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Project Overview

NEESWood: Development of a Performance-Based Seismic Design
Philosophy for Mid-Rise Woodframe Construction

While woodframe structures have historically performed well with regard to life safety in regions
of moderate to high seismicity, these types of low-rise structures have sustained significant struc-
tural and nonstructural damage in recent earthquakes. To date, the height of woodframe con-
struction has been limited to approximately four stories, mainly due to a lack of understanding of
the dynamic response of taller (mid-rise) woodframe construction, nonstructural limitations such
as material fire requirements, and potential damage considerations for nonstructural finishes.
Current building code requirements for engineered wood construction around the world are not
based on a global seismic design philosophy. Rather, wood elements are designed independently
of each other without considering the influence of their stiffness and strength on the other struc-
tural components of the structural system. Furthermore, load paths in woodframe construction
arising during earthquake shaking are not well understood. These factors, rather than economic
considerations, have limited the use of wood to low-rise construction and, thereby, have reduced
the economical competitiveness of the wood industry in the U.S. and abroad relative to the steel
and concrete industry. This project sought to take on the challenge of developing a direct displace-
ment based seismic design philosophy that provides the necessary mechanisms to safely increase
the height of woodframe structures in active seismic zones of the U.S. as well as mitigating dam-
age to low-rise woodframe structures. This was accomplished through the development of a new
seismic design philosophy that will make mid-rise woodframe construction a competitive option
in regions of moderate to high seismicity. Such a design philosophy falls under the umbrella of
the performance-based design paradigm.

In Year 1 of the NEESWood Project, a full-scale seismic benchmark test of a two-story woodframe
townhouse unit that required the simultaneous use of the two three-dimensional shake tables at
the University of Buffalo’s NEES node was performed. As the largest full-scale three-dimensional
shake table test ever performed in the U.S., the results of this series of shake table tests on the
townhouse serve as a benchmark for both woodframe performance and nonlinear models for
seismic analysis of woodframe structures. These efficient analysis tools provide a platform upon
which to build the direct displacement based design (DDBD) philosophy. The DDBD method-
ology relies on the development of key performance requirements such as limiting inter-story
deformations. The method incorporates the use of economical seismic protection systems such as
supplemental dampers and base isolation systems in order to further increase energy dissipation
capacity and/or increase the natural period of the woodframe buildings.

The societal impacts of this new DDBD procedure, aimed at increasing the height of woodframe
structures equipped with economical seismic protection systems, is also investigated within
the scope of this NEESWood project. Following the development of the DDBD philosophy for
mid-rise (and all) woodframe structures, it was applied to the seismic design of a mid-rise (six-
story) multi-family residential woodframe condominium/apartment building. This mid-rise
woodframe structure was constructed and tested at full-scale in a series of shake table tests on
the E-Defense (Miki) shake table in Japan. The use of the E-Defense shake table, the largest 3-D
shake table in the world, was necessary to accommodate the height and payload of the mid-rise
building.



This report presents a simplified direct displacement design (DDD) procedure which was used to design
the shear walls for a six-story woodframe structure. This structure, referred to as the NEESWood Cap-
stone Building, was designed to meet four performance expectations: damage limitation, life-safety, far-
field collapse prevention, and near-fault collapse prevention. A series of nonlinear time history analyses
were performed using suites of both far-field and near-fault ground motion records to verify that design
requirements were met. The distributions of inter-story drifts obtained from these time history analyses
confirmed that the building met all four performance expectations, thereby validating the DDD proce-
dure. Additionally, collapse analysis in accordance with the Applied Technology Council project 63 (ATC-
63) methodology was performed. The results of incremental dynamic analyses confirmed that the building
had an adequate capacity or margin against collapse, as dictated by the ATC-63 methodology.
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ABSTRACT

This report presents a simplified direct displacement design (DDD) procedure which was
used to design the shear walls for a six-story woodframe structure. The building will be tested in
the final phase of a Network for Earthquake Engineering Simulation (NEES) project.
Specifically, NEESWood Capstone Building was designed to meet four performance
expectations: damage limitation, life-safety, far-field collapse prevention, and near-fault collapse
prevention. The performance expectations are defined in terms of combinations of inter-story
drift limits and prescribed seismic hazard levels associated with predefined non-exceedance
probabilities. To verify that design requirements were met, a series of nonlinear time-history
analyses (NLTHA) were performed using suites of both far-field and near-fault ground motion
records. The distributions of inter-story drifts obtained from the NLTHA confirm that the
Capstone Building designed using DDD meets all four target performance expectations, thereby
validating the DDD procedure. Additionally, collapse analysis in accordance with the recently
proposed Applied Technology Council project 63 (ATC-63) methodology was performed. The
results of incremental dynamic analyses confirmed that the Capstone Building designed using the
DDD procedure has adequate capacity or margin against collapse, as dictated by the ATC-63

