at the 

bottom end. The first wavelength, l , of the two cantilever pipes is 3.351 H  (Timoshenko 1937). 

 

Table 5.4. Dimensions used for the analytical solutions for three sets of two fluid-filled 

concentric pipes shown in Figures 5.14 and 5.3 

 1R  (m) 2R  (m) 1h  (mm) 2h  (mm) H  (m) 
2 1/R R  1/H R  1 1/h R  

N1 2.9 6.1 6 12.7 15.2 2.1 5.2 0.0021 

M1 0.162 0.79 6.35 7.92 2 5.2 12.3 0.04 

M2 0.162 0.2 6.35 7.92 2 1.3 12.3 0.04 
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Table 5.5. Mechanical properties used for the analytical solutions for three sets of two 

fluid-filled concentric pipes shown in Figures 5.14 and 5.3 

 1E , 2E  (N/m2) 1s , 2s  (kg/m3) 1s , 2s    (kg/m3) 

N1 1.91011 8000 0.3 968 

M1 21011 7850 0.27 1000 

M2 21011 7850 0.27 1000 

The dimensions, mechanical properties, and boundary conditions of the numerical and analytical 

models for M1 and M2 are identical for the calculation of lateral frequencies. The dimensions of 

M1 and M2 are listed in Table 5.4, which are taken from Figure 5.3. The mechanical properties 

are listed in Table 5.5: the two concentric pipes in each of M1 and M2 are of carbon steel (i.e., 

1 2E E= = 21011 N/m2, 1 2s s = =7850 kg/m3, and 1 2s s = = 0.27), and the fluid is water (i.e., 

 = 1000 kg/m3). The pipes in both M1 and M2 are top-supported (i.e., cantilever), and so the 

first wavelength l = 3.351 H . More information on the numerical models of M1 and M2 can be 

found in Section 5.3. 

Below, the lateral frequencies of two fluid-filled concentric pipes are calculated for N1, M1, and 

M2 shown in Figures 5.14 and 5.3. The frequency coefficient, latC , presented in Section 5.2.2, 

which is suitable for reactor components with typical wall thickness-to-radius ratios (i.e., 0.0005 

to 0.008; see footnote 46 on page 239), is used to calculate the frequencies of N1, for which 

1 1/h R  is 0.0021 (see Table 5.4). The two pipes in N1 are cantilevers and the radius ratio, 2 1/R R , 

is 2.1 (see Table 5.4), and so results for latC  in Figure 5.9b are used, presented here again in 

Figure 5.15. Based on the height-to-radius ratio, 1/H R , of 5.2 (see Table 5.4), the values of latC  

are extracted from Figure 5.15: the vertical green line. The values for latC  are listed in Table 5.6 

for 1) the out-of-phase mode, 2) the in-phase mode, and 3) the uncoupled mode of the inner pipe. 

Given these values of latC , the corresponding frequencies, latf , are calculated per Eq. (5.42), and 

listed in Table 5.6. 
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0.0293

0.0119

0.0113

 

Figure 5.15. Extracted frequency coefficients for N1 from Figure 5.9b, the coupled modes 

and the uncoupled mode of the inner pipe, associate with the first wavelength, l = 3.351 H  

 

Table 5.6. Lateral frequencies of the two fluid-filled concentric pipes shown in Figures 

5.14 and 5.3, associated with the first wavelength 

Mode Coupled, out-of-phase Coupled, in-phase Uncoupled, inner pipe 

Coefficient 

and frequency 
latC  latf  (Hz) latC  latf  (Hz) latC  latf  (Hz) 

N1 0.0113 2.5 0.0293 6.6 0.0119 2.6 

Frequency latf  (Hz) latf  (Hz) latf  (Hz) 

M1 37.9 98.9 38.0 

M2 20.9 63.7 24.7 
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The frequency coefficients, latC , presented in Section 5.2.2 do not apply to M1 and M2 because 

their ratio 1 1/h R = 0.04, which is about an order of magnitude greater than those of nuclear 

components49, and beyond the range of 1 1/h R  considered in latC  (i.e., 0.0005 to 0.008). The 

frequencies of M1 and M2 are calculated using the analytical process presented in Section 5.2.1.  

Matrices  F  and  1F  are constructed for each of M1 and M2 using the entries per Eqs. (5.30) 

to (5.38). For the two coupled modes,  F  is used in Eq. (5.41) to perform eigenvalue analysis. 

The angular frequencies,  , of the two pipes are the square roots of the eigenvalues. The 

smallest   is the out-of-phase angular frequency, and the second smallest   is the in-phase 

angular frequency. For the uncoupled mode,  1F  is used, and the smallest   calculated from the 

eigenvalue analysis is the uncoupled angular frequency of the inner pipe. The calculated 

frequencies for the two coupled modes and the uncoupled mode are listed in Table 5.6. These 

results are used to verify the corresponding numerical models presented in Section 5.3. 

5.3 Numerical models and analysis 

Numerical models of two fluid-filled, concentric, cylindrical pipes are analyzed: M1 and M2, as 

shown in Figure 5.3. Both pipes in each model are top-supported. Fluid-structure interaction (FSI) 

analysis for each of M1 and M2 is performed using the ALE and ICFD solvers in LS-DYNA to 

calculate lateral frequencies of the submerged (i.e., inner) pipes. The third and the fourth rows of 

Table 5.4 lists the dimensions of M1 and M2, respectively, consistent with those shown in Figure 

5.3. Figure 5.16 presents the ALE models and the global coordinate system ( x , y , z ). Figures 

5.16a and d present the finite element meshes for the pipes in the ALE models of M1 and M2, 

respectively. The outer pipe is shown in dark blue and the inner pipe is shown in green for each 

model. Figures 5.16b and e present the finite element meshes for the fluid, shown in yellow, for 

M1 and M2, respectively. The pipes and the fluid share nodes at their interfaces. The pipes are 

modeled using Lagrangian, four-node, shell (i.e., quadrilateral) elements, and the fluid is 

modeled using Eulerian, eight-node, solid (i.e., brick) elements. The types and numbers of 

                                                 
49 The dimensions of M1 and M2 are based on the 1/10th-scale tank and its central internal component (i.e., 

cylindrical pipe) used in the earthquake-simulator tests. The 1/10th-scale test tank and the internal component are 

constructed using available steel cylindrical pipes. The dimensions of the pipes are selected based on the height-

to-radius ratio of a prototype advanced reactor, but their thicknesses are not consistent with the 1/10th length 

scale.  
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elements used for the ALE models are listed in Table 5.7. As noted in Section 4.1, Eulerian 

elements define a grid of integration points for the fluid domain. The fluid response is calculated 

at the integration points in each grid cell. Figures 5.16c and f present the fluid filling in the pipes 

for M1 and M2, respectively, at the first step of the analysis (i.e., time t = 0).  

 

   

(a) pipes, M1 (b) fluid, M1 (c) pipes and fluid, M1, t = 0 

   

(d) pipes, M2 (e) fluid, M2 (f) pipes and fluid, M2, t = 0 

Figure 5.16. ALE models, two fluid-filled concentric pipes, M1 and M2 

 

Table 5.7. Types and numbers of elements for the pipes and fluid in the ALE models 

 Inner pipe Outer pipe Fluid  

Element type Lagrangian four-node shell Eulerian eight-node solid 

M1 1600 1600 45600 

M2 2800 2800 60200 
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Figure 5.17 presents the ICFD models and the global coordinate system ( x , y , z ). Figures 

5.17a and d show the finite element meshes for the pipes in M1 and M2, respectively: inner pipes 

in blue and the outer pipes in green. The models of the fluid are defined by its boundary surfaces. 

Figures 5.17b and e present half models to show the fluid surfaces in M1 and M2, respectively. 

The fluid domain in each model is defined using four surfaces: 1) adjacent to the outer pipe 

(yellow), 2) adjacent to the inner pipe (light blue), 3) horizontally at the top of the two pipes 

(pink), and 4) horizontally at the base of the two pipes (dark blue). The pipes are constructed 

using Lagrangian four-node shell elements, and the fluid surfaces are constructed using 

Lagrangian three-node shell (i.e., triangular) elements. The types and numbers of elements used 

for the ICFD models are listed in Table 5.8. The pipes and the fluid surfaces do not share nodes  

   

(a) pipes, M1 (b) fluid surfaces, M1 (c) fluid, M1, t = 0 

   

(d) pipes, M2 (e) fluid surfaces, M2 (f) fluid, M2, t = 0 

Figure 5.17. ICFD models, two fluid-filled concentric pipes, M1 and M2 
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Table 5.8. Types and numbers of elements for the pipes and fluid surfaces in the 

ICFD models 

 Inner pipe Outer pipe Fluid surfaces 

Element type Lagrangian four-node shell Lagrangian three-node shell 

M1 700 2800 19120 

M2 2800 3360 27424 

at their interfaces. To model fluid-structure response, the *ICFD_BOUNDARY_FSI card in the 

LS-DYNA deck is assigned to the fluid surfaces adjacent to the pipes: yellow and light blue in 

Figures 5.17b and e. The *MESH_EMBEDSHELL card is assigned to the light blue fluid surface 

to model the fluid domain separated by the submerged shell elements of the inner pipe. The fluid 

domain is automatically meshed using Lagrangian, four-node, solid (i.e., tetrahedral) elements by 

the ICFD solver at the first step of the analysis (i.e., t = 0): see Figures 5.17c and f for M1 and 

M2, respectively. 

Frequencies are calculated using each model (i.e., ALE and ICFD models for M1 and M2) for 1) 

the two modes involving coupled movements of the two pipes (i.e., out-of-phase and in-phase 

modes; see Figure 5.6), and 2) the uncoupled mode of the inner pipe. To calculate the two 

coupled frequencies, the elements of both pipes in each model are assigned to be elastic. To 

calculate the uncoupled frequency, the elements of the inner pipe in each model are assigned to 

be elastic and those of the outer pipe are assigned to be rigid. Mechanical properties consistent 

with carbon steel are used for both elastic and rigid pipes, including a density s  of 8000 kg/m3, 

an elastic modulus sE  of 21011 N/m2, and a Poisson’s ratio s  of 0.27. Although the response 

of the elements assigned a rigid material is not affected by the elastic modulus and Poisson’s 

ratio, LS-DYNA requires these mechanical properties to be defined. No damping is applied to 

the pipes.   

The corrected analytical solutions (Chen and Rosenberg) used to verify the numerical models 

were developed for ideal fluids, which were inviscid and incompressible (see Section 5.2). The 

properties of the fluid used in the numerical models must be consistent with those used in the 

analytical solutions. Accordingly, the fluid in each model is assigned the density of water, 



  257 

 

namely w = 1000 kg/m3, and a viscosity a  of 0 to be inviscid. A bulk modulus wK  of 

2.15 109 N/m2, consistent with water, is used for the ALE models, and implemented using the 

*EOS_LINEAR_POLYNOMIAL card (termed 1C  in the card). The bulk modulus of water is 

sufficiently large to achieve incompressibility, based on the results of a sensitivity analysis 

presented in Section 4.3.1. The bulk modulus is not used in the ICFD analysis because the solver 

can only accommodate incompressible fluids. Table 5.9 lists mechanical properties assigned to 

the elements in the ALE and ICFD models for both M1 and M2. The mass of each component of 

the numerical models is listed in Table 5.10. No gravitational acceleration is assigned to the 

models since gravity was not considered in the analytical solutions. 

Table 5.9. Mechanical properties assigned to the elements of the pipes and 

water, ALE and ICFD models 

  ALE ICFD 

Pipes 

Density, s  8000 kg/m3 

Elastic modulus, sE  21011 N/m2 

Poisson’s ratio, s  0.27 

Water 

Density, w   1000 kg/m3 

Viscosity, w  0 

Bulk modulus, wK   2.15109 N/m2 --1 

1. The ICFD solver analyzes only incompressible fluids and so wK  is not used.  

 

Table 5.10. Mass of each component of the ALE and ICFD models, 

pipes and water, M1 and M2 

Components 
Mass (kg) 

M1 M2 

Outer pipe 629 159 

Inner pipe 103 103 

Water 3921 251 

The ALE and ICFD solvers cannot perform eigenvalue analysis, and so frequencies are identified 

from the response histories of the submerged component (i.e., inner pipe) undergoing free 

vibration. To achieve free vibration response, the displacement time series shown in Figure 5.18 

is applied at the free end (i.e., bottom) of the inner pipe in each model in the x  direction, and the 
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pipe is then released to vibrate. The peak displacement is 15 mm, which is less than 1% of the 

height of the inner pipe (0.01 H = 20 mm). This displacement generates the first lateral modal 

shape of the inner pipe, and the associated frequencies (i.e., two coupled and one uncoupled) are 

the focus of the analysis and verification. The circumferential, axial, and torsional modes are not 

considered. A rigid diaphragm is assigned to the nodes at the free end of the inner pipe in each 

model through *CONSTRAINT_NODAL_RIGID_BODY card, and the displacement time series 

is applied at the center of the diaphragm. The rigid diaphragm makes the assigned set of nodes 

translate and rotate as a rigid body, and prevents circumferential deformation due to the applied 

displacement. Figure 5.19 shows the rigid diaphragm at the free end of the inner pipe (shown as 

yellow lines) in the ICFD model for M1. Response-history analysis for the ALE and ICFD 

models is performed for about 2 seconds after the pipe is released (i.e., at 0.03 sec in Figure 5.18) 

to vibrate freely. The displacement time series of the free vibration at the center of the rigid 

diaphragm is transformed into the frequency domain using the Fast Fourier Transform (FFT). 

The frequencies of the inner pipe associated with the first lateral modal shape are identified from 

the Fourier amplitude spectrum. The results calculated using the ALE and ICFD models are 

presented in Section 5.4 and compared with those calculated using the analytical solutions 

(Section 5.2.3) to verify the numerical models. 

 

 

Figure 5.18. Displacement applied at the free end of the inner pipe in the x  direction 
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Rigid diaphragm

 
Figure 5.19. Rigid diaphragm (yellow lines) at the free end of the inner pipe, the 

ICFD model for M1 

5.4 Results and verification 

Figures 5.20a and b present Fourier amplitude spectra for the displacement at the center of the 

rigid diaphragm of the inner pipe in M1 and M2, respectively, calculated using the ALE models. 

Figures 5.21a and b present those calculated using the ICFD models for M1 and M2, respectively. 

Each Fourier amplitude spectrum shown in the figures is normalized by its maximum ordinate. 

The blue and red spectra are calculated using the displacement of the inner pipe, as the outer pipe 

is assigned to be elastic and rigid, respectively. Accordingly, the peaks in the blue spectra are 

associated with the coupled frequencies, and those in the red spectra are associated with the 

uncoupled frequencies. Table 5.11 lists the frequencies identified from the spectra for both M1 

and M2, analyzed using the ALE and ICFD models. 

  

(a) M1, 2 1/R R = 5.2 (b) M2, 2 1/R R = 1.3 

Figure 5.20. Normalized Fourier amplitude spectra for the displacement at the center of the 

rigid diaphragm of the inner pipes, ALE models for M1 and M2 
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(a) M1, 2 1/R R = 5.2 (b) M2, 2 1/R R = 1.3 

Figure 5.21. Normalized Fourier amplitude spectra for the displacement at the center of the 

rigid diaphragm of the inner pipes, ICFD models for M1 and M2 

 

Table 5.11. Coupled and uncoupled lateral frequencies of the inner pipes, calculated using the 

ALE and ICFD models and the analytical solutions, M1 and M2 

Model Mode 

Frequency1 (Hz) Difference2 (%) 

ALE 

model 

ICFD 

model 

Analytical 

solutions 

ALE 

model 

ICFD 

model 

M1 

First coupled, out-of-phase 38 37 38 -1 -2 

Second coupled, in-phase -- -- 99 -- -- 

Uncoupled 38 37 38 -1 -2 

M2 

First coupled, out-of-phase 20 22 21 -3 4 

Second coupled, in-phase 64 65 64 1 2 

Uncoupled 24 24 25 -4 -5 

1. Frequencies of coupled and uncoupled modes identified through the blue and red spectra, respectively, shown in 

Figures 5.20 and 5.21. Coupled modes: 1) lower frequency, out-of-phase; 2) higher frequency, in-phase 

2. Percentage differences of the numerical results with respect to those calculated using the analytical solutions 

Per Figures 5.20a and 5.21a and Table 5.11, for M1 ( 2 1/R R = 5.2), the frequencies of the first 

coupled and uncoupled modes are identical: 38 Hz for the ALE models and 37 Hz for the ICFD 

models. As noted in Section 5.2.2, if the radii of two flexible fluid-filled pipes are significantly 

different (e.g., 2 1/R R  4), the frequency of the first coupled mode (i.e., the out-of-phase mode) 

is identical to that of the uncoupled mode. (See Figure 5.9: latC  in the first coupled and 
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uncoupled modes are identical for 2 1/R R = 5 and 10). The frequency of the second coupled 

mode cannot be identified from the blue spectra because the displacement amplitude in the mode 

is too small. 

Per Figures 5.20b and 5.21b for M2 ( 2 1/R R = 1.3), two peaks at different frequencies are shown 

in each blue spectrum, which are associated with the two coupled modes. Per the blue spectra, 

the two coupled frequencies calculated using the ALE model are 20 and 64 Hz, and those 

calculated using the ICFD model are 22 and 65 Hz, listed in Table 5.11. The uncoupled 

frequency is 24 Hz, identified from the red spectra presented in Figures 5.20b and 5.21b for the 

ALE and ICFD models, respectively. The uncoupled frequency calculated using each model lies 

between the two coupled frequencies, which is consistent with the analytical results shown in 

Figure 5.9 for 2 1/R R  2. 

The widths of the peaks in the presented spectra are associated with a damping effect on the 

fluid-filled pipes. Since the fluid is inviscid and no damping is assigned to the elements of the 

pipes in the numerical models, the damping effect is only associated with the fluid pressure that 

is opposite to and reduces the movement of the free-vibrating inner pipe (i.e., the so-called 

pressure drag). The half-power bandwidth method is used to calculate the damping ratio 

associated with each mode for the inner pipe in M1 and M2. Figure 5.22 (Chopra 2012) 

illustrates the use of the half-power bandwidth method on a displacement spectrum. The 

damping ratio,  , is calculated using the frequency associated with the peak, nf , and the two 

frequencies, af  and bf , with respect to the ordinates at 1/ 2 th of the spectral amplitude. 

Applying this method to Figures 5.20a and 5.21a, the damping ratios for the uncoupled and out-

of-phase modes of M1 (i.e., 2 1/R R = 5.2) are both around 3%. Calculating using Figures 5.20b 

and 5.21b for M2 (i.e., 2 1/R R = 1.3), the damping ratios for the out-of-phase, in-phase, and 

uncoupled modes are around 25%, 3%, and 20%,  respectively. Accordingly, the damping effect 

is greater with smaller 2 1/R R : an internal component (e.g., inner pipe) submerged in a fluid 

confined by a relatively small container (e.g., outer pipe). 
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Figure 5.22. Half-power bandwidth method for calculating a damping ratio,  , using a 

displacement spectrum (adapted from Figure 3.2.9 in Chopra (2012)) 

To verify the ALE and ICFD models, the frequencies of the inner pipes in M1 and M2 calculated 

using the models and the analytical solutions are compared. The fifth column of Table 5.11 lists 

the analytically calculated frequencies, which are extracted from Table 5.6. The differences 

between the numerical and the analytical results are very small, and listed in the sixth and 

seventh columns of Table 5.11 for the ALE and ICFD models, respectively. These small 

differences enable the authors to conclude that the ALE and ICFD models are verified for 

cylindrical pipes submerged in fluid. 

5.5 Identification and quantification of errors in Chen and Rosenberg 

This section identifies the calculation errors presented in the derivation and the analytical 

solutions developed by Chen and Rosenberg. The analytical solutions address the frequencies of 

two fluid-filled concentric pipes. The corrected solutions and the original solutions that involve 

errors are compared for a range of dimensions of the two pipes and N1 presented in Figure 5.14b, 

which is a simplified model for the reactor vessel and jacket of the PFR, Dounreay, Scotland 

(Figure 5.14a). The solutions are presented here using the variables and coordinate systems 

defined in Figure 5.4.  

The frequencies of two fluid-filled concentric pipes are calculated using  F  per Eq. (5.28), 

which is a matrix presenting the equations of equilibrium for the pipes. Mistakes were made in 

the derivation for entries 11f , 44f , 14f , and 41f  in  F . Per  F  in Eq. (5.28), all these four 
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entries relate the inertial and hydrodynamic forces on the pipes (per unit area) to their radial 

displacements, 1su  and 2su .  

Table 5.12 lists the four original entries that involve errors and those corrected in this section per 

Eqs. (5.30), (5.36), (5.37), and (5.38). The listed entries are expressed using unitless parameters 

defined in Chen and Rosenberg: 
1
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Table 5.12, which are all factors for terms associated with modified Bessel’s functions (i.e., 1I , 

1K , 1I  , and 1K  ). These Bessel’s functions are used for calculating hydrodynamic pressures on 

the pipes shown in Figure 5.5: 1,1 1,2p p−  on the inner pipe and 2,2p  on the outer pipe. 

Accordingly, Chen and Rosenberg calculated these hydrodynamic pressures incorrectly. 

An error was made to a sign used for 11f ; see the factor for the last fraction described using 

Bessel’s functions. Entry 11f  relates 1,1 1,2p p−  on the inner pipe to its radial displacement 1su , 

but Chen and Rosenberg incorrectly used 1,1 1,2p p+  in the calculation. The wrong direction (i.e., 

sign) defined for 1,2p  by Chen and Rosenberg makes the pipes unstable and results in imaginary 

values for their frequencies. Other errors were made in the use of the chain rule for the derivative 

of two Bessel functions with respect to r  (i.e., 1I  , and 1K  ). Factors of 11/ R  or 21/ R  were 

omitted incorrectly in the original entries listed in Table 5.12, as shown bolded. 

The original and corrected entries are used in  F  and  1F  per Eq. (5.29) herein to calculate 

lateral frequencies, latf , for two fluid-filled, concentric, cylindrical pipes. The matrix  F  is used 

for calculating the two coupled frequencies (out-of-phase and in-phase), and  1F  is used for 

calculating the uncoupled frequency of the inner pipe. Consistent with results presented in 

Figures 5.9 and 5.10, latf  are calculated here for a range of dimensions: 5 1/H R  30 and 

2 1/R R = 1.2, 2, 5, and 10. Two boundary conditions are used: 1) cantilever and 2) simply-

supported, for which the first wavelengths l  are 3.351 H  and 2 H , respectively (see footnote 43 
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Table 5.12. Entries 11f , 44f , 14f , and 41f  in  F  per Eq. (5.28): presented in Chen and Rosenberg 

(1975) (termed C&R in this table) and corrected in this section (errors and corrections bolded) 

11f  
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Eq. (5.30) in 

Section 5.2.1 
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per Eq. (15) 
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Eq. (5.36) in 

Section 5.2.1 
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per Eq. (15) 
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Eq. (5.37) in 

Section 5.2.1 
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Eq. (5.38) in 

Section 5.2.1 

on page 229). Figures 5.23 and 5.24 present the frequency coefficients, latC , calculated per Eq. 

(5.42) and latf . Each panel in Figures 5.23 and 5.24 presents results for the two coupled modes 

and the uncoupled mode, given a value of 2 1/R R  and 1/H R . The orange, light blue, and gray 

thin lines describe latC  calculated using the original solutions for out-of-phase, in-phase, and 

uncoupled modes, respectively; the red, blue, and black thick lines describe their counterparts 

calculated using the corrected solutions, which are identical to the those shown in Figures 5.9 

and 5.10. The results calculated using the original solutions are complex values due to the 
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mistake in a sign used for 1f , which makes the pipes unstable. Only the real part of the results is 

presented in Figures 5.23 and 5.24, and the imaginary part is ignored. If latC  is an imaginary 

value (i.e., real part is zero), no result is presented (e.g., light blue line in Figure 5.23c is not 

presented for 1/H R 7). As shown in Figures 5.23 and 5.24, for a given mode and a value of 

2 1/R R , the differences between (the real part of) latC  calculated using the original and corrected 

solutions increases with increasing 1/H R . 

 

  

(a) 2 1/R R = 1.2 (b) 2 1/R R = 2 

  

(c) 2 1/R R = 5 (d) 2 1/R R = 10 

Figure 5.23. Frequency coefficients for two fluid-filled concentric pipes, cantilever, first 

wavelength l = 3.351 H , coupled modes and uncoupled mode of the inner pipe, calculated using 

the original and corrected entries 11f , 44f , 14f , and 41f  for  F  listed in Table 5.12 
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(a) 2 1/R R = 1.2 (b) 2 1/R R = 2 

  

(c) 2 1/R R = 5 (d) 2 1/R R = 10 

Figure 5.24. Frequency coefficients for two fluid-filled concentric pipes, simply-supported, first 

wavelength l = 2 H , coupled modes and uncoupled mode of the inner pipe, calculated using the 

original and corrected entries 11f , 44f , 14f , and 41f  for  F  listed in Table 5.12 

The frequencies are calculated using the original and corrected solutions for the two fluid-filled 

concentric pipes in N1 presented in Figure 5.14b. Both pipes are assumed to be head-supported 

(i.e., cantilever), with the first wavelength l = 3.351 H . The dimensions and the mechanical 

properties of the two pipes used in the analytical solutions are listed in Tables 5.4 and 5.5, 

respectively. Per the listed dimensions, 2 1/R R = 2.1 and 1/H R = 5.2. The values for latC  at 

1/H R = 5.2 extracted from Figure 5.23b are listed in Table 5.13 for the two coupled modes (out-

of-phase and in-phase) and the uncoupled mode. The results of latC  for the in-phase and 

uncoupled modes calculated using the original solutions are not listed because they are 
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imaginary values and not shown in Figure 5.23b. Given the listed latC , the corresponding 

frequencies, latf , are calculated per Eq. (5.42), and listed in Table 5.6. The frequencies of the 

three modes calculated using the corrected solutions are identical to those listed in Table 5.6 for 

N1. The frequency of the out-of-phase mode calculated using the original solutions is 3.1 Hz, 

with a difference of 25% from 2.5 Hz calculated using the corrected solutions. The original 

solutions are not available for the in-phase and uncoupled frequencies due to the imaginary 

values of latC . 

