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Preface

MCEER is a national center of excellence dedicated to the discovery and development of
new knowledge, tools and technologies that equip communities to become more disaster
resilient in the face of earthquakes and other extreme events. MCEER accomplishes this
through a system of multidisciplinary, multi-hazard research, in tandem with complimen-
tary education and outreach initiatives.

Headquartered at the University at Buffalo, The State University of New York, MCEER
was originally established by the National Science Foundation in 1986, as the first National
Center for Earthquake Engineering Research (NCEER). In 1998, it became known as the
Multidisciplinary Center for Earthquake Engineering Research (MCEER), from which the
current name, MCEER, evolved.

Comprising a consortium of researchers and industry partners from numerous disciplines
and institutions throughout the United States, MCEER’s mission has expanded from its
original focus on earthquake engineering to one which addresses the technical and socio-
economic impacts of a variety of hazards, both natural and man-made, on critical infra-
structure, facilities, and society.

The Center derives support from several Federal agencies, including the National Science Foun-
dation, Federal Highway Administration, National Institute of Standards and Technology, Depart-
ment of Homeland Security/Federal Emergency Management Agency, and the State of New
York, other state governments, academic institutions, foreign governments and private industry.

Thisreportdescribes an experimental program of a 3-story seismically isolated structure in which
Triple Friction Pendulum (TFP) isolators were tested under extreme conditions, including uplift.
This report presents information on (a) the performance of the TFP isolators and the isolated
superstructure under strong excitation where the TFP isolators operate in all five regimes, in-
cluding stiffening and deformation up to the displacement capacity, (b) the effect of the vertical
component of earthquakes on the isolation system and superstructure response, (c) the be-
havior of TFP bearings of unusual configurations of which the behavior cannot be predicted by
conventional models of TFP behavior, and (d) comparison of experimental results to analytical
predictions of programs SAP2000 and 3pleANI in order to investigate the degree of accuracy of
existing analysis models and newly developed formulations.






ABSTRACT

This report describes an experimental program of a 3-story seismically isolated structure in
which Triple Friction Pendulum (TFP) isolators were tested under extreme conditions, including
uplift.

This report presents information on (a) the performance of the TFP isolators and the isolated
superstructure under strong excitation where the TFP isolators operate in all five regimes,
including stiffening and deformation up to the displacement capacity, (b) the effect of the
vertical component of earthquakes on the isolation system and superstructure response, (c) the
behavior of TFP bearings of unusual configurations of which the behavior cannot be predicted by
conventional models of TFP behavior, and (d) comparison of experimental results to analytical
predictions of programs SAP2000 and 3pleANI in order to investigate the degree of accuracy of
existing analysis models and newly developed formulations.
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SECTION 1
INTRODUCTION

The behavior of the Triple Friction Pendulum (TFP) isolator has been previously described by
Fenz and Constantinou (2008a to 2008¢) and Morgan (2007). The TFP isolator exhibits multiple
changes in stiffness and strength with increasing amplitude of displacement. The construction of
the force-displacement loop is complex as it may contain several transition points which depend
on the geometric and frictional properties. Figure 1-1 shows the geometry of a Triple FP bearing
and its parameters. Its behavior is characterized by radii R;, R,, R; and R, (typically R;=R, and
R>=R;3), heights h;, h,, h; and hy (typically h;=h, and h,=h;, distances (related to displacement

capacities) d;, d», ds and d, (typically d>=d; and d;=d,) and friction coefficients 4, , 4, , i and
My (typically 46, = 16 <p4 < p,).
Rigid Slider
Rubber (RS) b, Top Concave plate (TCP)
Seal / _Top Slide plate (TSP)

Plate (BCP)
Bottom Slide
plate (BSP)

Figure 1-1: Definition of parameters for TFP isolator

The lateral force-displacement relation of the isolation system is illustrated in Figure 1-2. Five
different loops are shown in Figure 1-2, each one valid in one of five different regimes of
displacement. The parameters in the loops relate to the geometry of the bearing, the friction
coefficient values and total weight W carried by the isolation system as described in Fenz and
Constantinou (2008a and 2008b). Triple FP isolators are designed to operate in regimes I to IV,
whereas regime V is reserved for providing displacement restraint in earthquakes beyond the



maximum considered earthquake. In regime V, the isolator has consumed its displacement
capacities d; and d, and only slides on surfaces 2 and 3 (see Figure 1-1).

Regime V

Regime IV

Regime 111

Regime II
Regime I

Horizontal Force

Total Displacement
Figure 1-2: Force-displacement loops of Triple FP bearing (Fenz and Constantinou, 2008)

For response history analysis, the TFP can be modeled using the Series Model described in Fenz
and Constantinou (2008d) provided that d,=ds, d;=d, and 1, = p; < g4, < 4, A simpler model

(Parallel Model) for the special case of 1, = 1, < 1y = y1, and provided that stiffening does not

occur was presented by Sarlis et al. (2010). Recently, Becker and Mahin (2011), Ray et al.
(2013) and Dao et al. (2013) have developed formulations that can model the TFP behavior. All
the formulations are based on satisfaction of horizontal force equilibrium and are restricted to the

same constraints as the Series Model: d,=d; and d;=dy, 1, = p; < 4, < p,. Under such

conditions, these models produce nearly identical results.

The TFP behavior for any random combination of geometric and frictional properties is
described on the basis of a more advanced theory in Sarlis and Constantinou (2013). The theory
is based on consideration of equilibrium of moments in addition to equilibrium of forces and
requires use of eight degrees-of-freedom to describe the displacements and rotations of the parts
of the bearing in each principal direction. The new model was implemented in the newly
developed program 3pleANI that calculates and animates the TFP motion under extreme
conditions, including uplift, landing and impact of components.

The frictional parameters that describe the behavior of the Triple FP bearing in the models of
Fenz and Constantinou (2008a to 2008e) (denoted now as /4, tb, 14, 1, , with the following

constraints 44, = 14, < 14 < 14,) utilize the values extracted from experiments of the Triple FP

bearings and are not fundamental properties of the interfaces. Sarlis and Constantinou (2013)



have shown that the true frictional values ( 44, 44, 14, 4, Without any constraints) are related to

those in the models of Fenz and Constantinou (2008a to 2008e) by the following equations:

_ R,
H, :/qu
eff 2
_ R — 1R
=L (1-1)
eff 1l “Yef2
_ MR R,
=44 22
Reffl_RejfZ

Program 3pleANI makes use of friction values 44, 44, 14, 14, .

This report describes an experimental program of a 3-story seismically isolated structure in
which TFP isolators were tested under extreme conditions, including uplift. Analytical
predictions of the response of the tested structure are made using the advanced theory model of
Sarlis and Constantinou (2013).

The 3-story model structure is a modification of the six-story structure extensively used in the
past at the University at Buffalo (Reinhorn et al., 1989; Mokha et al., 1990; Wolff and
Constantinou, 2004; Fenz and Constantinou, 2008¢). The structure was isolated using three
different configurations of TFP bearings, including one in which the frictional properties were
such that it could not be modeled by any existing models based on horizontal force equilibrium
alone. The main purpose of these tests was to:

1. Study the performance of the TFP isolators and the isolated superstructure under strong
excitation where the TFP isolators operate in all five regimes, including stiffening and up to
their displacement capacity. Earlier studies of Fenz and Constantinou (2008e) presented
shake table results of testing of a six-story structure in which the TFP isolators reached
displacements in Regime IV (see Figure 1-2) but were further limited due to uplift. Morgan
(2007) presented experimental results where TFP isolators displaced in all five regimes of
operation but the tests were conducted with sinusoidal excitation rather than random seismic
motions. Also, the isolators uplifted prior to reaching their displacement capacity in
similarity to the Fenz and Constantinou (2008e) tests. More recently, Becker and Mahin
(2011) presented experimental results of TFP bearings in all five regimes of operation in the
testing of an isolated rigid block. The tests presented in this report add to the body of
experimental results on the TFP isolators by extending to flexible structure in which the TFP
bearings are displaced to their displacement capacity and simultaneously undergo uplift.

2. Study the effect of the vertical component of earthquakes on the isolation system and
superstructure response. Previous experimental work (Fenz and Constantinou, 2008e,
Morgan, 2007 and Becker and Mahin, 2011) also reported on this issue and generally have
shown small effect of the vertical component on the horizontal global response. The study



of vertical earthquake effects in this report adds to the existing body of knowledge and
includes some data where the effects are important.

Study the re-centering capability and the effect of initial offsets on the response.

Study the behavior of TFP bearings of unusual configurations such as cases having higher
friction in the inner sliding surfaces, which cannot be predicted by conventional models of
TFP behavior. The behavior of these bearings is described in Sarlis and Constantinou
(2013).

Collect data on response to compare with analytical predictions in programs SAP2000 and
3pleANI (Sarlis and Constantinou, 2013) in order to investigate the degree of accuracy of
existing analysis models and newly developed formulations.



SECTION 2
EXPERIMENTAL SETUP

2.1 Specimen Description

The model structure used in the shake table testing is shown in the photographs of Figure 2-1 and
Figure 2-2. Figure 2-3 shows schematics of the model structure on the shake table. The model
structure is a quarter length scale three-story steel model. The superstructure is a portion of the 6-
story model last used by Fenz and Constantinou (2008e) in testing of TFP isolators. The
superstructure consists of moment resisting frames in the longitudinal direction and consists of
braced frames in the transverse direction. Five concrete blocks, each weighing 8.9kN, were
installed at each floor and two more at the base in order to achieve mass similitude. The total
weight of the model (frame, base and added weight) on top of the isolators was 196kN
(distributed as 53.2kN at the base and 47.6kN at each floor). All beams and columns are S3x5.7
(SI designation S75x8.5) and all braces are L1'2x1'2xY4 (SI designation L38%x38%6.4). The beam
to column connections are fully welded and stiffened so that they are rigid. Horizontal bracing of
all floors at all bays achieves, together with the concrete blocks, rigid diaphragm behavior. The
3-story structure seats on a base-mat that consists of a grid of two longitudinal W14x90 (SI
designation W360x134) beams and four transverse W12x35 (SI designation W310x52) beams
which are located at the superstructure’s column locations. Also, the model features two
HSS16x8x5/16 (SI designation HSS406.4x203.2x7.9) beams in the transverse direction that are
connected on the top of the W14 x90 beams.

Four isolators were placed below the W14x90 beams on a 122cmx244cm footprint as shown in
Figure 2-2 and Figure 2-3. The yellow plates seen at the bottom of the isolator-load cell
assembly in Figure 2-2 and Figure 2-3 were used to first level the bearings and then to raise them
so that the gravity loads on each isolator were approximately equal. The leveling plates were also
used for bearing alignment.

Testing was conducted with earthquake shaking in the longitudinal (or E-W direction in Figure
2-3) and vertical directions.
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Figure 2-2: View of TFP isolators installed at the base of the tested structure
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Figure 2-3: Schematics of tested structure

The techniques for the installation, leveling and alignment of the isolators have been described in
Fenz and Constantinou (2008e). At the conclusion of a test, triple FP bearings may exhibit
permanent displacements; particularly in the cases where the coefficient of friction at the inner
sliding surfaces (2 and 3 in Figure 1-1) is large. Figure 2-4 shows a photograph of the TFP
obtained at the end of a shake table test which shows two types of permanent displacements that
may be exhibited by triple FP bearings:



a) Isolation system permanent displacement, which is the offset between the top and
bottom concave plates of the bearings.

b) Internal component permanent displacements. These permanent displacements
always occur even in the absence of isolation system permanent displacements.

Permanent displacements of either type affect the behavior of the bearings in subsequent
earthquakes. This complicates the comparison of experimental results for various tested
configurations as the initial conditions are different. Moreover, analytical prediction of the
experimental response would have required measurement of the permanent displacements of the
internal components, which is complex. Accordingly, the tested structure was re-centered when
needed by use of the following procedure. First, a hydraulic jack was placed inclined with one
edge supported on the shake table and the other on the base of the structure (see Figure 2-4(b)) in
order to bring the structure to its zero position. Next, a hydraulic jack was placed vertically in
order to remove the normal load from one bearing at a time and re-center the internal
components.

<

(a) Example of permanent displacements (b) Re-centering procedure
Figure 2-4: Permanent displacements and TFP re-centering

2.2 Instrumentation

The complete list of the instruments used in the tests is presented in Table 2-1.

Table 2-1: List of instrumentation notation, location and direction of measurement

Name Type Location Direction
IN Load Cell SE LC Normal Force \
1SY Load Cell SE LC Shear Force T
1SX Load Cell SE LC Shear Force L
IMY Load Cell SE LC Moment T
1MX Load Cell SE LC Moment L
2N Load Cell NE LC Normal Force \
2SY Load Cell NE LC Shear Force T
2SX Load Cell NE LC Shear Force L
2MY Load Cell NE LC Moment T




2MX Load Cell NE LC Moment L
3N Load Cell NW LC Normal Force \'%
3SY Load Cell NW LC Shear Force T
3SX Load Cell NW LC Shear Force L
3IMY Load Cell NW LC Moment T
3IMX Load Cell NW LC Moment L
AN Load Cell SW LC Normal Force \'%
4SY Load Cell SW LC Shear Force T
4SX Load Cell SW LC Shear Force L
AMY Load Cell SW LC Moment T
AMX Load Cell SE LC Moment L
SPSE-SL String Pot SE Table L
SPSW-SL String Pot SW Table L
SPSE-1L String Pot SE 1st floor L
SPSW-1L String Pot SW 1st floor L
SPSE-2L String Pot SE 2nd floor L
SPSW-2L String Pot SW 2nd floor L
SPSE-3L String Pot SE 3rdfloor L
SPSW-3L String Pot SW 3rd floor L
SPSE-BL String Pot SE Base L
SPSW-BL String Pot SW Base L
SPNE-BT String Pot NE Base T
SPSE-TR-TC String Pot SE Bearing Top Concave plate L
SPSE-TR-TS String Pot SE Bearing Top Slide plate L
SPSE-TR-TR String Pot SE Bearing Rigid Slider L
SPSE-TR-BS String Pot SE Bearing Bottom Slide plate L
ASE-SL Accelerometer SE Table L
ASW-SL Accelerometer SW Table L
ASE-1L Accelerometer SE 1st floor L
ASW-1L Accelerometer SW 1st floor L
ASE-2L Accelerometer SE 2nd floor L
ASW-2L Accelerometer SW 2nd floor L
ASE-3L Accelerometer SE 3rdfloor L
ASW-3L Accelerometer SW 3rd floor L
ASE-BL Accelerometer SE Base L
ASW-BL Accelerometer SW Base L
ANE-BT Accelerometer NE Base T
ANE-1T Accelerometer NE 1st floor T
ANE-3T Accelerometer NE 3rd floor T
ASW-BT Accelerometer SW Base T
ASW-I1T Accelerometer SW 1st floor T
ASW-3T Accelerometer SW 3rd floor T
AN-SV Accelerometer NW Table \
AN-SV-2 Accelerometer NE Table \'%
AS-SV Accelerometer SW Table \'%
AS-SV-2 Accelerometer SE Table \%
AN-BV Accelerometer NW Base \
AN-BV-2 Accelerometer NE Base \
AS-BV Accelerometer SW Base \




AS-BV-2 Accelerometer SE Base \
ALCI1-BV Accelerometer SE Load Cell 1 A\
ALCI1-BL Accelerometer SE Load Cell 1 L
ALC2-BV Accelerometer NE Load Cell 2 \%
ALC2-BL Accelerometer NE Load Cell 2 L
ALC3-BL Accelerometer NW Load Cell 3 L
ALC4-BL Accelerometer SW Load Cell 4 L

L=Longitudinal direction, V= vertical direction, LC=load cell, SE=South-East, SW=South-West,
NE=North-East, NW=North-West

Figure 2-5 and Figure 2-6 show the location of the potentiometers (displacement transducers)
and accelerometers installed on the superstructure and shake table. Two accelerometers and two
displacement transducers were installed at each floor, base and the shake table in order to have
redundancy in the measurements and to also measure torsional motion. Vertical accelerometers
were installed on the shake table and the base at four opposite corners. Transverse
accelerometers were also installed on the 1st and 3rd floors and at the base at the NE and SW
corners of the model.

Figure 2-5: Location of displacement transducers on superstructure and shake table
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Figure 2-6: Location of accelerometers on superstructure and shake table

The TFP isolators were installed on top of four 5-component load cells. The load cells measured
axial, shear forces in two orthogonal directions and moments about two horizontal axes. Details
about the load cells and how they are calibrated can be found in Bracci et al. (1992). The list of
all measured components (channels) is shown in Figure 2-7. The TFP isolator on Load Cell 1
was also instrumented with displacement transducers as shown in Figure 2-8 in order to measure
the displacements of the inner components. It should be noted that the inner parts of the TFP
isolators occasionally experience torsional motions due to uneven distribution of friction

tractions. This leads to erroneous measurements by the string pots so that the displacements of
the inner parts could not be measured.

Figure 2-7: Five-component load cell channels

11



_ gpSE-TRTC @u
‘ sPSE-TR TS EE

=1

Figure 2-8: Displacement transducers installed at TFP inner components

An important part of any experimental study is to have redundancy in the measurements so that
(a) the accuracy of measurements can be checked, and (b) sufficient data are acquired in case of
failure of instrumentation. Although rarely reported, load cells often have measurement errors
due to calibration errors (particularly for complex multichannel cells in which there is channel
“cross-talk”), manufacturing errors (e.g., due imperfect placement of strain gages), installation
errors in the test arrangement (e.g., leveling), condition of other supporting equipment (e.g.,
conditioners) and effects of the environmental conditions (e.g., temperature and humidity).
Deviations of measured force of up to 20% of the actual forces are not uncommon. Figure 2-9
compares results for the base shear in shake tests of the tested isolated model obtained by direct
measurement of the shear force (force F.) and by processing of the acceleration records obtained
at each floor and the base-mat of the structure (force F,..). Force F). was obtained as the sum of
the shear forces recorded by the load cells supporting the isolators (sum of 1SX+2SX+3SX+4SX
in Figure 2-7) and force F, . was calculated as the sum of the floor and base-mat inertia forces:

F., = myii, +m , (i, + iy +1is) (2-1)

acc

where m; is the mass of the base-mat (weight equal to 53.2kN), my is the mass of one floor

(weight equal to 47.6kN), i, is the longitudinal acceleration of the center of mass of the base-

mat and #,,u, and i, are the center of mass accelerations of the 1st, 2nd and 3rd floors,
respectively. The center of mass accelerations were calculated as the average of the two

accelerometers recording on each floor. For example, i, is the average of the recordings of

instruments ASE-BL and ASW-BL (see Figure 2-6), i, is the average of the recordings of
instruments ASE-1L and ASW-1L, etc.