methodology.
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NOTATIONS

ACMR = Adjusted Collapse Margin Ratio (CMR x SSF)

o = Stiffness and Strength Degradation Parameter for Shear Wall Reloading Curves; Modeling
Parameter for the Modified Stewart Hysteretic Model

B¢= Damping Reduction Factor

S = Stiffness and Strength Degradation Parameter for Shear Wall Reloading Curves; Modeling
Parameter for the Modified Stewart Hysteretic Model

Bro = Ground Motion Uncertainty
LPps = Design Procedure Uncertainty

Pr = Total Uncertainty (include Ground Motion, Design Procedure, Test Data and Modeling
Uncertainties)

Pror = Total/Composite Uncertainty (ATC-63 Collapse Margin Analysis)
B, = Story Shear Factor

C. = Design Base Shear Coefficient

Cne = Adjustment Factor for Non-exceedance Probability

C, = Approximate Period Parameter

C, = Vertical Distribution Factor for Design Base Shear

CMR = Collapse Margin Ratio

DBE = Design Basis Earthquake

A = Displacement

Aoy = Target Design Displacement at the Effective Height of the Substitute Structure
Aj; = Inter-story Displacement

Xix



A, = Story Displacement (Relative to Ground)
A, = Target Displacement

A, = Displacement at the Point of Maximum Force on the Shear Wall Backbone Curve;
Modeling Parameter for the Modified Stewart Hysteretic Model

A, = Maximum Displacement of the Previous Hysteresis Loops; Modeling Parameter for the
Modified Stewart Hysteretic Model

A, = Displacement at Ultimate Base Shear (Pushover Analysis)

Aso2; = Roof Displacement at which the Base Shear is 60% of the Peak Base Shear (Pushover
Analysis)

Elo0p = Energy Dissipated by the Nonlinear Shear Wall in One Complete Hysteresis Cycle/Loop
Eg, = Strain Energy of the Linear-elastic System at Target Displacement, A,
F = Equivalent Lateral Force

Fy = Force Intercept of the Asymptotic Line (r;KoA + F)) for the Shear Wall Backbone Curve;
Modeling Parameter for the Modified Stewart Hysteretic Model

F, = Shear Wall Backbone Force

F; = Force Intercept of the Pinched Line (7.KoA + F;); Modeling Parameter for the Modified
Stewart Hysteretic Model

@(.) = Cumulative Density Function of a Standard Normal Distribution

@ (.)=Inverse Cumulative Density Function of a Standard Normal Distribution
g = Gravitational Constant

he = Effective Height of the Substitute Structure

h, = Story Height (Relative to the Ground)

hs = Story Height (Including the Thickness of the Floor or Roof Diaphragm)

XX



H = Seismic Hazard Level

Ir = Occupancy Important Factor

K= Effective Secant Stiffness of the Substitute Structure

Ky = Initial Tangent Stiffness

Kp = Reloading Stiffness; Modeling Parameter for the Modified Stewart Hysteretic Model
K= Secant Stiffness

A = Logarithmic Median (Parameter for Lognormal Distribution)
M, = Overturning Moment

MCE = Maximum Credible Earthquake

M. = Ductility Factor (Pushover Analysis)

Ng = Total Number of Stories

NE, = Design/Target Non-exceedance Probability

Py= Collapse/failure Probability

Pyr = Non-exceedance Probability

R = Response Modification Factor

r; = Asymptotic Tangent Stiffness Ratio of the Nonlinear Ascending Branch of the Shear Wall
Backbone Curve; Modeling Parameter for the Modified Stewart Hysteretic Model

r, = Stiffness Ratio of the Linear Descending Branch of the Shear Wall Backbone Curve;
Modeling Parameter for the Modified Stewart Hysteretic Model

r; = Stiffness Ratio of Unloading Path; Modeling Parameter of the Modified Stewart Hysteretic
Model

ry = Stiffness Ratio of the Pinched Line (r,KyA + F}); Modeling Parameter for the Modified
Stewart Hysteretic Model
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Sps = Short-period Spectral Acceleration for Design Basis Earthquake (DBE)