Table 5.13. Lateral frequencies of the two fluid-filled concentric pipes N1 presented in 

Figure 5.14b, l = 3.351 H  

Mode Coupled, out-of-phase Coupled, in-phase Uncoupled, inner pipe 

Original 
latC  latf  (Hz) latC  latf  (Hz) latC  latf  (Hz) 

0.0141 3.1 -- -- -- -- 

Corrected 
latC  latf  (Hz) latC  latf  (Hz) latC  latf  (Hz) 

0.0113 2.5 0.0293 6.6 0.0119 2.6 

5.6 Closing remarks 

Earthquake shaking of a fluid-filled advanced reactor induces fluid-structure interaction (FSI) 

between the reactor vessel, the submerged internal components, and the contained fluid. Verified 

and validated numerical models for FSI analysis will be required for seismic design and 

qualification of the advanced reactors. This section verifies ALE and ICFD models for internal 

components using corrected analytical solutions of Chen and Rosenberg.  

The solutions were developed for frequencies of two concentric pipes filled with fluid, as shown 

in Figure 5.2. The inner pipe is an internal component, and the outer pipe refers to the wall of the 

reactor vessel. The lengths and boundary conditions of the two pipes are identical. To be 

consistent with the solutions and enable verification, the numerical models are developed for two 

fluid-filled concentric pipes: M1 and M2 presented in Figure 5.3. The material used for the pipes 

is carbon steel, and the fluid is water. The frequencies of the inner pipes in M1 and M2 

calculated using the models and the (corrected) analytical solutions are compared. The 

differences between the numerical and analytical results are very small (i.e., 5%), which enable 
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the authors to conclude that the ALE and ICFD models are verified for cylindrical pipes 

submerged in fluid. 

However, as presented in Figure 5.1a, the reactor vessel and internal components are not 

concentric, prismatic, cylindrical pipes, their boundary conditions and lengths are not identical, 

and the vessel is not fully filled. To verify numerical models representing the internal 

components shown in Figure 5.1a, models of two concentric pipes can be developed based on the 

components that are pipe-type structures, including the vessel, the upper internal, and the 

intermediate heat exchanger (IHX) and its shield. Examples are models for inner and outer pipes 

based on 1) the upper internal and the vessel, respectively, and 2) the IHX and its shield, 

respectively. The two pipes in a model are assigned the mechanical properties, boundary 

conditions, and dimensions representing those used for the components shown in Figure 5.1a and 

yet adapting to the assumptions used for the solutions, to enable the verification. For example, 

the thinnest wall thicknesses and the radii around the head support of each component (referring 

to 1h , 2h , 1R , and 2R ) and the greatest height of the two components (referring to H ). After 

verifying the models of two concentric pipes using the (corrected) solutions for frequencies 

(Chen and Rosenberg), a comprehensive model for the reactor including its components can then 

be developed using the realistic boundary conditions and geometries shown Figure 5.1a. This 

comprehensive model can be used for calculating fluid-structure responses (e.g., shear force and 

moment at the support) for seismic design and qualification. (The model would have to be 

validated after the verification.) 
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SECTION 6 

VALIDATION OF NUMERICAL MODELS FOR SEISMIC FLUID-

STRUCTURE-INTERACTION ANALYSIS OF CYLINDRICAL TANKS 

6.1 Introduction 

Verified numerical models for fluid-structure-interaction (FSI) analysis of fluid (liquid)-filled 

advanced reactors must be validated before being used for seismic design and qualification. 

Guidance for verification studies is provided in Sections 4 and 5, in which numerical results for 

cylindrical tanks and submerged internal components, respectively, are compared with analytical 

solutions. This section validates numerical models using data generated in earthquake-simulator 

tests of a base-supported cylindrical tank. The models are modified from those used in Section 4. 

Validation of models including both tank and components submerged in the contained fluid will 

be presented in Mir (in progress). 

Section 4 presents a verification study on FSI models of cylindrical tanks analyzed using 

Arbitrary Lagrangian-Eulerian (ALE) and Incompressible Computational Fluid Dynamics (ICFD) 

solvers in LS-DYNA (2018b, 2019)50 . Unidirectional horizontal seismic motion of a small 

amplitude is used for the response-history analysis. Both ALE and ICFD models are partially 

verified in Section 4, by comparing numerical results with those calculated using analytical 

solutions in Section 3. The ALE models are verified for calculating hydrodynamic pressures and 

reactions at the support of the tank. Time series of wave heights are in reasonable agreement 

with the analytical solution only in the first 5 to 8 seconds due to the limitation of the method 

used to output ALE results (see Appendix C). The ICFD models are verified for calculating 

hydrodynamic pressures and reactions for the tank, if the wave action of the contained fluid is 

insignificant. The ICFD models do not predict wave heights accurately. A finer fluid mesh would 

improve the calculation of wave actions but increases analysis time. The ICFD models in Section 

4 use a fluid mesh that limits the analysis time to two weeks for a 13-second input motion, on a 

computer with 7th Gen (i7) 4-core Intel processor, 32 GB RAM, and 512 GB SSD.  

                                                 
50 Different versions of LS-DYNA are used here: SMP_d_Dev_126632 (2018b) is used for the ALE analysis and 

SMP_d_R11_139066 (2019) is used for the ICFD analysis. 
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The goals of this section are: 1) validating the partially verified numerical models of a 

cylindrical tank presented in Section 4, 2) improving the capability of the models for calculating 

wave height, and 3) providing guidance for validation studies on seismic FSI models of 

advanced reactors. The ALE and ICFD models presented in this section are validated using data 

of a base-supported cylindrical tank tested on an earthquake simulator for uni-, two-, and three-

directional seismic motions. The test tank was fabricated from carbon steel and filled with water. 

The length scale of the tank is around 1/10, and its dimensions and geometries are loosely based 

on those of prototype advanced reactors. The numerical models here are developed using the 

realistic geometries, dimensions, mechanical properties, and boundary conditions of the test tank. 

To improve the predictions of wave height calculated using the ALE and ICFD models presented 

in Section 4, modifications are made here: 1) additional monitoring locations for outputting wave 

heights in the ALE model, and 2) a finer fluid mesh around the free surface in the ICFD model. 

Per the outcomes of Section 4, ALE results for wave heights are reasonable for short-duration 

analysis, and a finer fluid mesh in an ICFD model significantly increases run time, and so shorter 

motions, of 5 to 7 seconds duration, are used here for validation. The numerical and test results 

are compared for fluid-structure responses: hydrodynamic pressures on the wall, shear forces and 

moments at the tank base, and wave heights.  

Section 6.2 describes the earthquake-simulator tests, including the test tank, instrumentation, and 

input motions. Section 6.3 presents the ALE and ICFD models of the test tank. Section 6.4 

presents input motions used in the numerical models, generated using the acceleration at the tank 

base measured in the tests. Section 6.5 validates the models of Section 6.3 by comparing the 

numerical and test results of hydrodynamic pressures, reactions at the tank base, and wave 

heights. Section 6.6 presents closing remarks. 

6.2 Earthquake-simulator tests for a base-supported tank 

A base-supported, cylindrical tank was tested using an earthquake simulator at the University at 

Buffalo. The tank is a model of an advanced reactor vessel, at a length scale of approximately 

1/10. Figure 6.1 presents the tank and the simulator, together with coordinates ( x , y , z ) and 

cardinal directions ( N , S , E ,W ) in panel c. Per Figure 6.1b, the tank is composed of a square 

base plate and a cylindrical pipe served as a tank wall. The height of the tank, sH , is 2 m and the 
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radius, R , is 0.76 m. The thickness of the tank wall, h , is 7.92 mm. The width of the square base 

plate is 2 m, and the thickness is 45 mm. A 76.2 mm-wide and 25.4 mm-thick flange is provided 

at the top of the tank. The tank is filled with fluid to a height, H , of 1.6 m.  

 

Pipe

Square plate

Flange

 

 

(a) tank: view from the 

south 

(b) tank containing water 

(dyed to green): view 

from the south and top 

(c) earthquake simulator, coordinates 

( x , y , z ) and cardinal directions 

( N , S , E ,W ) 

Figure 6.1. Earthquake-simulator tests, base-supported steel tank filled with water: radius of 0.79 

m, height of 2 m, wall thickness of 7.92 mm, and water height of 1.6 m 

A two-phase program of experiments was performed: 1) Phase I involved the test tank, and 2) 

Phase II involved the tank sealed with a head, which supported central and off-center internal 

components immersed in the contained fluid (Mir et al. 2019; 2020a; 2020b)51. Two test setups 

(TSs) were used in Phase I: 1) TS-1, the base plate of the tank was directly attached to the 

earthquake simulator; and 2) TS-2, load cells were installed between the earthquake simulator 

and the base plate. These load cells were used to measure five degree-of-freedom reactions (i.e., 

three translational forces and two moments) at the base of the tank. Hydrodynamic pressures on 

the tank wall, reactions at the base, and wave heights generated using TS-2 data from Phase I are 

used herein for validation of numerical models. Test data generated using TS-1 is not used here 

because reactions were not measured. Test data from Phase II will be used in Mir (in progress) 

for validation of numerical models of a fluid-filled tank including internal components. 

                                                 
51 Test data generated in Phases I and II support multiple purposes, including 1) validation of numerical models for a 

tank, which is presented in this report, 2) validation of numerical models for internal components (Mir, in 

progress), and 3) demonstration of the merits of seismic isolation for equipment in nuclear power plants. More 

information on the uses of the test data can be found in Mir et al. (2019, 2020a, 2020b). 
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The instrumentation used for TS-2 is presented in Figure 6.2, including pressure transducers, 

load cells, Temposonic gauges, and accelerometers. (The instrumentation for TS-1 was by-and-

large identical to that for TS-2, but the load cells and the accelerometers on the base plate were 

not used for TS-1.) Figure 6.2a presents the names and locations of the pressure transducers, 

which are arranged at three different heights and in arrays of four: x+  (east), x−  (west), y+  

(north), and y−  (south) faces of the tank wall. The transducers measure absolute pressures, 

including hydrostatic and hydrodynamic. Figure 6.2b presents the four load cells, named LNE , 

LNW , LSE  and LSW , denoting their locations around the north-east, north-west, south-east, 

and south-west corners of the base plate, respectively. Each load cell is capable of measuring 

axial force, shear forces in two horizontal directions, and moments about two horizontal axes at 

its center. Figure 6.2c presents two Temposonic gauges, TE  and TW , used to measure wave 

heights at distances of 51 mm (2.5”) from the x+  (east) and x−  (west) faces of the tank wall. 

The design of the wave measurement consists of a float attached to a lightweight tube that is 

mounted onto the waveguide of a Temposonic gauge. A magnet is attached to the top of the tube. 

The Temposonic gauge records the vertical motion of the magnet, which is driven by the motion 

of the float. Figure 6.2d presents the names and locations of the accelerometers used to measure 

three-directional acceleration responses of the tank. The accelerometers on the tank wall are in 

arrays of four (i.e., east, west, north, and south faces of the wall) at the top and around the mid-

height of the wall. The accelerometers on the base plate are located near the four corners and at 

the center. Each accelerometer measures motions in one direction, and so three accelerometers 

are used at each location shown using a triangle in Figure 6.2d to measure three-directional 

responses. Other instruments, including strain gauges on the tank wall and cameras supporting 

image processing for wave actions, are not used in this report and not presented here. More 

information on the arrangement and instrumentation can be found in Mir et al. (2019; 2020a; 

2020b). 
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(d) accelerometers 

Figure 6.2. Instrumentation for the tank used in TS-2 and Phase I, unit: mm 

Phase I of the earthquake-simulator tests involved 138 sets of input motions, including 68 sets 

for TS-1 and 70 sets for TS-2. The input motions include white noise, sine waves, and uni-, two-, 

and three-directional earthquake time series extracted from ground motion records. Consistent 

with a length scale of 1/10, the time scale of each earthquake motion is compressed by a factor of 

10 . A list of the input motions is presented in Appendix D.  

Responses generated by motions #30, #35, and #42 listed in Table D.3 are used here for the 

validation, including 1) one horizontal component of the El Centro Earthquake (1940), 2) the two 

horizontal components of the Hualien Earthquake (2018), and 3) the three components of the 

Chi-Chi Earthquake (1999), termed hereafter ES-1, ES-2, and ES-3, respectively, where ES 

denotes earthquake-simulator inputs. They are five-second time series, extracted from the 
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earthquake records, after time compression by 10 , but including their strong motions. Table 6.1 

presents information on the three earthquake simulator (ES) inputs, and Figure 6.3 presents their 

time series after the time and amplitude scaling. Figure 6.4 presents acceleration response spectra 

for these time series calculated using a damping of 2% of critical. The peak ground accelerations 

(PGAs) of the x -components of ES-1, ES-2, and ES-3 are scaled to 1 g, 0.1 g, and 0.1 g, 

respectively: see the x -direction in Figure 6.1c and the columns of Direction and Scaled PGA (g) 

of Table 6.1. The y -component of ES-2 and the y - and z -components of ES-3 are scaled using 

the corresponding scale factors for their x -components. The scaling intensifies ES-1 and 

represents a strong motion, and diminishes ES-2 and ES-3 to prevent the overflow of the 

contained water due to waves: see the columns of Original PGA (g) and Scaled PGA (g) of Table 

6.1. 

 

 

Table 6.1. Input motion time series1 used for earthquake-simulator tests 

 Event Year Station Direction2 
Original 

PGA (g) 

Scaled 

PGA (g) 

Time 

scale 

ES-1 
El Centro Earthquake 

(Imperial Valley-02) 
1940 

El Centro 

Array #9 
180 ( x ) 0.28 1.0 1/ 10  

ES-2 Hualien Earthquake 2018 HWA019 
EW ( x ) 0.39 0.1 

1/ 10  
NS ( y ) 0.37 0.09 

ES-3 Chi-Chi Earthquake 1999 TCU052 

EW ( x ) 0.36 0.1 

1/ 10  NS ( y ) 0.45 0.13 

Up ( z ) 0.19 0.06 

1. Ground motion records of the El Centro and Chi-Chi Earthquakes are extracted from the PEER Ground 
Motion Database (http://ngawest2.berkeley.edu/, accessed on March 18, 2019), and those of the Hualien 
Earthquake are provided by the National Center for Research on Earthquake Engineering, Taiwan 

2. Directions based on the coordinates described in the dataset of the ground motion records; x , y , and z  
shown in the parentheses representing the input directions of the earthquake simulator (see Figure 6.1c) 
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(a) ES-1 (b) ES-2 (c) ES-3 

Figure 6.3. Time series for earthquake simulator inputs, PGA scaled to the values presented in Table 

6.1, time scale compressed by 10 .  

 

   

(a) ES-1 (b) ES-2 (c) ES-3 

Figure 6.4. Acceleration response spectra of the amplitude- and time-scaled motions shown in 

Figure 6.3, damping ratio of 2% 

6.3 Numerical models 

Numerical models for the ALE and ICFD solvers are constructed for the test tank shown in 

Figures 6.1a and b. The tank is composed of a square base plate and a cylindrical pipe served as 

a tank wall. The dimensions of the wall (i.e., pipe) are sH = 2 m, R = 0.76 m, and h =7.92 mm. 

The width of the square base plate is 2 m, and the thickness is 45 mm. The tank is filled with tap 

water to a height of H = 1.6 m. The flange at the top of the tank and the four load cells, which 

supports the tank on the earthquake simulator, are not included in the models. The ALE and 
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ICFD models presented here are modified from those partially verified in Section 4, with 

improvement in the accuracy of calculating or outputting wave heights. 

Figure 6.5 presents the ALE model for the test tank and global coordinates ( x , y , z ). Figure 

6.5a shows the elements of the tank wall (blue) and the base plate (red). Figure 6.5b shows the 

elements of the fluid domain: water (yellow) topped by a vacuum space (grey). Air is not 

included in the model. The sizes of the elements shown in Figures 6.5a and b are optimized, 

resulting in smaller elements for the fluid domain adjacent to the tank wall and around the 

boundary between the water and the vacuum (i.e., free surface). The tank wall and the base plate 

are modeled using 3360 and 2748 Lagrangian, four-node, shell elements, respectively. The water 

and the vacuum are modeled using 63360 and 17280 Eulerian, eight-node, solid elements, 

respectively. The tank and the fluid domain (including the water and vacuum) share nodes at 

their interfaces. Figure 6.5c presents the water in the tank at the first step of the analysis (i.e., 

time t = 0). One hundred twenty-four floating points (black dots in Figure 6.5c) are used to track 

waves and located on or near the free surface, along the x  direction, and near the x  faces of 

the tank wall. There are sixty-two points assigned around each side and placed in two layers (i.e., 

31 points in each layer), as shown in the magnified view of a part of the fluid and floating points 

in Figure 6.5c. The two layers are located on or 10 mm below the free surface. Since the two 

layers are very close to each other, wave heights output using points in both layers are expected 

to be identical or similar. The floating points span x = R  (0.76 m) to 0.62 m and -0.62 m to -0.76 

m, and cover the measuring locations of the Temposonic gauges TE  and TW , which are 51 mm 

away from the x  faces of the wall (see Figure 6.2c). The dense distribution and double-layer 

arrangement of these floating points in the ALE model mitigate the issues presented in Appendix 

C and improves the predictions for wave heights. Results are presented and discussed in Sections 

6.5.3 and 6.5.4. 
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(a) tank wall and base plate (b) water and vacuum 
(c) water in the tank, floating 

points, t = 0 

Figure 6.5. ALE model of the test tank with R = 0.76 m, sH =2 m, and H = 1.6 m, isometric 

view 

Figure 6.6 presents the ICFD model for the test tank and global coordinates ( x , y , z ). Figure 

6.6a shows the elements of the tank wall (blue) and the base plate (red), identical to those used 

for the ALE model shown in Figure 6.6a. Figure 6.6b presents a half domain for the fluid, which 

is defined using three surfaces: 1) adjacent to the tank base (shown in pink), 2) adjacent to the 

tank wall (shown in yellow), and 3) horizontally closing the top of the domain (shown in grey). 

The height of the fluid domain is 1.8 m, providing a sufficient freeboard of 0.2 m to prevent 

overtopping by waves. (The vertical displacement of the free surface in the tank is less than 0.2 

m; see results presented in Figures 6.26 to 6.28.) As presented in Figure 6.6b, a finer fluid mesh 

is used along the x  and y  directions across the diameter of the grey surface and in the top 0.4 m 

of the yellow surface, where wave actions are expected to be relatively significant. The tank wall 

and the base plate are modeled using 3360 and 2748 Lagrangian, four-node, shell elements, 

respectively. The fluid surfaces are modeled using 13840 Lagrangian, three/four-node, shell 

elements. The tank and the fluid surfaces do not share nodes at their interfaces. The interaction 

between the tank and water is activated by the *ICFD_BOUNDARY_FSI card in the LS-DYNA 

deck. 
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(a) tank 
(b) surfaces for a half fluid domain with 

a height of 1.8 m 

  

(c) water, t = 0 
(d) fluid domain, t = 0, x z−  cross 

section 

Figure 6.6. ICFD model of the test tank with R = 0.76 m, sH =2 m, and H = 1.6 m 

The elements of the fluid enclosed by the three surfaces in Figure 6.6b are automatically 

generated by the ICFD solver at the first step of the analysis (i.e., t = 0). The initial height of the 

free surface, H = 1.6 m, is defined using the *ICFD_INITIAL_LEVELSET card. Figure 6.6c 

presents the model of the water, constructed using four-node solid elements. The *MESH_BL 

and *MESH_SIZE_SHAPE cards are used to generate finer elements adjacent to the tank wall 

and around the free surface, respectively, as shown in a x z−  cross section of the fluid domain of 

Figure 6.6d. A finer mesh around the free surface is expected to improve the ICFD predictions of 

wave height. 

The elements of the tank wall and the base plate are assigned elastic and rigid materials, 

respectively, with mechanical properties consistent with carbon steel, including a density s  of 
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7880 kg/m3, an elastic modulus sE  of 21011 N/m2, and Poisson’s ratio s  of 0.27. (The values 

of sE  and s  do not affect the responses of the rigid base but must be defined in the models.) A 

damping ratio of 2% is assigned to the elements of the wall for a frequency range of 20 to 300 

Hz using the *DAMPING_FREQUENCY_RANGE_DEFORM card. (Since the flexibility of the 

base plate is not considered in the numerical model, test data associated with the frequency of the 

out-of-phase deformation (i.e., vertical motion) of the plate are removed using a filter, to enable 

comparison of numerical and test results. More information is presented in Sections 6.4 and 6.5.) 

The mechanical properties consistent with water at 25°C are used for the elements of the water in 

the numerical models. A density w  of 1000 kg/m3, a viscosity w  of 10-3 N/m2-s, and a bulk 

modulus, wK , of 2.15109 N/m2 are assigned to the water elements in the ALE model (shown in 

yellow in Figure 6.5b). Identical values of w  and w  are used for the elements of the fluid 

surfaces adjacent to the tank wall and base plate in the ICFD model (shown in yellow and pink in 

Figure 6.6b), but the bulk modulus is not used because the solver can accommodate only an 

incompressible fluid. The elements of the vacuum space in the ALE model shown as grey in 

Figure 6.5b are assigned void properties through the *INITIAL_VOID card. The elements of the 

top surface of the fluid domain in the ICFD model, shown as grey in Figure 6.6b, are assigned 

vacuum properties with zero density and viscosity (i.e., a = 0 and a = 0).  

The mechanical properties assigned to the elements in the numerical models of the tank, water, 

and vacuum are listed in Table 6.2. The masses of the numerical models are listed in Table 6.3, 

and the total mass is 4929 kg. The gravitational acceleration g  of 9.81 m/s2 is assigned to the z  

direction. 
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Table 6.2. Mechanical properties assigned to the elements of the tank, water, and 

vacuum, ALE and ICFD models 

  ALE ICFD 

Tank 

Density, s   7880 kg/m3 

Elastic modulus, sE  21011 N/m2 

Poisson’s ratio, s  0.27 

Water 

Density, w  1000 kg/m3 

Viscosity, w  10-3 N/m2-s 

Bulk modulus, wK  2.15109 N/m2 --1 

Vacuum  
Density,  a  

--2 
0 

Viscosity, a  0 

1. The ICFD solver analyzes only incompressible fluids, and so wK  is not used in the models. 

2. The vacuum in the ALE model is assigned void properties through the *INITIAL_VOID card.  

  

Table 6.3. Masses of the tank wall, base plate, and water, ALE and ICFD models 

Component Mass (kg) 

Tank wall 593 

Base plate 1418 

Water 2918 

Total 4929 

6.4 Input motions for numerical models 

Accelerations of the base plate measured in the experiments are used as input motions for the 

response-history analysis of the numerical models. As shown in Figure 6.2d, twelve 

accelerometers are placed around the four corners of the base plate. Each triangle in the figure 

indicates three accelerometers that measure respective motions in the x , y , and z  directions, 

based on the coordinates shown in Figure 6.1c. The twelve accelerometers on the plate are 

denoted as 1 ( , )ANE X Y Z , 1 ( , )ANW X Y Z , 1 ( , )ASE X Y Z , and 1 ( , )ASW X Y Z , in which the X , 

Y , and Z  indicate the directions of the measurement. Earthquake simulator inputs used for the 
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experiments, as presented in Figure 6.3, are not directly used for the numerical models because 

the four load cells supporting the test tank on the simulator are neither rigid nor included in the 

models. The four load cells introduced flexibility at the base in the tests, and rocking motions 

were observed for horizontal excitations. An earthquake simulator input in the x  ( y ) direction 

generated a translational motion in the x  ( y ) direction and a rocking motion about the y  ( x ) 

axis on the base plate. An earthquake simulator input in the z  direction generated a translational 

motion in the z  direction and out-of-phase (vertical) deformation on the base plate. The base 

plate is assumed to be rigid in the numerical models, and the out-of-phase deformation is not 

included in the analysis. To enable comparisons of numerical and test results, the measured 

accelerations associated with the frequency of the out-of-phase deformation of 37 Hz 52  is 

removed. A band-stop filter designed for 32 to 42 Hz is used to process the base plate 

acceleration data. A MATLAB script, OpenSeismoMatlab (Papazafeiropoulos and Plevris 2018), 

is used to correct the baseline of the accelerations of the base plate generated in the tests to avoid 

unrealistic and significant displacements due to measuring errors. The translational and rocking 

motions are derived using the filtered and baseline corrected accelerations, and are used as input 

time series at the center of the rigid base plate in the numerical models.  

Figure 6.7 presents the calculation of the input motions for the numerical models, including three 

translational components, x , y , and z , and two rocking components, rx  and ry , together with 

coordinates ( x , y , z ) and cardinal directions ( N , S , E ,W ). The black square in each panel is 

the plan view of the base plate, and the back solid circles are accelerometers located around the 

four corners. The red arrows and text represent the accelerations measured by the accelerometers, 

and the blue arrows and text represent the accelerations used as inputs for the numerical models. 