The two sets of results in Figure 2-9 are in very good agreement. However, to obtain this good
agreement, the load cell measurement was multiplied by a correction factor of 1.055-a factor
found to be needed as the load cell measurements were systematically lower than the results
obtained from processing of the acceleration records, which were presumed to be accurate. It was
discovered that the difference was due to load cell calibration. The load cell calibration
procedure followed is described in Bracci et al. (1992) and utilizes the fixture shown in Figure
2-10. The load cells are bolted together and placed on top of two rollers at the edges of the two
outermost load cells. A loading beam is placed on top of the load cells supported by two rollers
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placed on two of the load cells. A reference load cell is placed at the center and on top of the
loading beam and load is applied on top of the reference load cell. The two outermost load cells
are calibrated for half the load measured by the reference load cell. This however ignores the
weight of the loading beam and the weight of the load cells. Each load cell has a weight of
about1.8kN and the loading beam, reference load cell and other features weigh another 1.8kN for
a total of about 9kN additional unaccountable load. The distribution of this load gives rise to
shear forces of 4.5kN for the two outer cells which are calibrated for shear force. Given that load
cells were calibrated to a shear of about 90kN, this leads to a calibration error of the order of 5%.
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Figure 2-9: Comparison of base shear-base displacement loops obtained from processing of
acceleration records (force F,.c) and directly measured by load cells (force Fq)
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Figure 2-10: Load cell calibration fixture

An additional problem encountered in the tests was significant drifting of the load cell values
with time due to environment temperature changes that affected the temperature of the load cell
conditioners. The sensitivity of the conditioners is shown in Figure 2-11(a) for the vertical load
on each of the four load cells when a fan was used to cool the conditioners. Load cell drifts of
about 15kN can be observed when no additional load was applied on the structure. Figure
2-11(b) shows load cell drifting over a 12 hour period without the use of a fan to cool down the
conditioners. In the latter case, the drift in measured load in two of the load cells is S0kN and
400kN which indicates the severity of the problem.
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Figure 2-11: Load cell normal load variation for (a) with fan cooling the conditioners and
(b) without fan cooling

It was determined that the problem of drifting values was negligible for short times of the order
of one minute so that it did not affect the measurements in single dynamic tests. Accordingly, the
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procedure followed to obtain values of load on each isolator at the start of each test was as
follows:

1. At the first test and when re-centering of the isolators was needed or whenever the
isolators were replaced, the load cells were balanced by jacking the structure up and
removing the normal load from each isolator at a time (see Section 2.1). The normal load
values were recorded after normal load was reinstated at all isolators. These values then
served as the initial normal load values for the subsequent test.

2. For subsequent tests, the changes in the normal loads from the beginning to the end of
each test were added to the initial values until the next time the load cells were balanced.

Application of the procedure described above resulted in the evolution of the value of the sum of
the measured normal load on the four isolators for the duration of testing (the value of the
measurement should be constant and equal to weight of the structure). The evolution of the
measured total load is shown in Figure 2-12. While the measured load still exhibits some small
drift (by less than 3% in over 100 tests), the drift is far less than that depicted in Figure 2-11 and
it does not affect the fidelity of the measured forces in the testing.
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Figure 2-12: Evolution of measured total vertical load on four isolators during testing
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SECTION 3
INDIVIDUAL TESTING OF TRIPLE FP ISOLATORS

This section presents experimental results on the behavior of the isolators that were used for the
shake table testing. The isolators were tested in the single bearing testing machine at the
University at Buffalo (Kasalanati and Constantinou, 1999). For the shake table tests, TFP
isolators of three different configurations were used with the geometric characteristics presented
in Table 3-1. From the three configurations, A and C had the exact same geometry while
Configuration B had slightly different geometry (the rigid slider was slightly shorter). The values
of the friction coefficients for Configurations A and B satisfied the condition p,=pu;<w;<wu. for
which standard models of TFP isolator behavior are valid. Configuration C satisfied the
condition u;=us<u,=u;3, for which the behavior cannot be predicted with standard models. The
tests revealed the frictional properties of the isolators.

Table 3-1: Geometric properties of Triple FP used in shake table tests
(with reference to Figure 1-1)

Geometric Configuration | Configuration
Properties A and C B
R, =R, (mm) 473 473
R, = R, (mm) 76 76
hy, = h, (mm) 23 18
h, = h, (mm) 38 33
qu‘] = Re,f/"'4 (mm) 435 440
Reﬁ‘2 = Reﬁ‘} (mm) 55 58
d, =d, (mm) 64 64
d, =d, (mm) 19 19
b, =b, (mm) 101 101
b, = b, (mm) 51 51

3.1 Equipment and Instrumentation Used

A detailed description of the bearing testing machine can be found in Kasalanati and
Constantinou (1999). The machine is depicted in Figure 3-1. The bearing sits on top of a five
component load cell (the particular type of load cell used is denoted “5D-LC-12-BLU” in the
University at Buffalo Structural Engineering and Earthquake Simulation Laboratory manual,
http://nees.buffalo.edu/docs/labmanual/HTML/Chapter%203.htm# Toc145756944 ). This load
cell records forces in three directions and moments about two axes. The horizontal actuator
shown in Figure 3-1 is also equipped with an axial-only load cell which allows for direct
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verification of force measurements for slow tests and indirect for dynamic tests (correction is
needed for the inertia force effects of the loading beam in Figure 3-1).
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Figure 3-1: Schematic of single bearing testing machine (Kasalanati et al., 1999)

Figure 3-2 shows the instrumentation used to monitor the motion of the three internal
components of the bearing. Note the two instruments that were needed for each component as the
parts also exhibited torsion (Sarlis and Constantinou, 2013). This apparatus was used for the
testing of only Configurations B and C.

Figure 3-2 shows string pots (potentiometers) SP-1, SP-2, SP-5 and SP-6 attached to the tip of
the interior restrainer ring of the corresponding slide plates which are located at a distance zy,
from surface 1 for SP-1 and SP-2 and surface 4 for SP-5 and SP-6. SP-3 and SP-4 are attached at
the mid-height of the rigid slider and directly measure the displacement of its center of mass (see
Figure 1-1 for terminology). The measured displacements of the parts required post-processing
on the basis of the geometry of the components and the location of the instruments in order to
calculate displacements at each surface.

Concave plate

Top

Figure 3-2: String-pot instrumentation of internal components for tested Triple FP bearing
Configurations B and C
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3.2 Configuration A Testing

Configuration A consisted of the isolators used for testing by Fenz and Constantinou (2008e).
Surfaces 1, 2 and 3 of these isolators consisted of a material labeled as M1 and shown in Figure
3-3 on the right and Figure 3-4. Friction on surfaces 2 and 3 was much lower than on surface 1
due to the combination of higher pressure and the effect of some lubrication that was introduced
in the 2008 tests. Surface 4 consisted of a high friction material labeled as M8 and shown in
Figure 3-3. Experimental results for the isolators of Configuration A are presented in Figure 3-5.
The left column of the graphs shows results for tests with imposed lateral motion at 0.01Hz
frequency and the right column shows results for 0.3Hz frequency. The results are in the form of
loops of the horizontal force normalized by the vertical force versus the displacement of the top
concave plate with respect to the bottom concave plate. The notation used in the graphs is as
follows for one of the four tested bearings: M1LC1-M1LC4 denotes the isolator that consisted of
the bottom slide plate with material M1 used in the shake table testing in the bearing placed on
top of load cell 1 (Figure 2-3), together with the bottom slide plate with material M1 used in the
shake table testing in the bearing placed on top of load cell 4. These tests were conducted one
month prior to the shake table tests.

" s

Figure 3-3: Views of slide plates with rhaterial MBS (left row) and material M1 (right row)
used in Configuration A isolators

ille :
AL o R e i -
Figure 3-4: Top view of rigid sliders with material M1 used for surfaces 2 and 3 in
Configuration A isolators
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Figure 3-5: Normalized force-displacement loops of Configuration A TFP isolators



3.3

Configuration B Testing

The bearings for Configuration B consisted of the same materials as those of Configuration A
and have not been tested prior to the shake table testing. Rather, they were tested five months
after the completion of the shake table tests. The bearings have not been cleaned or conditioned
in the period between the shake table and the bearing machine testing. Results are presented in
Figure 3-6. For these tests, the bearings were placed in the bearing testing machine at an offset
that led to un-symmetric displacement input. TSB1 denotes the isolator that was located on top
of load cell 1 (see Figure 2-7), TSB2 on top of load cell 2, etc. in the shake table tests.
Observations in the results of Configuration B are:

1.

During testing, bearing TSB3 exhibited stick-slip phenomena on surface 4 that were
pronounced in low velocity tests (f=0.02Hz). While the phenomenon of stick-slip may be
artificial and created by the test apparatus and/or any corrections of errors due to inertia
effects (see Section 4 of Constantinou et al., 2007), it is believed that it was real and the
result of high breakaway friction coefficient. The phenomenon was not observed in the
shake table testing and it was barely observed in the faster test machine tests because
frictional heating eliminated the difference between breakaway and sliding friction
values.

The internal bearing parts (BSP; bottom slide plate, RS; rigid slider and TSP; top slide
plate) exhibited significant torsional rotations as indicated by the results of Figure 3-7
which presents recorded values of the torsion angle during the tests for which the loops
are presented in Figure 3-6. The torsion angle was calculated from the difference between
the measurements of the two displacement transducers of each part shown in Figure 3-2
and divided by the distance between the attachments of the two transducers to the parts. It
can be seen that some components exhibited up to 70° angle of rotation about the vertical
axis. This behavior was also occasionally observed but not directly measured in the
shake table tests in all configurations. It is caused by uneven distribution of traction
forces on the sliding surfaces. The motion resulted in changes in the displacement
capacities of the internal parts.

In test TSB4-f=0.1Hz, the tested bearings exhibited uplift so that the normalized force
could not be obtained (division by zero). For this test the lateral force-displacement loop
and the history of the vertical force on the bearing are shown in Figure 3-8. Uplift can be
recognized when the lateral force is zero over a range of displacements. Uplift occurred
because of inability to control the axial load on the tested bearings, particularly at high
speed motion.
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Figure 3-7: Torsion angle of internal components of TFP isolators of Configuration B
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3.4 Configuration C Testing

Experimental results for the isolators of Configuration C are presented in Figure 3-9. Testing was
conducted after the shake table testing. The isolators were assembled with friction on surfaces 1
and 4 having a value that is much smaller than the value of friction on the inner surfaces 2 and 3.
This is an unusual configuration of which the behavior cannot be predicted by the conventional
models of TFP bearings. Rather, the more advanced theory in Sarlis and Constantinou (2013) is
capable of describing their behavior. For these isolators, motion initiates simultaneously on
surfaces 1 and 4 when the lateral force becomes equal to the highest friction force among the two
surfaces 1 and 4. In theory, motion on surfaces 2 and 3 will not initiate until the following two
incidents occur: a) the displacement capacity of surfaces 1 and 4 is consumed, and b) the lateral
force becomes equal to the highest friction force among surfaces 2 and 3. Between incidents a)
and b) above there is an abrupt increase in the isolator lateral force. Actually, the displacement
capacity of surfaces 1 and 4 cannot be simultaneously consumed as a result of initial offsets of
the TFP surfaces caused by misalignments in the top concave plate. Such complex cases can be
analyzed using the theory presented in Sarlis and Constantinou (2013). For the results in Figure
3-9, the measurements of both the isolator and actuator load cells are shown as some small
differences were observed in the two independent measurements. Also, Figure 3-10 presents
results on the torsional motion exhibited by the internal components of the bearings of
Configuration C.
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Figure 3-9: Normalized force-displacement loops of Configuration C TFP isolators
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Configuration C

26



3.5 Additional Topics on the Testing of TFP Isolators

Figure 3-11 presents a comparison of experimental normalized force-displacement loops for a
bearing of Configuration A under different axial loads. Figure 3-11 on the left shows results for
an isolator having material M8 on surfaces 1 and 4 and subjected to a normal load of a)
N=107kN and b) N=44kN. Figure 3-11 on the right shows results for the case in which the high
friction material M8 was replaced by the low friction material M1. For both isolators, the inner
surfaces 2 and 3 consist of material M 1. Note that there is small effect of load on the behavior of
the bearings due to the effect of pressure on the coefficient of friction at surface 1 and 4 where
the apparent bearing pressure varies between 6.4 and 14.0MPa. In contrast, there is no effect on
the friction coefficient of surfaces 2 and 3 where pressure varies between 25 and 55MPa-already
large values for which pressure does not have significant effects (Constantinou et al, 2007).
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Figure 3-11: Normalized force-displacement loops of TFP isolators at different loads

A subject investigated in the testing arises when isolators exhibit differences in vertical
displacements. This situation occurs when isolators of different geometric and frictional
properties are combined in the isolation system. It also occurs when identical isolators are used
but natural variability in frictional properties causes differential vertical displacements of the
isolator parts. Differential vertical motion results in redistribution of the axial load on the
isolators in addition to variations due to overturning moment and vertical earthquake effects.
Figure 3-12 shows results from tests conducted at the single bearing machine for two isolators
having the same geometry but different friction properties: a) one with material M8 (high
friction) on surfaces 1 and 4 and b) one with material M1 (low friction) on surfaces 1 and 4 and
subjected to identical displacement inputs. The two isolators exhibit different vertical
displacements. This occurs because the isolator with the higher friction M8 material exhibits
larger displacements on surfaces 2 and 3 prior to initiation of motion on surfaces 1 and 4 than the
isolator with the lower friction M1 material (note that surfaces 2 and 3 have small radius of

27



curvature which affects the vertical motion). Note in Figure 3-12 that there is permanent vertical
displacement for the bearing of the higher friction material M8 despite the fact that the bearing
has no permanent horizontal displacement. This is due to the fact that there is permanent
displacement of the internal components of the bearing.

10 10

<

=
co

Vertical Displacement (mm)
tn

Vertical Displacement (mm)
n

A ’ 0 e " "
0 150 3000 -120 -60 0 60 120
Displacement (mm) Displacement (mm)
Figure 3-12: Vertical displacement histories of isolators with a) low friction material M1

on surfaces 1 and 4 and b) high friction material M8 on surfaces 1 and 4

Permanent vertical displacements such as those shown in Figure 3-12 can cause redistribution of
the axial loads on the isolators after the seismic shaking ends. As an example, Figure 3-13 shows
the vertical load on the four isolators (calculated using the procedure described in Section 2.2) at
the start of consecutive shake table tests conducted for the three-story model structure. There is
vertical load re-distribution at the conclusion of tests 2 and 13, 14 and again at 15, when the
bearings returned to their original condition. Note that the load shifts so that more load is carried
by the two bearings along the diagonal NE-SW and less load by the bearings on the diagonal
NW-SE. Such shift in the load can easily occur due to the large vertical stiffness of the bearings
and the large stiffness on the base-mat supporting the structure on top of the bearings. Under
such conditions, small differences in the height of the bearings affect the distribution of load.
These small differences in height are due to misalignments, small differences in friction values
even for otherwise identical bearings and slightly different initial conditions for the bearings.
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SECTION 4
SHAKE TABLE TESTING RESULTS

4.1 Introduction

This section presents experimental results of the shake table testing of the 3-story structure
shown in Figure 2-1 to Figure 2-3 as follows:

1. Section 4.2 presents results for the fixed structure that are used to identify the
superstructure properties.

2. Section 4.3 presents a testing summary and description of the ground motions used for
the shake table tests of the isolated structure.

3. Section 4.4 presents results for the isolated structure for low (displacements <50mm) and
moderate (displacements <100mm) amplitude ground motions.

4. Section 4.5 presents results for the isolated structure subjected to strong ground motions
that result in stiffening of the isolators and in some cases contact with the restrainers.

5. Section 4.6 presents results that investigate the effect of the vertical component of ground
motions on the horizontal response of the isolation system and superstructure.

4.2 Fixed-base Structure

Prior to testing the isolated structure, the superstructure was identified by directly connecting the
base, without the isolators, on the load cells (see Figure 2-3) and subjecting it to shake table
motion. For the identification of the superstructure properties, the shake table was driven in
white noise motion with frequency content of 0 to 50Hz, amplitude of 0.1g and 60 second
duration. The transfer functions were obtained (see Bracci et al., 1992 for a description of the
process) using records of acceleration recorded at each floor and the shake table. They are shown
in Figure 4-1. The mode shape, period and damping ratio of each of the three translational
(testing direction) modes of the superstructure were derived from the transfer functions (see
Bracci et al., 1992) and are presented in Table 4-1.

Table 4-1: Modal shape, period and damping ratio for three modes of vibration of
superstructure obtained in low amplitude white noise testing

Mode | Period | Damping Mode Shape
No. (sec) Ratio | 1% floor | 2™ floor | 3™ floor
1 0.299 0.0862 0.415 0.753 1.000
2nd 0.077 0.0137 1.216 0.816 -1.000
31 0.046 0.0078 2.364 -2.199 1.000
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Figure 4-1: Amplitude of transfer functions of superstructure obtained in low amplitude
white noise testing

The structure has a high damping ratio in the first mode, something also observed in previous
identification of the complete 6-story model (Fenz and Constantinou, 2008e and Wolff and
Constantinou, 2004). This is attributed to slippage in the connections of the concrete blocks to
the steel frame. The damping is dependent on the amplitude of motion, hence excitation too. It is
largest at small amplitude vibration with rich frequency content. The structure was also identified
in low amplitude (to prevent yielding) seismic excitation using motion ATL 270 (see Table 4-3).
Results are presented in Table 4-2 and Figure 4-2. There is some difference between the two sets
of results, which is typical of the difficulties in the identification of models that are not exactly
linear elastic and linear viscous.
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Table 4-2: Modal shape, period and damping ratio for three modes of vibration of
superstructure obtained in low amplitude seismic testing with motion ATL 270

Mode | Period | Damping Mode Shape
No. (sec) Ratio | 1 floor | 2" floor | 3" floor
1* 0.277 0.0597 0.385 0.746 1.000
2" 0.077 0.0135 1.217 0.803 -1.000
31 0.045 0.0060 2.528 -2.328 1.000
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Figure 4-2: Amplitude of transfer functions of superstructure obtained in low amplitude
seismic testing with motion ATL 270

Testing Summary and Selection of Ground Motions

Table 4-3 presents characteristics of the ground motions that were used for the shake table tests.
The majority of the ground motions selected for this study have near fault characteristics since
these typically impose large displacement demands on isolated structures. Due to similitude
requirements, all the ground motions had to be scaled in time by a factor of 0.5. This scale factor
alone was not sufficient to cause displacements in the stiffening regimes of the TFP bearings. In
order to amplify the effect of the utilized ground motions and excite the structure in Regime V,
scales in time larger than 0.5 and scales in accelerations larger than 1.0 were used, which
distorted similitude.