Spr = 1-second Spectral Acceleration for Design Basis Earthquake (DBE)

Sss = Short-period Spectral Acceleration for Short Return Period Earthquake (SRE)
Ss; = 1-second Spectral Acceleration for Short Return Period Earthquake (SRE)
Suce = MCE Spectral Acceleration at the Upper Limit of the Approximate Period 7,
Scr= Spectral Acceleration at 7, that causes 50% of the analyses/cases to Collapse.
Sus = Short-period Spectral Acceleration for Maximum Credible Earthquake (MCE)
Sy = 1-second Spectral Acceleration for Maximum Credible Earthquake (MCE)
Sx= Design Spectral Acceleration Adjusted for Non-exceedance Probability

SRE = Short Return Period Earthquake

SSF = Spectral Shape Factor

T, = Approximate Fundamental Period (Defined in the ASCE/SEI-7)

Ts = Sxs/Sx;; Short-period Transition Period; Upper Bound Period of the Plateau Region of the
Design Acceleration Response Spectrum

Ty = 0.2 Sxs/Sx;; Lower Bound Period of the Plateau Region of the Design Acceleration
Response Spectrum

T,, = Upper Limit of the Approximate Fundamental Period (Defined in the ASCE/SEI-7)
6= Drift (Percentage of Story Height)

6,;= Target Design Drift at the Effective Height of the Substitute Structure

G450 = Equivalent 50% Non-exceedance Drift Limit

6, = Inter-story Drift (Percentage of Story Height)
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6 im = Design/Target Inter-story Drift Limit (Percentage of Story Height)
V, = Base Shear

Vmar = Maximum Base Shear (Pushover Analysis)

Vs = Story Shear

Ve = Ultimate Base Shear in a Pushover Analysis (defined at the point where the Base Shear
deteriorates to 80% of the Peak Base Shear)

V/W = Base Shear-to-Total Building Weight Ratio

W = Seismic Weight

Wy = Effective Seismic Weight of the Substitute Structure

x = Exponent for the Approximate Period Equation (in the ASCE/SEI-7)

&= Logarithmic Standard Deviation (Parameter for Lognormal Distribution)
Chyse = Hysteretic Damping (Fraction of Critical Damping)

Cine = Intrinsic Damping (Fraction of Critical Damping)

&= Effective Viscous Damping (Fraction of Critical Damping)
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1. INTRODUCTION

In the United States (US), multi-story residential and commercial structures such as
multi-family apartments, condominiums and hotels/motels are often light-frame wood (also
known as woodframe) construction. For multi-story construction, if woodframe is selected over
other structural systems it is because of its fast construction speed and low construction cost
(Cheung 2008). Although woodframe construction provides an economical alternative for multi-
story buildings, the current US building codes make it difficult to exceed five stories (ICC 2006)

in general, and even four stories in some jurisdictions. The height limitation reflects the lack of



knowledge of the dynamic response of taller wood buildings under lateral loadings (e.g., wind
and earthquake loads), as well as fire safety considerations and other local district land use
regulations. Such height restrictions have limited the use of wood for multi-story construction in
the US. Nevertheless, many other industrialized countries permit the construction of taller wood
buildings (i.e., more than five stories). For example, New Zealand does not have building height
restrictions for wood construction. Canada and England have recently revised their building
codes to allow the construction of wood buildings of up to six and eight stories, respectively
(Craig 2008). In the US, the timber engineering design and research communities are in the
process of developing new design guidelines and procedures that will enable building taller
woodframe structures, including those in seismic regions such as the Pacific Northwest where
wood has a strong industry hold. One such effort is the NEESWood project which focuses on the
development of a performance-based seismic design (PBSD) procedure for mid-rise woodframe
construction in regions of moderate to high seismicity (van de Lindt et al. 2008).