As shown in Figure 6.7a, the x -component input motion for the numerical models, xacc , is 

derived using the average accelerations measured by 1ANE X , 1ANW X , 1ASE X , and 

1 .ASW X  Identically, yacc  ( zacc ) is derived using the average accelerations measured by 

1ANE Y ( Z ), 1ANW Y ( Z ), 1ASE Y ( Z ), and 1ASW Y ( Z ), as shown in Figure 6.7b (c).  

                                                 
52 The empty tank was tested using white noise in the vertical direction, and the vertical motion at the center of the 

base plate was measured using 1AC Z  shown in Figure 6.1d. The Fourier amplitude spectrum of the motion 

shows a peak at 58 Hz, which is the frequency of the out-of-phase motion of the base plate, outf , when the tank is 

empty. Considering that outf  is proportional to 1/ m  ( m = 2011 kg, if empty, and 4929 kg, if H = 1.6 m; see 

Table 4.6), the value of outf  involving the tank with a water depth of 1.6 m is expected to be 37 Hz. 



  282 

 

N

S

W E

ANW1X

ASW1X

ANE1X

ASE1X

accx=(ax,NW+ax,NE+ax,SW+ax,SE)/4

ax,NW ax,NE

ax,SW ax,SE

x

y

z
 

N

S

W E

ANW1Y

ASW1Y

ANE1Y

ASE1Y

accy=(ay,NW+ay,NE+ay,SW+ay,SE)/4

ay,NW ay,NE

ay,SW ay,SE

x

y

z
 

N

S

W E

ANW1Z

ASW1Z

ANE1Z

ASE1Z

accz=(az,NW+az,NE+az,SW+az,SE)/4

az,NW az,NE

az,SW az,SE

x

y

z
 

(a) x -component, xacc  (b) y -component, yacc  (c) z -component, zacc  

N

S

W E
accrx=(az,NW+az,NE-az,SW-az,SE)/(2dy)

dy

az,NW

az,NE

-az,SW

-az,SE

accrx

y

xzx

y

z

ANW1Z

ASW1Z

ANE1Z

ASE1Z

az,NW az,NE

az,SW az,SE

 

N

S

W E
accry=(az,NW+az,SW-az,NE-az,SE)/(2dx)

dx

-az,SE

-az,NE

az,SW

az,NW

accry

y
x

z

x

y

z

ANW1Z

ASW1Z

ANE1Z

ASE1Z

az,NW az,NE

az,SW az,SE

 
(d) rx -component, rxacc  (e) ry -component, ryacc  

Figure 6.7. Motions at the center of the rigid base plate used in the numerical models, three 

translational and two rocking components, calculated using accelerations measured around the 

four corners 

Figures 6.7d and e present the rocking motions about the x  and y  axes, respectively, both of 

which are derived using the accelerations in the z  direction measured by 1ANE Z , 1ANW Z , 

1ASE Z , and 1ASW Z . Assuming that the base plate is rigid, per Figure 6.7d, the x− directional 

rocking motion is calculated using the sum of the relative vertical accelerations on the north face 

( 1ANE Z , 1ANW Z ), with respect to those on the south face ( 1ASE Z , 1ASW Z ), divided by 

twice the distance between the sets of accelerometers in the y  direction ( yd ). Similarly, per 

Figure 6.7e, the y − directional rocking motion is calculated using the sum of the relative vertical 

accelerations on the west face ( 1ANW Z , 1ASW Z ), with respect to those on the east face 
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( 1ANE Z , 1ASE Z ), divided by twice the distance between the sets of accelerometers in the x  

direction ( xd ). 

Three sets of multi-directional time series, NM-1, NM-2, and NM-3, are used for analysis of the 

numerical models. These motions are derived using accelerometer data on the base plate per 

Figure 6.7 for input motions ES-1, E-2, and ES-3, presented in Figure 6.3. (The “NM” denotes 

numerical-model inputs whereas “ES” denotes earthquake-simulator inputs.) Table 6.4 presents 

information for the numerical model inputs, NM-1, NM-2, NM-3, and their associated 

earthquake simulator inputs, ES-1, ES-2, and ES-3, respectively. Figure 6.8 presents the time 

series of NM-1, NM-2, and NM-3, including the three translational components, x , y , z , and 

two rocking components, rx , ry . Figure 6.9 presents acceleration response spectra for these 

time series, calculated using a damping of 2% of critical.  

 

 

Table 6.4. Input motion time series used for the numerical models and their associated 

earthquake simulator inputs used in the experiments 

Numerical model inputs 

at the rigid base plate 
Direction1 Earthquake simulator inputs2 

NM-1 x , ry  ES-1: El Centro Earthquake, x  

NM-2 x , y , rx , ry  ES-2: Hualien Earthquake, x , y  

NM-3 x , y , z , rx , ry  ES-3: Chi-Chi Earthquake, x , y , z  

1. Directions are based on the coordinates used for the numerical models (Figures 6.5 and 6.6) and the 

earthquake simulator (Figure 6.1) 

2. More information presented in Table 6.1 
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(a) NM-1 (b) NM-2 (c) NM-3 

Figure 6.8. Input motion time series for numerical models, derived using filtered and baseline 

corrected motions of the base plate measured using the twelve accelerometers 
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(a) NM-1 (b) NM-2 (c) NM-3 

Figure 6.9. Acceleration response spectra of the input motion time series shown in Figure 6.8, 

damping ratio of 2% 

6.5 Results and validation 

Fluid-structure responses calculated using the numerical models for inputs NM-1, NM-2, and 

NM-3 are compared with those measured in the earthquake-simulator tests for ES-1, ES-2, and 

ES-3. (See the relationships of input motions NM and ES in Table 6.4.) The reported responses 

include hydrodynamic pressures on the tank wall, forces and the moments at the tank base, and 

wave heights of the contained water. Again, the base plate is assumed to be rigid in the models, 

and a band-stop filter is used to remove motion associated with the out-of-phase deformation of 

the plate (see footnote 52 on page 197), in the frequency range between 32 and 42 Hz. 

6.5.1 Hydrodynamic pressure 

The hydrodynamic pressures on the tank wall, wp , measured by the twelve pressure transducers 

1(2,3)PN , 1(2,3)PS , 1(2,3)PE , and 1(2,3)PW  shown in Figure 6.2a are presented with those 

calculated using the numerical models in Figures 6.10 to 6.15. Figures 6.10 to 6.12 enable a 

comparison of the ALE results for NM-1, NM-2, and NM-3 and the test results for ES-1, ES-2, 

and ES-2, respectively. Figures 6.13 to 6.15 present companion data for the ICFD model. Since 

NM-1 (ES-1) does not include a y -component motion, responses along the y  axis are tiny. 

Consequently, the pressures for NM-1 on the y  faces of the tank wall at the locations of 

1(2,3)PN  and 1(2,3)PS  are not presented in Figures 6.10 and 6.13. 
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(a) East face (b) West face 

Figure 6.10. Time series of hydrodynamic pressure of the tank wall, ALE model for NM-1 

and earthquake-simulator test for ES-1 
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(a) East face (b) West face 

  
(c) North face (d) South face 

Figure 6.11. Time series of hydrodynamic pressure of the tank wall, ALE model for NM-2 and 

earthquake-simulator test for ES-2 
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(a) East face (b) West face 

  
(c) North face (d) South face 

Figure 6.12. Time series of hydrodynamic pressure of the tank wall, ALE model for NM-3 and 

earthquake-simulator test for ES-3 
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(a) East face (b) West face 

Figure 6.13. Time series of hydrodynamic pressure of the tank wall, ICFD model for NM-1 and 

earthquake-simulator test for ES-1 
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(a) East face (b) West face 

  
(c) North face (d) South face 

Figure 6.14. Time series of hydrodynamic pressure of the tank wall, ICFD model for NM-2 and 

earthquake-simulator test for ES-2 
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(a) East side (b) West side 

  
(c) North side (d) South side 

Figure 6.15. Time series of hydrodynamic pressure of the tank wall, ICFD model for NM-3 and 

earthquake-simulator test for ES-3 
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6.5.2 Reactions: shear force and moment at the base 

The reactions at the base of the tank calculated using the numerical models and measured in the 

tests are presented in Figures 6.16 to 6.21. The reactions include translational forces in the x , y , 

and z  directions (i.e., xF , yF , and zF ) and moments with respect to the x  and y  axes (i.e., xM  

and yM ). Test results for these reactions are derived using output data from the load cells, LNE , 

LNW , LSE  and LSW , shown in Figure 6.2b. The output data of each load cell include x - and 

y - directional shear forces, an axial ( z - directional) force, and x - and y -axis moments, with 

respect to the center of the load cell (i.e., level of its mid-height). Notations for the output data of 

the four load cells are: 1) ,LNE xF , ,LNW xF , ,LSE xF , and ,LSW xF  for x -directional forces, 2) ,LNE yF , 

,LNW yF , ,LSE yF , and ,LSW yF  for y -directional forces, 3) ,LNE zF , ,LNW zF , ,LSE zF , and ,LSW zF  for axial 

forces, 4) ,LNE xM , ,LNW xM , ,LSE xM , and ,LSW xM  for x -axis moments, and 5) ,LNE yM , ,LNW yM , ,LSE yM , 

and ,LSW yM  for y -axis moments. The reaction forces xF , yF , and zF  at the tank base are the 

summations of the force data output by the load cells in the given directions, 
4

,

1
iL x

i

F
=
 , 

4

,

1
iL y

i

F
=
 , 

and 
4

,

1
iL z

i

F
=
 , respectively, where 1L LNE= , 2L LNW= , 3L LSE= , and 4L LSW= . The reaction 

moments, xM  and yM , at the tank base are derived using load cell data for moments (at the mid-

height of each the load cell), shear forces, and axial forces, as indicated in Figure 6.22. Figure 

6.22a presents a plan view of the base plate (which is the tank base here), the four load cells, and 

the reaction moments, xM  and yM , at the center of the base (shown in blue), together with 

coordinates ( x , y , z ) and cardinal directions ( N , S , E ,W ). Figures 6.22b and c present sections 

N - S  and E -W , respectively, and forces and moments (shown in black) at the interface of the 

base plate and the four load cells. On section N - S , per the black arrows and text in Figure 

6.22b, there are axial forces ,N zF  and ,S zF , shear forces ,N yF  and ,S yF , and moments ,N xM  and 

,S xM  on the top of the load cells on the north ( LNE  and LNW ) and the south ( LSE  and LSW ). 

The reaction xM  at the tank base (shown in blue in Figure 6.22b) relates to the moments and 

axial forces at the interface (shown in black in Figure 6.22b) as the following: 

 , , , ,( ) ( ) ( / 2)x N x S x N z S z yM M M F F d= + + −   (6.1) 
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where yd  is the distance between the centers of two load cells in the y  direction (0.91 m; shown 

in green), , , ,N z LNE z LNW zF F F= + , and , , ,S z LSE z LSW zF F F= + . The shear forces and moments at the 

interface (black solid circles in Figure 6.22b) are transferred to and create a moment at the center 

of each load cell (red solid circle). Load-cell data for the x -axis moments, ,LNE xM , ,LNW xM , 

,LSE xM , and ,LSW xM , are output with respect to the centers. Equation (6.2) presents the relationship 

between the summation of the load cell data for the x -axis moments (with respect to the red 

solid circles) and the moments and shear forces at the interface (black solid circles) shown on 

section N - S  of Figure 6.22b. 

 
4

, , , , , , , , ,

1

( ) ( ) ( / 2)
iLNE x LNW x LSE x LSW x L x N x S x N y S y z

i

M M M M M M M F F h
=

+ + + = = + − +   (6.2) 

where zh  is the height of the load cells (0.35 m; shown in orange), and , ,( )N y S yF F+  is equal to 

the reaction force 
4

,

1
iy L y

i

F F
=

=  at the tank base.  

Given Eqs. (6.1) and (6.2), the moment about the x  axis at the tank base, xM , is a function of 

the load-cell outputs: 

 
4 4

, , , , , ,

1 1

( / 2) ( ) ( / 2)
i ix L x L y z LNE z LNW z LSE z LSW z y

i i

M M F h F F F F d
= =

= +  + + − −    (6.3) 

where 1L LNE= , 2L LNW= , 3L LSE= , and 4L LSW= . Similarly, yM  at the tank base (shown 

in blue in Figure 6.22a) relates to the moments and axial forces at the interface shown in the 

cross section E -W  of Figure 6.22c (black solid circles) as the following: 

 , , , ,( ) ( ) ( / 2)y E y W y W z E z xM M M F F d= + + −   (6.4) 

where xd  is the distance between the centers of two load cells in the x  direction (0.91 m; marked 

as green), , , ,W z LNW z LSW zF F F= + , and , , ,E z LNE z LSE zF F F= + . The shear forces and moments at the 

interface (black solid circles in Figure 6.22c) are transformed to the center of each load cell (red 

solid circle), and data for the y -axis moment are output with respect to the centers: 

 
4

, , , , , , , , ,

1

( ) ( ) ( / 2)
iLNE y LNW y LSE y LSW y L y E y W y E x W x z

i

M M M M M M M F F h
=

+ + + = = + + +   (6.5) 
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where , ,( )E x W xF F+  is equal to the reaction force 
4

,

1
ix L x

i

F F
=

=  at the tank base. Given Eqs. (6.4) 

and (6.5), the moment about the y  axis at the tank base, yM , relates to the load cell data as the 

following: 

 
4 4

, , , , , ,

1 1

( / 2) ( ) ( / 2)
i iy L y L x z LNW z LSW z LNE z LSE z x

i i

M M F h F F F F d
= =

= −  + + − −    (6.6) 

Figures 6.16 to 6.18 enable comparison of ALE results for NM-1, NM-2, and NM-3 and test data 

for ES-1, ES-2, and ES-3, respectively. Figures 6.19 to 6.21 present companion data for the 

ICFD model. Since NM-1 (ES-1) does not include y - and z -component motions, the forces in 

the y  and z  directions and the moment with respect to the x  axis (i.e., yF , zF , and xM ) are tiny 

and not presented in Figures 6.16 and 6.19. Motion NM-2 (ES-2) does not include a z  

component, and so zF  is not presented in Figures 6.17 and 6.20. 

 

 

 

  
(a) force, x  direction (b) moment, y  axis 

Figure 6.16. Time series of the reactions at the tank base, ALE model for NM-1 and earthquake-

simulator test for ES-1 
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(a) force, x  direction (b) force, y  direction 

  

(c) moment, x  axis (d) moment, y  axis 

Figure 6.17. Time series of the reactions at the tank base, ALE model for NM-2 and earthquake-

simulator test for ES-2 
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(a) force, x  direction (b) force, y  direction 

 
(c) force, z  direction 

  

(d) moment, x  axis (e) moment, y  axis 

Figure 6.18. Time series of the reactions at the tank base, ALE model for NM-3 and earthquake-

simulator test for ES-3 
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(a) force, x  direction (b) moment, y  axis 

Figure 6.19. Time series of the reactions at the tank base, ICFD model for NM-1 and earthquake-

simulator test for ES-1 

 

  

(a) force, x  direction (b) force, y  direction 

  

(c) moment, x  axis (d) moment, y  axis 

Figure 6.20. Time series of the reactions at the tank base, ICFD model for NM-2 and earthquake-

simulator test for ES-2 
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(a) force, x  direction (b) force, y  direction 

 
(c) force, z  direction 

  

(d) moment, x  axis (e) moment, y  axis 

Figure 6.21. Time series of the reactions at the tank base, ICFD model for NM-3 and earthquake-

simulator test for ES-3 
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(a) plan view (b) section N - S  (c) section E -W  

Figure 6.22. Moments on the base plate, forces and moments at the interface of the plate and the 

four load cells LNE , LNW , LSE  and LSW  

6.5.3 Vertical displacement of the free surface, wave height 

The vertical displacements of the free surface (i.e., wave height with respect to the initial free 

surface) in the tank measured by the Temposonic gauges, TE  and TW , shown in Figure 6.2c, 

are presented with those calculated using the numerical models in Figures 6.23 to 6.28. Wave 

heights in the ALE and ICFD models are calculated using the z  coordinates of a set of floating 

points assigned around the measuring locations of TE  and .TW  (The floating points in the ALE 

model are arranged in two layers and shown as black dots in Figure 6.5c. Wave heights presented 

here are output data of the floating points in the upper layer (i.e., on the free surface). For the 

ICFD analysis, the Floater option in the graphical user interface (GUI) of LS-Prepost (2018c) is 

used to output the z  coordinates of assigned points, as described in Section 4.2.3.1.) Figures 

6.23 to 6.25 enable comparison between ALE results for NM-1, NM-2, and NM-3 and test data 

for ES-1, ES-2, and ES-3, respectively. Figures 6.26 to 6.28 present companion data for the 

ICFD model.  

As noted in Section 6.3, the poor predictions of wave heights presented in Section 4 are 

addressed in the ALE and ICFD models here. As presented in Figure 4.16, the ALE models of 

Section 4 underestimate wave heights, and the amplitudes diverge further from the analytical 

results as time increases, due to limitations with the use of floating points, as discussed in 

Appendix C. By using very dense lines of floating points (124 points) around the measuring 
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locations of TE  and ,TW  the issues presented in Appendix C are resolved here, and 

underestimation is not seen in the ALE results presented in Figures 6.23 to 6.25. The ICFD 

models in Section 4, as presented in Figure 4.17, underestimate both amplitudes and periods of 

waves. However, the time series presented in Figures 6.26 to 6.28 are reasonable because 

*MESH_SIZE_SHAPE card is used in the ICFD model to generate a very fine fluid mesh 

around the free surface, as shown in Figure 6.6d. (Although the numerical results of wave 

heights are improved by comparison with those presented in Section 4, the ALE and ICFD 

models here are not validated. More details on the validation exercise are presented in Section 

6.5.4). 

 

  
(a) East side (b) West side 

Figure 6.23. Time series of wave height adjacent to the tank wall, ALE model for NM-1 and 

earthquake-simulator test for ES-1 

 

  
(a) East side (b) West side 

Figure 6.24. Time series of wave height adjacent to the tank wall, ALE model for NM-2 and 

earthquake-simulator test for ES-2 
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(a) East side (b) West side 

Figure 6.25. Time series of wave height adjacent to the tank wall, ALE model for NM-3 and 

earthquake-simulator test for ES-3 

 

  
(a) East side (b) West side 

Figure 6.26. Time series of wave height adjacent to the tank wall, ICFD model for NM-1 and 

earthquake-simulator test for ES-1 

 

  
(a) East side (b) West side 

Figure 6.27. Time series of wave height adjacent to the tank wall, ICFD model for NM-2 and 

earthquake-simulator test for ES-2 
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(a) East side (b) West side 

Figure 6.28. Time series of wave height adjacent to the tank wall, ICFD model for NM-3 and 

earthquake-simulator test for ES-3 

6.5.4 Discussion 

Figures 6.10 to 6.21 and 6.23 to 6.28 enable comparisons of numerical and test results for FSI 

response time series of a base-supported, cylindrical tank ( R = 0.762 m, sH = 2 m, and h =7.92 

mm), filled with water to a depth of H = 1.6 m. The test results of the tank were physically 

generated using an earthquake simulator for motions ES-1, ES-2, and ES-3 presented in Figure 

6.3. The numerical results are calculated in this section using the ALE and ICFD solvers in LS-

DYNA for motions NM-1, NM-2, and NM-3 presented in Figure 6.8, input at the base plate of 

the tank. The input motions of the numerical models, NM-1, NM-2, and NM-3, are derived using 

data from accelerometers located on the base plate of the tank tested for ES-1, ES-2, and ES-3, 

respectively. Accordingly, the motions at the base plate of the tank in the numerical models and 

of the test specimen are essentially identical. The input motions of the numerical model and the 

tests are not distinguished hereafter, and are both characterized using NM-1, NM-2, and NM-3. 

The fluid-structure responses presented in Sections 6.5.1 to 6.5.3 include hydrodynamic 

pressures on the tank wall, wp ; translational forces at the tank base in the three directions, xF , 

yF , and zF ; moments at the tank base about the two horizontal directions, xM  and yM ; and 

wave heights, wd . Results of wp  are reported at the locations of the twelve pressure transducers 

shown in Figure 6.2a: 1PE  (2,3), 1PW  (2,3), 1PN  (2,3), and 1PS  (2,3). Results for reactions 

(i.e., translational forces and moments) are output at the center of the tank base in the numerical 

models and derived using data from the four load cells used in the tests, as shown in Figure 6.2b: 
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LNE , LNW , LSE , and LSW . Results for wd  are reported at the locations of the two 

Temposonic gauges shown in Figure 6.2c: TE  and TW .  

Table 6.5 presents the maximum absolute values (amplitudes) of the test, ALE, and ICFD results 

extracted from the time series presented in Figures 6.10 to 6.21 and 6.23 to 6.28. The percentage 

differences between the ALE (and ICFD) and test results are presented in parentheses in Table 

6.5. The differences greater than  10% are bolded. If the differences in a response are less than 

 10%, the model is considered to be validated for calculating the response. 

 

Table 6.5. Maximum absolute FSI responses of the test tank calculated using the numerical 

models and measured in the earthquake-simulator tests, extracted from Figures 6.10 to 6.21 

and 6.23 to 6.28 

(a) input motions: NM-1 for numerical analysis and ES-1 for earthquake simulator  

Response 

Test ALE ICFD 

Instrument 
Measured 

response 

Calculated response 

(diff1) 

Calculated response 

(diff1) 

,w Ep  (kN/m2) 

3PE  

2PE  

1PE  

6.0 

9.2 

9.9 

6.5 (9%) 

9.8 (6%) 

10.2 (3%) 

7.0 (17%) 

9.8 (6%) 

10.2 (3%) 

,w Wp  (kN/m2) 

3PW  

2PW  

1PW  

4.6 

8.3 

8.4 

5.0 (9%) 

8.4 (2%) 

8.8 (4%) 

5.4 (18%) 

8.2 (-1%) 

8.9 (6%) 

xF  (kN) LNE , LNW , 

LSE , LSW  

51.9 50.4 (-3%) 49.4 (-5%) 

yM  (kN-m) 44.7 48.5 (9%) 46.7 (4%) 

,w Ed  (m) TE  94 149 (58%) 123 (31%) 

,w Wd  (m) TW  103 94 (-9%) 92 (-11%) 
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Table 6.5. Maximum absolute FSI responses of the test tank calculated using the numerical 

models and measured in the earthquake-simulator tests, extracted from Figures 6.10 to 6.21 

and 6.23 to 6.28 (continued) 

(b) input motions: NM-2 for numerical analysis and ES-2 for earthquake simulator 

Response 

Test ALE ICFD 

Instrument 
Measured 

response 

Calculated response 

(diff1) 

Calculated response 

(diff1) 

,w Ep  (kN/m2) 

3PE  

2PE  

1PE  

0.56 

0.81 

0.80 

0.53 (-6%) 

0.86 (6%) 

0.87 (9%) 

0.58 (3%) 

0.88 (8%) 

0.86 (8%) 

,w Wp  (kN/m2) 

3PW  

2PW  

1PW  

0.74 

0.84 

0.85 

0.57 (-23%) 

0.88 (4%) 

0.92 (8%) 

0.63 (-14%) 

0.90 (6%) 

0.94 (10%) 

,w Np  (kN/m2) 

3PN  

2PN  

1PN  

0.39 

0.81 

0.92 

0.39 (-1%) 

0.82 (1%) 

0.91 (-2%) 

0.36 (-8%) 

0.81 (0%) 

0.90 (-2%) 

,w Sp  (kN/m2) 

3PS  

2PS  

1PS  

0.41 

0.78 

0.87 

0.40 (-1%) 

0.71 (-8%) 

0.78 (-10%) 

0.37 (-9%) 

0.72 (-8%) 

0.80 (-8%) 

xF  (kN) 

LNE , LNW , 

LSE , LSW  

5.21 5.25 (1%) 5.19 (0%) 

yF  (kN) 4.99 4.71 (-5%) 4.64 (-7%) 

xM  (kN-m) 3.65 3.38 (-8%) 3.31 (-9%) 

yM  (kN-m) 4.19 3.98 (-5%) 3.93 (-6%) 

,w Ed  (mm) TE  86 92 (8%) 78 (-10%) 

,w Wd  (mm) TW  73 71 (-3%) 67 (-8%) 
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Table 6.5. Maximum absolute FSI responses of the test tank calculated using the numerical 

models and measured in the earthquake-simulator tests, extracted from Figures 6.10 to 6.21 

and 6.23 to 6.28 (continued) 

(c) input motions: NM-3 for numerical analysis and ES-3 for earthquake simulator 

Response 

Test ALE ICFD 

Instrument 
Measured 

response 

Calculated response 

(diff1) 

Calculated response 

(diff1) 

,w Ep  (kN/m2) 

3PE  

2PE  

1PE  

0.76 

1.18 

1.44 

0.75 (0%) 

1.17 (-1%) 

1.39 (-3%) 

0.74 (-2%) 

1.18 (0%) 

1.39 (-3%) 

,w Wp  (kN/m2) 

3PW  

2PW  

1PW  

0.83 

0.99 

1.19 

0.81 (-3%) 

0.92 (-6%) 

1.23 (3%) 

0.77 (-8%) 

0.98 (-1%) 

1.28 (8%) 

,w Np  (kN/m2) 

3PN  

2PN  

1PN  

0.49 

1.36 

1.59 

0.42 (-14%) 

1.31 (-4%) 

1.51 (-5%) 

0.43 (-12%) 

1.34 (-1%) 

1.54 (-3%) 

,w Sp  (kN/m2) 

3PS  

2PS  

1PS  

0.47 

1.06 

1.28 

0.47 (-2%) 

1.00 (-6%) 

1.18 (-8%) 

0.49 (3%) 

1.03 (-3%) 

1.22 (-5%) 

xF  (kN) 

LNE , LNW , 

LSE , LSW  

6.76 6.58 (-3%) 6.54 (-3%) 

yF  (kN) 7.31 7.08 (-3%) 6.97 (-5%) 

zF  (kN) 3.90 3.77 (-3%) 3.72 (-4%) 

xM  (kN-m) 5.38 4.90 (-9%) 4.83 (-10%) 

yM  (kN-m) 4.68 4.39 (-6%) 4.35 (-7%) 

,w Ed  (m) TE  98 94 (-4%) 98 (0%) 

,w Wd  (m) TW  81 91 (12%) 80 (-1%) 

1. Percentage difference of FSI responses calculated using the numerical models with respect to test results, to 

the nearest 1%; differences greater than 10% bolded. 
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Per Table 6.5, the differences of the ALE and test results in hydrodynamic pressures on the tank 

wall (i.e., ,w Ep , ,w Ep , ,w Np , and ,w Sp ), for the three input motions, are generally less than  10%, 

except for those at 3PW  for NM-2 and at 3PN  for NM-3: -23%  and -14%, respectively. 