The following should be noted about the results that are presented in Section 4:

1.

Displacements and accelerations were directly measured by string pots and
accelerometers, respectively. Relative displacements were calculated by subtracting the
records of displacements at two points.

All results presented here are un-processed with the exception of a digital SO0Hz low pass
filter that was applied directly by the data acquisition system.

The vertical acceleration of the base-mat and shake table was calculated using the
average of the measurements of four accelerometers that were located at the four opposite

corners of the base-mat and shake table.

33



4. The normalized base shear was calculated from records of acceleration after
multiplication by the effective masses and addition over the height of the model (F. as
given by Equation (2-1)) and dividing by the sum of the instantaneous vertical load
measured by the four load cells. Small fluctuations in the normalized base shear loops
occur because of a) errors in measurements of the vertical force by the load cells, and b)
variations of friction due to pressure changes. Large fluctuations typically occur because
of uplift of the structure, which was observed in tests that included vertical excitation and
are presented in Section 4.6. Note also that the normalized base shear loops are less
accurate than the non-normalized loops since they are divided by the sum of the load cell
measurements and thus are susceptible to load cell error measurements.

Table 4-3: Ground motions used for the Triple FP testing

Earthquake/ Station Component M PGA PGV | PGD
Date Notation W (g) | (cm/sec) [ (cm)
San Fernando | CDMG 279 Pacoima Dam,
/1971 Upper Left Abutment PUL-164 6.6 | 1.16 75.6 18.1
Northridge-01 CDMG 24514 Sylmar -
1/1994 Olive View Med FF SYL-360 6.7 | 0.70 95.4 21.9
Northridge-01 USGS/VA 637 LA -
1/1994 Sepulveda VA Hospital | 037270 | 67 | 0807 741 1 163
Chi-Chi, CWB 9999936 TCU129 | TCU-129-E | 7.6 | 0.79 | 473 | 387
Taiwan 9/1999
11/(1";’965 JMA 99999 KIMA KIM-000 | 69 | 071 | 77.8 | 189
Northridge-01 CDMG 24279 Newhall -
1/1994 Fire Station NWH-360 6.7 | 0.70 81.8 26.1
N. Palm Springs | USGS 5231 Anza - Tule
07/19%6 Canyon ATL-270 6.06 | 0.10 7.27 0.73

M,,: Moment Magnitude, PGA: Peak Ground Acceleration, PGV: Peak Ground Velocity, PGD: Peak Ground Displ.

4.4  Isolated Structure Results for Low and Moderate Amplitude Excitations

This section presents results for configurations tested with selected ground motions of low and
moderate amplitude so that the isolators did not exhibit stiffening. A complete set of results is
presented in Appendix A. For this set of tests, there was no vertical component of earthquake
applied to the structure apart from some unintentional high frequency vertical excitation that
existed in all tests. Table 4-4 presents the recorded peak response quantities for selected ground
motions and for Configurations A, B and C. The response quantities are: (a) Base (or Isolator)
displacement, (b) Inter-story drift as percentage of story height, (c) Floor and base acceleration,
and (d) Base shear force (BS).

Figure 4-3 to Figure 4-8 presents results on base shear-base displacement loops, drift histories
and floor 5%-damped acceleration spectra for selected ground motions for each of the tested
configurations. Additional results are presented in the appendices. Note that the time scale
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factors reported herein are applied to the time step of the model scaled ground motion. For
example, the test designation SYL360 (0.5/1.3) denotes that ground motion SYL360 was applied
in the longitudinal direction, the original acceleration values were multiplied by factor 0.5 and
the duration of the motion scaled for similitude was additionally multiplied by factor 1.3 (that is,
the original motion was first compressed in time by factor 2 for similitude and then the duration
was further multiplied by factor 1.3).
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Table 4-4: Peak response quantities in tests with low and moderate amplitude ground
motions

Configuration A

Ground Multiplier | Base displagement Story d.rift (% of Floor acceleration (g) BS
Motion (mm) height) (kN)*
Al t* | In. | Max | Res | Ch. 1 2 3 |Base| 1 2 3
SYL360 1.0 | 1.0 | 2 86 -2 | 88 031039054 | 0.51 | 041042 |048| 56
SYL360 05| 13| -4] 38 |-12| 33 |0.22]0.33]032] 0.36|039]042|043| 34
PUL164 05| 1.0 | -7 | 26 -8 18 | 0.20 | 0.25]0.19| 0.40 | 0.37 | 0.38 | 0.38 | 28
PUL164 1.0 | 1.0 | -8 | 62 -9 | 57 |028 041027 | 0.48 | 0.44|0.50 | 0.55| 42
PUL164 08 | 1.4 | -8 | 95 10 | 103 10.32]0.54|0.29 | 047 | 0.46|0.45|0.54| 63
NWH360 | 0.5 | 1.0 | -8 19 0 27 1020|023 ]0.18 | 0.21 | 0.26|0.23 | 0.28 | 34
NWH360 1.0 | 1.0 | 1 45 -5 | 46 | 0.2410.38]0.27 | 0.34 | 0.33]0.33|038| 38
NWH360 1.5 1.0 | -2 | 82 -1 85 [0.37]043]036| 050 | 046 |0.52]|045| 53
KIMO000 05| 1.0 | -4 17 -2 15 ] 0.26 |1 0.26 | 0.19] 0.27 | 0.28 | 0.33 | 0.35 | 31
KIMO000 1.0 | 1.0 | -2 | 40 0 38 [ 0.33]1041]024] 035034039043 | 37
KIMO000 1.5 1.0 | 3 71 1 67 | 032]0.55]035] 042 |045|0.44|0.56| 48
637270 05] 1.0 ] 0 22 5 22 1023 10.33]0.16 | 0.24 | 0.26 | 027 | 0.32 | 35
637270 1.0 | 1.0 | 5 45 5 41 | 026 | 0.41]0.21 | 0.32 |10.33|0.36|0.39| 41
TCUI129E | 1.0 | 2.0 | 1 68 2 69 0331048 |041] 044 047|046 0.63 | 46
Configuration B
SYL360 | 0.5 | 1.0 | O 25 1 25 1021 10.27]0.16 0.29 | 0.27 | 0.25 | 0.35| 23
SYL360 1.0 | 1.0 | 1 76 2 | 77 10241039]0.30| 0.36 | 0.33]0.32]039]| 41
SYL360 | 0.5 | 1.3 | -3 | 36 0 33 ] 0.20]0.27 1021 ] 0.26 | 0.27 | 0.30 | 0.30 | 33
PUL164 1.0 | 1.0 | -2 | 66 -3 1 64 10241036]0.25] 0.36 | 0.37]0.36|048| 39
PUL164 | 05 | 1.4 | 23 | 87 22 | 65 ]0.20]0.35(0.25] 030 | 0.36|0.34|0.32| 40
KIMO0O0O | 0.5 | 1.5 | O 42 1 42 1021 10.28]0.17| 0.26 | 0.23 024 | 0.28 | 35
KIMO000 1.0 | 1.5 | -5 | 88 -6 | 85 032|046 0.31 | 034 |0.31[036|041| 46
KJIMO000 1.0 | 1.0 | 15| 52 18 | 56 | 026 |0.36|0.23 | 0.36 | 0.29 | 0.31 | 042 | 39
TCUI29E | 1.0 | 1.0 | 22 | 46 24 | 23 1026|036 |022] 041 |042]|0.36|047] 28
NWH360 | 0.5 | 1.0 | 14 | 36 16 | 22 |0.22]0.26]0.21 | 0.20 | 0.19]0.22 | 0.25| 31
NWH360 | 1.0 | 1.0 | 16 | 64 9 50 | 0.2210.35]024| 0.31 | 027|027 |0.34| 39
637270 05| 1.8 | -1 82 5 83 [0.19]1040|0.19| 027 | 0.26 | 0.29 | 0.31 | 44
637270 05| 1.0 | 5 28 10 | 23 | 0.15]0.27]0.13 | 0.19 | 0.21 | 0.19 | 0.25| 28
637270 1.0 | 1.0 | 10 | 55 14 | 45 | 0.22]0.39]0.17 | 0.26 | 0.28 | 0.35 | 031 | 38
Configuration C
SYL360 | 0.5 | 1.0 | O 19 4 19 | 026 | 040 | 0.26 | 0.58 | 0.31 | 0.42 | 0.53 | 28
SYL360 1.0 | 1.0 | 4 55 -1 55 1027 1036|0.29 | 0.50 | 0.40 | 0.40 | 0.61 38
SYL360 1.0 | 1.2 | 7 92 12 | 98 |1 0.2910.39]0.34| 058 | 0.38 | 0.44 | 0.58 | 42
PUL164 | 05 | 1.4 | -2 | 26 2 28 | 0.3010.37028] 0.56 | 0.57 | 0.55 | 0.62 | 33
637270 05| 1.8 | 9 66 3 56 | 023 1043|024 032 |0.27]030|042]| 37
NWH360 | 05 | 1.5 | -3 | 34 4 37 1029 ]036|025] 031 | 028 |034|043| 34
KIMO0O00O | 0.5 | 1.5 ] O 40 1 40 | 0.30|10.44]0.33| 040 | 0.36 | 0.38 | 0.59 | 37
TCUI29E | 0.5 | 2.0 | 5 19 -2 1 20 |1040]041]031| 045|037 (042|0.64| 32

1. A multiplies accelerations of original ground motion
2. t multiplies time step of the ground motion in addition to the 0.5 factor that is applied due to similitude
3. In. is the initial, Res is the residual and Ch. is the maximum change of the base displacement (with respect to In.)

4. Base Shear
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Figure 4-3: Experimental results for Configuration A and ground motion 0637-270 scaled

by factors 1.0 in acceleration and 1.0 in time
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Figure 4-4: Experimental results for Configuration A and ground motion TCU-129-E

scaled by factors 1.0 in acceleration and 2.0 in time
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Figure 4-6: Experimental results for Configuration B and ground motion KJM-000 scaled
by factors 1.0 in acceleration and 1.5 in time
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Figure 4-8: Experimental results for Configuration C and ground motion KJM-000 scaled
by factors 0.5 in acceleration and 1.8 in time
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4.5  Isolated Structure Results for High Amplitude Excitations

This section presents results of shake table tests with strong excitations so that the isolators
exhibited stiffening (Regimes IV and V) and contact with the restrainer rings. There was no
vertical excitation in this group of tests apart from some very high frequency parasitic vertical
excitation. Table 4-5 presents experimental results of peak response quantities for all tested
configurations for which the isolators exhibited stiffening.

Table 4-5: Peak response quantities for high amplitude motions

Base displacement Story drift (% . 4
(mm)’ of height) Floor acceleration (g) | BS

Al t | In. | Max | Res | Ch. 1 2 3 Base 1 2 3 (kN)

Ground | Multiplier
Motion

SYL360 | 1.1 | 1.3 | -6 | 143 5 [137]034]054]1049] 0.71 | 0.58 | 0.74 | 0.75| 83

637270 1.0 |15 9 | 111 | 25 102033052 ]031] 0.53 10490.500.60] 70

TCUI29E | 1.2 | 2.0 | 2 | 102 | -17 | 103 ] 0.53 | 0.49 | 0.75 ] 0.50 [ 0.47 | 042 [ 0.46| 60

PUL164 | 1.0 | 1.4 | 10 | 154 | 31 [ 143044 ]10.70 | 0.58 | 0.66 | 0.63 | 0.64 | 0.72 ] 103

Configuration B

SYL360 | 1.0 | 1.3 | -2 | 138 8 | 1360271043049 0.61 | 0.56]|0.64|0.53 | 64

PUL164 | 1.0 | 13 ) 1 | 135 | 17 134043 057 ]035] 044 10411045051 ] 62

PUL164 | 0.8 | 1.4 120 | 143 | 25 | 1231037 052|049 | 0.58 | 050|047 (051 71

NWH360 | 0.7 | 1.8 | 4 | 117 | 13 | 113038 049 | 033 ] 035038039040 ] 58

NWH360 | 0.8 | 1.6 | -1 | 115 | 24 | 117033 ]052[032] 047 1045]0.54|0.56] 61

KJMO000 | 09 | 1.8 | -3 | 123 | -7 | 120043 | 0.51 | 0.42 | 0.57 [ 0.53 | 0.52 ] 0.54| 61

637270 1.0 | 1.5 10| 124 | 22 | 114 0.30 | 046 | 0.26 | 0.48 | 0.40 | 0.46 | 0.46 | 60

637270 0.8 | 1.8 | 21 | 158 5 [137]0.721094 1084 | 1.23 10931091 0.80] 131

Configuration C

637270 08 | 1.8 | -4 | 140 | -3 [144]0.32]0.68 054 092 |0.74|0.76 | 0.82| 93

NWH360 | 1.2 | 1.5 ] 2 | 113 0 | 115]038 044 ]038) 037 (042|044 |0.56]| 47

KJMO000 | 1.5 | 13 | -7 | 104 | -8 | 111040 | 0.60 | 0.40 | 0.50 | 0.51 | 0.56 | 0.72 ] 45

PULI64 | 05 | 2.0 | 1 107 5 1107]0.34]044 037] 0.64 | 0.64 | 0.68 | 0.77 | 47

PUL164 | 1.1 | 1.4 | 7 | 122 | 40 | 115)0.35]039]10.38] 0.45]10.61 1058044 ] 52

1. A multiplies accelerations of original ground motion

2. t multiplies time step of the ground motion in addition to the 0.5 factor that is applied due to similitude

3. In. is the initial, Res is the residual and Ch. is the maximum change of the base displacement (with respect to In.)
4. Base Shear

Figure 4-9 to Figure 4-11 present results on base shear-base displacement loops, drift histories,
floor acceleration histories, bearing axial load histories and floor 5%-damped acceleration
spectra for one ground motion for each of the tested configurations. Additional results are
presented in the appendices. Note that the time scale factors reported herein are applied to the
time step of the model scaled ground motion. For example, the test designation SYL360 (0.5/1.3)
denotes that ground motion SYL360 was applied in the longitudinal direction, the original
acceleration values were multiplied by factor 0.5 and the duration of the motion scaled for
similitude was additionally multiplied by factor 1.3 (that is, the original motion was first
compressed in time by factor 2 for similitude and then the duration was further multiplied by
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factor 1.3). Also, Figure 4-12 presents frames captured from the video of the motion of isolator
TFP-1 (located on the SE corner; see Figure 2-7) where the isolator exhibits its maximum
displacement for the test designated 0637270(0.8/1.8). Graphs of results for this test are shown
in Figure 4-10. A complete set of results is presented in Appendix A.
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Figure 4-11 (cont’d): Experimental results for Configuration C and ground motion 0637-

270 scaled factors 0.8 in acceleration and 1.8 in time
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(d) t=0.12sec (e) t=0.16 () t=0.20
Figure 4-12: Captured frames of TFP isolator motion during maximum deformation for
Configuration B and ground motion 0637-270 (results presented in Figure 4-10)

4.6  Isolated Structure Results for Tests with Vertical Component of Ground Motion

This section presents comparisons of experimental results with only horizontal excitation applied
in the longitudinal direction (case L) and with combined horizontal and vertical excitation (case
L+V).