As part of the NEESWood project, a series of full-scale seismic tests of a two-story
Benchmark Woodframe Building were conducted at the University at Buffalo (UB) Network for
Earthquake Engineering Simulation (NEES) site (Christovasilis et al. 2007). The Benchmark
Building was designed in accordance with the Uniform Building Code (ICBO 1988). The test
building was representative of a typical townhouse structure built in the 1980’s and located in the
Western US. In order to establish the relationship between the fundamental period (or lateral
stiffness) and the contribution of the non-structural elements, shake table tests were conducted at
different stages of construction (e.g., wood structural elements only, wood structural elements
and gypsum wall board, and the complete structure including the exterior stucco). The test data
collected in the Benchmark Building test included (1) force and deformation measurements of

the shear walls and non-load bearing walls, (2) tension force and uplift measurements of the
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anchor bolts and hold-downs, (3) sill plate slippage, and (4) absolute acceleration measurements.
In addition, damage to the structural and non-structural components, such as the gypsum wall
boards (GWB) and exterior stucco, were visually inspected and documented at the end of each
stage of testing. The Benchmark test results and findings were used to develop numerical tools
and validate a preliminary version of a new direct displacement design (DDD) procedure for
PBSD of multi-story woodframe buildings (Pang and Rosowsky 2009). The DDD procedure was
then used to design the shear walls of a six-story woodframe building, which will be constructed

and tested at full-scale in the final phase of the NEESWood project.

1.1 Description of the Six-story NEESWood Capstone Building

The architectural layout (Figures 1 to 4) and building design parameters (e.g., the location
of bearing walls) determined based on the 2006 International Building Code (ICC 2006) served
as the starting point for the displacement-based seismic design of the six-story NEESWood
Capstone Building. The plan dimensions of the building are approximately 18.1 m (59.5 ft) in the
longitudinal direction and 12.1 m (39.8 ft) in the transverse direction. The height of the building
from the base to the top of the roof parapet is approximately 17.5 m (57.5 ft), with a story clear
height of 2.74 m (9 ft) for the 1% story and a story clear height of 2.44m (8 ft) for 2" to 6™ stories
(Figure 1-4). The thickness of the floor system is approximately 25.4 cm (10 in) and the roof
diaphragm thickness is 38.1 cm (15 in). The total living space of the test building is
approximately 1350 m? (14500 ft%). There are 23 living units with four apartment units on each
floor except for the 6™ floor which contains a large luxury penthouse and two regular apartment
units (Figures 1 to 3). The total seismic weight of the as-designed building was estimated to be
2734 kN (615 kips). A series of full-scale shake table tests of the NEESWood Capstone building

are scheduled to be conducted on the E-defense (Miki City) shake table in Japan in July 2009.
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Figure 1-1: Plan view of the six-story NEESWood Capstone Building for 1* floor.
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Figure 1-2: Plan view of the six-story NEESWood Capstone Building for 2™ to 5™ floors.
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Figure 1-3: Plan view of the six-story NEESWood Capstone Building for 6" floor.
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2. PERFORMANCE EXPECTATIONS

The six-story Capstone Building was designed to meet the four performance
requirements listed in Table 2-1. Each performance requirement is specified by a probability of
non-exceedance of an inter-story drift limit at a specified level of seismic hazard. The
performance requirement is given by the following expression:

Py (0 <6, | H)2 NE, (1)



where @ and 6, are the inter-story drift and target drift limit, respectively. The term Png(.) is the
non-exceedance probability of the inter-story drift at a prescribed hazard level (seismic intensity,
H) and NE; is the target/design non-exceedance probability. ASCE/SEI-41, Seismic
Rehabilitation of Existing Buildings (ASCE 2006), provides guidelines for design and retrofit of
structures by specifying three performance levels namely immediate occupancy (IO), life safety
(LS), and collapse prevention (CP). The IO, LS, and CP definitions correspond to the
performance expectations for Levels 1 to 3 (Table 2-1) and the hazard levels are associated with
earthquakes having 50%, 10% and 2% exceedance probabilities in 50 years, respectively. The
performance levels/expectations selected by the NEESWood project team and used for designing
the Capstone Building are based on the ASCE/SEI-41 guidelines with some modifications.
According to ASCI/SEI-41, the inter-story drift limits for wood shear walls for the 10, LS, and
CP limit states are 1%, 2% and 3%, respectively. The non-exceedance probabilities for the
aforementioned drift limits are assumed to be 50% (median) since the NE probabilities are not

explicitly defined in ASCE/SEI-41.

Table 2-1: Performance expectations for NEESWood Capstone Building.