Similarly, the differences for the ICFD results are also generally less than  10%, but results at 

3PE  and 3PW  for NM-1, at 3PW  for NM-2, and at 3PN  for NM-3 show greater differences: -

14% to 18%. These greater differences (i.e., >10%) between the ALE (or ICFD) and test results 

are all presented at a height of 1524 mm above the tank base (see 3PE , 3PW , and 3PN  in 

Figure 6.2a) and close to the free surface of the contained water ( H = 1.6 m). Two reasons 

explain these differences. First, hydrodynamic pressures around the free surface are significantly 

affected by wave actions, of which the calculations are challenging using the ALE and ICFD 

solvers. (The numerical inaccuracy of waves is described in the Discussion in Section 4.2.3.1 and 

later in this Section 6.5.4.) Second, the test results at the height of 1524 mm above the tank base, 

where pressures are relatively small, would not be necessarily accurate. The pressure transducers 

(PXM309-3.5A10V, Omega Engineering Inc.) used here are designed and tested for measuring 

absolute pressures ranging between 7 and 350 kN/m2 (70 m Bar to 3.5 Bar). The absolute 

pressure is the sum of the hydrostatic and hydrodynamic pressures. Per the specifications 

provided by Omega53, measuring errors at the lower bound (7 kN/m2) is  4.5% and at the higher 

bound (350 kN/m2) is  1.5%, namely, greater errors are presented in lower pressures. (Pressures 

below and beyond the designed range, 7 to 350 kN/m2, can be measured, but the efficacy of the 

results are not tested or reported by Omega.) At z = 1524 mm, where 3PE , 3PW , 3PN , and 

3PS  are located, the hydrostatic pressure is 0.75 kN/m2 (i.e., ( )s wp g H z= − ; fluid depth 

( )H z− = 76 mm), and the hydrodynamic pressures range between 0.39 and 6 kN/m2, per test 

results presented in Table 6.5. Accordingly, the absolute pressures at 3PE , 3PW , 3PN , and 

3PS  are between 1.14 and 6.75 kN/m2, and below the lower bound of the designed range (i.e., 7 

kN/m2): errors in the test results could be significant. Table 6.6 presents the hydrodynamic 

pressures at the locations of 3PE , 3PW , 3PN , and 3PS , calculated using the ALE and ICFD 

models, and their percentage differences. The differences are insignificant (   10%), which 

                                                 
53  Specifications of PXM309-3.5A10V: https://www.omega.com/en-us/sensors-and-sensing-equipment/pressure-

and-strain/pressure-transducers/p/PXM309 (Omega Engineering Inc, access on Jun 4, 2020) 
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indicates that the results of the hydrodynamic pressures calculated using the numerical models 

would be reasonable, and errors in the test results would be more significant. 

Table 6.6. Maximum hydrodynamic pressures of the test tank, at the 

locations of 3PE , 3PW , 3PN , and 3PS , ALE and ICFD models, 

extracted from Figures 6.10 to 6.15 

Motion Location ALE ICFD Difference (%) 

NM-1 
3PE  6.5 7.0 -7 

3PW  5.0 5.4 -8 

NM-2 

3PE  0.53 0.58 -8 

3PW  0.57 0.63 -10 

3PN  0.39 0.36 8 

3PS  0.4 0.37 9 

NM-3 

3PE  0.75 0.74 2 

3PW  0.81 0.77 6 

3PN  0.42 0.43 -2 

3PS  0.47 0.49 -5 

1. Percentage difference of the ALE results with respect to the ICFD results, to the 

nearest 1% 

As seen in Figures 6.16 to 6.21, the numerical (i.e., ALE and ICFD) and test results for reactions 

at the tank base (i.e., xF , yF , zF , xM , and yM ) for each motion are in excellent agreement. Per 

Table 6.5, the differences of the ALE (and ICFD) and test results in these responses are all less 

than  10%.  

As seen in Figures 6.23 to 6.28, the time series of wave heights calculated using numerical 

models (i.e., ALE and ICFD) are in-phase with the test results, but the amplitudes are not in 

close agreement. Per Table 6.5, the differences in the amplitude between the ALE and test results 

range between -9% and 58%, and those for the ICFD model range between -10% and 31%. The 

most significant differences are in ,w Ed , at TE  for NM-1 (Table 6.5a): 58% for the ALE model 

and 31% for the ICFD model. Differences between the numerical and test results of wave heights 

for NM-2 and NM-3 are either less than  10% or insignificant (i.e., 12% for the ALE model, at 

TW , for NM-3). 
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The difference of 58% in the ALE and test results, at TE  and for motion NM-1, is attributed to 

errors in 1) numerical calculations, 2) method for outputting numerical results, and 3) 

measurement in the tests. First, the ALE solver cannot calculate wave heights accurately near the 

tank wall due to the boundary effect: the vertical fluid velocity adjacent to the wall is zero and so 

waves cannot form there. Per the ALE results in Figure 4.18, the wave height is zero at r R=  

and fluctuates in  0.9 /r R  1. Per Figure 6.2c, the Temposonic gauge TE  is located 51 mm 

from the east face of the tank wall, at /r R =0.93 ( R = 762 mm, r R= -51 mm=711 mm), where 

wave height in the ALE model is not calculated accurately. Second, the points used for 

outputting wave heights do not necessarily float on the free surface. Figure 6.29 presents the tank, 

contained fluid (shown in blue), and floating points (black dots) in the ALE model for NM-1 at 

the time of peak wave height at the location of TE , namely, 1.5 seconds, as shown in Figure 

6.23a. A portion of the free surface and floating points around TE  are magnified in the figure. 

The radial coordinate, r , of the monitoring location of TE  and five z  coordinates are denoted: 

r = 711 mm and z = 1600 (i.e., original free surface, H = 1.6 m), 1700, 1725, 1749, and 1750 

mm. As shown in Figure 6.29, for r 711 mm, the floating points in the two layers converge. At 

r = 711 mm, the level of the free surface (i.e., top of the blue part) is at z = 1725 mm, whereas 

the level of the floating point that is identified with a green line is at z = 1749 mm. Accordingly, 

,w Ed  calculated using the ALE model presented in Table 6.5a is 149 mm (i.e., 

,w Ed z H= − =1749-1600=149 mm). Although the floating point should float on the free surface, 

it lies above the surface by 24 mm (i.e., 1749-1725=24) at 1.5 seconds, which contributes to an 

overestimation of 26%, by comparison with the test results of 94 mm measured by TE  per Table 

6.5a (i.e., 24/94=26%).  

The third reason for the differences between the ALE and test results, at TE  and for motion NM-

1, is associated with errors of measurement in the tests. Figure 6.30 presents snapshots of a video 

recorded for NM-1, showing TE  and its attached float (purple), at t = 0, 0.7, and 1.5 seconds. As 

shown in Figure 6.30a, the float rests on the free surface at t = 0. Per Figure 6.30b, at t = 0.7 

second (the first peak shown in Figure 6.23a), the free surface is higher than its original level 

seen in Figure 6.30a and is deformed around the boundary of the float. Accordingly, the presence 

of the float disturbs the wave action. Figure 6.30c presents the water and the float at the time of 
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z=1600 mm

z=1700 mm

z=1725 mm

z=1750 mm

r=711 mm

z=1749 mm

 

Figure 6.29. Floating points (black dots) used to output vertical displacements of the free 

surface in the ALE model, for NM-1, at t = 1.5 seconds; magnified around TE  

 

   

(a) t = 0 (b) t = 0.7 sec (c) t = 1.5 sec 

Figure 6.30. Snapshots of a video recorded for NM-1 (ES-1) showing the Temposonic gauge TW , 

its attached float (purple), and surrounding water 

maximum wave height: t = 1.5 seconds. As seen in the figure, the water splashes, the wave is 

deformed and broken significantly, and the free surface cannot be defined. The wave height 

cannot be measured properly by the Temposonic gauge TE . This challenge in measurement for 

NM-1 contributes not only to the difference between the ALE and test results, but also to that for 

the ICFD results, which is 31%. Consequently, it is not possible to quantify the accuracy (or 

inaccuracy) of the numerical analysis (ALE and ICFD) for NM-1. The broken wave of Figure 

6.30c is not shown in the ALE and ICFD results: see the water in Figure 6.29 for the ALE model 

and Figure 6.31 for the ICFD model, at t = 1.5 seconds. Accordingly, waves generated in the test 

and those predicted using the ALE and ICFD models are qualitatively different for NM-1. The 

water splashing and broken waves shown in Figure 6.30c are high-frequency responses and not 

those of linear wave actions (i.e., convective frequencies): 0.8, 1.3, and 1.7 Hz for the first three  
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Figure 6.31. Water in the ICFD model, for NM-1, at t = 1.5 seconds 

modes, estimated using Eq. (3.73) (Veletsos 1984). Such a broken wave is neither shown in the 

tests nor in the numerical responses for NM-2 and NM-3, of which the spectral accelerations in 

high frequencies (e.g., 20 to 50 Hz) are relatively small, as presented in Figure 6.9. 

Accordingly, the authors concludes that both ALE and ICFD models of the tank and the 

contained fluid are validated for calculating reactions at the tank base, and hydrodynamic 

pressures on the tank wall but away from the free surface (i.e., below the mid-height of the tank). 

The numerical results for hydrodynamic pressures near the free surface cannot be validated here 

using the test data since the pressures are too small to be measured accurately. However, the 

hydrodynamic pressures (near the free surface) calculated using the ALE and ICFD models are 

in reasonable agreement. Neither model is validated for calculating wave heights due to errors in 

both numerical analysis and measurement in the tests. The accuracy (or inaccuracy) of numerical 

analysis for calculating waves cannot be identified here using the ALE and ICFD models and test 

data. 

6.6 Closing remarks 

Verified and validated numerical models for fluid-structure-interaction (FSI) analysis will be 

required for the seismic design and qualification of fluid-filled advanced reactors. A verification 

study should be performed for models of: 1) fluid-structure responses of the vessel (tank) per 

Section 4 (excluding the internal components), and 2) interaction responses of the tank and its 

internal components per Section 5. A validation study should be performed for the verified 

models using data generated from physical testing. 
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This section validates numerical models, which are modified from those partially verified in 

Section 4, using data generated from earthquake-simulator tests on a base-supported cylindrical 

tank. An ALE model and an ICFD model is developed based on the realistic geometries, 

dimensions, mechanical properties, and boundary conditions of the test tank. Three sets of 

seismic inputs are used in the analysis, including uni-, two-, or three-directional motions, and 

rocking motions that are associated with horizontal inputs and the flexibility of the tank support. 

The intensity of the motions is relatively strong, with PGAs ranging between 0.1 g and 1 g. 

Hydrodynamic pressures on the tank wall, reactions at the tank base, and wave heights, 

generated using the tests and numerical models are compared. According to the comparisons 

presented in Section 6.5, both ALE and ICFD models are validated for calculating reactions and 

hydrodynamic pressures away from the free surface (e.g., below the mid-height of the tank). 

Given that the test results for hydrodynamic pressures near the free surface and wave heights 

involved measuring errors, the models cannot be validated here for calculating these responses, 

and the accuracy of numerical results cannot be identified. However, hydrodynamic pressures 

near the free surface are tiny, by comparison with those at a greater fluid depth, and so would not 

play an important role in either seismic design or qualification. 

To validate a verified numerical model of a fluid-filled advanced reactor, the fluid-structure 

responses critical to the design and qualification should be compared with test data on a 

specimen representing the reactor. Test results can be generated by performing experiments or 

extracted from available databases. This report supports an APRA-E project that performs 

earthquake-simulator tests associated with FSI of nuclear facilities. Model 1, which is in part 

used in this section, include a base-supported tank and internal components that represent a 

liquid metal reactor. Model 2 is a cylindrical tank supported near its center of gravity, 

representing a steam generator. Additional tests are planned. Datasets will be archived in 

DesignSafe (https://www.designsafe-ci.org/), and can be used by analysts and engineers to 

validate numerical models for seismic FSI analysis. 

After verification and validation, a numerical model for the reactor could be developed using 

realistic boundary conditions, geometries, dimensions, and mechanical properties. Although the 

verification and validation studies provide high confidence in the capability of the numerical 

solver used and the modeling approach, a sensitivity analysis is required to optimize the mesh 

https://www.designsafe-ci.org/
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and the analysis time step (if an implicit solver is used) for the model of the reactor. The mesh 

and time step shall be capable of producing responses in a frequency range of interest, depending 

on the dynamic characteristics of the reactor and its supporting structure and the seismic motions 

of the site. 
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SECTION 7 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

7.1 Introduction 

The Generation IV International Forum (GIF) (2002, 2014) selected six next-generation nuclear 

reactors for development (Abram and Ion 2008), including two liquid metal reactors, namely, the 

sodium-cooled fast reactor (SFR) and the lead-cooled fast reactor (LFR). Both the SFR and the 

LFR use liquid metals as their primary coolants for the removal of heat from the reactor core and 

the subsequent generation of electricity. The vessel for a liquid metal reactor is substantially 

thinner than its large-light-water counterparts (and some high temperature gas reactors) because 

the metal coolant (i.e., liquid sodium or lead-bismuth) does not need to be pressurized since its 

boiling point is much higher than the operating temperature of the reactor. The greater the 

internal operating pressure, the thicker the wall of the reactor vessel. 

Thin-walled vessels and components, although operationally efficient, lack the seismic 

robustness of their thick-walled counterparts, necessitating the use of mitigating technologies 

such as seismic isolation.  

Modern reactors must be designed to resist the effects of earthquake shaking. Seismic 

probabilistic risk assessment must be performed to confirm that the mean annual frequency of 

core damage or large early release of radiation is sufficiently small. Earthquake shaking of a 

liquid metal reactor will trigger motion of and interaction between the vessel, the contained fluid, 

and the internal components. Analytical solutions for seismic fluid-structure interaction (FSI) 

cannot accommodate the geometries, support conditions, and all internal components in an 

advanced reactor, simultaneous input motions in three directions, and nonlinear response of the 

contained liquid. Physical testing of reactor vessels and internal components for seismic 

qualification is also not feasible because of large size (i.e., simulator payload) and costs. 

Although seismic design, qualification, and risk assessment of the advanced reactors will require 

numerical models for FSI analysis, none exist. Importantly, these models will be needed, 

regardless of whether seismic mitigation strategies such as base isolation are deployed.  
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To provide the numerical tools needed for seismic FSI analysis of fluid-filled advanced reactors, 

and meet the goal of Section 1.3, this report: 1) verifies and validates numerical models for rigid 

and flexible, cylindrical vessels (tanks), supported at either the base or the top (head), analyzed 

using two solvers capable of predicting nonlinear fluid responses; and 2) verifies numerical 

models for flexible, submerged internal components. The Arbitrary Lagrangian-Eulerian (ALE) 

and Incompressible Computational Fluid Dynamics (ICFD) solvers in LS-DYNA (Livermore 

Software Technology Corporation (LSTC) 2018a) are used to perform the seismic FSI analysis54. 

The numerical models are verified using analytical solutions, available in prior studies and 

corrected in this report if needed, or derived in this report, and validated using data generated 

from earthquake-simulator tests on a base-supported, cylindrical, steel tank filled with water.  

Section 1.3 lists the six objectives of this report. Objective 1 is addressed in Sections 2 and 3. 

Objective 2, the development of analytical solutions for FSI analysis of a head-supported tank, is 

met in Section 3. The verification of numerical models in LS-DYNA for base- and head-

supported, fluid-filled tanks, objective 3, is presented in Section 4. The verification of numerical 

models in LS-DYNA for components submerged in fluid, objective 5, is presented in Section 5. 

Objective 4, the validation of verified models of a base-supported, fluid-filled vessel, is met in 

Section 6. Recommendations for developing verified and validated numerical models for fluid-

filled, advanced nuclear reactors, objective 6, are provided in Section 7.4. 

Section 7.2 summarizes the work performed in Sections 2 to 6. Section 7.3 presents conclusions 

of the verification and validation studies drawn from the work summarized in Section 7.2. 

Section 7.4 presents recommendations for developing verified and validated numerical models 

for fluid-filled advanced reactors. 

7.2 Summary 

Section 2 reviews the literature on analytical, numerical, and experimental studies related to 

seismic fluid-structure-interaction (FSI) analysis of fluid-filled tanks and reactors. Studies on 

seismic FSI of tanks began in the 1930s at the Vibration Laboratory at Stanford University 

(Hoskins and Jacobsen 1934; Morris 1938; Jacobsen 1949; Jacobsen and Ayre 1951), including 

                                                 
54 Solvers capable of predicting linear fluid responses were not investigated in this study, in part because the 

threshold for nonlinear fluid response, which will vary as a function of vessel geometry, boundary conditions, and 

frequency content and intensity of earthquake inputs, is not known a priori. 
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the development of analytical solutions and the earliest earthquake-simulator tests on fluid-filled 

tanks. The products of these studies were used subsequently extended and/or modified by others, 

including Housner (1957), and used to design first- (Thomas et al. 1963) and second-generation 

nuclear reactors.  

Section 3 reviews analytical studies on the seismic FSI response of base-supported cylindrical 

tanks developed by Jacobsen (1949), Chalhoub and Kelly (1988), Housner (1957, 1954), and 

Veletsos (1984a). Simplifying assumptions were made for the analytical solutions: rigid or 

elastic tanks, ideal and irrotational fluids, and unidirectional horizontal seismic motion of a small 

amplitude. The FSI responses are parsed into impulsive and convective components. The section 

summarizes analytical solutions that addressed impulsive frequencies (i.e., lateral frequencies of 

a flexible tank), convective frequencies (i.e., frequencies of waves), hydrodynamic pressures, 

wave heights, and reactions at the base support. The derivations or solutions presented in 

Jacobsen, Chalhoub and Kelly, and Housner involved calculation errors, and are re-worked and 

corrected here. The FSI responses are calculated for a range of tank dimensions and compared 

using the different analytical solutions, after correction, as needed.   

Analytical solutions for seismic FSI analysis of head-supported tanks are developed in this 

section, with application to the boundary conditions and geometries similar to those proposed for 

fluid-filled advanced reactor vessels (Yu and Whittaker 2020). The solutions are derived using 

the methodologies and assumptions of Jacobsen (1949) and Veletsos (1984), and address the 

change in support condition, namely, base to head.  Impulsive and convective frequencies and 

FSI responses (i.e., hydrodynamic pressures, wave heights, and reactions) generated by small-

amplitude unidirectional horizontal motion are calculated for a head-supported tank using the 

analytical solutions developed here. The analytical results are normalized to be unitless, and can 

be used for the preliminary design of tanks and vessels with different dimensions and mechanical 

properties, and subjected to different input motions. 

Section 4 verifies ALE and ICFD models of base- and head-supported cylindrical tanks using 

analytical solutions presented in Section 3. The models accommodate the assumptions made for 

the analytical solutions, namely, rigid or elastic tanks, ideal fluids, and small-amplitude, 

unidirectional, horizontal seismic input. Two fluid heights are used for the rigid tank, and the 



  316 

 

elastic (flexible) tank is full. Four input motions are used for response-history analysis, including 

two sinusoidal motions with a low and a high frequency (i.e., 0.5 and 20 Hz) and two earthquake 

motions with distinct frequency contents. The numerical results for impulsive frequencies (for 

the flexible tank only), convective frequencies, hydrodynamic pressures on the tank wall, wave 

heights, and reactions at the support (base or head), are compared with the analytical solutions. 

Section 5 reviews the analytical solutions derived by Chen and Rosenberg (1975), and then 

verifies ALE and ICFD models of submerged internal components using the solutions. Chen and 

Rosenberg derived solutions for frequencies of two concentric pipes, with fluid filling the inner 

pipe and the annulus between the two pipes. The outer and inner pipes map here to a tank wall 

and a submerged internal component, respectively. The derivations and solutions of Chen and 

Rosenberg are re-worked herein to correct calculation errors. Numerical models for two sets of 

two fluid-filled concentric pipes with different dimensions are constructed. To accommodate the 

assumptions used for the analytical solutions, the lengths of the two pipes in each model are 

identical, and they are both supported at their tops. The lateral frequencies of the inner pipe in 

the ALE and ICFD models are identified from free-vibration displacement histories. The 

numerical results for the frequencies are compared with those calculated using the corrected 

analytical solutions.  

Section 6 validates ALE and ICFD numerical models using data from earthquake-simulator tests 

on a base-supported cylindrical tank filled with water. The numerical models in Section 6 are 

modified from those in Section 4 to better understand and capture sloshing responses measured 

in the earthquake-simulator experiments. The measured dimensions, mechanical properties, and 

boundary conditions of the test tank are used to build the numerical models. The translational 

and rotational accelerations measured at the base of the tank in the experiments are used as the 

inputs to the models. The intensity of the input motions is relatively strong, with peak ground 

accelerations ranging between 0.1 g and 1 g. Hydrodynamic pressures on the tank wall, reactions 

at the tank base, and wave heights calculated using the numerical models are compared with the 

values measured in the experiments. 
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7.3 Conclusions 

Section 7.3.1 presents the conclusions of the verification and validation studies on numerical 

models of cylindrical tanks, drawn from Sections 3, 4, and 6. Section 7.3.2 presents the 

conclusions of the verification study on numerical models of submerged internal components, 

drawn from Section 5.  

7.3.1 Verification and validation of numerical models for cylindrical tanks 

The ALE and ICFD numerical models of cylindrical tanks, presented in Section 4, are partially 

verified by comparing numerical results with those calculated using analytical solutions of 

Section 3. If the difference between the numerical and analytical results for a peak response is 

less than or equal to  10%, the model is considered to be verified for calculating that response. 

The ALE models are verified for calculating impulsive and convective frequencies, 

hydrodynamic pressures on the tank wall, and reactions at the support. Wave heights are 

underestimated by the ALE models and diverge further from the analytical results with the 

passage of time due to challenges the code has in outputting results, as described in Appendix C. 

The ICFD models are verified for calculating impulsive frequencies, hydrodynamic pressures on 

the tank wall and reactions at the support, if the wave action of the contained fluid is 

insignificant. The ICFD models do not predict wave action accurately, in both amplitude and 

phase, by comparison with the analytical results. Accordingly, these ICFD models should be 

limited to seismic FSI analysis with little-to-no wave action or for input motions with negligible 

frequency content at the first convective mode. The capability of the ICFD solver for calculating 

wave actions on the free surface is a subject of on-going LSTC development at the time of this 

writing (Caldichoury 2020) 

The numerical models of Section 4 are modified for use in Section 6 to improve the predictions 

of wave heights: additional monitoring locations on the free surface in the ALE model to output 

wave heights, and a finer fluid mesh near the free surface in the ICFD model. The modified 

models are validated by comparing numerical results with test data for a base-supported tank. If 

the difference between the numerical and test results for a peak response is less than or equal to 

 10%, the model is considered to be validated for calculating that response. Both ALE and 

ICFD models are validated for calculating reactions at the base, and hydrodynamic pressures on 

the tank wall away from the free surface (e.g., below the mid-height of the tank). Given that the 
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test results for hydrodynamic pressure near the free surface and wave height involved 

measurement errors, it is not possible to validate the models for calculating these responses. 

Accordingly, the modified numerical models of this section were not used to update the 

verification studies of Section 4.  

In conclusion, the LS-DYNA ALE and ICFD models of fluid-filled tanks are verified and 

validated for calculating reactions at the support and hydrodynamic pressures on the tank wall 

(away from the free surface). The predictions of wave height are not sufficiently accurate. 

Further code development on simulating wave action and outputting wave height data is needed, 

and that work is underway, prompted by the studies described in this report.  

7.3.2 Verification of numerical models for submerged internal components 

The ALE and ICFD models for submerged internal components are verified in Section 5: the 

differences in the lateral frequencies calculated using the numerical models and the analytical 

solutions of Chen and Rosenberg are less than 5%. The frequencies of a submerged component 

depend on the hydrodynamic pressures on its perimeter. Accordingly, if the numerical results for 

the frequencies of the component are accurate, the hydrodynamic pressures on its perimeter (and 

by extension the reactions at its support) are correct. The verified models are not validated in this 

report. (A validation study for models of submerged internal components is underway, by others.) 

7.4 Recommendations for developing verified and validated numerical models for fluid-

filled advanced reactors 

Numerical models for seismic fluid-structure interaction (FSI) can be verified using analytical 

solutions and validated using data from physical testing. Recommendations for developing 

verified and validated numerical models for fluid-filled advanced reactors are presented below, 

drawn from the studies performed in Sections 3 to 6. 