Peak response results for all tested configurations are presented in Table 4-6. Figure 4-13 to
Figure 4-15 present comparison of results (base shear loops, normalized base shear loops, drift
histories, acceleration histories and floor spectra) for tests selected from Table 4-6 for one
ground motion for each configuration. In Figure 4-13 to Figure 4-15, tests without a vertical
component are denoted as “L” and tests with a vertical component are denoted as “L+V”.
Graphical results from the remaining tests of Table 4-6 are presented in the Appendices.
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Table 4-6: Peak response quantities obtained in horizontal and combined
horizontal-vertical excitation

Configuration A
" TS
Scale Base Dlsplagement Story D.I'lft (% Floor Acceleration (z) | Bs*
Gr. Motion (mm) of height) )
A' | £ | In. | Max | Res | Ch. 1 2 3 Base 1 2 3
L=PUL164 -8 62 -9 57 1028 10410271048 | 044 ]0.50|0.55] 42
L=PUL164 1.0 1.0
V=PULUP -4 61 -8 57 10331051(1039(090 |093(0.82|087| 55
L=NWH360 1 45 -5 46 10.24 1038 | 027 | 0.34 | 0.33 | 0.33 | 0.38 | 38
L=NWH360 | 1.0 | 1.0
V=NWHUP 3 45 -4 | 48 10261043031 0.65 082079075 62
L=KJMO000 -2 40 0 38 1033104110241 0351034039043 ]| 37
L=KJM000 | 1.0 | 1.0
V=K IMUP -1 41 0 40 1040|047 1030] 0.52 |1064]|068]|057] 58
L=0637270 5 45 5 41 102610410211 032 (0.33]036]039]| 41
L=0637270 | 1.0 | 1.0
V=0637UP 7 45 6 38 1032(0.51102710.59 |062]0.62|0.65]| 49
Configuration B
L=NWH360 16 | 64 9 50 1022 1035(024 (031|027 (027034 39
NWH360 1.0 1.0
V=NWHLUP 1 52 1 51 1030043 (028|062 |0.86|1.04|0.73| 54
L=KJMO000 15| 52 18 | 56 1026036023 036 |029]031|042] 39
L=KJMO000 |1.0]| 1.0
V=K IMUP 8 47 6 55 {028 1042|028 0.54 | 0.51 |0.64|0.53| 46
L=TCU129 22 | 46 24 | 23 1026036022041 [042(036|047| 28
L=TCU129 |1.0]| 1.0
V=TCUUP 7 29 3 23 (0.2310.3810.33]1 040 |041|035]048| 34
L=637270 10 | 55 14 | 45 10221039(0.17] 026 | 0.28 | 0.35| 0.31 | 38
L=637270 1.0 1.0
V=0637UP 9 54 10 | 44 1025]1035(026] 047 |0.76 | 0.73 | 0.59 | 49
L=637270 5 129 | 21 | 1241031050032 0.46 | 039|046 | 0.54| 64
L=637270 0.71]1.8
V=0637UP 15| 138 | 17 [ 1231039046043 0.66 | 0.64|0.77 | 059 | 70
Configuration C
L=637270 3 112 | -3 [109]0.30|0.49| 032 040 | 0.34 | 036 | 0.54| 46
L=637270 07118
V=0637UP 1 98 -2 97 [035(0.511032]0.69 |050]058|056]| 53
L=KJIJMO000 1 68 -3 67 103210531031 1042 (044|048 |0.59] 39
KIJMO000 1.0 1.5
V=K IMUP 0 61 -5 61 10391059 (035(050]054]052(054( 50

1. A multiplies accelerations of original ground motion
2. t multiplies time step of the ground motion in addition to the 0.5 factor that is applied due to similitude
3. In. is the initial, Res is the residual and Ch. is the maximum change of the base displacement (with respect to

In.)
4. Base Shear
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Figure 4-14 (cont’d): Experimental results for Configuration B and ground motion 0637-

270 scaled by factors 0.7 in acceleration and 1.8 in time
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Figure 4-15 (cont’d): Experimental results for Configuration C and ground motion KJM-
000 scaled by factors 1.0 in acceleration and 1.5 in time
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4.7 Comments on Experimental Results of Sections 4.4 to 4.6

In discussing the experimental results of Sections 4.4 to 4.6, it is important to first comment on
the behavior of the three tested Triple FP configurations. Section 5 presents details on the
frictional properties of the configurations. In summary, the four isolators exhibited different
frictional properties. However, for the discussion herein, the weighted average values for the
entire isolation system were used. Table 4-7 presents representative weighted friction values at
high velocity for the four sliding surfaces of each of the three tested configurations. They are
based on the data in Table 5-1 of Section 5.

Table 4-7: Weighted average friction coefficient values for tested configurations

Friction coefficient Configuration A Configuration B Configuration C
W 0.102 0.108 0.128
W 0.038 0.033 0.228
U3 0.038 0.033 0.228
L4 0.173 0.155 0.128

Evidently, Configurations A and B are very similar in frictional and geometric properties (see
also Table 3-1), characterized by capability to exhibit all five regimes, and to take advantage of
the adaptive nature of the Triple FP isolator. Configuration C lacks these attributes and behaves
as a high friction (value of 0.128) single FP or a double FP (with equal friction on the two sliding
surfaces) isolator but with a final stiffening regime. With this background, the following
observations are made from the results reported in Sections 4.4 to 4.6:

1. The results of Section 4.4 show the advantages of the adaptive Configurations A and B
over the non-adaptive Configuration C. The advantages are particularly obvious for
ground motions KIM000(0.5/1.5), NWH360(0.5/1.0), SYL360(1.0/1.0)
and0637270(0.5/1.8) in Table 4-4 where Configurations B and C have the same base
shear and base displacements but Configuration B has much less inter-story drifts and
floor accelerations. The advantages of adaptive systems over non-adaptive systems have
been discussed by Fenz and Constantinou (2008a to e), Morgan (2007) and Morgan and
Mahin (2010).

2. In the results of Section 4.5, the isolators experience impact on all restrainer rings
(surfaces 1, 2, 3 and 4) in Figure 4-9 and Figure 4-10. Also, as seen in Figure 4-11, the
isolators are excited in their Regime V. In all cases, the isolators exhibited stable
behavior under these extreme conditions. Also, note that the large shear forces reached in
these experiments depend on the strength of the restrainer rings of the triple FP bearings.
In the tests, the rings had very high strength that is unlikely to be achieved (or is
desirable) in full size bearings. Full size bearings will have limited strength of the rings
so that impact, like those experienced in the tests, would have most likely resulted in
fracture of the impacted rings of surfaces 2 or 3, which would have limited the shear
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force, allowed for some additional displacement and, likely, cause some damage to the
sliding material.

As evident in the figures, upon reaching the isolator displacement capacity, the south side
of the model uplifted for a short duration as indicated by the vanishing axial load record
for the south side. This caused rocking in the structure, which in turn limited the floor
accelerations. Moreover, in Figure 4-10 and Figure 4-11, the isolator maximum
displacement values are larger than the theoretical displacement capacity of the isolators.
As discussed in Section 3.3, Item 2, this is most likely caused by uneven distribution of
traction forces on the sliding surfaces that results in torsional motion of the inner parts,
which in turn causes changes in the displacement capacities of the internal parts.

In some tests and particularly in tests of configuration TSA with motion PUL-164
(1.0/1.0) and TSB with motion 0637-270 (0.7/1.8) (see graphs in Figure 4-13 to Figure
4-15), the vertical ground excitation had an important effect on floor accelerations but
insignificant effect on base displacements (consistent with the results of Fenz et al.
2008e, Morgan, 2007 and Becker and Mahin, 2011) and some small effect on inter-story
drifts. The floor spectra were also affected but over a limited range of frequencies, larger
than about 10Hz in the time scale of the tests. It should also be noted that in the tests
with (L+V) and without (L), the vertical ground excitation is not directly comparable due
to large differences in parasitic rocking shake table motion in the tests. The rocking
motion of the shake table was systematically larger in tests with vertical motion than in
tests without it due to limited ability to control the shake table.
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SECTION 5
ANALYTICAL PREDICTION OF RESPONSE

5.1 Introduction

This section presents the data on the friction properties of the Triple FP isolators used in the
shake table testing, and presents comparisons of experimental results of the tested 3-story model
structure to analytical results obtained with programs 3pleANI (Sarlis and Constantinou, 2013)
and SAP2000 (Computers and Structures, 2007).

5.2 Identification of Friction Properties

The friction coefficient values for each sliding interface of each bearing used in the testing have
been identified. The coefficient of friction is considered to be velocity-dependent and assumed
to follow the relation (Constantinou et al., 1990):

1=, — (1, g1y ) e (5-1)

In Equation (5-1), us and ug are the values of the friction coefficient at large velocities (called
fast herein) and at zero velocity (called slow herein), respectively, o; is a rate parameter that
controls the variation with velocity and v; is the sliding velocity of the i-th surface. For
identification of the three parameters needed to describe the model of friction of Equation (5-1),
the recorded force-displacement loops had to be decomposed to loops of force versus sliding
displacement for each sliding interface for at least three different velocities. This enabled the
identification of values of the friction coefficients, which were then used to construct analytical
force-displacement loops for comparison to the experimentally recorded loops.

For example, Figure 5-1 shows comparisons of experimental results for the isolators of
Configuration A and analytical results obtained by the model of Fenz and Constantinou (2008a
to e) following identification of the friction coefficient values. The isolators consist of particular
interfaces as identified in Section 3.2 of this report. Results are presented for a slow test at
frequency of 0.01Hz on the left column and for a fast test at frequency of 0.3Hz on the right
column. The friction coefficient values used to construct the analytical loops are presented in
each graph. In these graphs, u; denotes the least friction value and u, denotes the largest friction
value among the two main sliding interfaces.
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Figure 5-1: Comparison of experimental results obtained from testing of individual
isolators and analytical results for Configuration A. Left column presents results at
frequency of 0.01Hz; right column for frequency of 0.3Hz
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Figure 5-2 presents theoretical force-displacement loops of the isolators of Configuration A
using the identified slow and fast friction coefficients values in Figure 5-1. The four isolators are
identified by the load cell number (LC1, LC2, LC3 and LC4) with reference to Figure 2-3 for the
location of each load cell. The construction of these loops also requires values of the friction
coefficient for the sliding interfaces 2 and 3 (see Figure 1-1), which were assumed to be equal.
Values of the friction coefficient u,= u3; were also identified from the experimental loops. The
rate parameter could not be identified for the Configuration A bearings as there were insufficient
test data at intermediate velocities for individual bearings. Rather, shake table test data were
utilized. Values of the parameter are presented later in this report.

0.5 0.5
§ Slow Slow
e Fast Fast
B 025 0.25
=
W
Tt
=]
LT-_' i, =0.067 p, =0.120
8 -0.25 ) -0.25 ,.=0.200|| 1, =0.240
S _ i, =0.060 i, =0.020|| 1, =0.055
= LCI 2 2 LC2 2 2

-0.5 -0.5

0.5 0.5
§ —— Slow Slow
e Fast
=~ 025 0.25
-
|
=
o 0 0
=]
s —
= n, =0.048|[u, =0.095 u, =0.075|Ip =0.140
N 025 i, =0.190 (|11, =0.240 -0.25 u, =0.145 |, =0.205
== 1, =0.030| |, =0.065 i, =0.020||p, =0.040

LC3 - - LC4 - -
-0.5 -0.5
-160 -80 0 80 160 -160 -80 0 80 160
Displacement (mm) Displacement (mm)

Figure 5-2: Analytical loops for Triple FP isolators of Configuration A

Figure 5-3 presents comparisons of experimental and analytical results for the isolators of
Configuration B. TSB1 denotes the isolator that was placed on load cell LC1 (Figure 2-3), TSB2
is the isolator placed on load LC2, etc. Tests were conducted at 0.02Hz frequency (left column
of graphs) for the identification of the slow friction coefficient values and at frequency of 0.5Hz
(right column of graphs) for the identification of the fast friction coefficient values. The rate
parameters were identified using an additional test conducted at 0.1Hz and shown in the center
column of the graphs in Figure 5-3. All friction coefficient values were identified from the
decomposed loops (force versus the sliding displacement of each surface) as shown in Figure 5-4
(for the same tests as those shown in Figure 5-3). The identified friction coefficient values are
presented in each graph of Figure 5-3. Note that the abnormalities in the experimental loops of
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TSB2 and TSB4 at frequency of 0.5Hz are caused by uplift of the bearings and therefore division
by zero load in the normalization of the lateral force by the vertical load. The identification
procedure was based on the decomposed loops of Figure 5-4 and the following considerations:

1. The slow friction coefficient was identified by matching the analytical loop with the
minimum width of the experimental loop of each of sliding interfaces 1 and 4, measured
at maximum displacement for the tests conducted at 0.02Hz frequency (essentially zero
velocity).

2. The fast friction coefficient was identified by matching the analytical loop with the
experimental loop at the zero displacement force intercept of each of sliding interfaces 1
and 4 (velocity is maximum) for the tests conducted at 0.5Hz frequency.

3. The slow friction of surfaces 2 and 3 was obtained from the isolator force-displacement
loops of Figure 5-3 when velocity reverses sign. On unloading, the drop in force equals to
twice the friction force on surfaces 2 and 3 at essentially zero velocity. The fast friction
coefficient of surfaces 2 and 3 was difficult to determine so that approximate values were
assigned based on a study of the loops of Figure 5-3.

The following are noted in the results of Figure 5-3:

1. The calibrated analytical model cannot capture the experimental behavior well during
initial loading as a result of initial offsets of the Triple FP inner parts which existed in
most of the tests.

2. Some of the isolators have different properties although they are composed from
essentially the same materials. The only possible explanation for this behavior is the
effect of contamination of the sliding interfaces with dust and lubricants during the
numerous interchanges of parts in the conduction of testing.

Figure 5-5 shows comparisons of the analytical friction coefficient versus sliding velocity graphs
to experimental results for surfaces 1 and 4 of the isolators of Configuration B. The
experimental data on velocity were obtained by numerical differentiation of the surface
displacement histories acquired by the instruments shown in Figure 3-2. The tests utilized in
collecting the data in Figure 5-5 are those presented in Figure 5-4 and Figure 5-3. Note that the
graphs of Figure 5-5 include information on the rate parameter @ in units of sec/mm.

Figure 5-6 presents comparisons of experimental and analytical force-displacement loops for the
isolators of Configuration C. Figure 5-7 shows the decomposed loops for the same tests whereas
Figure 5-8 shows graphs of the friction coefficient as a function of the surface velocity. For these
isolators, the friction coefficient for surfaces 1 and 4 had essentially the same value so that the
calibrated model is based on the assumption of equal friction values. Note that in Figure 5-7 the
displacements of surfaces 1 and 4 are not exactly equal as they should have been if the friction
coefficient values were equal for the two surfaces. However, in this case, the difference is due to
initial offsets in the internal components of the isolators at the start of each test. Note that the
offset occurs naturally at the conclusion of a test even when the parts are centered at the start of
the test. Accordingly, all tests but the first one started with initial offsets.
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Figure 5-7: Decomposed normalized force versus sliding displacement loops for two
isolators of Configuration C at three different excitation frequencies
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Figure 5-7 (cont’d): Decomposed normalized force versus sliding displacement loops for
two isolators of Configuration C at three different excitation frequencies
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Figure 5-8: Friction coefficient as function of velocity for surfaces 1 and 4 of isolators of
Configuration C (surfaces 1 and 4 are assumed to be identical) (parameter a in units of
sec/mm)

5.3  Analytical Prediction Using Program 3pleANI

Analysis of the tested isolated model structure have been conducted in program 3pleANI (Sarlis
and Constantinou, 2013). This program allows for:

1. Explicit modeling of the superstructure,

2. Use of an advanced model of the Triple FP isolator with unrestricted geometric and
frictional parameters, and

3. Consideration of non-zero initial conditions.

Table 5-1 presents the identified fast and slow coefficient of friction values for the fours isolators
in each of the three tested configurations on the shake table. These friction values are those used

in program 3pleANI (denoted as 44, 14, 14, 14, ) which differ from the values in the theory of Fenz
and Constantinou (2008a to 2008¢) (denoted as 44, 14, 14, 14, ) as discussed in Section 1 herein.

The two sets of friction coefficient values are related through Equation (1-1).

It should be noted that for the isolators of Configuration A, the friction coefficient values used
for the analytical prediction of the experimental results are somewhat higher from the ones
identified in the bearing machine tests (Section 5.2), whereas for Configurations B and C they
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are identical. This was actual behavior and was likely caused by contamination of the interfaces
during multiple disassembly and reassembly of the bearings in the course of the test program.

Table 5-1: Friction coefficients values ( 44, 14, 14, 14, ) used in program 3PLEANI for analytical
prediction of response

Isolator Friction c.oefﬁcient
D Configuration A (TSA)
Surface 1 | Surface 2 | Surface 3 | Surface 4
TSA1 0.104 0.042 0.042 0.120
Fast TSA2 0.103 0.038 0.038 0.200
TSA3 0.084 0.045 0.045 0.201
TSA4 0.118 0.028 0.028 0.170
TSA1 0.047 0.014 0.014 0.091
Slow TSA2 0.056 0.014 0.014 0.164
TSA3 0.042 0.021 0.021 0.157
TSA4 0.063 0.014 0.014 0.119
Configuration B (TSB)
TSB1 0.142 0.053 0.053 0.178
Fast TSB2 0.099 0.015 0.015 0.184
TSB3 0.074 0.031 0.031 0.090
TSB4 0.118 0.031 0.031 0.166
TSB1 0.078 0.031 0.031 0.134
Slow TSB2 0.052 0.008 0.008 0.101
TSB3 0.030 0.011 0.011 0.079
TSB4 0.039 0.008 0.008 0.102
Configuration C (TSC)
TSC1 0.124 0.258 0.258 0.124
Fast TSC2 0.138 0.248 0.248 0.138
TSC3 0.124 0.212 0.212 0.124
TSC4 0.124 0.193 0.193 0.124
TSC1 0.064 0.184 0.184 0.064
Slow TSC2 0.055 0.178 0.178 0.055
TSC3 0.064 0.150 0.150 0.064
TSC4 0.064 0.136 0.136 0.064

Comparisons of analytical results produced by 3pleANI and experimental results are presented in
Figure 5-10 for Configuration B and Figure 5-11 for Configuration C with experimental results
obtained in the testing of the isolators in the single bearing testing machine. For the simulation
results in program 3pleANI, the top concave plate (TCP) was subjected to a prescribed
displacement and varying axial load which were the ones recorded in the experiments. Also in
the simulations, the initial offsets of the inner parts of the bearings as measured at the beginning
of each test by the instrumentation shown in Figure 3-2 were included in the analysis. Isolator
TSB4 in Figure 5-10 underwent uplift so that its normalized loop is not defined during the uplift
duration. For this test, the non-normalized loop is shown in Figure 5-12. Note that program
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3pleANI can analyze isolators exhibiting uplift. It can be seen that analytical and experimental
results are in good agreement except for minor differences attributed to:

I.

Load cell error measurements which were obvious in the comparisons between the
actuator load cell and isolator load cells in Figure 3-9. In fact, the isolator load cell had to
be repaired after these tests. In testing friction pendulum isolators, the measurements of
the load cells can easily be verified by comparing the analytically predicted stiffness with
the experimentally measured stiffness. Such comparisons led to the requirement of
multiplying the experimental results with different scaled factors for each test

The presence of the rubber seal which was not accounted for in the analyses. The rubber
seal has a more pronounced effect in the reduced size tested bearings than in full size
isolators. The seal affects the stiffness of Regimes I, II, IV and V for bearings with

M =y < iy < 1, and the stiffness of Regime V for bearings with g4 = g, < 1, = 14 (see

Figure 1-2). It is noted that the seal was omitted here for simplicity. However, an
example of an analysis in 3pleANI that shows the effect of the seal is shown in Figure
5-9. Note that in Figure 5-9 the analysis that includes the seal over-predicts the stiffness
because the exact seal properties for the analysis were unknown. For more details the
reader is referred to Sarlis and Constantinou (2013).
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Figure 5-9: Rubber seal effect in the reduced size tested isolators
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5.3 Structural Model and Analytical Results of Fixed-base Superstructure using Program
3pleANI

The stiffness and damping matrices of the superstructure of the isolated model, fixed at the base,
were constructed using the procedures presented in Bracci et al. (1992) and the identified mode
shapes and periods (shown in Table 4-1 and Table 4-2). These matrices are presented in Table
5-2. Note that two sets of matrices are presented as based on data obtained in white noise and in
seismic motion identification tests. In the analysis programs 3pleANI (and later program
SAP2000), the stiffness matrix was derived from the white noise data. For the damping matrix,
the mode shapes identified in the white noise tests were used (consistent with the construction of
the stiffness matrix). However, the damping ratios obtained in the seismic identification tests
were used as these tests resulted in more realistic values.