Performance Expectations

Perf ismi
er I(_Jg\r/r;?nce Ze;;nrl(;: Inter-story Drift Non-exceedance
Limit Probability
Level 1 50%/50yr 1% 50%
Level 2 10%/50yr 2% 50%
Level 3 2%/50yr 4% 80%
Level 4 Near-Fault 7% 50%

Based on observations made during the NEESWood Benchmark test, non-structural
damage such as cracking of stucco and GWB occurred at inter-story drifts between 0.5% and

1%, and possible /ife-safety related failures such as total splitting of sill plates, buckling of GWB
8



at door/window openings and separation of GWB from the ceiling were reported at drifts greater
than 2% (Christovasilis et al. 2007). Hence, the 1% and 2% drift limits for the 10 and LS limit
states, respectively, were adopted for the Levels 1 and 2 performance expectations without any
modifications. It should be noted that while a 1% drift limit with a 50% NE probability was
considered to be an “acceptable” drift limit in terms of limiting financial loss, a lower drift limit
(e.g., 0.5%) combined with a higher NE probability (e.g. 80%) may be specified in the proposed
DDD approach if it is determined that a more stringent damage limitation limit state should be
considered.

At Level 3 (2%/50yr hazard), a drift limit of 4% combined with an 80% NE probability
was used as the design performance expectation. The 4% drift limit was based on the Benchmark
test results for a ground motion representative of 2%/50yr hazard level where a maximum inter-
story drift of 3.5% was recorded under a ground motion representative of 2%/50yr hazard level.
At 3.5% drift, the test structure retained about 75% of its lateral initial stiffness and did not
exhibit any visible sign of incipient collapse. Hence, the 4% drift limit was selected for Level 3.
In the proposed NEESWood performance expectations, buildings located near fault lines are
required to meet the Level 4 performance requirement, namely a 7% drift limit with a 50% NE
probability, when subjected to a suite of near-fault ground motions with strong velocity pulses.
The 7% drift limit was based on the collapse analysis of woodframe buildings (Christovasilis et
al. 2009) using incremental dynamic analysis (IDA) (Vamvatsikos and Cornell 2002) and has
been used in the ATC-63 project to evaluate the collapse probability of wood buildings (ATC

2008).



2.1 Design Spectra

The Capstone Building is assumed to be located in Southern California and founded on
stiff soil (Site Class D). The design 5% damping spectral acceleration values for seismic hazard
Levels 1 to 3 are shown in Table 2-2 and the horizontal acceleration design spectra determined in
accordance with ASCE/SEI-41 (2006) are shown in Figure 2-1. The determination of the design
spectral acceleration parameters for the 50%/50yr earthquake is given in Appendix A. These far-
field response spectra (for sites located > 10 km from fault rupture) were used in the simplified
DDD procedure to design the Capstone Building. Note that the near-fault response spectrum was
not specifically determined or used in the design process. However, a suite of un-scaled near-
fault ground motions (Krawinkler et al. 2003) were used in the NLTHA to verify the design of

the Capstone Building at Level 4.

Table 2-2: Design spectral acceleration values for 5% damping.

Spectral Acceleration
Short-period 1-second To® T
S (g)  Su®(@)  (s)  (s)

Intensity  Exceedance

Hazard Level (% of DBE)  Probability

Short Return Period Earthquake (SRE) 44% 50%/50yr 0.44 0.26 0.12 0.59
Design Basis Earthquake (DBE) 100% 10%/50yr 1.00 0.60 0.12 0.60
Maximum Credible Earthquake (MCE)  150% 2%/50yr 1.50 0.90 0.12 0.60

@)% = M = Maximum Credible Earthquake
D = Design Basis Earthquake
S = Short Return Period Earthquake
®) T3 = 0.2 Sys/Sxa
© Ts = st/sx1

10
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Figure 2-1: Design acceleration response spectra for 5% damping.
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3. STANDARD AND MIDPLY SHEAR WALLS

The Capstone Building is constructed with North American style engineered light-frame
wood shear walls with tie-down systems to restrain uplift forces caused by the overturning
moments. The shear walls are built with nominal 51 mm x 152 mm (2 in. x 6 in.) Douglas Fir
and Spruce Pine Fir studs spaced at 406 mm (16 in.) on-center and 10d common nails (3.76 mm
in diameter (0.148 in.)) are used to fasten the 11.9 mm (15/32 in.) thick Oriented Strand Board
(OSB) to the framing members. The Capstone Building is built almost entirely using
conventional North American style stud wall systems (referred as standard walls in this paper),

except for an interior wall line parallel to the longitudinal direction in which very high shear
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capacity is required (see Figures 1 and 2) along which a new system known as midply
construction is used (Varoglu et al. 2007). The midply wall system consists of standard shear
wall components but the sheathing is sandwiched between studs that are rotated 90 degrees with
respect to those in standard walls and the sheathing is attached to the wide faces of the studs (see
Figure 3-1). The sheathing nails in midply walls are driven through studs at one side of the
sheathing panel and into studs on the opposite side of the panel resulting in fasteners working in

double-shear.