To the knowledge of the authors, none of the analytical studies for FSI responses of a vessel 

(tank) that address responses critical to seismic design (e.g., pressures, wave heights, and 

reactions) consider interaction with internal components. Consequently, verification studies 

would have to be performed separately for models of: 1) FSI responses of the vessel (excluding 

the internal components), and 2) frequencies and/or interaction responses of internal components 

in the vessel. Verification for 1) and 2) could follow the work of Sections 4 and 5, respectively. 
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The dimensions and materials of the reactor vessel and the internal component in the models (to 

be verified) must be idealized to accommodate the assumptions of the analytical solutions. The 

models would have to be constructed using a rigid or elastic material assigned the mechanical 

properties of the metal used for fabricating the reactor vessel and internal components (e.g., 

stainless steel) and use an ideal fluid with the density of the coolant (e.g., liquid sodium or lead-

bismuth) at the assumed operating temperature. A constant radius and wall thickness should be 

used for the idealized vessel and internal component since analytical solutions are generally 

developed for prismatic structures. Figure 7.1 demonstrates the idealization for the geometries, 

dimensions, and boundary conditions using a sample nuclear reactor. Figure 7.1a presents the 

prototype fast reactor (PFR) in Dounreay, Scotland, with green, red, and blue lines indicating the 

vessel, reactor jacket (see footnote 48 on page 249 for information), and coolant to be idealized 

for the verification. Figure 7.1b presents an idealized vessel in the model for calculating FSI 

responses, with dimensions extracted from Figure 7.1a: the radius at the head support, the wall 

thickness, the maximum height of the vessel, and the greatest depth of coolant. The model could 

be verified using the analytical solutions for head-supported tanks (Yu and Whittaker 2020) 

developed in Section 3. Figure 7.1c presents a model of an idealized component (i.e., the reactor 

jacket) submerged in a fluid confined by the vessel wall, with radial dimensions at their supports, 

wall thicknesses, and maximum height of the vessel per Figure 7.1a. The model could be verified 

using the (corrected) analytical solutions of Chen and Rosenberg (1975) presented in Section 5. 

Other analytical studies associated with submerged internal components could also be used for 

the verification study but the numerical model must reflect the assumptions made. Examples are 

1) Chung and Chen (1977), who derived frequencies of internal components eccentric to a tank, 

used for verifying a model for the intermediate heat exchanger and vessel of Figure 7.1a; and 2) 

Chen (1975a), who derived frequencies of an array of submerged cylindrical beams, used for 

verifying a model for nuclear fuel rods. If the difference between the numerical and analytical 

results is less than or equal to  10%, the models should be considered to be verified. 
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(a) prototype fast reactor (PFR), Dounreay, Scotland (Figure 2.44 in IAEA (2012)), and 

dimensions extracted from Jensen and Ølgaard (1995) or estimated based on the drawing 
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(b) idealized reactor vessel and coolant (c) idealized reactor vessel and reactor jacket 

Figure 7.1. Sample nuclear reactor and idealized geometries, dimensions, and support 

conditions 
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To validate a verified numerical model for a fluid-filled advanced reactor, the responses 

calculated using the model should be compared with test data on a specimen representing the 

reactor. The validation study could follow the work of Section 6. Test results could be generated 

by either performing earthquake-simulator experiments or extracting information from available 

databases (e.g., DesignSafe, https://www.designsafe-ci.org/). The dimensions, materials, support 

conditions, and seismic inputs used for the numerical model (to be validated) should be identical 

to those of the test specimen. Three-component seismic motions with a range of intensities 

should be used for analysis to maximize the utility of the validation exercise. If the site of the 

reactor is known, motions consistent with the design-basis seismic hazard at the site should be 

used. Responses critical to the design and qualification (e.g., hydrodynamic pressures, wave 

heights, and reactions) are recorded and compared with the numerical predictions. If the 

difference in peak response for a given response parameter is less than or equal to  10%, the 

numerical model should be considered to be validated. 

After verification and validation, a numerical model for the reactor could be developed using 

realistic support conditions, geometries, dimensions, and mechanical properties. This model 

could then be used for calculating FSI responses to three-directional seismic inputs for design, 

qualification, and probabilistic risk assessment.  

https://www.designsafe-ci.org/
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APPENDIX A. SUMMARY OF DERIVATIONS AND ANALYTICAL 

SOLUTIONS FOR FSI ANALYSIS OF CYLINDRICAL TANKS  

A.1 Introduction 

This appendix summarizes the derivations and analytical solutions for FSI responses of base- and 

head-supported cylindrical tanks presented in Section 3. The variables for the analytical solutions 

denoted in Figures 3.2 and 3.31 are used herein, including the dimensions of a cylindrical tank 

shown in two cut-away views, a Cartesian coordinate system ( x , y , z ), and a cylindrical 

coordinate system ( r ,  , z ). The radius of the tank is R  and the height is sH . The height of the 

contained fluid is H  and its density is  . The tank moves with the rigid support (i.e., base or 

head) at a horizontal displacement, velocity, and acceleration, 0 ( )u t , 0 ( )u t , and 0 ( )u t , in the x  

direction.  

Sections A.2 and A.3 summarize the derivations and analytical solutions for base- and head-

supported cylindrical tanks, respectively. The summary includes the governing equations and 

boundary conditions of the fluid used for the derivations, and the methods of separation of 

variables used for developing the governing equations that were differential equations. Variables 

are defined once.  

A.2 Base-supported tank 

The analytical solutions presented in Section 3 for base-supported tanks were derived by 

Jacobsen (1949), Chalhoub and Kelly (1988), Housner (1954, 1957), and Veletsos (1984). 

Jacobsen and Housner parsed the FSI responses in a rigid tank into impulsive and convective 

components (see Section 3 for more information), and derived solutions for the two components 

separately. Chalhoub and Kelly (1988) did not parse the responses and derived solutions with the 

consideration of both impulsive and convective components. Veletsos (1984) accounted for the 

flexibility of the tank wall in deriving impulsive responses, but considered the tank to be rigid for 

convective responses, which were assumed to be independent of the deformation of the tank wall. 
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Jacobsen (1949) 

Table A.1 lists the governing equation, boundary conditions, separation of variables for deriving 

the governing equation, and the analytical solutions for impulsive responses of Jacobsen (1949). 

The governing equation is the potential velocity imp  of the fluid associated with impulsive 

responses. The solutions address the pressures on the tank wall and base, ,imp wp  and ,imp bp , and 

the shear force, impF , and moments, ,imp wM  and ,imp bM , at the tank base. The moment ,imp wM  is 

associated with ,imp wp  on the tank wall, and ,imp bM  is associated with ,imp wp on the base (see 

Section 3 for more information). The governing equation imp  and analytical solutions, as 

written in Jacobsen (1949), involved calculation errors, and those presented in Table A.1 are 

corrected per Section 3. 

 

 

 

Table A.1. Governing equation, boundary conditions, separation of variables, and analytical 

solutions for impulsive responses of base-supported rigid tanks (Jacobsen 1949) 

Governing 

equation 

Per Eq. (3.8), 

 

11

0 2
'1
1

(2 1)
8( 1) 2

( ) cos cos (2 1)
2(2 1) (2 1)

2

i

imp

i

r
I i

zH
u t H i

R Hi I i
H








+

=

 
− −    = −    − − 

 

  

where 1I  is the modified Bessel function of the first kind with an integer order of 

1, and 1I   is the first derivative of 1I  with respect to (2 1) / (2 )i R H− . 
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Table A.1. Governing equation, boundary conditions, separation of variables, and analytical 

solutions for impulsive responses of base-supported rigid tanks (Jacobsen 1949) (continued) 

Boundary 

conditions 

1. On the initial free surface, at z H= , the impulsive pressure is zero per Eq. 

(3.5): 

0
imp

z Ht


=


− =


 

2. On the tank wall, at r R= , the radial velocities of the tank wall and the 

adjacent fluid are equal per Eq. (3.6): 

0( )cos
imp

r R

u t
r


=


=


 

3. On the tank base, at z = 0, the vertical velocity of the fluid is zero per Eq. 

(3.7): 

0

0
imp

zz =


=


 

The following equations are obtained using the assumed form of imp  per Eq. 

(3.3) for Eqs. (3.5), (3.6), and (3.7), respectively: 

 | 0z HZ = =  (A.1) 

 0| ( )cosr RR Z T u t =   =  (A.2) 

 0|zZ = =0 (A.3) 

where R ,  , Z , and T  are four unknown functions associated with variables 

r ,  , z , and t , respectively. 
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Table A.1. Governing equation, boundary conditions, separation of variables, and analytical 

solutions for impulsive responses of base-supported rigid tanks (Jacobsen 1949) (continued) 

Separation 

of 

variables 

Given Eq. (A.2),   and T  are: 

 cos =  (A.4) 

 0( )T u t=  (A.5) 

Given Eq. (3.4), /Z Z  is assumed to be a constant 
2− , and so the form of Z  is:  

 cos sinZ A z B z = +  (A.6) 

where A  and B  are constants, and 0B =  per Eq. (A.3).  

Substituting Eqs. (A.4) and (A.6) for   and Z  in Eq. (3.4), respectively, R  is 

solved using the form: 

 1( )R CI r=  (A.7) 

where C  is a constant. The constants A , C , and   are solved for using the three 

boundary conditions per Eqs. (A.1), (A.2), and (A.3). 

The governing equation imp  per Eq. (3.3) is solved using solutions for R ,  , Z , 

and T  per Eqs. (A.4) to (A.7). 

Analytical 

solutions 

 
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where 2I  is the modified Bessel function of the first kind with an integer order of 2 
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Chalhoub and Kelly (1988) 

Table A.2 lists the governing equation, boundary conditions, separation of variables for deriving 

the governing equation, and the analytical solutions for FSI responses of Chalhoub and Kelly 

(1988). The governing equation is the potential velocity h  of the fluid, with consideration of 

both impulsive and convective components. The solutions address the convective frequency 

,con jf  in the j th mode, and the hydrodynamic pressure of the fluid dp  and wave height wd .  

 

Table A.2. Governing equation, boundary conditions, separation of variables, and analytical 

solutions for FSI responses of base-supported rigid tanks (Chalhoub and Kelly 1988) 

Governing 

equation 

Per Eq. (3.18) 

0 1 0

1 0

cosh

( )cos ( ) ( ) cos ( ) cos

cosh

t i

h i i i

i
i

z
n

r Ru t t d J n u t r
HR

n
R

     


=

 
  = −  + 

 
   

where i  is per Eq. (3.19), i  is per Eq. (3.20), 1J  is the Bessel function of the 

first kind with an integer order of 1, and in  is a root of 1( ) 0iJ n = . 

Boundary 

conditions 

1. On the initial free surface, at z H= , the height of the wave generates 

hydrostatic pressure at z H=  per Eq. (3.17): 

2

2
| |

h h
z H z Hg

z t
= =

  
= −

 
 

2. On the tank wall, at r R= , the radial velocities of the tank wall and the 

adjacent fluid are equal per Eq. (3.6): 

0 ( )cos
h

r R

u t
r


=


=


 

3. On the tank base, at z = 0, the vertical velocity of the fluid is zero per Eq. 

(3.7): 

0

0
h

zz =


=


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Table A.2. Governing equation, boundary conditions, separation of variables, and analytical 

solutions for FSI responses of base-supported rigid tanks (Chalhoub and Kelly 1988) 

(continued) 

Separation 

of 

variables 

Given Eq. (3.4), /   and /Z Z  are assumed to be constants 
2k−  and 

2n , 

respectively, and so the forms of   and Z  are: 

 1 2cos sinK kz K kz= +  (A.8) 

 0 3 4Z K Z K= + , if n =0 (A.9) 

 7 8cosh sinhnZ K nz K nz= + , if n 0 (A.10) 

where 1K , 2K , 3K , 4K , 7K , 8K  are functions of time t . Using solutions of   

and Z  per Eqs. (A.8) to (A.10) for Eq. (3.4), R  is solved per the form: 

 0 5 6
k kR K r K r−= + , if n =0 (A.11) 

 9 1( )nR K J nr= , if n 0 (A.12) 

where 1J  is the Bessel function of the first kind with an integer order of 1, and 

5K , 6K , and 9K  are functions of time t . Per the form of Eq. (3.14), the general 

solution for the governing equation, ,0 ,h h h n = + , is calculated using R ,  , 

and Z  per Eqs. (A.8) to (A.12). The component ,0h  is associated with 0Z  and 

0R  for n =0, and ,h n  is associated with nZ  and nR  for n 0. For a given t , 

the constants k , n , and 1K  to 9K  are solved for using the general solution of 

h  and the three boundary conditions per Eqs. (3.17), (3.6), and (3.7).  

Analytical 

solutions 

,

1
tanh( )

2

j
con j j

n g H
f n

R R
=   

0 0

1 1 0

( ) cos cos ( )sin ( )

t

d j j j j

j j

p u t B r B u t d        
 

= =

 
 = −  + + − 

 
    

where jB  is per Eq. (3.22). 

1

2
11

2 ( / )
( ) cos

1 ( )

j
w j

j jj

R J n r R
d A t

g n J n




=

= − 
−

  

where jA  is per Eq. (3.78). 
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Housner (1954, 1957) 

Tables A.3 and A.4 list the governing equation, boundary conditions, and analytical solutions for 

impulsive and convective responses, respectively, of Housner (1954, 1957). The impulsive 

responses are calculated using the vertically discretized fluid presented in Figure 3.3. The 

governing equations are drawn from Newton’s second law, describing the equilibrium of the 

resultant force of the pressure of the fluid and its inertial force. The solutions address the 

pressures on the tank wall and base, ,imp wp  and ,imp bp , and the shear force, impF , and moments, 

,imp wM  and ,imp bM , at the tank base. The convective responses are calculated using the 

horizontally discretized fluid presented in Figure 3.21. The governing equations are drawn from 

Hamilton’s Principle, describing the balance of the kinetic and potential energies of the fluid. 

The solutions address the pressures on the tank wall and base, , ,1con wp  and , ,1con bp , and wave 

height, ,1wd , in the first convective mode, and the convective frequency, ,con jf , shear force, ,con jF , 

and moments, , ,con w jM  and , ,con b jM , at the tank base in the j th mode ( j  1). The analytical 

solutions for the impulsive and convective responses, as written in Housner, involved calculation 

errors, and those equations presented in Tables A.3 and A.4 are corrected per Section 3. 

Table A.3. Governing equations, boundary conditions, and analytical solutions for impulsive 

responses of base-supported rigid tanks (Housner 1954, 1957) 

Governing 

equations 

The conservation of the volume of the contained fluid per Eq. (3.25): 

x
z

u
u dx dx z

x


  = 


 

where xu  and zu  are the fluid velocities in the x−  and z − directions, 

respectively. 

The balance of the resultant force of the pressure and the inertial force of the 

fluid in the x  direction, per Eqs. (3.28) and (3.29), using Newton’s second law 

gives:  

0

H

imp xp dz Hdx u = −   

The balance of the resultant force of the pressure and the inertial force of the 

fluid in the z  direction, per Eq. (3.26), using Newton’s second law gives: 

imp
z

p
dz dx dxdz u

z



 = 


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Table A.3. Governing equations, boundary conditions, and analytical solutions for impulsive 

responses of base-supported rigid tanks (Housner 1954, 1957) (continued) 

Boundary 

conditions 

1. On the initial free surface, at z H= , the impulsive pressure is zero: 

( ) 0impp z H= =  

2. On the tank wall, at cosx R =  , the horizontal velocities of the tank wall 

and the adjacent fluid are equal: 

0( cos ) ( )xu x R u t =  =  

Analytical 

solutions 

2 2
, 0

3
( ) ( ) tanh( 3 cos / )

2
imp wp u t H z R H

H


= − −  

, 0

3 sinh( 3 cos / )
( 0) ( )

2 cosh( 3 cos / )
imp b imp

r H
p p z u t H

r H





= = = −  

2
0

1
( ) tanh( 3 )

3
imp

R
F u t RH

H
=  

,

3

8
imp w impM F H=  

,

1 3 /
1

2 tanh( 3 / )
imp b imp

R H
M F H

R H

 
= −  

 
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Table A.4. Governing equations, boundary conditions, and analytical solutions for convective 

responses of base-supported rigid tanks (Housner 1954; 1957) 

Governing 

equations 

The conservation of the volume of the contained fluid per Eq. (3.97): 

0
x y zu u u

x y z

    
+ + =

  
 

where xu , yu , and zu  are the fluid velocities in the x− ,  y − , and 

z − directions, respectively. 

The balance of the kinetic and potential energies of the contained fluid, lK  and 

lP  per Eqs. (3.91) to (3.93), using Hamilton’s principle: 

( ) 0l lK P dt− =  

where 2 2 21
( )

2
l

l x y z l

V

K u u u dV  = + + , 

l

l z l

V

P gu dV=  , and lV  is the volume of 

the contained fluid. 

Boundary 

conditions 

1. On the tank wall, at cosx R =  , the fluid velocity in the x− direction is zero 

per Eq. (3.88): 

( cos ) 0xu x R  =  =  

2. On the tank base, at z = 0, the rotation of the horizontal fluid layer is zero per 

Eq. (3.89): 

( 0) 0z = =  

3. On the x z−  cross section (i.e., y = 0), the fluid velocity in the y − direction 

is zero per Eq. (3.90): 

( 0) 0yu y = =  
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Table A.4. Governing equations, boundary conditions, and analytical solutions for convective 

responses of base-supported rigid tanks (Housner 1954; 1957) (continued) 

Analytical 

solutions 

2 2
, ,1 , ,1

27
cosh( )

3 1 8
sin( ) (1 cos )cos

8 3 27
sinh( )

8

con w H a con

z

R
p t R

H

R

    = −    −  

where ,

27 (2 1) 27 (2 1)
tanh

8 8

m
H a

A j H j

R R


− −
= , and mA  is the amplitude of 

the acceleration of a single-degree-of-freedom system in the first convective 

mode. 

3
2 2

, ,1 , ,1 3

3 1 1
sin( ) ( cos )cos

8 3 27
sinh( )

8

con b H a con

r r
p t R

R R H

R

    = −    −  

,1
,1

( )con
w

p z H
d

g

=
=  

1

2

,

1 (2 1) 27 27 (2 1)
tanh( )

2 8 8
con j

g j H j
f

R R

 − −
=  

 
 

4
, , ,

1 27
sin( ) ( )

4 8 2 1
con j H a con j

R
F t

j
  =  

−
 

, , ,

27 (2 1)
1 cosh

8 8

2 1 27 27 (2 1)
sinh

8

con w j con j

H j

R R
M F H

j H j

R

 −
− 

 =  +
− −

 
 

 

, , ,

5 3

6 8 2 1

27 (2 1)
sinh( )

8

con b j con j

R

j
M F

H j

R

−
=

−
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Veletsos (1984) 

Tables A.5 and A.6 list the governing equations, boundary conditions, separation of variables for 

deriving the governing equations, and analytical solutions for impulsive and convective 

responses, respectively, of Veletsos (1984). For the impulsive responses, the governing equations 

are the equation of motion of the flexible tank and the potential velocity imp  of the fluid. The 

solutions address the impulsive frequency in the k th mode, and the modal pressures on the tank 

wall and base, , ,imp w kp  and , ,imp b kp , and shear force, ,imp kF , and moments, , ,imp w kM  and , ,imp b kM , at 

the tank base. For the convective responses, the governing equation is the potential velocity con  

of the fluid. The solutions address the convective frequency ,con jf  in the j th mode, and the 

modal pressures on the tank wall and base, , ,con w jp  and , ,con b jp , shear force, ,con jF , and moments, 

, ,con w jM  and , ,con b jM , at the tank base, and wave height, ,w jd . 

Table A.5. Governing equations, boundary conditions, separation of variables, and analytical 

solutions for impulsive responses of base-supported flexible tanks (Veletsos 1984) 

Governing 

equations 

The equation of motion of the tank per Eq. (3.51) is: 

0

1 1 1

( )

i i

i i ext

i i
N N N N N N N

U U

M V K V u t P

W W
    

         
         + =        
                 

 

where [ ]M  and [ ]K  are the mass and stiffness matrices of the tank,  0( ) extu t P  

is the external force vector associated with the ground motion, and iU , iV , and 

iW  are the degrees of freedom of the tank in the radial, tangential and axial 

directions, respectively. 

Per Eq. (3.45), 

1

'1 1
1

(2 1)
4 2

cos ( ) cos (2 1)
(2 1) 2

(2 1)
2

imp i ij

i j

r
I j

zH
H U t j

Rj H
I j

H




 



 

= =

 
−     = −  −    − 

 

   

where ij  is calculated per Eq. (3.46) using the modal shapes of a base-

supported cantilever ( )i z , 1I  is the modified Bessel function of the first kind 

with an integer order of 1, and 1I   is the first derivative of 1I  with respect to 

(2 1) / (2 )i R H− . 
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Table A.5. Governing equations, boundary conditions, separation of variables, and analytical 

solutions for impulsive responses of base-supported flexible tanks (Veletsos 1984) (continued) 

Boundary 

conditions 

1. On the initial free surface, at z H= , the impulsive pressure is zero per Eq. (3.5): 

0
imp

z Ht


=


− =


 

2. On the tank wall, at r R= , the radial velocities of the tank wall and the adjacent 

fluid are equal per Eq. (3.44): 

( ) ( ) ( )cos
imp

i i

r R

u r R U t z
r

 
=


 = = =


 

3. On the tank base, at z = 0, the vertical velocity of the fluid is zero per Eq. (3.7): 

0

0
imp

zz =


=


 

The following equations are obtained using the assumed form of imp  per Eq. 

(3.3) for Eqs. (3.5), (3.44), and (3.7), respectively: 

 | 0z HZ = =  (A.13) 

 | ( ) ( )cosr R i iR Z T U t z =   =  (A.14) 

 0|zZ = =0 (A.15) 

Separation 

of 

variables 

Given Eq. (A.14),   and T  are solved: 

 cos =  (A.16) 

 0( )T u t=  (A.17) 

Given Eq. (3.4), /Z Z  is assumed to be a constant 
2− , and so the form of Z  is:  

 cos sinZ A z B z = +  (A.18) 

where A  and B  are constants, and 0B =  per Eq. (A.15).  

Substituting Eqs. (A.16) and (A.18) for   and Z  in Eq. (3.4), respectively, R  is 

solved using the form: 

 1( )R CI r=  (A.19) 

where C  is a constant. The constants A , C , and   are solved for using the three 

boundary conditions per Eqs. (A.13), (A.14), and (A.15). 

The governing equation imp  per Eq. (3.3) is solved using solutions for R ,  , Z , 

and T  per Eqs. (A.16) to (A.19). 
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Table A.5. Governing equations, boundary conditions, separation of variables, and analytical 

solutions for impulsive responses of base-supported flexible tanks (Veletsos 1984) (continued) 

 

Analytical 

solutions 

     
2

,

2

imp k
k k

f
K M 



 
=  
 

 

where ,imp kf  and  k  are the frequency and modal shape in the k th impulsive 

mode. 

1

, ,

1

'1 1
1

( ) cos

(2 1)
4 2

              cos (2 1)
(2 1) 2

(2 1)
2

imp w k k k

N

ik ij

i j

p A t H e

R
I j

zH
j

Rj H
I j

H

 




 





= =

= − 

 
−      −  −    − 

 

 
 

where ij , ke , and ( )kA t  are per Eqs. (3.46), (3.55) and (3.57), respectively. 

1
1

, ,

'1 1
1

(2 1)
4 2

( ) cos
(2 1)

(2 1)
2

N

imp b k k k ik ij

i j

r
I j

H
p A t H e

Rj
I j

H



   




= =

 
− 

 = −  
−  

− 
 

   

 

1
11

, 2
'1 1
1

(2 1)
8( 1) 2

( )
(2 1) (2 1)

2

jN

imp k k l k ik ij

i j

R
I j

H H
F A t m e

RR j I j
H



 


+

= =

 
− −  =  

 − − 
 

   

 

1
12 1 1

, , 2
'1 1
1

(2 1)
8( 1) 2( 1)2

( ) 1
(2 1)(2 1) (2 1)

2

j jN

imp w k k l k ik ij

i j

R
I j

H H
M A t m e

RR jj I j
H



 
 

+ +

= =

 
−   − − =  −  

− −  − 
 

   

 

1
2

, , 2
'1 1
1

(2 1)
8 2

( )
(2 1) (2 1)

2

N

imp b k k l k ik ij

i j

R
I j

H
M A t m He

Rj I j
H



 




= =

 
− 

 =  
 − − 
 

   

where 2I  is the modified Bessel function of the first kind with an integer order of 2 

 



  346 

 

 

Table A.6. Governing equation, boundary conditions, separation of variables, and analytical 

solutions for convective responses of base-supported rigid tanks (Veletsos 1984) 

Governing 

equation 

Per Eq. (3.71): 

1

2
2 1

( ) cosh( )
2

cos tanh( )
1 ( )

tanh( ) cosh( )

j j
ji t

con j
j j j

j j

r z
J n n

g n HR Re n
n g H Hi n J n R

n n
R R R

 
 

 =
−

−

 

where g  is the gravitational acceleration, 1J  is the Bessel function of the first kind 

with an integer order of 1, jn  is a root of 1( ) 0jJ n = , and   is the frequency of an 

assumed harmonic motion.  

Boundary 

conditions 

1. On the initial free surface, at z H= , the height of the wave generates hydrostatic 

pressure at z H=  per Eq. (3.68): 

( ) 2

2

imp con con

z Hz H

g
z t

==

  +  
= −

 
 

2. On the tank wall, at r R= , the radial velocity of the fluid is zero per Eq. (3.69): 

0
con

r Rr =


=


 

3. On the tank base, at z = 0, the vertical velocity of the fluid is zero per Eq. (3.70): 

0

0
con

zz =


=


 

The following equations are obtained using the assumed form of con  per Eq. 