Analysis of the fixed-base superstructure with seismic motion ATL 270 at its base was
conducted in 3pleANI and results are compared to experimental results in Figure 5-13 to 5-14.
The figures show histories of inter-story drift and floor accelerations, and the 5%-damped floor
acceleration spectra. The analytical results are in good agreement with the experimental results
except for the peak values of response which are occasionally over-estimated or under-estimated
by the analytical model. There are two reasons for this: a) the experimental response has not
been filtered (except for a filter at S0Hz) so that it contains noise, and b) the analytical model is
based on linear elastic and linear viscous behavior, whereas the fixed superstructure exhibits
nonlinear behavior due to flexing and slipping of the concrete block connections.
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Table 5-2: Stiffness and damping matrices constructed from identified mode shapes and

damping ratios

Stiffness matrix Damping Matrix
Test No. (kN/cm) (KN-sec/cm)
[ 5555 —3332 266 | 0.118 0.018 0.021
White Noise | ;- _| 3335 5158 _-2332|| Cc=]0018 0.123 0.028
0.1g, 0-50Hz
| 26,6  -233.2 1859 | 0.021 0.028 0.143
G A moi [ 5589 -330.2 403 | 0.101 0.018 0.004
round motion
K =]-330.2 5209 -242. =10.01 . 01
ATL-270 330 520.9 5/ C=/0.018 0.097 0.015
| 403 2425 190.1 | 0.004 0.015 0.116
03
_ . Experimental
= oisb ¢ e Analytical
a*g
=]
B
e
Z
_03 L L ]
03
- Experimental
§-S oisb ¢+ e Analytical
E‘E
=
&
e
=}
=
(o]
_0‘3 1 1 l ]
03r
— Experimental
IS oisb . e Analytical
g
-
-
g
w
=]
1™
[ag)
_03 L 1 ]
0 5 10 15

Time (sec)

Figure 5-13: Comparison of analytical (program 3pleANI) and experimental results for
inner-story drift of fixed structure for ground motion ATL-270
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5.4  Analytical Results of Isolated Structure using Program 3pleANI

Comparisons of experimental and analytical results for the isolated structure are presented in
Figure 5-16 to Figure 5-18. For each isolation system configuration, six ground motions are
shown; two of small amplitude (displacements less than 50mm) two of moderate amplitude
(displacements less than 100mm) and two of high amplitude (displacements greater than
100mm) ground motions. Additional comparisons of results are presented in Appendix B.

The superstructure was described in program 3PLEANI using the stiffness and damping matrices
shown in Table 5-2 (case of seismic test identification) and the isolators using the friction
coefficient values of Table 5-1. In the analysis, non-zero initial isolator displacements were used
as the measured permanent isolator displacements at the conclusion of the preceding test.
However, the isolator internal part offsets could not be accurately measured in the experiments
since only one potentiometer was used for each part. Also, the internal bearing parts exhibited
torsion (see Section 3), further complicating the extraction of data on the motion of the parts.
Accordingly, analysis was used to approximately calculate the internal parts offsets and then use
them as initial conditions, together with the experimentally measured permanent isolator
displacement, for the analysis in the subsequent test. Note that the initial conditions so
determined may contain errors and thus violate equilibrium and compatibility. To correct for
this, analysis at the first integration step results in the calculation of the internal parts sliding
displacements that satisfy equilibrium and compatibility.

The test results presented in Figure 5-16 to Figure 5-21 and in Appendix B do not include a
vertical component of excitation. In all tests, however, there was parasitic vertical excitation,
which was included in the analysis. In program 3pleANI, the vertical excitation is included by
varying the axial load on each isolator as:

N=W(+ii,/g) (5-2)

In Equation (5-2), W is the starting (at time /=0) value of load on the isolator and i, is the

history of vertical acceleration taken as positive if in the downward direction. # was obtained at
the beginning of each test for each isolator using the procedure described in Section 2.2 (see also
Figure 3-13). In all simulations, the vertical excitation was imported directly into the program as
obtained from the average of the measurements of the four shake table vertical accelerometer
recordings (ASSV, ASSV2 ANSV, and ANSV2 as shown in Figure 2-6) after filtering them
using a low pass 30Hz filter.

Note that the approach in program 3pleANI to account for the vertical acceleration effects
ignores the damping and flexibility of the structure in the vertical direction. An approach for
accounting for flexibility and damping in program 3pleANI (but not used in the analyses
presented herein) is:
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1. Analyze a Single-Degree-of-Freedom (SDOF) system with damping and stiffness
representing the structure in the vertical direction and subjected to ground excitationi,, .

2. Use the calculated total acceleration response history of the SDOF as input i, in

program 3pleANI.

Note that the procedure described above is similar to the procedure followed when analyzing a
structure in program SAP2000. Accordingly, results that include the wvertical excitation
component (L+V tests) are presented only when analysis is performed in program SAP2000 in
Section 5.4.

Figure 5-16 to Figure 5-21 demonstrate that the analytical model in program 3pleANI predicts
well the experimental response in terms of frequency content of the response and shape of the
loops but it occasionally over-predicts or under-predicts the experimental peak response.
However, the predicted peak base displacement and peak base shear force are in very good
agreement with the experimental peak values. The occasional over- or under-prediction of the
peak structural response was also observed in the analysis of the structure without the isolation
system (see Figure 5-13 to Figure 5-15). It is believed that this is due to inability of the analytical
model of the superstructure to capture sliding and minor impact in the connections of the masses
of the model to the floors and in the connections of the braces to beams and columns during
strong shaking. Additional reasons for differences between analytical and experimental results
are:

1. Uncertainty in the friction coefficient values, which certainly changed during testing due
primarily to heating effects as the bearings were extensively tested without pausing to
allow for return to ambient temperature conditions. Note also that the identification of
friction coefficients was done under different heating conditions than those that existed in
the shake table tests.

2. Effect of rubber seal in the tested reduced size bearings (see Figure 5-9).

3. Anisotropy in friction. Note that in some tests, the friction of surfaces 2 and 3 is direction
dependent, with different values at positive displacements than at negative displacements.
This is explained by the fact that the contact forces are applied away from the center of
the sliding surface (Sarlis and Constantinou, 2013), resulting in uneven wear and
variability in friction.

4. The accuracy of the analytical prediction deteriorates at small amplitude motions, due to
inaccuracies in the friction-velocity relation at small velocities.

5. For the isolation system normalized force-displacement loops, the division by the
instantaneous vertical load introduces error in the experimental results due to the addition
of axial loads from four load cells, with the measurement of each one of these load cells
containing some error.
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In some tests, the analytically predicted floor response spectra are substantially higher than the
experimental ones and in some others the analytically predicted floor response spectra are
substantially lesser than the experimental ones. A notable example of the former case is test
TSB 0637-270 (0.8/1/8) (see Figure 5-17 and Figure 5-20) where the analysis under-predicts the
experimental floor spectra. In this case, there was impact on the restrainer rings which was not
well captured in the analysis. Under conditions of impact with large restrainer stiffness and
strength, small differences in the prediction of displacement result in large differences in force
prediction, and thus floor response spectra as well.

Test TSC NWH-360 (1.2/1.5) (see Figure 5-18 and Figure 5-21) is an example of over-prediction
of floor response spectral values by analysis. In this case, analysis predicted response in the
stiffening isolator range, which did not occur. The result was over-prediction of acceleration
response and floor spectral values.
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isolated structure with Configuration A isolators
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Figure 5-16 (cont’d): Comparison of analytical (program 3pleANI) and experimental

results for isolated structure with Configuration A isolators
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Figure 5-16 (cont’d): Comparison of analytical (program 3pleANI) and experimental
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Figure 5-17 (cont’d): Comparison of analytical (program 3pleANI) and experimental

results for isolated structure

with Configuration B isolators
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Figure 5-18: Comparison of analytical (program 3pleANI) and experimental results for
isolated structure with Configuration C isolators
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Figure 5-18 (cont’d): Comparison of analytical (program 3pleANI) and experimental

results for isolated structure with Configuration C isolators
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Figure 5-18 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration C isolators
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Figure 5-19: Comparison of analytical (program 3pleANI) and experimental results for
isolated structure with Configuration A isolators for drift and acceleration histories and
5%-damped floor response spectra
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Figure 5-19 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration A isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-19 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration A isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-19 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration A isolators for drift and acceleration
histories and 5%-damped floor response spectra

95



0.6
_ Experimental
§ osb—1» | 4 B N 0 000 00 -ceeet Analytical
&=
=
> 0
Bt
S
w
E -0.3
L=SYL360(1.1/1.3)
_0-6 L L 1 L L 1 1L L L J
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
0.8p
Experimental
%f oab—— |\t L0 0001 | eeeep Analytical
[-F]
o
Z
= 0
S
S
=
T -04 :
“ TSA
L=SYL360(1.1/1.3)
_0.8 ] L 1 L L 1 1 L L J
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
=31 — : — 3
: Experimental-Base—mat Experimental—1st floor
g | e Analytidal-Base-mat -~~~ | | | ---s--- Analytical—1st floor
(5 o
= L
z Lo r/\\ N
E 1 /-:.‘ y -'-,‘}«\/ ) 1 : /7 \
S |TsA ; 4 Ty I TSA /o L Xt
a L=SYL360(¥.1/1.3) B L=SYL360(¥.1/1.3)
N 0 0 A A )
9‘1 | 10 201 0.1 1 10 20
i T | 3 _ : T : ‘
: ; Experimental-2nd floor - Experimental-3rd floor -
g | Analytical-2nd floor =~ ------- Analytical-3rd floor
5 5 S 5| o
@
] . L : :
Z : o :
E 1 : > :»". 1F /
k31 TSA - i TSA . \'-r{
2 |L=SYL360ct.1/1.3) L=SYL360(.1/1.3)
“ . 0 y
0.1 1 10 200.1 1 10 20

Frequency(Hz)

96

Frequency(Hz)

Figure 5-19 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration A isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-19 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration A isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-20: Comparison of analytical (program 3pleANI) and experimental results for
isolated structure with Configuration A isolators for drift and acceleration histories and
5%-damped floor response spectra
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Figure 5-20 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration B isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-20 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration B isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-20 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration B isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-20 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration B isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-20 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration B isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-21 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration C isolators for drift and acceleration
histories and 5%-damped floor response spectra

105



2nd story drift (%)

3rd floor accel.(g)

1.5

0.5

Spectral Acceleration (g)

oo

1.5

Spectral Acceleration (g)

0.

Analytical-Base—mat

Experimental-Base—mat |

05
Experimental
as) ) | -----+- Analytical
' ‘NN A
s B : B 2 ]
0 v .. { , iv ~ ¥ 7
0.25F |
TSC
L=0637270(0.5/1.8)
_0'5 L L 1 L L '} 1 L J
0 2 4 6 10 12 14 16 18 20
Time (sec)
05
) Experimental
025k ' | ==---:- Analytical
0 ' L | i ;
-0.25} : - -
TSC
h L=0637270(0.5/1.8)
_05 1 L L L L 1 L L J
0 2 4 6 10 12 14 16 18 20
Time (zsec)

Expefiﬁliental— 1 sti ﬂﬁdr
T B Analytical—1st floor

Spectral Acceleration (g)

TSC : Y,
L=0637270(0.5/43)

------- Analytical—2nd floor

TSC o
L=0637270(0.548)

—

TSC e
L=()637270(()g4_/.()
N 1 10
Frequency(Hz)

Exper1mental~2nd floor

Frequency(Hz)

1 1 10

0
20 0.1 1 10 20
Frequency(Hz)
w 2 RS S
= Experimental-3rd floor
IR SELLLILL Analytical—-3rd floor -
= C| .
%) v
) : co O
@ 1 T T o —
3 | : ;
< . R ‘." ‘|“ |
£ o5 —]
A3 TSC . .
g L=0637270(0.5/38)
©o
20 0.1 1 10 20
Frequency(Hz)

Figure 5-21 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration C isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-21 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration C isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-21 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration C isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-21 (cont’d): Comparison of analytical (program 3pleANI) and experimental
results for isolated structure with Configuration C isolators for drift and acceleration
histories and 5%-damped floor response spectra
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5.5  Analytical Prediction Using Program SAP2000

The superstructure, fixed at its base, was modeled in program SAP2000 using linear elastic
frame elements for all beams, columns and braces. The diaphragm bracing of the superstructure
was explicitly modeled and no diaphragm constraints were assigned. The concrete blocks were
modeled as lumped masses without mass moment of inertia. The self-weight of the frame was
explicitly captured using the steel density value for the material in SAP2000. Additional small
masses were added at the base-mat to capture the difference in the total weight calculated by the
program and the one obtained from measurement by the load cells. This additional weight was
contributed by the elements not accounted for in the model, such as steel connecting plates,
stiffeners, bolts and connection angles. Due to the large dimensions of the base-mat beams
compared to the superstructure elements, rigid beam elements have been used to connect the
bottom of the columns to the centerline of the W360 beams of the base-mat. Rigid offsets have
not been used for the beam-to-column connections of the structure. Table 5-3 presents results for
the modal properties of the model, fixed at the base, as obtained by program SAP2000 for the
first three modes. The damping ratio is the value assigned for each mode in SAP2000 for the
construction of the inherent damping matrix. Note that the assigned damping ratio values are
between the values identified in the two sets of experiments and presented in Table 4-1 and
Table 4-2. There is good agreement between the mode shapes and period values obtained in the
experimental identification (Table 4-1 and Table 4-2) and the results of the modal analysis in
SAP2000.

Analysis of the fixed-base superstructure with seismic motion at its base was conducted and
results are compared to experimental results in Figure 5-22 to Figure 5-24 in terms of histories of
inter-story drift and floor acceleration, and 5%-damped floor acceleration spectra. Results are in
good agreement but, as in the case of analysis with program 3pleANI, the peak values of
response are occasionally over-estimated or under-estimated by the analytical model.

Table 5-3: Modal characteristics of analytical model in SAP2000

. Assigned Mode Shape
Mode Period Damping d d
(sec) . 1* floor | 2" floor | 3™ floor
Ratio
1 0.292 0.0650 0.331 0.741 1.000
ond 0.092 0.0100 1.176 0.808 -1.000
3 0.053 0.0078 2.286 -2.397 1.000
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Figure 5-23: Comparison of analytical (program SAP2000) and experimental results for

floor acceleration of fixed structure for ground motion ATL-270
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Figure 5-24: Comparison of analytical (program SAP2000) and experimental results for
5%-damped floor response spectra of fixed structure for ground motion ATL-270

In SAP2000, the Triple FP isolators were modeled using the series model described in Fenz and
Constantinou (2008d and e). The series model consists of three friction pendulum elements
arranged in series and denoted as FP1, FP2 and FP3. Gap elements are connected between the
top and bottom joints of the FP2 element and the top and bottom joints of the FP3 element. The
properties specified in program SAP2000 for the series model representation of the isolators are
shown in Table 5-4. For more details on how these properties are selected, the reader is referred
to Fenz and Constantinou (2008d and e) and Sarlis and Constantinou (2010). Note that the
effective stiffness of element FP1 is assigned a small value so that “damping leakage” is
minimized (Sarlis and Constantinou, 2010). Also, the effective stiffness of elements FP2 and
FP3 is assigned a large value in order to reduce the execution time. Given that elements FPI,
FP2 and FP3 are arranged in series, the high effective stiffness of elements FP2 and FP3 does not
affect the total effective stiffness of the assembly (so that damping leakage is minimized). Also
the vertical stiffness of the elements is selected such that the dominant mode of the structure in
the vertical direction has the same frequency as the one measured in the experiments (as obtained
from transfer functions of the base of the structure in the vertical direction from records of
accelerations and for tests that included a vertical component).
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Table 5-4: Series model properties of Triple FP isolators in program SAP2000

SAP2000 element ID FP1 FP2 FP3
Configuration A|l B ]| C A|lB]| C A B C
Element Height (mm) 254 38.1 38.1
Shear Deformation
Location from bottom 0 0 0
(mm)
Element Mass (kN-s*/mm) 0.00002 0.1 0.1
Yield Displacement (mm) 0.1 0.1 0.1
Vertical Stiffness (kN/mm) 235 235 235
Rotational/Torsional . .
Stiffness (R1,R2,R3) 0 Fixed Fixed
Rotational Moment of
Inertia (kN-mm-sec’) 0.00113 0 0
Isolator 1
Effect. Stiffness (kN/mm) 0.0175 130 | 150 120 130 310 120
Elastic Stiffness (kKN/mm) | 30 60 | 528 | 130 | 150 120 240 310 120
Radius (mm) 106 | 116 | 106 | 382 | 382 382 382 382 382
Friction Slow 0.02 | 0.04 {0.264]0.055| 0.09 | 0.07 0.11 0.16 0.07
Friction Fast 0.06 | 0.07 | 0.28 | 0.12 |0.165]| 0.135 | 0.14 0.21 0.135
Rate Parameter (sec/mm) | 0.03 {0.015] 0.01 [0.102]0.046|0.0175| 0.0239 | 0.052 |0.0175
Isolator 2
Effect. Stiffness (KN/ mm) 0.0175 130 | 126 120 130 208 120
Elastic Stiffness(kN/ mm) | 40 20 | 510 | 154 | 126 120 420 208 120
Radius (mm) 106 106 106 382 382 382 382 382 382
Friction Slow 0.02 | 0.01 {0.255]0.067|0.063| 0.06 0.20 0.124 | 0.06
Friction Fast 0.055] 0.02 | 0.27 | 0.12 | 0.12 | 0.15 0.24 0.225 | 0.15
Rate Parameter (sec/mm) | 0.03 {0.015] 0.01 [0.102]0.035{0.0175| 0.0239 | 0.081 |0.0175
Isolator 3
Effect. Stiffness (KN/mm) 0.0175 130 | 70 140 130 190 140
Elastic Stiffness (kN/mm) | 40 30 | 430 | 136 | 70 140 400 190 140
Radius (mm) 106 116 106 382 382 382 382 382 382
Friction Slow 0.03 10.015]0.215]0.048 |0.035| 0.07 0.19 0.095 | 0.07
Friction Fast 0.065| 0.04 | 0.23 [0.095/0.085| 0.135 | 0.24 0.105 | 0.135
Rate Parameter (sec/mm) | 0.03 {0.015| 0.01 [0.102]0.029| 0.02 | 0.0239 | 0.1036 | 0.02
Isolator 4
Effect. Stiffness (KN/mm) 0.0175 130 | 94 140 130 250 140
Elastic Stiffness (kN/mm) | 50 20 | 390 | 130 | 94 140 330 250 140
Radius (mm) 106 | 116 | 106 | 382 | 382 382 382 382 382
Friction Slow 0.02 | 0.01 {0.195]0.075(0.047| 0.07 | 0.145 | 0.125 | 0.07
Friction Fast 0.04 | 0.04 | 0.21 | 0.14 | 0.14 | 0.135 | 0.205 0.20 | 0.135
Rate Parameter (sec/mm) | 0.03 [0.015| 0.01 |0.102]0.029|0.0175| 0.0239 | 0.1036 | 0.0175
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Comparisons of analytical results obtained in SAP2000 to experimental results are presented in
Figure 5-25 to Figure 5-30 for tests without vertical component of excitation and in Figure 5-25
and 5-32 for tests with a vertical component of excitation. Six ground motions for each
configuration are shown: two for small amplitudes (isolator displacement<50mm), two for
moderate amplitude (isolator displacement<100mm) and two for high amplitudes (isolator
displacement>100mm). The ground motions presented are the same as those presented in Section
5.3 for the analysis with program 3pleANI. Additional results are presented in Appendix C. The
effect of the initial base displacement in the SAP2000 analysis was included by creating an
additional analysis case where a force was applied at the base and then removed. The force value
was such that a permanent displacement was achieved in the analytical model equal to the one
measured in the experiments (the process required a trial and error approach in order to find the
force vector).