Standard fConventionai Waii System
Stud Shecathing
4

A ——.. | .. Nailin Singic-shecar
ly i N o Ty -
IXIX] ~>K Xl (. —
LAY 0N — £y A 1| \WI
S~ Dirywwall | N
. A e «— |
405 mm 406 mm | 406 mm | /’_k}l
Midply Wail System S
< . P S P I Nailin Doubie-shear
Sheathing txterior Cladaing/ Sheathing -
~ T N [
I, ol < 1 g - -2 €
{— 2 — - e L~
A< | N | BB >
<
\Drywa\l I —
o E f
406 mm 406 mm

Figure 3-1: Cross-section of standard and midply walls.

The complete shear wall backbone curve is required in the simplified DDD procedure.
Both standard and midply shear walls were modeled using the M-CASHEW program, a Matlab
version of the CASHEW (Cyclic Analysis of Wood SHEar Walls) program (Folz and Filiatrault
2001a). The M-CASHEW program can be used to predict the load-displacement response at the
top of the wall by modeling the relative movements of the shear wall components (panels and
framing members) and the individual load-slip response of nails. The backbone response of a
wood shear wall is given by the following five-parameter equation which consists of a nonlinear

logarithmic ascending branch and a linear descending (softening) branch:
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1—e o (rlKOA—i—F;]) for ASAu

(2)

FE +nK(A-A,) for A>A,
The backbone parameters are depicted graphically in Figure 3-2.

Force, Fp(A)

A,

| >
Displacement, A

Figure 3-2: Shear wall backbone parameters.

3.1 Connector Parameters

In the M-CASHEW model, the nails are modeled using a modified Stewart hysteretic
model (Stewart 1987) which includes hysteresis pinching, strength and stiffness degradation (

Figure 3-3). The hysteretic parameters for the sheathing nails and dry wall screws are
shown in Table 3-1. Note that the hysteretic parameters for 8d box (2.87 mm in diameter) and
10d common (3.76 mm in diameter) nails were determined by fitting actual cyclic nail test data.
The double-shear connector parameters, however, were calibrated by modifying the single-shear

nail parameters to match the midply wall test results by Varoglu et. al (2007).
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Figure 3-3: Modified Stewart hysteretic model (nonlinear spring).

Table 3-1: Connector parameters for nails in single- and double-shear.

Shear Ko Fo Fi A, a B

r r r r
Mode  (kN/mm) ! 2 N N (kN)  (kN)  (mm)
8d box nail (2.87 mm dia.) and 9.5 mm OSB
Single® 0.85 0.035 -0.049 140 0.015 0801 0.187 1219 08 1.1
Double 1.71 0.035 -0.0392 140 0.015 1601 0.187 9.75 08 1.1
10d common nail (3.76 mm dia.) and 11.9 mm OSB
Single® 1.55 0.0289 -0.0268 1.04 0.0094 0.979 0.133 864 0.73 14
Double 3.11 0.0289 -0.0214 1.04 0.0094 1.957 0.133 691 0.73 14

#6 bugle head dry wall screw (3.61 mm dia. x 31.75 mm long) and 12.7 mm GWB
Single(c) 2.63 0.018 -0.015 1.1 0.002 0.423 0.044 3.56 0.8 1.1
(a) Based on the nail test results for nominal 51 mm (2 in.) thick framing member attached to 9.5 mm (3/8 in.) thick OSB

using 8d box gun nails (Folz 2001).

(b) Based on the cyclic and monotonic nail test results for nominal 51 mm (2 in.) thick Hem Fir stud attached to 11.9 mm
(15/32”) thick OSB using 10d common nail (Coyne 2007).

(c) The connector parameters were estimated by matching the M-CASHEW model backbone responses to the actual GWB-
only wall test results obtained from the CUREE Task 1.3.1 Test Group 12 (Gatto and Uang 2001) and CUREE Task 1.4.4

Test Group 19 (Pardoen et al. 2003).