(3.65) and imp  per Eq. (3.8) with 0 ( ) (1/ ) i tu t i e  =  for Eqs. (3.68), (3.69), and 

(3.70), respectively: 

 
 

1

11

| | cos

(2 1) / (2 )4
                                                          

(2 1) (2 1) / (2 )

i t

z H z H

i

ge
R Z T g R Z T

i

I n r H

n I n r H








 

= =



=

   +    = −

−


− −


 (A.20) 

 | 0r RR = =  (A.21) 

 0| 0zZ = =  (A.22) 
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Table A.6. Governing equation, boundary conditions, separation of variables, and analytical 

solutions for convective responses of base-supported rigid tanks (Veletsos 1984) (continued) 

Separation 

of 

variables 

Given Eq. (A.20),   and T  are solved: 

 cos =  (A.23) 

 
i tT e =  (A.24) 

Given Eq. (3.4), /Z Z  is assumed to be a constant 2( / )R , and so the form of Z  is:  

 cosh( / ) sinh( / )Z A z R B z R = +  (A.25) 

where A  and B  are constants, and 0B =  per Eq. (A.22).  

Substituting Eqs. (A.23) and (A.25) for   and Z  in Eq. (3.4), respectively, R  is 

solved using the form: 

 1( / )R CJ r R=  (A.26) 

where C  is a constant. The constants A , C , and   are solved for using the three 

boundary conditions per Eqs. (A.20), (A.21), and (A.22). 

The governing equation con  per Eq. (3.65) is solved using solutions for R ,  , Z , 

and T  per Eqs. (A.23) to (A.26). 

Analytical 

solutions 

,

1
tanh( )

2

j
con j j

n g H
f n

R R
=  

, , 2

2 cosh( / )
( ) cos

1 cosh( / )

j
con w j j

j j

n z R
p A t R

n n H R
 = − 

−
 

where ( )jA t  is per Eq. (3.78). 

1
, , 2

1

2 ( / ) 1
( ) cos

1 ( ) cosh( / )

j
con b j j

j j j

J n r R
p A t R

n J n n H R
 = − 

−
 

1
, 2

1

2 ( / )
( ) cos

1 ( )

j
w j j

j j

R J n r R
d A t

g n J n
= − 

−
 

, 2

2
( ) tanh( )

( 1)
con j j l j

j j

R H
F A t m n

H n n R
= 

−
 

, , 2

2
( ) tanh( ) 1 tanh( )

( 1) 2
con w j j l j j

j j j

H R H
M A t m R n n

n n R n H R

 
=  − 

−  
 

2
2

, , 2
1

2 ( ) 1
( )

( 1) ( ) cosh( / )

j
con b j j l

j j j j

R J n
M A t m

H n n J n n H R
= 

−
 

where 2J  is the Bessel function of the first kind with an integer order of 2. 
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A.3 Head-supported tank 

The solutions for head-supported tanks are developed in this report. The solutions for impulsive 

responses are derived for both rigid and flexible tanks using the methodologies of Jacobsen 

(Table A.1) and Veletsos (Table A.5), respectively. The solutions for convective responses are 

derived for rigid tanks using the method of Veletsos (Table A.6). Tables A.7 and A.8 present 

information for impulsive responses of rigid and flexible head-supported tanks, respectively, 

including the governing equations, boundary conditions of the fluid, separation of variables used 

for deriving the governing equations, and analytical solutions. Companion information for 

convective responses of rigid head-supported tanks is presented in Table A.9. 

 

 

 

 

Table A.7. Governing equation, boundary conditions, separation of variables, and analytical 

solutions for impulsive responses of head-supported rigid tanks 

Governing 

equation 

Per Eq. (3.8), 

 

11

0 2
'1
1

(2 1)
8( 1) 2

( ) cos cos (2 1)
2(2 1) (2 1)

2

i

imp

i

r
I i

zH
u t H i

R Hi I i
H








+

=

 
− −    = −    − − 

 

  

where 1I  is the modified Bessel function of the first kind with an integer order of 

1, and 1I   is the first derivative of 1I  with respect to (2 1) / (2 )i R H− . 
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Table A.7. Governing equation, boundary conditions, separation of variables, and analytical 

solutions for impulsive responses of head-supported rigid tanks (continued) 

Boundary 

conditions 

1. On the initial free surface, at z H= , the impulsive pressure is zero per Eq. 

(3.5): 

0
imp

z Ht


=


− =


 

2. On the tank wall, at r R= , the radial velocities of the tank wall and the adjacent 

fluid are equal per Eq. (3.6): 

0( )cos
imp

r R

u t
r


=


=


 

3. On the tank base, at z = 0, the vertical velocity of the fluid is zero per Eq. (3.7): 

0

0
imp

zz =


=


 

The following equations are obtained using the assumed form of imp  per Eq. 

(3.3) for Eqs. (3.5), (3.6), and (3.7), respectively: 

 | 0z HZ = =  (A.27) 

 0| ( )cosr RR Z T u t =   =  (A.28) 

 0|zZ = =0 (A.29) 
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Table A.7. Governing equation, boundary conditions, separation of variables, and analytical 

solutions for impulsive responses of head-supported rigid tanks (continued) 

Separation 

of 

variables 

Given Eq. (A.28),   and T  are solved: 

 cos =  (A.30) 

 0( )T u t=  (A.31) 

Given Eq. (3.4), /Z Z  is assumed to be a constant 
2− , and so the form of Z  is:  

 cos sinZ A z B z = +  (A.32) 

where A  and B  are constants, and 0B =  per Eq. (A.29).  

Substituting Eqs. (A.30) and (A.32) for   and Z  in Eq. (3.4), respectively, R  is 

solved using the form: 

 1( )R CI r=  (A.33) 

where C  is a constant. The constants A , C , and   are solved for using the three 

boundary conditions per Eqs. (A.27), (A.28), and (A.29). 

The governing equation imp  per Eq. (3.3) is solved using solutions for R ,  , Z , 

and T  per Eqs. (A.30) to (A.33). 

Analytical 

solutions 

 

 
 

1
1

, 0 2 '
11

(2 1) / (2 )8( 1)
( ) cos cos (2 1)

(2 1) / (2 ) 2(2 1)

i

imp w

i

I i R H z
p u t H i

I i R H Hi

 
 



+

=

−−  
= − − −  −

  

 

 
 

1
1

, 0 2 '
11

(2 1) / (2 )8( 1)
( ) cos

(2 1) / (2 )(2 1)

i

imp b

i

I i r H
p u t H

I i R Hi


 



+

=

−−
= −

−−
  

 

 
 

1

0 3 '
11

(2 1) / (2 )16
( )

(2 1) / (2 )(2 1)
imp l

i

I i R HH
F u t m

R I i R Hi







=

−
=

−−
  

 

 
 

2 1
1

, 0 3 '
11

(2 1) / (2 )16 2( 1)
( ) 1

(2 1) / (2 ) (2 1)(2 1)

i
s

imp w l

i

I i R HH H
M u t m

R I i R H H ii



 

+

=

−  −
=  − + − 

− −−  
  

 

 
 

1
2

, 0 3 '
11

(2 1) / (2 )16( 1)
( )

(2 1) / (2 )(2 1)

i

imp b l

i

I i R H
M u t m H

I i R Hi





+

=

−−
=

−−
  

where 2I  is the modified Bessel function of the first kind with an integer order of 2 
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Table A.8. Governing equations, boundary conditions, separation of variables, and analytical 

solutions for impulsive responses of head-supported flexible tanks  

Governing 

equations 

The equation of motion of the tank per Eq. (3.51): 

0

1 1 1

( )

i i

i i ext

i i
N N N N N N N

U U

M V K V u t P

W W
    

         
         + =        
                 

 

Where [ ]M  and [ ]K  are the mass and stiffness matrices of the tank,  0( ) extu t P  

is the external force vector associated with the ground motion, and iU , iV , and 

iW  are the degrees of freedom of the tank in the radial, tangential and axial 

directions. 

Per Eq. (3.126), 

1

'1 1
1

(2 1)
4 2

cos ( ) cos (2 1)
(2 1) 2

(2 1)
2

imp i ij

i j

r
I j

zH
H U t j

Rj H
I j

H




 



 

= =

 
−     = −  −    − 

 

   

where ij  is per Eq. (3.127) using the modal shapes of a top-supported cantilever 

( )i sH z − , 1I  is the modified Bessel function of the first kind with an integer 

order of 1, and 1I   is the first derivative of 1I  with respect to (2 1) / (2 )i R H− . 
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Table A.8. Governing equations, boundary conditions, separation of variables, and analytical 

solutions for impulsive responses of head-supported flexible tanks (continued) 

Boundary 

conditions 

1. On the initial free surface, at z H= , the impulsive pressure is zero per Eq. (3.5): 

0
imp

z Ht


=


− =


 

2. On the tank wall, at r R= , the radial velocities of the tank wall and the adjacent 

fluid are equal per Eq. (3.125): 

( ) ( ) ( )cos
imp

i i s

r R

u r R U t H z
r

 
=


 = = = −


 

3. On the tank base, at z = 0, the vertical velocity of the fluid is zero per Eq. (3.7): 

0

0
imp

zz =


=


 

The following equations are obtained using the assumed form of imp  per Eq. 

(3.3) for Eqs. (3.5), (3.125), and (3.7), respectively: 

 | 0z HZ = =  (A.34) 

 | ( ) ( )cosr R i i sR Z T U t H z =   = −  (A.35) 

 0|zZ = =0 (A.36) 

Separation 

of 

variables 

Given Eq. (A.35),   and T  are solved: 

 cos =  (A.37) 

 0( )T u t=  (A.38) 

Given Eq. (3.4), /Z Z  is assumed to be a constant 
2− , and so the form of Z  is:  

 cos sinZ A z B z = +  (A.39) 

where A  and B  are constants, and 0B =  per Eq. (A.36).  

Substituting Eqs. (A.37) and (A.38) for   and Z  in Eq. (3.4), respectively, R  is 

solved using the form: 

 1( )R CI r=  (A.40) 

where C  is a constant. The constants A , C , and   are solved using the three 

boundary conditions per Eqs. (A.34), (A.35), and (A.36). 

The governing equation imp  per Eq. (3.3) is solved using solutions for R ,  , Z , 

and T  per Eqs. (A.37) to (A.40). 
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Table A.8. Governing equations, boundary conditions, separation of variables, and analytical 

solutions for impulsive responses of head-supported flexible tanks (continued) 

Analytical 

solutions 

     
2

,

2

imp k
k k

f
K M 



 
=  
 

 

where ,imp kf  and  k  are the frequency and modal shape in the k th impulsive 

mode. 

1

, ,

1

'1 1
1

( ) cos

(2 1)
4 2

              cos (2 1)
(2 1) 2

(2 1)
2

imp w k k k

N

ik ij

i j

p A t H e

R
I j

zH
j

Rj H
I j

H

 




 





= =

= − 

 
−      −  −    − 

 

 
 

where ij , ke , and ( )kA t  are per Eqs. (3.127), (3.130) and (3.133), respectively. 

1
1

, ,

'1 1
1

(2 1)
4 2

( ) cos
(2 1)

(2 1)
2

N

imp b k k k ik ij

i j

r
I j

H
p A t H e

Rj
I j

H



   




= =

 
− 

 = −  
−  

− 
 

   

 

1
11

, 2
'1 1
1

(2 1)
8( 1) 2

( )
(2 1) (2 1)

2

jN

imp k k l k ik ij

i j

R
I j

H H
F A t m e

RR j I j
H



 


+

= =

 
− −  =  

 − − 
 

   

 

1

2

, ,

11 1

2
'1 1
1

( )

(2 1)
8( 1) 2( 1)2

               1
(2 1)(2 1) (2 1)

2

imp w k k l k

j jN
s

ik ij

i j

H
M A t m e

R

R
I j

HH

R H jj I j
H



 
 

+ +

= =

= 

 
−   − −    − + − 

− −  − 
 

 
 

 

1
2

, , 2
'1 1
1

(2 1)
8 2

( )
(2 1) (2 1)

2

N

imp b k k l k ik ij

i j

R
I j

H
M A t m He

Rj I j
H



 




= =

 
− 

 =  
 − − 
 

   

where 2I  is the modified Bessel function of the first kind with an integer order of 2 
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Table A.9. Governing equation, boundary conditions, separation of variables, and analytical 

solutions for convective responses of head-supported rigid tanks 

Governing 

equation 

Per Eq. (3.71): 

1

2
2 1

( ) cosh( )
2

cos tanh( )
1 ( )

tanh( ) cosh( )

j j
ji t

con j
j j j

j j

r z
J n n

g n HR Re n
n g H Hi n J n R

n n
R R R

 
 

 =
−

−

 

where g  is the gravitational acceleration, 1J  is the Bessel function of the first kind 

with an integer order of 1, jn  is a root (solution) of 1( ) 0jJ n = , and   is the 

frequency of an assumed harmonic motion.  

Boundary 

conditions 

1. On the initial free surface, at z H= , the height of the wave generates hydrostatic 

pressure at z H=  per Eq. (3.68): 

( ) 2

2

imp con con

z Hz H

g
z t

==

  +  
= −

 
 

2. On the tank wall, at r R= , the radial velocity of the fluid is zero per Eq. (3.69): 

0
con

r Rr =


=


 

3. On the tank base, at z = 0, the vertical velocity of the fluid is zero per Eq. (3.70): 

0

0
con

zz =


=


 

The following equations are obtained using the assumed form of con  per Eq. 

(3.65) and imp  per Eq. (3.8) with 0 ( ) (1/ ) i tu t i e  =  for Eqs. (3.68), (3.69), and 

(3.70), respectively: 

 
 

1

11

| | cos

(2 1) / (2 )4
                                                          

(2 1) (2 1) / (2 )

i t

z H z H

i

ge
R Z T g R Z T

i

I n r H

n I n r H








 

= =



=

   +    = −

−


− −


 (A.41) 

 | 0r RR = =  (A.42) 

 0| 0zZ = =  (A.43) 
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Table A.9. Governing equation, boundary conditions, separation of variables, and analytical 

solutions for convective responses of head-supported rigid tanks (continued) 

Separation 

of 

variables 

Given Eq. (A.41),   and T  are solved: 

 cos =  (A.44) 

 
i tT e =  (A.45) 

Given Eq. (3.4), /Z Z  is assumed to be a constant 2( / )R , and so the form of Z  

is:  

 cosh( / ) sinh( / )Z A z R B z R = +  (A.46) 

where A  and B  are constants, and 0B =  per Eq. (A.43).  

Substituting Eqs. (A.44) and (A.46) for   and Z  in Eq. (3.4), respectively, R  is 

solved using the form: 

 1( / )R CJ r R=  (A.47) 

where C  is a constant. The constants A , C , and   are solved using the three 

boundary conditions per Eqs. (A.41), (A.42), and (A.43). 

The governing equation con  per Eq. (3.65) is solved using solutions for R ,  , 

Z , and T  per Eqs. (A.44) to (A.47). 

Analytical 

solutions 

,

1
tanh( )

2

j
con j j

n g H
f n

R R
=  

, , 2

2 cosh( / )
( ) cos

1 cosh( / )

j
con w j j

j j

n z R
p A t R

n n H R
 = − 

−
 

where ( )jA t  is per Eq. (3.133). 

1
, , 2

1

2 ( / ) 1
( ) cos

1 ( ) cosh( / )

j
con b j j

j j j

J n r R
p A t R

n J n n H R
 = − 

−
 

1
, 2

1

2 ( / )
( ) cos

1 ( )

j
w j j

j j

R J n r R
d A t

g n J n
= − 

−
 

, 2

2
( ) tanh( )

( 1)
con j j l j

j j

R H
F A t m n

H n n R
= 

−
 

, , 2

2
( ) tanh( ) 1 tanh( )

( 1) 2

s
con w j j l j j

j j j

H H R H
M A t m R n n

n n R H n H R

 
=  − + − 

−  
 

2
2

, , 2
1

2 ( ) 1
( )

( 1) ( ) cosh( / )

j
con b j j l

j j j j

R J n
M A t m

H n n J n n H R
= 

−
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APPENDIX B. SEISMIC FLUID-STRUCTURE-INTERACTION 

ANALYSIS OF FLEXIBLE BASE-SUPPORTED CYLINDRICAL TANKS 

USING ANALYTICAL SOLUTIONS AND A SIMPLIFIED PROCEDURE 

B.1 Introduction 

Veletsos (1984) developed analytical solutions for the impulsive and convective55 responses of 

flexible, base-supported cylindrical tanks, subjected to unidirectional horizontal motion of a 

small amplitude. The impulsive and convective responses were decoupled into modal 

contributions and solutions were provided for each mode, as presented in Sections 3.2.1.3 and 

3.2.2.2 of this report.  

Malhotra et al. (2000) modified the analytical solutions of Veletsos to develop a simplified 

analysis procedure, using only one impulsive mode and one convective mode: a two-degree-of-

freedom (2-DOF) system. The simplified procedure provided global reactions at the base of the 

tank and vertical displacements of the free surface of the contained fluid (i.e., the height of the 

waves with respect to the initial free surface) for engineering applications. Eurocode 8 (European 

Committee for Standardization (CEN) 1998) and API 650 (American Petroleum Institute (API) 

2012) both include the simplified procedure for the seismic design and analysis of base-

supported cylindrical tanks. 

This appendix has three goals: 1) introduce the simplified procedure of Malhotra et al.; 2) present 

analysis of base-supported cylindrical tanks using both the simplified procedure and the 

analytical solutions; and 3) characterize the appropriateness of the simplified procedure.  

Section B.2 describes the development of the simplified procedure, based in part on a discussion 

with Malhotra (2018). The 2-DOF system and the procedure for calculating seismic FSI 

responses of tanks are introduced. Section B.3 presents and compares FSI responses calculated 

using the simplified procedure and the analytical solutions, for three flexible, base-supported 

cylindrical tanks with practical dimensions, subjected to small-amplitude, unidirectional, 

horizontal earthquake histories. FSI responses were previously calculated using the analytical 

solutions in Section 3, but were normalized. The normalization made the results unitless and 

                                                 
55 Veletsos (1984) derived analytical solutions of convective responses with no consideration of the flexibility of the 

wall of the tank. However, these solutions can be applied to flexible tanks since the convective responses are 

independent of the deformations of the wall. See Section 3.2.2 for more information. 



  358 

 

independent/insensitive (footnote 25 on page 75) of the dimensions and the mechanical 

properties of the tank and the fluid, and independent of the acceleration response of the tank. The 

results presented in Section B.3 are not normalized, presenting realistic FSI responses for the 

three tanks.  

B.2 Simplified procedure of Malhotra et al. 

The simplified procedure of Malhotra et al. calculates the seismic response of a flexible, base-

supported cylindrical tank using a 2-DOF system with one impulsive mode and one convective 

mode. The impulsive responses include: 1) shear force at the base of the tank, impF , 2) moment 

immediately above the base of the tank, ,imp wM , and 3) moment immediately below the base of 

the tank, ,imp wbM . The moment ,imp wM  balances the resultant moment at the center of the base 

generated by the impulsive pressure on the wall. The moment ,imp wbM  balances the resultant 

moment at the center of the base generated by both the impulsive pressures on the wall and the 

base. Accordingly, ,imp wbM  is the sum of two components: 1) ,imp wM , associated with the 

pressure on the wall and 2) ,imp bM , associated with the pressure on the base. The convective 

responses include the shear force and moments at the base, conF , ,con wM , and ,con wbM  

(counterparts of  impF , ,imp wM , and ,imp wbM , respectively), and the maximum vertical 

displacement of the free surface, ,maxwd .  

Figure B.1 presents the 2-DOF system subjected to ground motion, 0 ( )u t , in the x  direction. In 

the figure, impm  and conm  are the parts of the mass of the contained fluid associated with the 

impulsive and the convective modes, hereafter termed the impulsive and convective fluid masses, 

respectively. The sum of the two masses, ( )imp conm m+ , is the mass of the contained fluid, lm . 

The two fluid masses, impm  and conm , are located at heights of impH  and conH , respectively, 

above the (rigid) foundation of the 2-DOF system. The foundation represents the base of the tank. 
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Figure B.1. Two-degree-of-freedom system used in the simplified procedure (Malhotra et 

al.), including one impulsive mode and one convective mode  

 Table B.1 presents properties provided by Malhotra et al. for the 2-DOF system, for eight ratios 

of fluid height-to-tank radius /H R : 0.3, 0.5, 0.7, 1, 1.5, 2, 2.5, and 3. The data needed to 

calculate impulsive responses include the coefficient of the impulsive period, M
impD ; the impulsive 

fluid mass, impm ; and the heights, ,imp wH  and ,imp wbH . The data needed to calculate convective 

responses include the coefficient of the convective period, M
conD ; the convective fluid mass, conm ; 

and the heights, ,con wH  and ,con wbH . 

Table B.1. Properties of the 2-DOF system shown in Figure B.1 used for the simplified 

procedure to calculate impulsive and convective responses (Malhotra et al.) 

 Impulsive Convective 

/H R  M
impD  

impm   

( lm ) 

impH  ( H  ) M
conD  

( /s m ) 

conm   

( lm ) 

conH  ( H  ) 

,imp wH  ,imp wbH  ,con wH  ,con wbH  

0.3 9.28 0.18 0.40 2.64 2.09 0.82 0.52 3.41 

0.5 7.74 0.30 0.40 1.46 1.74 0.70 0.54 1.52 

0.7 6.97 0.41 0.40 1.01 1.60 0.59 0.57 1.01 

1.0 6.36 0.55 0.42 0.72 1.52 0.45 0.62 0.79 

1.5 6.06 0.69 0.44 0.56 1.48 0.31 0.69 0.73 

2.0 6.21 0.76 0.45 0.50 1.48 0.24 0.75 0.76 

2.5 6.56 0.81 0.45 0.48 1.48 0.19 0.79 0.80 

3.0 7.03 0.84 0.45 0.47 1.48 0.16 0.83 0.83 
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Malhotra et al. derived the values listed in Table B.1 with the goal of calculating responses 

similar to those analytically derived by Veletsos. The impulsive period, impT , and the convective 

period, conT , of the 2-DOF system are related to the coefficients M
impD  and M

conD , respectively: 

 M
imp imp

R
T D H

Eh


=   (B.1) 

 M
con conT D R=   (B.2) 

where E  is the elastic modulus of the material used to construct the tank;   is the density of the 

contained fluid; and h  is the thickness of the wall of the tank. Malhotra et al. assumed the 

frequencies of the 2-DOF system (i.e., 1/ impT  and 1/ conT ) to be equal to the first impulsive and 

convective frequencies derived by Veletsos: ,1impf  and ,1conf . Figure B.2a duplicates the data for 

,1impf  in Figure 3.11a, calculated per Veletsos for a tank with R = 30 m, h = 0.001 R , 

0.2 /H R  3, and the mechanical properties listed in Table 3.5, together with the 

corresponding 1/ impT  per Eq. (B.1). Similarly, Figure B.2b shows ,1conf  (repeated from Figure 

3.24a) and 1/ conT  calculated per Eq. (B.2) for the same tank analyzed in Figure B.2a. The results 

of Malhotra et al. and Veletsos are identical, as expected. 

  
(a) 1/ impT  and ,1impf  (b) 1/ conT  and ,1conf  

Figure B.2. Impulsive and convective frequencies (i.e., 1/ impT  and 1/ conT ) of the 2-DOF system 

calculated using data provided by Malhotra et al., the first impulsive and convective frequencies 

(i.e., ,1impf  and ,1conf ) calculated using the solutions of Veletsos, R = 30 m, h =  0.001 R , 

0.2 /H R  3, and the mechanical properties listed in Table 3.5 
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Maximum global reactions at the base of the tank analyzed per the 2-DOF system are calculated 

using the inertial forces associated with impm  and conm  with their respective spectral accelerations 

(i.e., maximum accelerations), ,1( )impSa f  and ,1( )conSa f . Malhotra et al. recommended damping 

ratios of 2% and 5% of critical for calculating ,1( )impSa f  for steel and concrete tanks, 

respectively, and a damping ratio of 0.5% for ,1( )conSa f  for both steel and concrete tanks.  