An immediate observation in the results presented in Figure 5-25 to Figure 5-30 is that the
fidelity of the analytical prediction by SAP2000 is similar to that of program 3pleANI (presented
in Section 5.3), although the program 3pleANI results appear slightly better than those of
SAP2000 likely due to (a) better modeling of the velocity dependence of the friction coefficient
(it is approximate in the series model of the Triple FP), and (b) more accurate consideration of
the non-zero initial conditions.

The comparison of analytical and experimental results in Figure 5-31 and Figure 5-32 with
combined horizontal and vertical excitation is less favorable that in Figure 5-25 to Figure 5-30
without the vertical excitation. An important contributor to this problem is the effect of the
specified vertical stiffness of the isolators in the analysis. Incorrect specification of the vertical
stiffness, combined with vertical excitation, often results in numerical problems and incorrect or
premature prediction of isolator uplift and/or incorrect fluctuation of vertical load on the
isolators. These difficulties are evident in the results of Figure 5-31 and Figure 5-32.
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Figure 5-25: Comparison of analytical (program SAP2000) and experimental results for
isolated structure with Configuration A isolators
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Figure 5-25 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration A isolators
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Figure 5-25 (cont’d): Comparison of analytical (program SAP2000) and experimental

results for isolated structure with Configuration A isolators
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Figure 5-26: Comparison of analytical (program SAP2000) and experimental results for
isolated structure with Configuration B isolators

119



0.3 50

=
g Experimental Experimental '
— | SAP2000 o .
= 015 Z 25 P
2 =
5 5
0 o 0
Z =
S Q
= S
v —0.15 g 25
@ TSB
£ L=SYL360(1.0/1.0) W L=SYL360(1.0/1.0)
-0.3 =50
-80 -40 0 40 80 -80 —40 0 40 80
Base Displacement (mm) Base Displacement (mm)
g 80r T T
g Experimental
2 SAP2000
7]
g
51 0 smmmessstemmpzsszozssssssssscsscssssosoo
=
2,
o |
(= TSB
2 L=SYL360(1.0/1.0)
£ L 1 [ 1 I |

|
o]
=]

0 2 4 6 8 10 12 14 16 18 20
Time (sec)

< 03 50 =
= Experimental < Experimental 255!
= | - SAP2000 T i SAP2000 S’
QLIJ § ,"'. ' ;‘-‘: fr
% = 0 ',' ‘f: ; ." [ "J
= v . o ,’Iv" A
E q:b’ .: .::{ 2 " *
7 S 25b 45 fa (o2
2 TSB ! 18 > TSB
2 L=KIMO000(1.0/1.5) N L=KIMO000(1.0/1.5)
-50t—
-90 —45 0 45 90 -90 —45 0 45 90
Base Displacement (mm) Base Displacement (mm)
g 9r
é Experimental
2 45F - ! - . o SAP2000
]
£
g o :
=
&
g8 =r TSB
§ L=KJMO000(1.0/1.5)
m _90 1 1 Il 1 1 [l 1 ]
0 2 4 6 8 10 12 14 16 18 20

Time (sec)

Figure 5-26 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration B isolators

120



Base Shear/Vertical Load

Base Shear/Vertical Load

0.5 80
Experimental Experimental
------- SAP2000 sy ======= SAP2000
0.25 i ' Z 40 '
s
ot
-1
0 ; £ 0 )
! o
o [ = d
-0.25 r & —40 b
TSB TSB
L=PUL164(0.8/1.4) L=PUL164(0.8/1.4)
~0.5 =80
—-150 =75 0 75 150 -150 =75 0 75 150
Base Displacement (mm) Base Displacement (mm)
g 150
é Experimental
® 5t SAP2000
¥}
g
o (1] S I v T L e e e e e
=
2,
& L
a -7 TSB
§ L=PUL164(0.8/1.4)
m _150 1 L 1 L L 1 1 L 1 | |
2 4 6 8 10 12 14 16 18 20
Time (sec)
1.6 140
Experimental Experimental
------- SAP2000 - -===--= SAP2000
0.8 z 10 i
o,
L]
3
0 2 o0
7
2
-0.8 2 =70
TSB TSB
L=0637270(0.8/1.8) L=0637270(0.8/1.8)
-1.6 -140
=160 =80 0 80 160 -160 -80 0 80 160
Base Displacement (mm) Base Displacement (mm)
'é\ 160 -
E Experimental
= sopb— —+— @A+ L .. SAP2000
%}
E
]
=]
=
)
2 I .
a -8 TSB
2 L=0637270(0.8/1.8)
“ L L L 1 L L L 1 1 J
g —-160
0 2 4 6 8 10 12 14 16 18 20
Time (sec)

Figure 5-26 (cont’d): Comparison of analytical (program SAP2000) and experimental

results for isolated structure with Configuration B isolators
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Figure 5-27: Comparison of analytical (program SAP2000) and experimental results for
isolated structure with Configuration C isolators
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Figure 5-27 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration C isolators
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Figure 5-27 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration C isolators
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Figure 5-28: Comparison of analytical (program SAP2000) and experimental results for
isolated structure with Configuration A isolators for drift and acceleration histories and
5%-damped floor response spectra
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Figure 5-28 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration A isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-28 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration A isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-28 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration A isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-28 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration A isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-28 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration A isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-29: Comparison of analytical (program SAP2000) and experimental results for
isolated structure with Configuration B isolators for drift and acceleration histories and
5%-damped floor response spectra
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Figure 5-29 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration B isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-29 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration B isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-29 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration B isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-29 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration B isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-29 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration B isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-30: Comparison of analytical (program SAP2000) and experimental results for
isolated structure with Configuration C isolators for drift and acceleration histories and
5%-damped floor response spectra
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Figure 5-30 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration C isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-30 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration C isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-30 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration C isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-30 (cont’d): Comparison of analytical (program SAP2000) and experimental
results for isolated structure with Configuration C isolators for drift and acceleration
histories and 5%-damped floor response spectra
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Figure 5-31: Comparison of analytical (program SAP2000) and experimental results for

isolated structure in combined

horizontal and vertical excitation
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results for isolated structure in combined horizontal and vertical excitation
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Figure 5-32: Comparison of analytical (program SAP2000) and experimental results of
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Figure 5-32 (cont’d): Comparison of analytical (program SAP2000) and experimental
results of histories of drift and acceleration and 5%-damped floor spectra for isolated
structure in combined horizontal and vertical excitation
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Figure 5-32 (cont’d): Comparison of analytical (program SAP2000) and experimental
results of histories of drift and acceleration and 5%-damped floor spectra for isolated
structure in combined horizontal and vertical excitation
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SECTION 6
CONCLUSIONS

The results of a testing program of an isolated three-story structure supported by Triple FP
isolators of three different configurations have been reported. The isolator configurations
included two highly adaptive ones that exhibited all five regimes of operation of the isolator.
The third configuration lacked adaptability and resembled in behavior the single FP. Testing
consisted of horizontal excitation and combined horizontal and vertical excitation in a variety of
time and acceleration scales so that the isolators operated in all five regimes of operation, and in
some tests experienced uplift and impact on their restrainer rings. In general, the conditions of
testing may be characterized as extreme.

Also, the response of the tested structure was predicted by numerical simulation in the
commercial program SAP2000 and in the newly developed more advanced program 3pleANI
and compared to the experimental results. It was concluded that:

1. The isolators exhibited stable behavior under the extreme conditions of testing. Certain
aspects of the measured response were, however, unrealistic due to the very high stiffness
and strength of the restrainer rings of the model isolators by comparison to those of full
size isolators.

2. The vertical component of excitation had no or insignificant effect on the isolator
displacement demand, had some minor effect on structural drifts and had an important
effect on the floor accelerations. The effect of the vertical acceleration was enhanced in
the testing by large parasitic rocking motion of the shake table.

3. The response of the structure could be predicted accurately in terms of isolator
displacement, base shear, drift and acceleration histories, although the peak values
(particularly of acceleration) were occasionally under-predicted or over-predicted. It is
believed that this was primarily due to incomplete modeling of the superstructure.

4. Programs 3pleANI and SAP2000 provided comparable prediction of response but
program 3pleANI has slightly better predictions due to better description of the velocity
dependence of friction at each sliding interface, and more accurate consideration of the
non-zero initial conditions.

5. Prediction of the response under combined horizontal and vertical excitation was less
accurate that when only horizontal excitation was considered. The difference is likely the
result of inaccurate modeling of the vertical stiffness of the isolators that may result in
numerical errors and affect the prediction of the history of the vertical load on the
isolator, and may predict incorrectly or prematurely isolator uplift.
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P. Gergely, C.H. Conley, J.F. Abel and A.H. Zaghw, 1/15/89, (PB89-218465, A06, MF-A01).

"Liquefaction Hazards and Their Effects on Buried Pipelines," by T.D. O'Rourke and P.A. Lane, 2/1/89,
(PB89-218481, A09, MF-A01).

"Fundamentals of System Identification in Structural Dynamics," by H. Imai, C-B. Yun, O. Maruyama and
M. Shinozuka, 1/26/89, (PB89-207211, A04, MF-A01).

"Effects of the 1985 Michoacan Earthquake on Water Systems and Other Buried Lifelines in Mexico," by
A.G. Ayala and M.J. O'Rourke, 3/8/89, (PB89-207229, A06, MF-A01).

"NCEER Bibliography of Earthquake Education Materials," by K.E.K. Ross, Second Revision, 9/1/89,
(PB90-125352, A0S, MF-A01). This report is replaced by NCEER-92-0018.

"Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-3D),
Part I - Modeling," by S.K. Kunnath and A.M. Reinhorn, 4/17/89, (PB90-114612, A07, MF-A01). This
report is available only through NTIS (see address given above).

"Recommended Modifications to ATC-14," by C.D. Poland and J.O. Malley, 4/12/89, (PB90-108648, A15,
MF-AO1).

"Repair and Strengthening of Beam-to-Column Connections Subjected to Earthquake Loading," by M.
Corazao and A.J. Durrani, 2/28/89, (PB90-109885, A06, MF-AO01).

"Program EXKAL?2 for Identification of Structural Dynamic Systems," by O. Maruyama, C-B. Yun, M.
Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877, A09, MF-AO01).
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"Response of Frames With Bolted Semi-Rigid Connections, Part I - Experimental Study and Analytical
Predictions," by P.J. DiCorso, A.M. Reinhorn, J.R. Dickerson, J.B. Radziminski and W.L. Harper, 6/1/89,
not available.

"ARMA Monte Carlo Simulation in Probabilistic Structural Analysis," by P.D. Spanos and M.P. Mignolet,
7/10/89, (PB90-109893, A03, MF-A0Q1).

"Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake
Education in Our Schools," Edited by K.E.K. Ross, 6/23/89, (PB90-108606, A03, MF-A01).

"Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Our
Schools," Edited by K.E.K. Ross, 12/31/89, (PB90-207895, A012, MF-A02). This report is available only
through NTIS (see address given above).

"Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory Energy
Absorbing Devices, by E.J. Graesser and F.A. Cozzarelli, 6/7/89, (PB90-164146, A04, MF-AO01).

"Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D-BASIS)," by S.
Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 8/3/89, (PB90-161936, A06, MF-AO01). This report has
been replaced by NCEER-93-0011.

"Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints," by F.Y. Cheng
and C.P. Pantelides, 8/3/89, (PB90-120445, A04, MF-A01).

"Subsurface Conditions of Memphis and Shelby County," by K.W. Ng, T-S. Chang and H-H.M. Hwang,
7/26/89, (PB90-120437, A03, MF-AO01).

"Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines," by K. Elhmadi and M.J. O'Rourke,
8/24/89, (PB90-162322, A10, MF-A02).

"Workshop on Serviceability Analysis of Water Delivery Systems," edited by M. Grigoriu, 3/6/89, (PB90-
127424, A03, MF-A01).

"Shaking Table Study of a 1/5 Scale Steel Frame Composed of Tapered Members," by K.C. Chang, J.S.
Hwang and G.C. Lee, 9/18/89, (PB90-160169, A04, MF-AO1).

"DYNAID: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical
Documentation," by Jean H. Prevost, 9/14/89, (PB90-161944, A07, MF-AO01). This report is available only
through NTIS (see address given above).

"1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protection," by
AM. Reinhorn, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89, (PB90-173246,
A10, MF-A02). This report is available only through NTIS (see address given above).

"Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary Element
Methods," by P.K. Hadley, A. Askar and A.S. Cakmak, 6/15/89, (PB90-145699, A07, MF-A01).

"Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures,”" by H.H.M.
Hwang, J-W. Jaw and A.L. Ch'ng, 8/31/89, (PB90-164633, A05, MF-A01).

"Bedrock Accelerations in Memphis Area Due to Large New Madrid Earthquakes," by H.H.M. Hwang,
C.H.S. Chen and G. Yu, 11/7/89, (PB90-162330, A04, MF-AO1).

"Seismic Behavior and Response Sensitivity of Secondary Structural Systems,”" by Y.Q. Chen and T.T.
Soong, 10/23/89, (PB90-164658, A08, MF-A01).

"Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems," by Y. Ibrahim, M.
Grigoriu and T.T. Soong, 11/10/89, (PB90-161951, A04, MF-AO01).
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"Proceedings from the Second U.S. - Japan Workshop on Liquefaction, Large Ground Deformation and
Their Effects on Lifelines, September 26-29, 1989," Edited by T.D. O'Rourke and M. Hamada, 12/1/89,
(PB90-209388, A22, MF-A03).

"Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures," by J.M. Bracci,
A.M. Reinhorn, J.B. Mander and S.K. Kunnath, 9/27/89, (PB91-108803, A06, MF-A01).

"On the Relation Between Local and Global Damage Indices," by E. DiPasquale and A.S. Cakmak, 8/15/89,
(PB90-173865, A05, MF-AOQ1).

"Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts," by A.J. Walker and H.E. Stewart,
7/26/89, (PB90-183518, A10, MF-AO01).

"Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York," by M. Budhu, R. Giese and
L. Baumgrass, 1/17/89, (PB90-208455, A04, MF-AO01).

"A Deterministic Assessment of Effects of Ground Motion Incoherence," by A.S. Veletsos and Y. Tang,
7/15/89, (PB90-164294, A03, MF-AO01).

"Workshop on Ground Motion Parameters for Seismic Hazard Mapping," July 17-18, 1989, edited by R.V.
Whitman, 12/1/89, (PB90-173923, A04, MF-A01).

"Seismic Effects on Elevated Transit Lines of the New York City Transit Authority," by C.J. Costantino,
C.A. Miller and E. Heymsfield, 12/26/89, (PB90-207887, A06, MF-AQ1).

"Centrifugal Modeling of Dynamic Soil-Structure Interaction," by K. Weissman, Supervised by J.H. Prevost,
5/10/89, (PB90-207879, A07, MF-AO01).

"Linearized Identification of Buildings With Cores for Seismic Vulnerability Assessment," by I-K. Ho and
A.E. Aktan, 11/1/89, (PB90-251943, A07, MF-AO01).

"Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco," by
T.D. O'Rourke, H.E. Stewart, F.T. Blackburn and T.S. Dickerman, 1/90, (PB90-208596, A05, MF-AO01).

"Nonnormal Secondary Response Due to Yielding in a Primary Structure," by D.C.K. Chen and L.D. Lutes,
2/28/90, (PB90-251976, A07, MF-A01).

"Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/16/90, (PB91-251984, A05, MF-
AO05). This report has been replaced by NCEER-92-0018.

"Catalog of Strong Motion Stations in Eastern North America," by R.W. Busby, 4/3/90, (PB90-251984, A0S,
MF-AO01).

"NCEER Strong-Motion Data Base: A User Manual for the GeoBase Release (Version 1.0 for the Sun3)," by
P. Friberg and K. Jacob, 3/31/90 (PB90-258062, A04, MF-AO01).

"Seismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid Earthquake,"
by H.H.M. Hwang and C-H.S. Chen, 4/16/90, (PB90-258054, A04, MF-A01).