Figure 3-4 shows a 2.44 m X 2.44 m (8 ft. x 8 ft.) midply shear wall (test M47-01)
constructed with nominal 51 mm (2 in.) thick Spruce Pine Fir studs spaced at 610 mm (24 in.)
on-center. Sheathing nails were spaced at 102 mm (4 in.) on-center along the panel edges and
203 mm (8 in.) along the interior studs. Power-driven nails, 3 mm (0.118 in.) in diameter and 82
mm (3.23 in.) in length, were used. Since connector data was not available for the actual power-
driven nails used to construct the midply test specimen, the parameters of the 8d box nail (having
similar diameter) tested in single-shear were used to model the test wall. To account for the
double-shear effects, the backbone parameters of the nail in single-shear were modified by
multiplying K, and F, parameters by 2, and multiplying A, and | parameters by 0.8 (Table 3-1).
This assumption is validated by comparing the hysteretic loops predicted by M-CASHEW with
those from the actual midply wall test (Figure 3-4). Using the same approach, the parameters for
the 10d common nail in double-shear were estimated and used to generate the midply backbone

parameters used in the displacement-based design of the Capstone Building.
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Figure 3-4: Model-predicted and test hysteretic loops of midply wall.

For the gypsum-to-wood framing connection (dry wall screw), a set of five backbone
parameters (K,, F,, r;, r> and A) were determined such that the model predicted backbone curve
matched the experimental results from the monotonic pushover test of two 2.44 m % 2.44 m (8ft
x 8ft) shear walls sheathed with 12 mm (1/2 in.) thick GWB on one-side only (Gatto and Uang
2001) (Figure 3-5). The remaining hysteretic parameters (73, 4, o and ) were calibrated based

on other cyclic response of shear walls sheathed with GWB (McMullin and Merrick 2001).
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Figure 3-5: Experimental monotonic curves and model predicted backbone curve of 2.44 m %
2.44 m shear wall with 12 mm thick gypsum wallboard.

3.2 Shear Wall Backbone Database

Using the single- and double-shear 10d nail parameters presented in Table 3-1, the
nonlinear shear spring elements of standard and midply shear walls were constructed using the
M-CASHEW program. Similarly, the shear spring elements for the GWB walls were constructed
using the single-shear dry wall screw parameters listed in Table 3-1. These shear spring elements
were used to generate the displacement-based shear wall design table / database. The shear wall
database contains the backbone parameters for 2.74 m (9 ft) and 2.44 m (8 ft) tall standard and
midply shear walls with field nail spacing of 305 mm (12 in.) and edge nail spacings of 51, 76,

102 and 152 mm (2, 3, 4, and 6 in.) are shown in Table 3-2. The shear wall database can also be
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presented in graphical format (e.g., Figure 3-6). Also shown in Table 3-2 are the backbone
parameters for walls sheathed with only 12.7 mm (1/2 in.) thick GWB (i.e., no structural
sheathing) connected by 31.75 mm (1.25 in.) long #6 bugle head drywall screws at 406 mm (16
in.) on-center. The backbone curve for a wall sheathed with OSB on one side and drywall on the
opposite side can be approximated by summing the OSB and GWB backbone curves. This
modeling approach has been used by others (White and Ventura 2006; Folz and Filiatrault
2001b; Kim and Rosowsky 2005). The complete shear wall database for 2.44 m (8 ft) and 2.74 m

(9 ft) tall walls can be found in Appendix B.

Table 3-2: Displacement-based shear wall design table for unit wall width (per m).

Wall Edge Backbone Force at Different Drift Levels
Height Wall Type/ Nail Ko £ (kN)
(m) Panel Layer Spacing (kN/mm) u
(mm) (kN) = 05% 1.0% 20% 3.0% 4.0%
51 2.269 3168 1942 2668 316 27.36 2292
Standard® 76 1.861 2137 1441 1875 2122 18.05 14.88
102 1.586 16.40 1149 1453 16.13 1369 11.24
152 1.138 11.20 812 1013 11.01 944 7.87
2.74 51 2.890 61.53 = 29.82 46.39 6152 53.09 44.66
Midply® 76 2.514 41.81 2383 3475 4095 355 30.05
102 2.208 3183 1976 27.69 30.79 26.77 22.75
152 1.813 2170  14.85 19.69 20.93 1827 15.60
GWB® 406 0.743 203 | 195 185 137 088 0.39
51 2.432 322 1915 26.82 32.05 28.13 23.82
Standard® 76 2.176 2194 148 1917 2187 187 1552
102 1.740 16.75 | 11.64 1491 16.58 14.18 11.79
152 1.356 1141 834 103 11.27 9.65 8.03
2.44 51 2.971 63.47 2828 4533 6269 558 47.52
Midply® 76 2.633 4267 2294 3433 4195 36.58 31.21
102 2.396 3226 19.42 2756 315 2754 2357
152 1.988 2211 1479 19.87 21.38 18.76 16.14
GwB® 406 1.231 211  2.04 188 130 073 0.16

(a) Standard wall model is built with 11.9 mm thick OSB connected to framing members by 10d common
nails (3.76 mm dia.) in single-shear.