The shear force at the base of the tank, F , in the x  direction (i.e., the direction of seismic input) 

is the sum of the impulsive and convective components, impF  and conF , which are calculated 

using the inertial forces associated with impm  and conm , respectively: 

 ,1 ,1( ) ( )imp con imp imp con conF F F m Sa f m Sa f= + =  +    (B.3) 

The moment immediately above the base of the tank, wM , about the y  axis, is calculated as the 

sum of the impulsive and convective components, ,imp wM  and ,con wM . The moments, ,imp wM  and 

,con wM , are calculated using the inertial forces per Eq. (B.3) and their respective heights above 

the foundation, ,imp wH  and ,con wH : 

 , , ,1 , ,1 ,( ) ( )w imp w con w imp imp imp w con con con wM M M m Sa f H m Sa f H= + =   +     (B.4) 

Similar to wM , the moment immediately below the base of the tank, wbM , about the y  axis, is 

the sum of the impulsive and convective components, ,imp wbM  and ,con wbM . The moments, 

,imp wbM  and ,con wbM , are calculated using the inertial forces per Eq. (B.3) and their respective 

heights above the foundation, ,imp wbH  and ,con wbH : 

 , , ,1 , ,1 ,( ) ( )wb imp wb con wb imp imp imp wb con con con wbM M M m Sa f H m Sa f H= + =   +     (B.5) 

Although the technical basis for the procedure is not documented, the coefficients for the 

impulsive modal mass and modal heights in Table B.1 were derived assuming the fluid in each 

mode derived by Veletsos moved together at respective spectral accelerations in the first mode, 

,1( )impSa f  and ,1( )conSa f . Accordingly, the values of impm , conm , ,imp wH , ,con wH , ,imp wbH , and, 

,con wbH  (in Table B.1) were derived by equating the global reactions per Eqs. (B.3), (B.4), and 
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(B.5) to the algebraic sums of the corresponding reactions in different modes (Veletsos) with the 

replacement of ( )kA t  by ,1( )impSa f : 

 
,

,1 ,1

1

( ) ( )
( )

N
imp k

imp imp imp imp

kk

F
F m Sa f Sa f

A t=

=  =    (B.6) 

 
, ,

, ,1 , ,

1

( ) ( )
( )

N
imp w k

imp w imp imp imp w imp k

kk

M
M m Sa f H Sa f

A t=

=   =    (B.7) 

 
, , , ,

, ,1 , ,

1

( ) ( )
( )

N
imp w k imp b k

imp wb imp imp imp wb imp k

kk

M M
M m Sa f H Sa f

A t=

+
=   =    (B.8) 

where the third terms of the above three equations are the algebraic sums of the modal reactions 

per Eqs. (3.61), (3.62), and (3.62) derived by Veletsos. The values of impm , ,imp wH , and ,imp wbH  

were calculated per Eqs. (B.6), (B.7), and (B.8):  
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kk

F
m

A t=

=   (B.9) 
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,

1

1
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N
imp w k imp b k

imp wb

imp kk

M M
H

m A t=

+
=    (B.11) 

where N  is the number of the modes included in the algebraic summation, which was not 

described in Malhotra et al. The values of impm , ,imp wH , and ,imp wbH  provided by Malhotra et al. 

(Table B.1) are compared in Figure B.3a with those calculated using Eqs. (B.9), (B.10), and 

(B.11), respectively, which are associated with the solutions of Veletsos. The first ten modes (i.e., 

N =10) are included in the calculations since the contributions of the eleventh and higher modes 

are negligible. Figure B.3a indicates that two sets of data, 1) from Table B.1 per Malhotra et al. 

and 2) calculated using the analytical solutions with the replacement of ( )kA t  by ,1( )impSa f , are 

almost identical, as ten modes are involved.  

An identical process was used to derived values for the convective properties, conm , ,con wH , and 

,con wbH :  
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,

1

1
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N
con w j con b j

con wb

con jj

M M
H

m A t=

+
=    (B.14) 

where the right-hand sides of the above three equations are the analytical solutions per Eqs. 

(3.82), (3.83), and (3.84). The values of conm , ,con wH , and ,con wbH  provided by Malhotra et al. 

(Table B.1) are compared in Figure B.3b with those calculated using Eqs. (B.12), (B.13), and 

(B.14) with N =10, respectively, which are associated with the analytical solutions. The two sets 

of data are essentially identical. 

  
(a) impulsive properties  (b) convective properties 

Figure B.3. Properties of the 2-DOF system of Figure B.1 provided by Malhotra et al. and 

calculated using the analytical solutions of Veletsos with the replacement of acceleration time 

series, ( )kA t  and ( )jA t , by respective spectral accelerations ,1( )impSa f  and ,1( )conSa f   

The simplified procedure provides the maximum vertical displacement of the free surface, ,maxwd . 

Following the same process, ,maxwd  was derived as the algebraic sum of the vertical 

displacements of the free surface in different convective modes, at r R=  and  = 0 on the 

cylindrical coordinate system shown in Figure 3.2:  
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d r R R
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
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=      (B.15) 

where the second term is the sum of the modal vertical displacement of the free surface per Eq. 

(3.81), in which the time series ( )jA t  is replaced by ,1( )conSa f . With a sufficient number of 

modes (e.g., N =10), ,maxwd  is almost identical to the third term in Eq. (B.15), which was the 

equation given in Malhotra et al. 

B.3 Comparisons of Malhotra et al. and Veletsos results 

Results of the analysis using the simplified procedure of Malhotra et al. and the analytical 

solutions of Veletsos are compared in this section. Carbon-steel, base-supported, cylindrical 

tanks filled with water are analyzed. To ensure that the conclusions drawn from this study are 

applicable to a wide range of tanks with practical dimensions, the seismic analysis is performed 

for three sample tanks and three ground motion time series with distinctly different frequency 

contents. 

B.3.1 Description of the sample tanks 

The three carbon-steel, base-supported cylindrical tanks are shown in Figure B.4, with a radius 

R = 30 m, a wall thickness h =30 mm, and respective tank heights sH =15 m, 30 m, and 60 m. 

Per Table K-1a of API 650, a radius, R , between 25 m to 60 m and a ratio of wall thickness to 

radius, /h R , of the order of 0.001 are practical for a steel, base-supported cylindrical tank 

(footnote 23 on page 66). All three tanks are full of water since the two analysis methods (i.e., 

Malhotra and Veletsos) do not consider freeboards (i.e., sH H= ), and so /H R = 0.5, 1, and 2. 

The mechanical properties of the carbon-steel tanks and the contained water are listed in Table 

B.2, including the elastic modulus, E , Poisson’s ratio,  , and density, s , of the carbon steel, 

and the density of the water,  . The first three impulsive and convective frequencies and periods 

of each tank are listed in Table B.3. The values of ,imp kf  are calculated per Eq. (3.64) with ,imp kC , 

shown in Figure 3.11b. The values of ,con jf  are calculated per Eq. (3.119) with ,con jC , shown in 

Figure 3.24b. (Note that ,1impf  can be also calculated as the reciprocal of impT  per Eq. (B.1) with 
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M
impD  listed in Table B.1; ,1conf  can be also calculated as the reciprocal of conT  per Eq. (B.2) with 

M
conD  listed in Table B.1.) 

30 m
15 m

30 mm

 

30 m

30 m

30 mm

 
30 m

60 m

30 mm

 

(a) /H R = 0.5 (b) /H R = 1 (c) /H R = 2 

Figure B.4. Carbon-steel, base-supported cylindrical tanks for the seismic analysis, R = 30 m, 

h =30 mm, and /H R = 0.5, 1, and 2 

 

Table B.2. Mechanical properties of the material used to construct the 

carbon-steel tanks and the contained water for the seismic analysis 

Carbon steel 

Elastic modulus, E   1.941011 (N/m2) 

Poisson’s ratio,   0.27 

Density, s   7875 (kg/m3) 

Water Density,   1000 (kg/m3) 

 

Table B.3. First three impulsive and convective frequencies and periods of the three tanks 

shown in Figure B.4, R = 30 m, h =30 mm 

 /H R = 0.5 /H R = 1 /H R = 2 

,imp kf  (Hz) / ,imp kT  (sec) 

k =1 3.8 / 0.26 2.3 / 0.43 1.2 / 0.84 

k =2 6.8 / 0.15 4.3 / 0.23 2.8 / 0.36 

k =3 8.8 / 0.11 6.1 / 0.16 3.9 / 0.25 

,con jf  (Hz) / ,con jT  (sec) 

j =1 0.11 / 9.5 0.12 / 8.3 0.12 / 8.1 

j =2 0.21 / 4.8 0.21 / 4.8 0.21 / 4.8 

j =3 0.27 / 3.8 0.27 / 3.8 0.27 / 3.8 
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B.3.2 Ground motion time series 

Table B.4 identifies the three unidirectional, horizontal ground motion time series (i.e., ground 

motions #1, #2, and #3) used for the seismic analysis of the tanks shown in Figure B.4. These 

ground motions have very different frequency contents and their peak spectral accelerations are 

well separated. The peak ground acceleration (PGA) of each ground motion is scaled to 0.1 g for 

analysis since the two methods (i.e., Malhotra and Veletsos) are strictly applicable to small 

amplitude motions. Figure B.5 presents the time series for the three scaled motions. Figures B.6a 

and b (Figures B.6c and d) present spectral accelerations with a damping ratio of 2% (0.5%) for 

each scaled motion with respect to the period in a linear format and with respect to the frequency 

in a linear-logarithmic format, respectively. As noted previously, the damping ratios of 2% and 

0.5% used here were values suggested by Malhotra et al. to calculate the impulsive and 

convective responses of steel tanks. 

 

 

Table B.4. Information of the unidirectional, horizontal ground motion time series1 for the 

seismic analysis of the tanks shown in Figure B.4 

 Event Year Station Direction 
Original 

PGA (g) 

Scaled 

PGA (g) 

#1 Hualien Earthquake 2018 HWA019 EW 0.39 0.1 

#2 Chi-Chi Earthquake 1999 TCU052 EW 0.36 0.1 

#3 
El Centro Earthquake 

(Imperial Valley-02) 
1940 

El Centro 

Array #9 
180 0.28 0.1 

1. Ground motion #1 is provided by the National Center for Research on Earthquake Engineering, Taiwan. 

Ground motions #2 and #3 are extracted from the PEER Ground Motion Database 

(http://ngawest2.berkeley.edu/, accessed on March 18, 2019), Pacific Earthquake Engineering Research 

(PEER) Center, University of California, Berkeley, CA. 
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(a) ground motion #1 (b) ground motion #2 

 

(c) ground motion #3 

Figure B.5. Scaled, unidirectional, horizontal ground motion time series for the seismic analysis 

of the tanks shown in Figure B.4, PGA=0.1g 

 

 



  368 

 

 

 

 

  

(a) 2%-damped, period, linear scale (b) 2%-damped, frequency, linear-logarithmic 

scale 

  

(c) 0.5%-damped, period, linear scale (d) 0.5%-damped, frequency, linear-logarithmic 

scale 

Figure B.6. Spectral accelerations of the scaled ground motion time series shown in Figure B.5, 

PGA=0.1g, damping ratios of 2% and 0.5% 
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B.3.3 Calculations of FSI responses 

Simplified procedure of Malhotra et al. 

Table B.5 presents data used for the analysis, including impm , ,imp wH , ,imp wbH , conm , ,con wH , and , 

,con wbH  extracted from Table B.1, for the tanks in Figure B.4, and ,1( )impSa f  and ,1( )conSa f  for 

the scaled motions in Figures B.5 and B.6. Using these data, the maximum responses of each 

tank are calculated per Eqs. (B.3) to (B.5) and (B.15). Table B.6 presents the maximum 

responses, including the impulsive and convective components of the shear force, F ; the 

moments, wM  and wbM , at the base of each tank, and the maximum vertical displacement of the 

free surface, ,maxwd . 

 

Table B.5. Data for seismic analysis using the simplified procedure for the tanks shown in Figure 

B.4 (i.e., /H R = 0.5, 1, and 2) and the scaled ground motions shown in Figures B.5 and B.6 (i.e., 

ground motions #1, #2, and #3) 

  Impulsive Convective 

/H R   
Ground 

motion 

,1( )impSa f 1 

(g) 

impm  

( lm ) 

,imp wH  

( H ) 

,imp wbH  

( H ) 

,1( )conSa f 2 

(g) 

conm  

( lm ) 

,con wH  

( H ) 

,con wbH  

( H ) 

0.5 

#1 0.16 

0.30 0.40 1.46 

0.01 

0.70 0.54 1.52 #2 0.20 0.05 

#3 0.35 0.001 

1.0 

#1 0.13 

0.55 0.42 0.72 

0.02 

0.45 0.62 0.79 #2 0.20 0.06 

#3 0.25 0.002 

2.0 

#1 0.14 

0.76 0.45 0.50 

0.02 

0.24 0.75 0.76 #2 0.19 0.07 

#3 0.29 0.002 

1. Spectral acceleration with a damping ratio of 2% shown in Figures B.6a and b 

2. Spectral acceleration with a damping ratio of 0.5% shown in Figures B.6c and d 
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Table B.6. Maximum FSI responses calculated using the simplified procedure per Eqs. (B.3) 

to (B.5) and (B.15) for the tanks shown in Figure B.4 and the scaled ground motions shown in 

Figures B.5 and B.6 

/H R   0.5 1 2 

Ground motion #1 #2 #3 #1 #2 #3 #1 #2 #3 

impF  (104 kN) 1.9 2.5 4.4 5.9 8.9 11.4 17.2 24.0 36.3 

conF  (104 kN) 0.4 1.5 0.0 0.6 2.4 0.1 0.7 2.6 0.1 

imp conF F F= +  

(104 kN) 
2.3 3.9 4.4 6.5 11.3 11.5 17.9 26.6 36.4 

,imp wM  (105 kN-m) 1.2 1.5 2.6 7.4 11.2 14.3 46.3 64.5 97.6 

,con wM  (105 kN-m) 0.3 1.2 0.0 1.2 4.5 0.1 3.2 11.9 0.4 

, ,w imp w con wM M M= +  

(105 kN-m) 
1.5 2.7 2.7 8.6 15.7 14.4 49.5 76.4 98.0 

,imp wbM  (105 kN-m) 4.2 5.4 9.6 12.8 19.2 24.6 51.7 72.0 108.9 

,con wbM  (105 kN-m) 0.9 3.4 0.1 1.5 5.7 0.2 3.2 12.1 0.4 

, ,wb imp wb con wbM M M= +  

(105 kN-m) 
5.1 8.8 9.7 14.3 24.9 24.8 54.9 84.1 109.3 

,maxwd  (m) 0.39 1.52 0.04 0.51 1.94 0.06 0.54 2.01 0.06 

Analytical solutions of Veletsos 

The reactions at the base of the three tanks in Figure B.4 and the vertical displacements of their 

free surface are calculated using the analytical solutions of Veletsos. The results are compared 

with those calculated using the simplified procedure. The solutions for the impulsive component 

were presented in Section 3.2.1.3, including the frequency, ,imp kf , and the shear force, ,imp kF , and 

two moments, , ,imp w kM  and , ,imp b kM , at the base of the tank in the k th mode. The solutions for 

the convective component were presented in Section 3.2.2.2, including the frequency, ,con jf , the 

shear force, ,con jF , and two moments, , ,con w jM  and , ,con b jM , at the base of the tank, and the 

vertical displacement of the free surface, ,w jd , in the j th mode. Their equations are not repeated 

in this appendix. To generate responses for comparison with those of Malhotra et al., the modal 
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impulsive and convective moments at the base of the tank, , ,imp wb kM  and , ,con wb jM , balancing the 

resultant moments generated by both the pressures on the wall and the base, are calculated as: 

 , , , , , ,imp wb k imp w k imp b kM M M= +   (B.16) 

 , , , , , ,con wb j con w j con b jM M M= +   (B.17) 

Unlike the simplified procedure that used spectral accelerations to calculate responses, the 

analytical solution for each modal impulsive response involves the acceleration time series ( )kA t  

per Eq. (3.57), and each modal convective response involves ( )jA t  per Eq. (3.78). Consequently, 

the product of each analytical solution is a modal response time series. Both Eqs. (3.57) and 

(3.78) assume zero damping in the impulsive and convective modes. To compare responses 

calculated using the simplified procedure and the analytical solutions, identical damping ratios 

must be used. Accordingly, Eqs. (3.57) and (3.78) are replaced here by equations for non-zero 

damping (per Chapter 6 of Chopra (2012)): 

 ,

2
, ( )

0 , ,

, , 0

( ) ( ) sin ( )imp k

t
imp k t

k imp d k

imp d k

A t u e t d
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   


−   −=   −   (B.18) 
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t
con j t

j con d j

con d j

A t u e t d
  

   


−   −=   −   (B.19) 

where the damping ratio   is 2% for the impulsive response and 0.5% for the convective 

response of a steel tank; the radial frequencies are , ,2imp k imp kf =  and , ,2con j con jf = ; and the 

damped radial frequencies are 
2

, , , 1imp d k imp k  = −  and 
2

, , , 1con d j con j  = − . 

Theoretically, each of the impulsive and convective responses is the infinite algebraic sum of 

multiple time series of the corresponding modal responses (i.e., k =1 to   and j = 1 to  ). 

However, only three impulsive modes and three convective modes are included in the 

calculations presented here since the contributions of the fourth and higher modes are negligible 

for the tanks of Figure B.4 and the ground motions of Figure B.5.  

Figure B.7 presents the first fifty seconds of the global reaction histories at the base of the tank, 

including shear forces and moments, for /H R = 0.5 subjected to ground motion #1 in the x  
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direction. Each panel of Figure B.7  presents 1) the impulsive component (i.e., impF , ,imp wM , and 

,imp wbM ), 2) the convective component (i.e., conF , ,con wM , and ,con wbM ), and 3) the algebraic sum 

of the two components (i.e., F , wM , and wbM ). In each panel, the result in each of the upper 

two figures (i.e., the impulsive and convective components) is the sum of the response time 

series in the first three modes, and the result in the bottom figure is the sum of the results in the 

upper two figures. Figure B.8 presents the first fifty seconds of the vertical displacement 

histories for the free surface, ,maxwd , at r R=  and  =0. Identically, the result is composed of the 

response time series in the first three convective modes.  

 

 

   

(a) shear forces 
(b) moments associated with 

pressures on the wall 

(c) moments associated with 

pressures on the wall and the base 

Figure B.7. Global reactions at the base of the tank, three impulsive and three convective modes, 

/H R = 0.5, ground motion #1, calculated using the analytical solutions of Veletsos  
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Figure B.8. Vertical displacements of the free surface at r R=  and  =0, three convective 

modes, /H R = 0.5, ground motion #1, calculated using the analytical solution of Veletsos  

Table B.7 presents the maximum values of the response time series, including impF , conF , F , 

,imp wM , ,con wM , wM , ,imp wbM , ,con wbM , wbM , and ,maxwd , for each tank subjected to each ground 

motion. The maximum value of ( )F t  is not the sum of the maximum values of ( )impF t  and 

( )conF t  because their peak responses occur at different time steps or in different directions (i.e., 

signs of data, positive or negative). Rather, the maximum value of ( )F t  is calculated from the 

sum of ( )impF t  and ( )conF t . Identically, the maximum value of ( )wM t  is calculated from the sum 

of , ( )imp wM t  and , ( )con wM t ; and the maximum value of ( )wbM t  is calculated from the sum of 

, ( )imp wbM t  and , ( )con wbM t .  

Modal contributions to each of the impulsive and convective responses are calculated for the 

three tanks subjected to the three scaled ground motions. The contributions are calculated at the 

time steps of the peak responses. For example, the modal contributions to impF , ,imp wM , and 

,imp wbM  of Figure B.7 are calculated at 9.3 seconds, and those to conF , ,con wM , and ,con wbM  of 

Figure B.7 and ,maxwd  of Figure B.8 are calculated at 11 seconds. Figure B.9 presents the 

percentage contributions in the first three modes to impF , conF , ,imp wM , ,con wM , ,imp wbM , ,con wbM , 

and ,maxwd  in respective panels a to g. Each panel presents contributions to includes three bar 

charts, presenting results for tanks with /H R = 0.5, 1, and 2, respectively. Each bar chart shows 

results for ground motions #1, #2, and #3. Results in Figure B.9 indicate that the first modes are 

the greatest contributors to all FSI responses for the three tanks and the three ground motions. 

The contributions shown in each bar chart generally decrease as the order of the mode increases. 

The contributions of the second and the third modes, although small, generally increase with 

increasing /H R , with greater percentage contributions to the convective responses (i.e., conF , 

,con wM , ,con wbM , and ,maxwd ). 
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Table B.7. Maximum FSI responses, three impulsive and three convective modes, calculated using 

the analytical solutions of Veletsos for the tanks shown in Figure B.4 and the ground motions 

shown in Figure B.5 

/H R   0.5 1 2 

Ground motion #1 #2 #3 #1 #2 #3 #1 #2 #3 

impF  (104 kN) 1.8 2.3 4.3 5.9 9.4 12.6 15.6 21.9 33.6 

conF  (104 kN) 0.4 1.6 0.0 0.7 2.5 0.1 0.7 2.6 0.1 

F  (104 kN) 1.6 2.4 4.2 5.8 9.5 12.5 15.0 21.9 33.6 

,imp wM  (105 kN-m) 1.0 1.3 2.5 7.3 11.8 15.3 45.4 63.3 94.3 

,con wM  (105 kN-m) 0.3 1.3 0.0 1.3 4.7 0.2 3.4 11.8 0.4 

wM  (105 kN-m) 0.9 1.8 2.4 7.3 12.7 15.2 43.5 62.8 94.2 

,imp wbM  (105 kN-m) 3.8 4.9 9.3 12.5 20.0 26.8 50.1 69.8 105.6 

,con wbM  (105 kN-m) 0.9 3.6 0.1 1.6 5.8 0.2 3.4 12.0 0.4 

wbM  (105 kN-m) 3.6 5.4 9.2 12.5 20.5 26.6 48.2 69.3 105.5 

,maxwd  (m) 0.41 1.55 0.04 0.59 1.89 0.07 0.59 1.89 0.07 
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(a) impF  (b) conF  

  
(c) ,imp wM  (d) ,con wM  

  
(e) ,imp wbM   (f) ,con wbM   

 
(g) ,maxwd   

Figure B.9. Modal contributions to the impulsive and convective responses, at the time step of 

each peak response, calculated using the analytical solutions of Veletsos, for the tanks in Figure 

B.4 and the ground motions in Figure B.5 
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Discussion 

This section compares the maximum responses calculated using the simplified procedure of 

Malhotra et al. to the analytical solutions of Veletsos for the three tanks subjected to the three 

scaled ground motions. The maximum values for F , wM , wbM , and ,maxwd  were presented in 

the fifth, eighth, eleventh, and twelfth rows, respectively, of Tables B.6 and B.7 for the two 

analysis methods, and presented together here in Figure B.10. Three bar charts are included in 

each panel of Figure B.10, showing results for tanks with /H R =  0.5, 1, and 2; each bar chart 

presents data for ground motions #1, #2, and #3. The vertical ranges in the three figures in each 

panel are different. Table B.8 presents the percentage differences in the maximum responses 

calculated using the two analysis methods. The simplified procedure significantly overestimates 

responses in some cases (e.g., F , wM  , and wbM  for /H R = 0.5 and ground motions #1 and #2) 

and underestimates responses in others (e.g., the majority of the results for ,maxwd ; wbM  for 

/H R = 1 and ground motion #3), compared to the results calculated using the analytical 

solutions of Veletsos. Although conclusive statements cannot be drawn based on a small number 

of analyses, the simplified procedure, which is included in Eurocode 8 and API 650 may not be 

sufficiently accurate for design. 
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(a) F  (b) wM  

  

(c) wbM   (d) ,maxwd  

Figure B.10. Maximum FSI responses, composed of impulsive and convective components, 

calculated using the simplified procedure (Malhotra et al.) and the analytical solutions 

(Veletsos), for the tanks in Figure B.4 and the ground motions in Figure B.5. 

 

Table B.8. Percentage differences of the maximum FSI responses shown in Figure B.10, for 

the tanks in Figure B.4 and the ground motions in Figure B.5. 

/H R   0.5 1 2 

Ground motion #1 #2 #3 #1 #2 #3 #1 #2 #3 

Percentage 

difference1 

(%) 

F   40 63 5 12 20 -8 20 22 8 

wM   55 53 9 18 23 -5 14 22 4 

wbM  43 62 5 15 22 -7 14 21 4 

,maxwd   -5 -2 -7 -13 3 -24 -9 7 -18 

1. Percentage difference of FSI responses calculated using the simplified procedure (Malhotra et al.) with 

respect to those calculated using the analytical solutions (Veletsos) 
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APPENDIX C. CHALLENGES IN OUTPUTTING ALE RESULTS FOR 

WAVE HEIGHTS IN A TANK SUBJECTED TO SEISMIC MOTION 

C.1 Introduction 

Seismic fluid-structure interaction (FSI) analysis of a liquid-filled tank can be performed using 

the Arbitrary Lagrangian-Eulerian (ALE) solver of LS-DYNA (Livermore Software Technology 

Corporation (LSTC) 2018a). Wave heights of the contained fluid, calculated using the ALE 

solver, are output by tracking the vertical displacement of the free surface through the 

*DATABASE_TRACER card. The card records the time series of the coordinates of the 

assigned points that float on the free surface and move with the velocities of the fluid in the three 

directions. These floating points not only move vertically with waves but also horizontally with 

transverse flows. However, information on wave action at a fixed location with respect to the 

tank (i.e., local coordinate system that moves horizontally with the tank) is needed for seismic 

design (e.g., freeboard of tanks and vessels). 

This appendix discusses the challenges and limitations with the use of floating points to output 

wave heights. An ALE model is constructed in Section C.2 for a rigid, base-supported cylindrical 

tank filled with water. Seismic FSI analysis is performed for a sinusoidal motion in the x  

direction defined in Figure C.1. A number of floating points are assigned for the contained fluid 

to track waves. Section C.3 reports the motions of the floating points and the calculated wave 

heights at three locations with fixed distances to the tank wall. The results of ALE analysis for 

wave height are compared with those calculated using an analytical solution per Eq. (3.81) 

(Veletsos 1984a). Errors in the ALE results associated with the motions of the floating points are 

discussed. Section C.4 presents closing remarks and recommendations to mitigate errors in 

wave-height predictions using the ALE solver. 
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Figure C.1. Cartesian coordinate system and cylindrical coordinate system defined on 

two cut-away views of a base-supported cylindrical tank, three locations for reporting 

wave heights shown in green, yellow, and red solid circles 

C.2 Numerical model and input motion 

Figure 4.3 presents the ALE model of the rigid base-supported cylindrical tank used here for FSI 

analysis, together with the Cartesian coordinates consistent with those defined in Figure C.1. The 

radius R  is 0.79 m, the height of the tank sH  is 2 m, and the wall thickness h  is 0.5 mm. The 

tank is filled with water to a height H  of 1.2 m. In Figure 4.3, the tank is shown in blue, the 

water is shown in yellow, and a vacuum space built above the water is shown in grey. The tank is 

modeled using Lagrangian shell elements assigned a rigid material, and the water and the 

vacuum are modeled using Eulerian solid elements. This model is identical to one of the ALE 

models used in Section 4.2.1 and presented in Figures 4.3a to c. Section 4.2.1 describes the 

construction of the model. Table C.1 presents the dimensions, mechanical properties, and masses 

of the tank and water in the ALE model. The mechanical properties include elastic modulus E , 

density s , and Poisson’s ratio   of for the tank, and water density w . (Section 4.2.1 verifies 

the ALE model by comparing numerical and analytical results, including reactions at the base 

that are due to the hydrodynamic response of the fluid but not inertial response of the tank. To 

ensure that the inertial response of the rigid tank is negligible, it is assigned a thickness h  of 0.5 

mm and a density s  of 100 kg/m3 is used for the tank.) No damping is applied to the rigid 
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material of the tank (i.e., damping ratio=0). Gravitational acceleration is assigned in the z  

direction. More details on the ALE model can be found in Section 4.2.1. 