"Site-Specific Response Spectra for Memphis Sheahan Pumping Station," by H.H.M. Hwang and C.S. Lee,
5/15/90, (PB91-108811, A05, MF-AOQ1).

"Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems," by T. Ariman, R. Dobry, M.
Grigoriu, F. Kozin, M. O'Rourke, T. O'Rourke and M. Shinozuka, 5/25/90, (PB91-108837, A06, MF-A01).

"A Program to Generate Site Dependent Time Histories: EQGEN," by G.W. Ellis, M. Srinivasan and A.S.
Cakmak, 1/30/90, (PB91-108829, A04, MF-A01).

"Active Isolation for Seismic Protection of Operating Rooms," by M.E. Talbott, Supervised by M.
Shinozuka, 6/8/9, (PB91-110205, A05, MF-A01).
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"Program LINEARID for Identification of Linear Structural Dynamic Systems," by C-B. Yun and M.
Shinozuka, 6/25/90, (PB91-110312, A08, MF-AO01).

"Two-Dimensional Two-Phase Elasto-Plastic Seismic Response of Earth Dams," by A.N. Yiagos, Supervised
by J.H. Prevost, 6/20/90, (PB91-110197, A13, MF-A02).

"Secondary Systems in Base-Isolated Structures: Experimental Investigation, Stochastic Response and
Stochastic Sensitivity," by G.D. Manolis, G. Juhn, M.C. Constantinou and A.M. Reinhorn, 7/1/90, (PB91-
110320, A08, MF-AO01).

"Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details," by S.P.
Pessiki, C.H. Conley, P. Gergely and R.N. White, 8/22/90, (PB91-108795, A11, MF-A02).

"Two Hybrid Control Systems for Building Structures Under Strong Earthquakes," by J.N. Yang and A.
Danielians, 6/29/90, (PB91-125393, A04, MF-A01).

"Instantaneous Optimal Control with Acceleration and Velocity Feedback," by J.N. Yang and Z. Li, 6/29/90,
(PB91-125401, A03, MF-AO01).

"Reconnaissance Report on the Northern Iran Earthquake of June 21, 1990," by M. Mehrain, 10/4/90, (PB91-
125377, A03, MF-AO01).

"Evaluation of Liquefaction Potential in Memphis and Shelby County," by T.S. Chang, P.S. Tang, C.S. Lee
and H. Hwang, 8/10/90, (PB91-125427, A09, MF-A01).

"Experimental and Analytical Study of a Combined Sliding Disc Bearing and Helical Steel Spring Isolation
System," by M.C. Constantinou, A.S. Mokha and A.M. Reinhorn, 10/4/90, (PB91-125385, A06, MF-AO01).
This report is available only through NTIS (see address given above).

"Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System with a
Spherical Surface," by A.S. Mokha, M.C. Constantinou and A.M. Reinhorn, 10/11/90, (PB91-125419, A0S,
MF-A01).

"Dynamic Interaction Factors for Floating Pile Groups," by G. Gazetas, K. Fan, A. Kaynia and E. Kausel,
9/10/90, (PB91-170381, A0S, MF-A01).

"Evaluation of Seismic Damage Indices for Reinforced Concrete Structures,”" by S. Rodriguez-Gomez and
A.S. Cakmak, 9/30/90, PB91-171322, A06, MF-A01).

"Study of Site Response at a Selected Memphis Site," by H. Desai, S. Ahmad, E.S. Gazetas and M.R. Oh,
10/11/90, (PB91-196857, A03, MF-A01).

"A User's Guide to Strongmo: Version 1.0 of NCEER's Strong-Motion Data Access Tool for PCs and
Terminals," by P.A. Friberg and C.A.T. Susch, 11/15/90, (PB91-171272, A03, MF-A01).

"A Three-Dimensional Analytical Study of Spatial Variability of Seismic Ground Motions," by L-L. Hong
and A.H.-S. Ang, 10/30/90, (PB91-170399, A09, MF-A01).

"MUMOID User's Guide - A Program for the Identification of Modal Parameters," by S. Rodriguez-Gomez
and E. DiPasquale, 9/30/90, (PB91-171298, A04, MF-AO01).

"SARCEF-II User's Guide - Seismic Analysis of Reinforced Concrete Frames," by S. Rodriguez-Gomez, Y.S.
Chung and C. Meyer, 9/30/90, (PB91-171280, A05, MF-A01).

"Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation," by N. Makris
and M.C. Constantinou, 12/20/90 (PB91-190561, A06, MF-AO01).

"Soil Effects on Earthquake Ground Motions in the Memphis Area," by H. Hwang, C.S. Lee, K.W. Ng and
T.S. Chang, 8/2/90, (PB91-190751, A05, MF-A01).
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"Proceedings from the Third Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and
Countermeasures for Soil Liquefaction, December 17-19, 1990," edited by T.D. O'Rourke and M. Hamada,
2/1/91, (PB91-179259, A99, MF-A04).

"Physical Space Solutions of Non-Proportionally Damped Systems," by M. Tong, Z. Liang and G.C. Lee,
1/15/91, (PB91-179242, A04, MF-A01).

"Seismic Response of Single Piles and Pile Groups," by K. Fan and G. Gazetas, 1/10/91, (PB92-174994,
A04, MF-AO01).

"Damping of Structures: Part 1 - Theory of Complex Damping," by Z. Liang and G. Lee, 10/10/91, (PB92-
197235, A12, MF-A03).

"3D-BASIS - Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures: Part IL," by S.
Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 2/28/91, (PB91-190553, A07, MF-AO01). This report
has been replaced by NCEER-93-0011.

"A Multidimensional Hysteretic Model for Plasticity Deforming Metals in Energy Absorbing Devices," by
E.J. Graesser and F.A. Cozzarelli, 4/9/91, (PB92-108364, A04, MF-AO01).

"A Framework for Customizable Knowledge-Based Expert Systems with an Application to a KBES for
Evaluating the Seismic Resistance of Existing Buildings," by E.G. Ibarra-Anaya and S.J. Fenves, 4/9/91,
(PB91-210930, A0S, MF-AO01).

"Nonlinear Analysis of Steel Frames with Semi-Rigid Connections Using the Capacity Spectrum Method,"
by G.G. Deierlein, S-H. Hsieh, Y-J. Shen and J.F. Abel, 7/2/91, (PB92-113828, A0S, MF-AO01).

"Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/30/91, (PB91-212142, A06, MF-
AO01). This report has been replaced by NCEER-92-0018.

"Phase Wave Velocities and Displacement Phase Differences in a Harmonically Oscillating Pile," by N.
Makris and G. Gazetas, 7/8/91, (PB92-108356, A04, MF-A01).

"Dynamic Characteristics of a Full-Size Five-Story Steel Structure and a 2/5 Scale Model," by K.C. Chang,
G.C. Yao, G.C. Lee, D.S. Hao and Y.C. Yeh," 7/2/91, (PB93-116648, A06, MF-A02).

"Seismic Response of a 2/5 Scale Steel Structure with Added Viscoelastic Dampers," by K.C. Chang, T.T.
Soong, S-T. Oh and M.L. Lai, 5/17/91, (PB92-110816, A05, MF-A01).

"Earthquake Response of Retaining Walls; Full-Scale Testing and Computational Modeling," by S.
Alampalli and A-W.M. Elgamal, 6/20/91, not available.

"3D-BASIS-M: Nonlinear Dynamic Analysis of Multiple Building Base Isolated Structures," by P.C.
Tsopelas, S. Nagarajaiah, M.C. Constantinou and A.M. Reinhorn, 5/28/91, (PB92-113885, A09, MF-A02).

"Evaluation of SEAOC Design Requirements for Sliding Isolated Structures," by D. Theodossiou and M.C.
Constantinou, 6/10/91, (PB92-114602, A11, MF-AO03).

"Closed-Loop Modal Testing of a 27-Story Reinforced Concrete Flat Plate-Core Building," by H.R.
Somaprasad, T. Toksoy, H. Yoshiyuki and A.E. Aktan, 7/15/91, (PB92-129980, A07, MF-A02).

"Shake Table Test of a 1/6 Scale Two-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, R.N.
White and P. Gergely, 2/28/91, (PB92-222447, A06, MF-A02).

"Shake Table Test of a 1/8 Scale Three-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, R.N.
White and P. Gergely, 2/28/91, (PB93-116630, A08, MF-A02).

"Transfer Functions for Rigid Rectangular Foundations," by A.S. Veletsos, A.M. Prasad and W.H. Wu,
7/31/91, not available.
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"Hybrid Control of Seismic-Excited Nonlinear and Inelastic Structural Systems," by J.N. Yang, Z. Li and A.
Danielians, 8/1/91, (PB92-143171, A06, MF-A02).

"The NCEER-91 Earthquake Catalog: Improved Intensity-Based Magnitudes and Recurrence Relations for
U.S. Earthquakes East of New Madrid," by L. Seeber and J.G. Armbruster, 8/28/91, (PB92-176742, A06,
MF-A02).
"Proceedings from the Implementation of Earthquake Planning and Education in Schools: The Need for
Change - The Roles of the Changemakers," by K.E.K. Ross and F. Winslow, 7/23/91, (PB92-129998, A12,
MF-A03).

"A Study of Reliability-Based Criteria for Seismic Design of Reinforced Concrete Frame Buildings," by
H.H.M. Hwang and H-M. Hsu, 8/10/91, (PB92-140235, A09, MF-A02).

"Experimental Verification of a Number of Structural System Identification Algorithms," by R.G. Ghanem,
H. Gavin and M. Shinozuka, 9/18/91, (PB92-176577, A18, MF-A04).

"Probabilistic Evaluation of Liquefaction Potential," by H.H.M. Hwang and C.S. Lee," 11/25/91, (PB92-
143429, A05, MF-A01).

"Instantaneous Optimal Control for Linear, Nonlinear and Hysteretic Structures - Stable Controllers," by J.N.
Yang and Z. Li, 11/15/91, (PB92-163807, A04, MF-A01).

"Experimental and Theoretical Study of a Sliding Isolation System for Bridges," by M.C. Constantinou, A.
Kartoum, A.M. Reinhorn and P. Bradford, 11/15/91, (PB92-176973, A10, MF-A03).

"Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 1: Japanese Case
Studies," Edited by M. Hamada and T. O'Rourke, 2/17/92, (PB92-197243, A18, MF-A04).

"Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 2: United States
Case Studies," Edited by T. O'Rourke and M. Hamada, 2/17/92, (PB92-197250, A20, MF-A04).

"Issues in Earthquake Education," Edited by K. Ross, 2/3/92, (PB92-222389, A07, MF-A02).

"Proceedings from the First U.S. - Japan Workshop on Earthquake Protective Systems for Bridges," Edited
by L.G. Buckle, 2/4/92, (PB94-142239, A99, MF-A06).

"Seismic Ground Motion from a Haskell-Type Source in a Multiple-Layered Half-Space," A.P. Theoharis, G.
Deodatis and M. Shinozuka, 1/2/92, not available.

"Proceedings from the Site Effects Workshop," Edited by R. Whitman, 2/29/92, (PB92-197201, A04, MF-
A01).

"Engineering Evaluation of Permanent Ground Deformations Due to Seismically-Induced Liquefaction," by
M.H. Baziar, R. Dobry and A-W.M. Elgamal, 3/24/92, (PB92-222421, A13, MF-A03).

"A Procedure for the Seismic Evaluation of Buildings in the Central and Eastern United States," by C.D.
Poland and J.O. Malley, 4/2/92, (PB92-222439, A20, MF-A04).

"Experimental and Analytical Study of a Hybrid Isolation System Using Friction Controllable Sliding
Bearings," by M.Q. Feng, S. Fujii and M. Shinozuka, 5/15/92, (PB93-150282, A06, MF-A02).

"Seismic Resistance of Slab-Column Connections in Existing Non-Ductile Flat-Plate Buildings," by A.J.
Durrani and Y. Du, 5/18/92, (PB93-116812, A06, MF-A02).

"The Hysteretic and Dynamic Behavior of Brick Masonry Walls Upgraded by Ferrocement Coatings Under
Cyclic Loading and Strong Simulated Ground Motion," by H. Lee and S.P. Prawel, 5/11/92, not available.

"Study of Wire Rope Systems for Seismic Protection of Equipment in Buildings," by G.F. Demetriades,
M.C. Constantinou and A.M. Reinhorn, 5/20/92, (PB93-116655, A08, MF-A02).
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"Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing," by P.R. Witting and
F.A. Cozzarelli, 5/26/92, (PB93-116663, A05, MF-A0Q1).

"Longitudinal Permanent Ground Deformation Effects on Buried Continuous Pipelines," by M.J. O'Rourke,
and C. Nordberg, 6/15/92, (PB93-116671, A08, MF-A02).

"A Simulation Method for Stationary Gaussian Random Functions Based on the Sampling Theorem," by M.
Grigoriu and S. Balopoulou, 6/11/92, (PB93-127496, A05, MF-A01).

"Gravity-Load-Designed Reinforced Concrete Buildings: Seismic Evaluation of Existing Construction and
Detailing Strategies for Improved Seismic Resistance," by G.W. Hoffmann, S.K. Kunnath, A.M. Reinhorn
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1 L 1 L 1 1 L i 1 |
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
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0.8
@ﬂ Shake Table-Recorded
: 04F
o Target
3
<« 0
=z
< -04F TSA
7 L=SYL360(1.1/1.3)
_0.8 L 1 L L L L L L 1 J
0 2 4 6 8 10 12 14 16 18 20
—_—
B
=
()
()
-1
1)
S
=
E -0.4F TSA
" L=SYL360(1.1/1.3)
_0‘8 1 L L L 1 L L L | | J
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
4 : : : — :
R Shake Table—Recorded :
< 3 Target /"[‘,\\
¥ . . |
1 . ' |
<2 - SN
T‘ : .“‘ . fe=n £y
) Lo tmelEe]T ThelT
g Ifrmsa—— ' :
& | |L=SYL360(1.1/1.3) :
0 — L
%l 1 10 20
C Base—mat
g 25 I'st floor |
:g — — - 2nd floor
= 2= 3rd floor !
) | s
o 15F T v
< : ~
= <2 s N\
Z r | | Ry A
g 0.5 /yya\if :’7/ \"\:.)‘/
-] TSA . 1 et
o L=SYL360(1.1/1.3) | 3
0 —_— . . L
- 0.1 1 10 20
= 0.8 ; ; _ T
2 Base — Vertical - : S
E 0.6 ======= Shake Table = Vertical—— : —— 3
5 . . . . /\\ . ":
g 04 - NS
< o : e f
= 0.2 TSA M""—‘\._.__/_..‘ ST 7 |
£ L=SYL360(1.1/1.3) : = / : 5
g 0 - —r—:‘ -------------- - []
v 0.1 1 10 20
Frequency(Hz)
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Base Shear/Vertical Load

0.4 70
0.2 ~ 35
<
o)
g
0 g 0
@n
2
]
-0.2 = 35
TSA TSA
L=0637270(1.0/1.5) L=0637270(1.0/1.5)
-0.4 -70
-120 -60 0 60 120 -120 -60 0 60 120
Base Displacement (mm) Base Displacement (mm)
‘é‘ 120 1 u__ =I110:8mm
max
g
= 60F du_ =101.8mm
"]
E P
g of
=
2
<]
- 60 TSA
b L=0637270(1.0/1.5)
m _]20 1 L L L 1 L L L 1 )
0 2 4 6 8 10 12 14 16 18 20
)
=
=
=
-
1)
S
< 03fF TSA
,5, L=0637270(1.0/1.5)
-0‘6 1 1 1 1 1L 1 1 I 1 J
2 4 6 8 10 12 14 16 18 20
Z South side
= -0 -
g
= -100
.T.‘ max TSA
= -150F L=0637270(1.0/1.5)
< L L L L L L L 1 i J
2| |
=2 North Side
= -50f -
g
- -100F
= N, =30.2kN1sA
é -150 '.'_._____-I . ]\f x:-15l5.2kN I_ ___________ ! . L‘=0637270.(].0/1.5) .
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
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Spectral Acceleration (g)

Spectral Acceleration (g

0.6
@n Shake Table-Recorded
: 03
= Target
3
< 0
b
s -0.3 TSB
7 L=0637270(1.0/1.5)
_0'6 L L L 1 I L )
0 2 4 6 8 10 12 14 16 18 20
0.7
C
< 035F
b,
2
S 0
=]
=
- a_ =0.60g L=0637270(1.0/1.5)
-0.7 1 1 ax 1 1 1 1 I | ]
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
2 - . . . — .
2 Shake Table—Recorded ot
'q_; 1.5p—======= Tdrgc[ - : "‘ G -
=1 : K SN TN
S K T
< y
= 2
£ - /
9 0.5FTsB - :
= 1.=0637270(1.0/1.5)
0 —__..=- [ J
.1 1 10 20
1.9 - N i
Base—mat [y, \
----- Ist floor [ l:\
N 2nd floor A ; !f[\h
-—=-— 3rd floor \
/ \

05F
TSA
L=0637270(1.0/1.5)
0 —
0.1 20
0.8 : :
Base — Vertical .
0.6 === Shake Table = Vertical——
0.4
0.2FTSA - :
L=0637270(1.0/1.5)
0
0.1 |

Frequency(Hz)
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Base Shear/Vertical Load

0.4 70
0.2 ~ 35
&
-
1 ™
=
0 g 0
17
o
=
-0.2 = 35
TSA TSA
L=TCU129E(1.2/2.0) L=TCUI129E(1.2/2.0)
-0.4 -70
-110 -55 0 55 110 -110 -55 0 55
Base Displacement (mm) Base Displacement (mm)
= 110
E
= S5F
W
: A
g o *
=
& d 103.5
ot u == Dmim
a -55 max TSh
é 110 —— L u .=-101_8|;r1m | — ! L=:FCU12QEI(].2/2.0) !
0 5 10 15 20 25 30 35 40 45 50
. 09
)
&=
=
"
»u
1
=
wn
= TSA
& L=TCU129E(1.2/2.0)
_0‘9 1 L L L 1 L 1 L 1 J
0 5 10 15 20 25 30 35 40 45 50
_— 0 B
é South side
.g Ideax=63.3kN
< -100
-
= TSA
= L=TCUI129E(1.2/2.0)
< _200 L L L 1 1 L 1 1 . 1 J
_ 0 B
Z North Side
= IdN =66.3kN
'g max
z o =-142.8kN e
o L=TCU129E(1.2/2.0)
< _200 1 L L 'l 1 L ] i 1 J
0 5 10 15 20 25 30 35 40 45 50
Time (sec)
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Shake Accel. (g)