 

  
(a) tank and vacuum (b) water and vacuum 

 
 

(c) water and floating points, t = 0 
(d) water and floating points, t = 0, x z−  

cross section 

Figure C.2. ALE model of a rigid cylindrical tank with R = 0.79 m, sH =2 m, and H = 1.2 m  

 

Table C.1. Dimensions, mechanical properties, and masses of the tank and contained 

water in the ALE model 

 Dimension Mechanical property Mass (kg) 

Tank, carbon steel 

R = 0.79 m E = 21011 N/m2 

0.6 sH =2 m  = 0.27 

h =0.5 mm s = 100 kg/m3 

Contained fluid, water H = 1.2 m w =1000 kg/m3 2352 
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Figures C.3c and d present the contained water at the first step of the analysis (i.e., time t = 0). 

Two hundred and one floating points (shown as black dots) are assigned per the 

*DATABASE_TRACER card, on or near the free surface, along the x  direction (direction of 

seismic input), and across the diameter of the tank. The floating points are placed in three layers 

of 67. The upper layer is located on the free surface, and the middle and lower layers are in the 

water, located 15 and 30 mm below the surface, respectively. Wave heights in the tank are 

calculated using the floating points of the upper layer that provides vertical displacements of the 

free surface. The floating points in the middle and lower layers are used here to investigate the 

flow of the water near the free surface. 

A 20-Hz sinusoidal motion presented in Figure C.3a is used for the response-history analysis for 

the ALE model in the x  direction. A small amplitude of 0.2 g is used for the input motion to 

avoid nonlinear or unstable sloshing. The duration of the shaking is 10 seconds, and the analysis 

continues for 20 seconds after the shaking has ended to investigate wave action under free 

vibration. Accordingly, the analysis is performed for 30 seconds. Figure C.3b magnifies the first 

second of the input motion, showing the sinusoidal input. 

 

  

(a) analysis of 30 seconds (b) first second 

Figure C.3. Input motion in the x  direction, sinusoidal waves with a frequency of 20 Hz and an 

amplitude of 0.2 g 

C.3 Results: motions of the floating points and wave heights 

The floating points move with the fluid velocities in the three directions, and wave heights can 

be determined using their z  coordinates. Figure C.4 presents the water and the floating points in 

the ALE model at 5, 10, 20, and 30 seconds, in an isometric view and on a x z−  cross section. 
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(Figures C.3c and d present the water and floating points at t = 0.) Three layers of floating points 

are seen at 5 seconds. At 10 seconds, the three layers are not clearly distinguishable. For t  20 

seconds, the middle and lower layers converge to the upper layer. Since the middle and lower 

layers gradually move upwards (to converge to the upper layer), their z  coordinates should not 

be used to calculate wave heights: the upper layer should be used. As time increases, the floating 

points move in the x  direction to the center of the free surface and downwards near the z  axis 

(see the coordinates in Figure C.1). Figure C.5 presents the x−  and z − coordinates of the three 

floating points (one from each layer) that are initially ( t = 0) located at 80 mm away from the x+  

face of the tank wall. Their x− coordinates are 710 mm (i.e., x R= − 80=710 mm) at t = 0 and 

all trend toward x =0, which is at the center of the free surface. The initial z − coordinates of the 

layers are z = 1200, 1185, and 1700 mm, which are on the free surface ( z = 1200 mm), and 15 

and 30 mm below the surface, respectively, as noted in Section C.2. As seen in Figure C.5b for 

0 t  15 seconds, all three points oscillate in the z  direction (vertically) with a period of around 

1.3 seconds56 due to wave action. The points in the middle and lower layers (orange and yellow 

lines) gradually move upwards and converge to that of the upper layer (blue line) at around 15 to 

20 seconds, and so the three layers cannot be seen in Figures C.4c and d. Thereafter, the 

z − coordinates of all three points move downwards. Per Figure C.5, the x  and z  coordinates of 

the blue lines move faster than those of the orange and yellow lines: the upper layer moves faster, 

in the x  direction to the center of the free surface and downwards along the z  axis, than the 

other two layers. The velocity field of the fluid is presented in Figure C.6 to explain the motion 

of the floating points. This figure presents fringes and vectors (shown as arrows) of the fluid 

velocity at 30 seconds: the x− component on the free surface and the xz −component on a x z−  

cross section. The fluid at the free surface shown in Figure C.6a flows toward the y  axis (noted 

as x =0) at the center of the tank. On the x z−  cross section of Figure C.6b, the fluid near the 

free surface flows horizontally ( x  direction) and then downwards near the z  axis. A greater 

fluid velocity (shown as red) is seen closer to the free surface, which is consistent with the results 

presented in Figure C.5: the upper layer moves faster than the other two layers. The fluid on the 

                                                 
56 The period of 1.3 seconds is approximated using the average duration of every two consecutive crests of each 

layer for 0 t  15 seconds, presented in Figure C.5b. The first convective period of the tank estimated using Eq. 

(3.73) (Veletsos 1984) is 1.32 seconds, and so the approximation made for Figure C.5b is reasonable. 
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x+  and x−  sides circulates counter-clockwise and clockwise, respectively. The vector fields 

presented in Figure C.6 confirm that the floating points follow the fluid to the center of the free 

surface and downwards around the z  axis, as shown in Figures C.4 and C.5. 

 

 

80 mm

200 mm

300 mm

   

(a) t = 5 sec (b) t = 10 sec 

   

80 mm

200 mm

300 mm

 

(c) t = 20 sec (d) t = 30 sec 

Figure C.4. Snapshots of the water and floating points in the ALE model at different time steps, 

isometric view and x z−  cross section 

 

  

(a) x− coordinate  (b) z − coordinate 

Figure C.5. Coordinates of the floating points initially located 80 mm away from the x+  side of 

the tank wall, three layers 
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x

x=0

  

z

x
 

(a) x−  component on the free surface  (b) xz −component on the x z−  cross section 

Figure C.6. Vectors fields of the fluid velocities at 30 seconds, unit: mm/s 

Figure C.7 enables a comparison of vertical displacements of the free surface, namely, wave 

heights wd , calculated using the ALE model and an analytical solution per Eq. (3.81) (Veletsos 

1984a). The results are reported at locations 80, 200, and 300 mm from the x+  face of the tank 

wall in the ALE model, namely, r = 710, 590, 490 mm, respectively. The three monitoring 

locations are indicated as green, yellow, and red solid circles in Figure C.1. The wave heights are 

calculated by interpolating the z  coordinates of two floating points in the upper layer adjacent to 

the monitoring locations at each time step. Different pairs of two floating points may be used in 

different time steps because the points move, as seen in Figure C.4, but the monitoring locations 

are fixed, with respect to the tank. As presented in Figure C.7, the phases of the time series 

calculated using the ALE model and the analytical solution are in good agreement. The 

amplitudes of wd  are underestimated by the ALE model and diverge further from the analytical 

results as time increases, at all three locations.  
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(a) 80 mm from the x+  face, r = 710 mm (b) 200 mm from the x+  face, r = 590 mm  

 

(c) 300 mm from the x+  face, r = 490 mm 

Figure C.7. Wave height at 80, 200, 300 mm away from the x+  face of the tank wall, indicated 

as green, yellow, and red solid circles in Figure C.1, floating points in the upper layer in the ALE 

model and Eq. (3.81)  

Table C.2 presents the maximum amplitudes of wd  in every 5 seconds of each time series shown 

in Figure C.7, and identifies the differences between the ALE and analytical results. The ALE 

results in the first 5 or 10 seconds are in reasonable agreement with the analytical results: 

differences are less than or equal to 15%. The underprediction of the ALE model increases with 

time, which is associated with the use of floating points to output wave heights. As indicated 

using blue text and arrows in Figures C.4a and d, the distance between the two floating points 

adjacent to each monitoring location increases with time, from t = 5 to 30 seconds. Wave heights 

calculated using linear interpolation with the z  coordinates of the two points are likely 

inaccurate if they are distant from each other because 1) the free surface between the two points 

is not necessarily linear, and 2) the point closer to the center of the free surface tends to move 

downwards and not be on the surface, as shown in Figure C.4 and Figure C.5b. 
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Table C.2. Maximum wave heights at the three locations in every 5 seconds, ALE model 

and Eq. (3.81), extracted from Figure C.7 

 wd  (mm) 

 
80 mm from x+  face, 

r = 710 mm 

200 mm from x+  face, 

r = 590 mm 

300 mm from x+  face, 

r = 490 mm 

Time 

(sec) 

Analytical 

solution 

ALE 

(diff)1 

Analytical 

solution 

ALE 

(diff)1 

Analytical 

solution 

ALE 

(diff)1 

0 to 5 5.8 5.6 (-3%) 5.0 4.8 (-4%) 5.2 4.5 (-14%) 

5 to 10 5.6 5.1 (-10%) 5.0 4.2 (-15%) 5.2 3.9 (-24%) 

10 to 15 10.1 9.0 (-11%) 9.3 8.3 (-11%) 9.1 7.7 (-15%) 

15 to 20 9.8 7.9 (-20%) 9.8 7.6 (-23%) 8.9 6.8 (-23%) 

20 to 25 9.8 7.2 (-27%) 9.7 6.9 (-29%) 8.9 6.4 (-28%) 

25 to 30 10.1 5.4 (-46%) 9.7 6.0 (-38%) 8.6 5.7 (-33%) 

1. Percentage differences of ALE results with respect to those calculated using the analytical solution, to 

the nearest 1% 

C.4 Closing remarks and recommendations 

This appendix discusses the challenges and limitations with the use of floating points to output 

wave heights in a tank subjected to horizontal seismic motion, analyzed using the ALE solver. 

An ALE model of a rigid base-supported tank filled with water is constructed and response-

history analysis is performed using a horizontal sinusoidal input. A number of floating points are 

assigned on the free surface to investigate the motion of the fluid and the capability of outputting 

wave heights at fixed locations relative to the tank (i.e., local locations). The wave heights are 

derived using the vertical coordinates of the floating points. As presented in Section C.3, the 

floating points move toward the center of the free surface and then downwards near the vertical 

( z ) axis of the tank, following the velocities of the contained water. The wave heights output 

using the floating points are underestimated, and the underestimation increases with time 

because the points gradually move downwards. 

The errors in outputting wave heights can be mitigated by using a very dense line of floating 

points around the monitoring location. Although all points gradually move to the center of the 
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free surface, sufficient points would be available around the monitoring location for outputting 

wave heights. This method is used in Section 6 to improve the ALE results. The most effective 

solution to the errors is the development of tracking points that can float on the free surface, but 

be fixed in the horizontal directions or move with the horizontal seismic input to maintain a 

constant distance to the tank. An example of the use of horizontally fixed points is the Floater 

option in the graphical user interface (GUI) of LS-Prepost (2018c) for outputting wave heights 

calculated using the Incompressible Computational Fluid Dynamics (ICFD) solver. This option 

is not available for ALE analysis at the time of this writing. 
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APPENDIX D. SEISMIC MOTIONS FOR EARTHQUAKE-SIMULATOR 

TESTS OF A CYLINDRICAL TANK 

D.1 Introduction 

A base-supported cylindrical tank was tested using a six-degree-of-freedom earthquake simulator 

at the University at Buffalo. The simulator is shown in Figure D.1. The tank is a model of an 

advanced reactor vessel, at a length scale of approximately 1/10. A two-phase program of 

experiments was performed to support validation of numerical models and demonstrate the 

merits of seismic isolation for equipment in nuclear power plants. The Phase I involved the tank, 

and the Phase II involved the tank sealed with a head, supporting central and off-center internal 

components immersed in the contained fluid. Two test setups (TSs) were used in the Phase I: 1) 

TS-1, the base of the tank was directly attached to the earthquake simulator; and 2) TS-2, load 

cells were installed between the earthquake simulator and the base. The Phase I tests were 

performed for 138 sets of input motions, including 68 sets for TS-1 and 70 sets for TS-2. 

Information on the input motions is provided in the next section. Details on the specimen design, 

test setups, instrumentation, and use of test data can be found in Mir et al. (2019; 2020a; 2020b). 

 

Figure D.1. Earthquake simulator and coordinates ( x , y , z ) 

D.2 Seismic inputs and test sequence 

White noise, sine waves, and earthquake records were used as input motions in the Phase I tests. 

Information on the earthquake records is presented in Table D.1, including the earthquake events, 

the components used for the tests, and their peak ground acceleration (PGAs). Consistent with a 

length scale of 1/10, the time scale of each earthquake motion was compressed by a factor of 

10 . Figure D.2 shows 2%-damped acceleration response spectra of the earthquake motions, 
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with time compression of 10 . In these spectra, the PGA of the x -component of each 

earthquake is scaled to 1 g. The y - and z -components of the earthquake are scaled using the 

factor for the x -component. Five-second input motions were extracted from the earthquake 

records, after time compression by 10 , which included the strong motion. 

Tables D.1 and D.3 list the inputs used for TS-1 and TS-2, respectively, including white noise, 

sine waves, and full and five-second earthquake motions. (The five-second motions are denoted 

with “5s” after the names of the earthquakes.) The PGAs of the earthquake records were scaled 

to different intensities, with a maximum of 1 g. The PGAs and input directions at the earthquake 

simulator are identified, based on the coordinates defined in Figure D.1. Motions #30, #35, and 

#42, which are bolded in Table D.3, are used in Section 6 for a validation study on numerical 

models. 

Table D.1. Input motion time series1 used for earthquake-simulator tests 

Event Year Station Direction2 
Original 

PGA (g) 

Scaled 

PGA3 (g) 

Time 

scale 

El Centro Earthquake 

(Imperial Valley-02) 
1940 

El Centro 

Array #9 

180 ( x ) 0.28 1 

1/ 10  270 ( y ) 0.21 0.56 

Up ( z ) 0.18 0.42 

Hualien Earthquake 2018 HWA019 

EW ( x ) 0.39 1 

1/ 10  NS ( y ) 0.37 0.88 

Up ( z ) 0.23 0.81 

Chi-Chi Earthquake 1999 TCU052 

EW ( x ) 0.36 1 

1/ 10  NS ( y ) 0.45 1.25 

Up ( z ) 0.19 0.55 

Tohoku Earthquake (a) 2011 AKT014 EW ( x ) 0.07 1 1/ 10  

Tohoku Earthquake (b) 2011 MYG014 NS ( x ) 0.5 1 1/ 10  

1. Ground motion records of the El Centro and Chi-Chi Earthquakes are extracted from the PEER Ground 
Motion Database (http://ngawest2.berkeley.edu/, accessed on Jan. 12, 2019); records of the Hualien 
Earthquake are provided by the National Center for Research on Earthquake Engineering, Taiwan; and 
records of the Tohoku Earthquake are extracted from Strong-motion Seismograph Networks (K-NET, KiK-
net) (https://www.kyoshin.bosai.go.jp/, accessed on Mar. 18, 2019). 

2. Directions based on the coordinates described in the dataset of the ground motion records; x , y , and z  
shown in the parentheses representing the input directions of the earthquake simulator (see Figure D.1) 

3. Used in Figure D.2 
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(a) El Centro Earthquake (b) Hualien Earthquake (c) Chi-Chi Earthquake 

  
(d) Tohoku Earthquake (AKT014_NS) (e) Tohoku Earthquake (MYG014_NS) 

Figure D.2. Acceleration response spectra of input motions used for the earthquake-simulator tests, 

time scale compressed by 10 , PGA scaled to the values presented in the sixth column of Table D.1, 

damping ratio of 2% 
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Table D.2. Input motions for TS-1 

Run # Motion 
x -direction 

PGA (g) 

y -direction 

PGA (g) 

z -direction 

PGA (g) 

1 White noise 1 0.1 - - 

2 White noise 2 0.1 - - 

3 Sine ( f = 0.5 Hz) 0.01 - - 

4 Sine ( f = 1 Hz) 0.04 - - 

5 Sine ( f = 10 Hz) 0.1 - - 

6 Sine ( f = 10 Hz) 0.2 - - 

7 Sine ( f = 10 Hz) 0.4 - - 

8 Sine ( f = 10 Hz) 1 - - 

9 Sine ( f = 1 Hz) 0.4 - - 

10 Sine ( f = 10 Hz) 1 - - 

11 Sine ( f = 20 Hz)  0.1 - - 

12 Sine ( f = 20 Hz)  0.2 - - 

13 Hualien Earthquake  0.1 - - 

14 Chi-Chi Earthquake  0.1 - - 

15 Chi-Chi Earthquake  0.15 - - 

16 El Centro Earthquake  0.1 - - 

17 El Centro Earthquake  0.2 - - 

18 El Centro Earthquake  0.4 - - 

19 Tohoku Earthquake (a)  0.05 - - 

20 Tohoku Earthquake (a)  0.075 - - 

21 Tohoku Earthquake (b)  0.1 - - 

22 Tohoku Earthquake (b)  0.2 - - 

23 Tohoku Earthquake (b)  0.4 - - 

24 Tohoku Earthquake (b)  0.6 - - 

25 Hualien Earthquake 5s  0.1 - - 

26 Chi-Chi Earthquake 5s  0.15 - - 

27 El Centro Earthquake 5s  0.2 - - 
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Table D.2. Input motions for TS-1 (continued) 

Run # Motion 
x -direction 

PGA (g) 

y -direction 

PGA (g) 

z -direction 

PGA (g) 

28 El Centro Earthquake 5s  0.4 - - 

29 Tohoku Earthquake (b) 5s  0.2 - - 

30 Tohoku Earthquake (b) 5s  0.6 - - 

31 Tohoku Earthquake (b) 5s  0.2 - - 

32 Tohoku Earthquake (b) 5s  0.6 - - 

33 El Centro Earthquake 5s  1 - - 

34 El Centro Earthquake  1 - - 

35 Sine ( f = 20 Hz)  1 - - 

36 Sine ( f = 20 Hz)  1 - - 

37 Hualien Earthquake  0.1  0.094 - 

38 Chi-Chi Earthquake  0.1  0.125 - 

39 Hualien Earthquake   0.1  0.047 - 

40 Chi-Chi Earthquake  0.1  0.0625 - 

41 Hualien Earthquake  0.1  0.0235 - 

42 Chi-Chi Earthquake  0.1  0.0313 - 

43 Hualien Earthquake 5s  0.1  0.094 - 

44 Chi-Chi Earthquake 5s  0.1  0.125 - 

45 Hualien Earthquake 5s   0.1  0.047 - 

46 Chi-Chi Earthquake 5s  0.1  0.0625 - 

47 Hualien Earthquake 5s  0.1  0.0235 - 

48 Chi-Chi Earthquake 5s  0.1  0.0313 - 

49 Hualien Earthquake  0.1  0.094  0.058 

50 Chi-Chi Earthquake 0.1  0.125  0.055 

51 Hualien Earthquake 5s  0.1  0.094  0.058 

52 Chi-Chi Earthquake 5s 0.1  0.125  0.055 

53 El Centro Earthquake  0.13  0.097 - 

54 El Centro Earthquake  0.25  0.187 - 
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Table D.2. Input motions for TS-1 (continued) 

Run # Motion 
x -direction 

PGA (g) 

y -direction 

PGA (g) 

z -direction 

PGA (g) 

55 El Centro Earthquake  0.5  0.375 - 

56 El Centro Earthquake  1   0.751 - 

57 El Centro Earthquake  1  0.375 - 

58 El Centro Earthquake  1  0.187 - 

59 El Centro Earthquake 5s  1   0.751 - 

60 El Centro Earthquake 5s  1  0.375 - 

61 El Centro Earthquake 5s  1  0.187 - 

62 El Centro Earthquake  1  0.751  0.637 

63 El Centro Earthquake 5s  1  0.751  0.637 

64 Sine ( f =  0.77 Hz) 0.03 - - 

65 Sine ( f = 1.95 Hz) 0.04 - - 

66 Sine ( f = 1.67 Hz) 0.03 - - 

67 Sine ( f = 1.32 Hz) 0.03 - - 

68 Sine ( f = 0.77 Hz) 0.03 - - 
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Table D.3. Input motions for TS-2 

Run # Motion 
x -direction 

PGA (g) 

y -direction 

PGA (g) 

z -direction 

PGA (g) 

1 White noise 1 0.1 - - 

2 White noise 2 0.1 - - 

3 Sine ( f = 0.5 Hz) 0.01 - - 

4 Sine ( f = 1 Hz) 0.04 - - 

5 Sine ( f = 10 Hz) 0.2 - - 

6 Sine ( f = 10 Hz) 1 - - 

7 Sine ( f = 20 Hz) 0.1 - - 

8 Sine ( f = 20 Hz) 0.4 - - 

9 Sine ( f =  0.77 Hz) 0.01 - - 

10 Sine ( f = 1.32 Hz) 0.04 - - 

11 Sine ( f = 1.67 Hz)  0.05 - - 

12 Sine ( f = 1.95 Hz)  0.06 - - 

13 Hualien Earthquake  0.1 - - 

14 Chi-Chi Earthquake  0.1 - - 

15 Chi-Chi Earthquake  0.15 - - 

16 El Centro Earthquake  0.1 - - 

17 El Centro Earthquake  0.2 - - 

18 El Centro Earthquake  0.4 - - 

19 Tohoku Earthquake (a)  0.05 - - 

20 Tohoku Earthquake (a)  0.075 - - 

21 Tohoku Earthquake (b)  0.1 - - 

22 Tohoku Earthquake (b)  0.2 - - 

23 Tohoku Earthquake (b)  0.4 - - 

24 Tohoku Earthquake (b)  0.6 - - 

25 Hualien Earthquake 5s  0.1 - - 

26 Chi-Chi Earthquake 5s  0.1 - - 

27 Hualien Earthquake 5s -  0.1 - 
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Table D.3. Input motions for TS-2 (continued) 

Run # Motion 
x -direction 

PGA (g) 

y -direction 

PGA (g) 

z -direction 

PGA (g) 

28 Chi-Chi Earthquake 5s  -  0.1 - 

29 El Centro Earthquake  1 - - 

30 El Centro Earthquake 5s 1 - - 

31 Hualien Earthquake  0.1  0.094 - 

32 Chi-Chi Earthquake  0.1  0.125 - 

33 Hualien Earthquake   0.1  0.047 - 

34 Chi-Chi Earthquake  0.1  0.0625 - 

35 Hualien Earthquake 5s  0.1  0.094 - 

36 Chi-Chi Earthquake 5s  0.1  0.125 - 

37 Hualien Earthquake 5s   0.1  0.047 - 

38 Chi-Chi Earthquake 5s  0.1  0.0625 - 

39 Hualien Earthquake  0.1  0.094  0.058 

40 Chi-Chi Earthquake 0.1  0.125  0.055 

41 Hualien Earthquake 5s  0.1  0.094  0.058 

42 Chi-Chi Earthquake 5s 0.1  0.125  0.055 

43 El Centro Earthquake  1   0.751 - 

44 El Centro Earthquake  1  0.375 - 

45 El Centro Earthquake 5s  1   0.751 - 

46 El Centro Earthquake 5s  1  0.375 - 

47 El Centro Earthquake  1  0.751  0.637 

48 El Centro Earthquake 5s  1  0.751  0.637 

49 Hualien Earthquake 0.1 - - 

50 Hualien Earthquake 5s 0.1 - - 

51 Hualien Earthquake 0.1  0.094 - 

52 Hualien Earthquake 0.1  0.047 - 

53 Hualien Earthquake 5s 0.1  0.094 - 

54 Hualien Earthquake 5s 0.1  0.047 - 
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Table D.3. Input motions for TS-2 (continued) 

Run # Motion 
x -direction 

PGA (g) 

y -direction 

PGA (g) 

z -direction 

PGA (g) 

55 Hualien Earthquake  0.1  0.094  0.058 

56 Hualien Earthquake 5s  0.1  0.094  0.058 

57 Hualien Earthquake - - 0.058 

58 Hualien Earthquake 5s - - 0.058 

59 Chi-Chi Earthquake 0.1  0.125  0.055 

60 Chi-Chi Earthquake 5s 0.1  0.125  0.055 

61 Chi-Chi Earthquake - - 0.055 

62 Chi-Chi Earthquake 5s - - 0.055 

63 El Centro Earthquake  1  0.751  0.637 

64 El Centro Earthquake 5s  1  0.751  0.637 

65 El Centro Earthquake - - 0.637 

66 El Centro Earthquake 5s - - 0.637 

67 El Centro Earthquake 5s  1  0.751 0.637 

68 El Centro Earthquake 5s  1  0.751 - 

69 El Centro Earthquake 5s  1  0.385 - 

70 El Centro Earthquake 5s - - 0.637 
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