3rd floor accel.(g)
Spectral Accel. (g)

Spectral Acceleration (g)

Spectral Acceleration (g

o
=3

Shake Table—Recorded

0.3F = Target |
0
TSA
L=TCUI129E(1.2/2.0)
40 45 50
TSA
L=TCUI129E(1.2/2.0)
6 1 L 1 L L 1 1L 1 1 J
0 5 10 15 20 25 30 35 40 45 50
Time (sec)
4 = = . PE— - = =,
Shake Table—Recorded
S “Target ; -
2 -
LFTsSA
L=TCUI29E(1.2/2.0) )
0 """"" _—
0.1
2 : -
Base—mat :
------- Ist floor :
LS ——"2nd floor 1
-—-—3rd floor :
1k : :
0.5 :
TSA /'/ |
L=TCUI129E(1 .2/_2@1
0 a 1 1
0.1 1 10 20
08r
Base — Vertical
0.6 ===e=== Shake Table = Vertical
0.4F
L=TCUI129E(1.2/2.0)
0
0.1 1 10 20

Frequency(Hz)

209



Base Shear/Vertical Load

0.2 30
0.1 ~ 15
Z
-
=
0 L 0
|
7
o
=
-0.1 B s
TSB TsB
L=8YL360(0.5/1.0) L=SYL360(0.5/1.0)
-0.2 -30
-30 -15 0 15 30 -30 -15 0 15 30
Base Displacement (mm) Base Displacement (mm)
’é‘ 30
= umaX:24.5mm
e 15F du  =24.5mm
%] max
g
§ 0
=
Z
R -15 TSB
z L=SYL360(0.5/1.0)
m _30 1 L L L 1 L 1 L | | J
0 2 4 6 8 10 12 14 16 18 20
- 04
S
= 0.2
._E
2 0
2
= B2r d_=027% TsB
& max L=SYL360(0.5/1.0)
_0‘4 L L L L L L L i | L J
0 2 4 6 8 10 12 14 16 18 20
z T
> South side
= -50F
[~
S -100
-_ I =-132.0kN max
= i TSB
= -150F L=SYL360(0.5/1.0)
_ 0 B
) North Side
o -50F
-
S -100
E max TSB
o -150F L=SYL360(0.5/1.0)
1 L L L 1 L L i ; J
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
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0.4
@D Shake Table-Recorded
: 0.2
o Target
3
< 0
2
_g -0.2 TSB
72 L=SYL360(0.5/1.0)
_0'4 L L L 1 L L L I )
0 2 4 6 8 10 12 14 16 18 20
04r
c
< 02F
o~
2
. 0
S
=
E -0.2F TSB
" L=SYL360(0.5/1.0)
_0‘4 1 L L L L L L L L J
2 4 6 8 10 12 14 16 18 20
Time (sec)
2 . .
= Shake Table—Recorded
= LSp=— Farget N
1=
1]
<
=
£
% 05HTSB
& L=SYL360(0.5/1.0)
@ |
1.50. : : [ : : :
Base-mat : [ : : 0
------- Ist floor : : : A
[ ——2ndfioor | ; VA
-—-— 3rd floor N

Spectral Acceleration (g)

Spectral Acceleration (g

0.5

TSB
L=SYL360(0.5/1.0)

1

o
B o

e
5]

Base — Yertical o
------- Shake Table = Vertical

e
[*]

e
T

TSB : :
L=SYL360(0.5/1.0)

o<

1
Frequency(Hz)
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Base Shear/Vertical Load

0.3

0.15

-0.15

-80

2nd story drift (%)

Axial Load (kN) Axial Load (kN)

Base Displacement (mm)

oo
o

s
o

(=]

B
S

S0
=

-100
-150

-50
-100
-150

50
-~ 25
<
o)
g
2 0
@n
2
]
R 25
TSB TSB
L=SYL360(1.0/1.0) L=SYL360(1.0/1.0)
-50
-40 0 40 80 -80 -40 0 40 80
Base Displacement (mm) Base Displacement (mm)
i TSB
L=SYL360(1.0/1.0)
0 2 4 16 18 20

=0.39%

max

TSB

L=8YL360(1.0/1.0)

max

16 18 20

South side

TSB
L=SYL360(1.0/1.0)

| North Side
AdN

=44.6kN
i

L max TSB
L=SYL360(1.0/1.0)
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
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Shake Accel. (g)

3rd floor accel.(g)

0.5
Shake Table-Recorded
0.25 Target
0
-0.25 TSB
L=SYL360(1.0/1.0)
_0.5 L L L L L L L L J
0 2 4 6 8 10 12 14 16 18 20
0.5
0.25
0
-0.25F TSB
L=SYL360(1.0/1.0)
_0‘5 L L L L 1 L L i | | ]
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
3 : ; :
20 Shake Table—Recorded
E B M Target
S
<
=
=1
o TSB :
& | |L=SYL360(1.0/1.0)
0
%l_ 1 10 20
Base—mat
------- Ist floor 3
LS ——"72nd floor 3 JAY
-—-— 3rd floor ‘

Spectral Acceleration (g)

Spectral Acceleration (g

0.5 [ NN
TSB . ‘ - . /. |
L=SYL360(1.0/1.0) ; | : |

—— . 3 . [l

0 ==
0.1 1 10 20
0.8 _ _
Base — Vertical - = : Do :
0.6 ===vees Shake Table = Vertical : — j
04 i T
0.2FTSB : . ~—~
L=SYL360(1.0/1.0) ' o B R LTSRN L
0 : - el e e |
0.1 1 10 20

Frequency(Hz)
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o
o —

Base Shear/Vertical Load
s

50

b
Lh

Base Shear (kN)
[=]

TSB TSB

1
<
s
S

2nd story drift (%)

Axial Load (kN) Axial Load (kN)

L=PUL164(1.0/1.0) L=PUL164(1.0/1.0)
-50

-35 0 35 70 -70 -35 0 35 70

Base Displacement (mm) Base Displacement (mm)
£ 70 ¢
E
e 35
v
E
S 0
S
&
A -35 du ax:-63.6m -
2 L=PUL164(1.0/1.0)
m _70 1 L L 1 I 1 J

8 10 12 14 16 18 20

-0.25 TSB
L=PUL164(1.0/1.0)
_0.5 1 L L L L 1 L L L J
0 2 4 6 8 10 12 14 16 18 20
Or .
-50 South side
- bt
100 deaX:-48. 1kN
-150 TSB
L=PUL164(1.0/1.0)
0 -
-50 North Side
-100 et g
150 deaX:-()S.Sk 1sB
- may 108 TKN L=PUL164(1.0/1.0)
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
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Shake Accel. (g)

3rd floor accel.(g)
Spectral Accel. (g)

Spectral Acceleration (g)

Spectral Acceleration (g

6 -
Shake Table-Recorded
3 Target
0
3 TSB
L=PUL164(1.0/1.0)
6 L L L 1 I L J
0 2 4 6 10 12 14 16 18 20
6r
a_=0.48¢g
3
0
3 TSB
L=PUL164(1.0/1.0)
6 L L 1 L 1L 1L 1L 1 J
0 2 4 6 10 12 14 16 18 20
Time (sec)
4 - . - . - - —T
Shake Table—Recorded : }
3 Target : ‘(\ ; [\
//,-': LAY A -

2 A o'.y'_:" “l :‘ "-': “'\
L E——

L=PUL164(1.0/1.0 |

L=PUL164(1.0/1.0)

0
%l_ 1 _ 10 20
: N s
Base—mat !' A
------- 1st floor . \ 1
LSF——= 2nd floor
-—=— 3rd floor
] 3
0.5 |
TSB
. ;

0
0.1 1 10 20
1.5 ;
Base — Vertical - _
N R Shake Table — Vertical E
0.5 - /
TSB : g
L=PUL164(1.0/1.0) [
O ]
0.1 1 10 20
Frequency(Hz)
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Base Shear/Vertical Load

0.3 50
0.15 = 25
&
e
x
0 g o
®n
2
=
-0.15 B 25
TSB TSB
L=PUL164(0.5/1.4) L=PUL164(0.5/1.4)
-0.3 -50
-90 -45 0 45 90 -90 -45 0 45
Base Displacement (mm) Base Displacement (mm)
E 90 P umax=87.3mm ,,,,,,,,,,
E du_ =64.7mm
b max
=
=)
E
v
2]
-
o
o
2 -4sr TSB
E L=PUL164(0.5/1.4)
m _90 1 L L L Il L L L L J
2 4 6 8 10 12 14 16 18 20
=
e
=
=
=
-
1)
S
": TSB
A L=PUL164(0.5/1.4)
16 18 20
~ 0
E South side
5 50 -
= dN_ =40.6kN
=] max
- -100 Al
= mae- 123-3kN TSB
= -150 T L=PUL164(0.5/1.4)
< 1 L L L L 1 L i i J
z O |
) North Side
- -50
«
]
= dN_ =38.7kNigp
é -150 L=PUL164(0.5/1.4)
2 4 6 8 10 12 14 16 18 20
Time (sec)
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Shake Accel. (g)

3rd floor accel.(g)

05
Shake Table-Recorded
0.25 Target
0
-0.25 TSB
L=PUL164(0.5/1.4)
_0-5 L 1 L 1 L 1 J
0 2 4 6 8 10 12 14 16 18 20
05
0.25
0
'0.25 TSB
L=PUL164(0.5/1.4)
_0‘5 L L 1 L L L L 1 J
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
3r : B R '
A Shake Table—Recorded
'g o Target - -
U .
<
=
s 1F
g |lTsB
ﬁ" L=PUL164(0.5/1.4)
0

)

Base—mat
Ist floor
— — - 2nd floor

- —-— 3rd floor

Spectral Acceleration (g)

Frequency(Hz)
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05F
TSB :
L=PUL164(0.5/1.4)
0 =

O
~
= Verti |
2 Base — Vertical - s |
*é ------- Shake Table — Vertical = /\
g 05 |
<
E TSB :
= L=PUL164(0.5/1.4)
%]
2 0
w01 : : v



Base Shear/Vertical Load

0.2

0.1

L=KIM000(0.5/1.5)

Base Displacement (mm)

2nd story drift (%)

Axial Load (kN) Axial Load (kN)

-25 0 25

Base Displacement (mm)

h
<
1

o]

50

40
2 20
=
—
B
g 0
wn
A
~
R 20
L=KJMO000(0.5/1.5)
-40
-50 25 0 25

Base Displacement (mm)

N

du_ =-41.6mm
max

TSB
L=KJM000(0.5/1.5)
L L

-50
0 12 14 16 18 20
TSB
L=KIMO000(0.5/1.5)
-0-4 1 1 1 ] 1 1 ] i | | | ]
2 4 6 8 10 12 14 16 18 20
Or
South side
_50 3 |

-100
I N | =1384kN | TSB |
L=KJMO000(0.5/1.5)
1 L L L 1 1 L i i J
Or :
North Side
-50 i '
-100
i max TSB |
-150 L=KIMO000(0.5/1.5)
0 2 4 6 8 10 12 14 16 18 20
Time (sec)

218

50



04r
C Shake Table-Recorded
e 02F Target '
b
< 0
2
_dé -0.2 TSB
72 L=KJIM000(0.5/1.5)
~0‘4 1 1 1 1 1 . | L J
0 2 4 6 8 10 12 14 16 18 20
04r
@ a ax=0.28g
= 02}
()
2
- 0
°
=
= 0.2F ' TSB
n L=KJMO000(0.5/1.5)
-0‘4 L L 1 L L L L L 1 J
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
A Shake Table—Recorded
'?.5 Y M Target : S
U .
<
=
g IF
3 TSB
& | [L=KIM000(0.5/1.5)
0.1
1' . .
C Base—-mat i\
g 0.8 === Ist f!on;r i
= — — - 2nd floor
5 06— — 3rd floor
= . .
S
<
< 04
=
&
i 0.2 = TSB
177) L=KJM000(0.5/1.5)
0 —
- 0.1
: 0.2 : : : : : : : 1
k= Base — Vertical - E : : M /\ f
‘é 0.15 p—======="Shake Table = Vertical ; : Z . Z \,/ \Jn A
3 / : SV
3 ol - - A ' BRI
< .‘?"..:
E 0.05 ISB - . ,-.," |
> L=KIMO000(0.5/1.5) - 1
& 0 - 1 ]
7] 0.1 10 20

Frequency(Hz)
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Base Shear/Vertical Load

0.2 40
0.1 = 20
=
e
x
0 s 0
7
2
=
-0.1 B 20
TSB TSB
L=NWH360(0.5/1.0) L=NWH360(0.5/1.0)
-0.2 -40
-40 -20 0 20 40 -40 -20 0 20
Base Displacement (mm) Base Displacement (mm)
T 40 u  =36.4mm
max
E du_ =22.1mm
L I | U AV AVA WA 1) Wy S
=
E
S of
=
2
8 20
n - -
) TSB
2 L=NWH360(0.5/1.0)
m _40 1 L L L L 1 L L L ]
0 2 4 6 8 10 12 14 16 18 20
_ 04r
s
?E 02 ™
=
> 0
B
&
= -0.2F TSB
!E; L=NWH360(0.5/1.0)
_0‘4 1 L L L 1 L 1 L L J
0 2 4 6 8 10 12 14 16 18 20
—_— 0 B
é South side
et =50 e
g
- -100
.T_.“ max TSB
:E -150F ' L=NWH360(0.5/1.0)
_ Or
E North Side
= -50F
g
= -100F
E I max | [ TSB
» -150F L=NWH360(0.5/1.0)
< 1 L L [l L L [l i i J
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
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Shake Accel. (g)

Target

Shake Table-Recorded

%Wmhw-——-.——-———————

TSB
L=NWH360(0.5/1.0)
8 10 12 14 16 18 20
)
=
()
<
<
1
S
=)
=
-E TSB
) max L=NWH360(0.5/1.0)
_0‘4 L L 1 L L L L L J
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
28 Shake Table—Recorded :
= .| - Target : /\'\,.
< 1
o L
< .
= \
E 05F <
2 TSB
7 L=NWH360(0.5/1.0)
0
10.1 20
C Base—mat
= )8p o===-- st floor e
:§ — — - 2nd floor r ‘\ i
g | -—— 3o Lo i/ \ |
5 06— rdfloor 7N — % .
g PR - [ \r J . \ |
2 /'//\“k- / \,.I' -~ "t ,-y" * (T :
= 04 g N\YL PSRN
g 2" ""‘ \u \ '+, d ‘t“ .
=~ .~ |
177) L=NWH360(0.5/1.0) |
0 J
o 0.1 1 10 20
: 0.4 ; |
S Base — Vertical o f
E 03— ~Shake Table = Vertical
) :
ué 0.2 /\/\ \/\
< /—\/ . . :
E 0.1 FrTSB : T N\/::\‘d
1> L=NWH36000.5/1.00| | . -
g e U l
w01 1 10 20
Frequency(Hz)
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Base Shear/Vertical Load

0.3

0.15

-0.15

2nd story drift (%)

Axial Load (kN) Axial Load (kN)

Base Displacement (mm)
(=]

TSB
L=0637270(0.5/1.8)

O
S

e
n

0.25

-0.25

-45 0

45

Base Displacement (mm)

u_ =82.Imm
max

90

50

Base Shear (kN)
(%]
] wn

N
G

TSB

L=0637270(0.5/1.8)

-90

-45

0 45

Base Displacement (mm)

TSB
L=0637270(0.5/1.8)

o

16 18

20

TSB

L=0637270(0.5/1.8)

16 18

South side

20

20

max TSB
§ L=0637270(0.5/1.8)
North Side
L ——— max:- 32_3kN = - max TSB
B [ [ L=0637270(0.5/1.8)
0 2 4 6 8 10 12 14 16 18
Time (sec)
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0.4

0.2

-0.2

Shake Accel. (g)

0.4

0.4

0.2

-0.2

3rd floor accel.(g)

-0.4

0.

Spectral Accel. (g)

0.

0.

Spectral Acceleration (g)

Spectral Acceleration (g

0.

o

e

o

o

e

Shake Table-Recorded
B Target
L TSB
L=0637270(0.5/1.8)
0 2 4 6 8 10 12 14 16 18 20
i —0b1 TSB
| . lamax—' 1 g . . . 1.=0637270(0.5/1.8)|
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
1 . .
Shake Table—Recorded }
------- Target }
5 5
TSB _ _
L=0637270(0.5/1.8) : [
0 e . 1 J
}).1 1 10 20
Base—mat
gp—o=n=== Lstfloor ,!!."\ A e :
— — - 2nd floor /;_4"5_*'/:" [ \ f
| Y 7[\'\ A
: X e D
2[frsB ‘5
L=0637270(0.5/1.8) 5
0 — J
0.1 1 10 20
4r :
Base — Vertical }
3p————" Shake Table = Vertical
’ Pt an f
/\/ ~N
l o~ . eeen
ISB : e <
L=0637270(0.5/1.8) : -___,-.“ :
O ——ﬁ'-_:‘;:- ---------- PRl U []
0.1 1 10 20
Frequency(Hz)
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Base Shear/Vertical Load

0.

0.

2

1

TSB
L=0637270(0.5/1.0)

2
-30

Base Displacement (mm)

2nd story drift (%)

Axial Load (kN) Axial Load (kN)

-15

0

15 30

Base Displacement (mm)

30

Base Shear (kN)
) s

—
i

TSB
L=0637270(0.5/1.0)

-30
-30

-15

0

15

Base Displacement (mm)

30 u_ =27.8mm
max
15k du  =22.7mm
0 -
51 TSB
L=0637270(0.5/1.0)
_30 1 L L 1 L 1 L L J
0 2 6 8 10 12 14 16 18 20
04r
d ax=0.27%
0.2F
0
_0.2 - TSB
L.=0637270(0.5/1.0)
_0‘4 1 L L 1 1 L 1 | ]
0 2 4 6 8 10 12 14 16 18 20
0 -
South side
S0P
-100
max TSB
-150F L=0637270(0.5/1.0)
L L 1 L 1 L L 1 i J
0 -
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