(b) Midply wall model is built with 11.9 mm thick OSB connected to framing members by 10d common nails
(3.76mm dia.) in double-shear

(c) Gypsum wall board model is built with 12.7 mm thick GWB connected to framing members by #6 bugle
head drywall screws (3.61 mm dia.) in single-shear.
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Figure 3-6: Shear wall backbone and K/K, curves for 2.44m (8 ft) tall (a) standard and (b)

midply walls built with 10d common nails and 11.9 mm OSB.
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3.3 Hysteretic Damping Model for Wood Shear Walls

Hysteretic damping, &y, in the wood shear wall can be estimated using the following

equation:
1 EOO 1 EDG
ghyst = = =4 l pz (3)
dr E,, 27w KA,
where £, is the energy dissipated by the actual nonlinear shear wall in one complete cycle and

E, i1s the strain energy of the linear-elastic system at the target displacement, A, and secant
stiffness, K, determined at A, . Figure 3-7 shows the determination of hysteretic damping for the

APA shear wall test designated 2004-14 8dcom (Martin 2004) at a target displacement of 56.8

mm.
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Figure 3-7: Determination of hysteretic damping of wood shear wall.

The actual test hysteretic loops were first fitted to the 10-parameter modified Stewart
model. Next, the fitted wall parameters were used to generate nonlinear hysteretic loops at
different target displacements and the hysteretic damping values were calculated using equation
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(3). Using the same approach, hysteretic damping values for standard and midply shear walls
tested by different laboratories (Martin and Skaggs 2003; Varoglu et al. 2007; Pardoen et al.
2003) were calculated and plotted in Figure 3-8. The results show that the hysteretic damping
can be characterized using the secant-to-initial stiffness ratio (K,/Kj) :

—1.38%
é’hyst = 0328 ? (4)

Once a target/design wall drift limit has been selected, the secant-to-initial stiffness ratio can be
calculated (or interpolated) using the displacement-based shear wall design database (Table 3-2)
and the resulting equivalent hysteretic damping ratio can be computed using equation (4). Other
studies of hysteretic damping based on the results of cyclic pushover analyses of woodframe
structures suggested an equivalent viscous damping ratio of about 18% of critical when the
lateral stiffness of the structure degrades to 33% of its initial stiffness (Filiatrault et al. 2003). At
K/K, of 0.33, the damping model proposed in this study yields an equivalent hysteretic damping

of 20% (Figure 3-8) which is very close to the value suggested by Filiatrault et al. (2003).

0.4 \ \ \ \
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Figure 3-8: Equivalent hysteretic damping model.
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4. SIMPLIFIED DIRECT DISPLACEMENT DESIGN (DDD) PROCEDURE

The DDD procedure used to design the shear walls of the six-story NEESWood Capstone
Building is a simplified version of the original DDD procedure (Pang and Rosowsky 2009). The
original DDD procedure was intended to meet specified drift limits with a 50% non-exceedance
probability (median) and inter-story drifts are estimated using a normalized modal analysis
which includes contributions from all vibration modes. The main advantages of the new
simplified DDD procedure are that (1) it does not require modal analysis and thus allows the

design to be completed using a spreadsheet, and (2) it allows consideration of drift limit non-
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exceedance probabilities other than 50%. Table 4-1 summarizes the information used to calculate
the design forces for Performance Level 3. These design forces were obtained using the
simplified DDD procedure, which is described in the following sections. The complete details of

the DDD calculations for Performance Levels 1 to 3 are given in Appendix C.

Table 4-1: Summary of DDD calculations for design Level 3.

WA, * W*Aofz x
Story hs ho Oit W Ait Ao (kN- Cv B Cv ho x10 Vs Ks F F ho
(M) (m) (%) (kN) (mm) (mm) o v (m) (sz-) (kN) (kN/mm) (kN) (kN-m)
mm

1 3.05 3.056 213502 65 65 32554 0.0591.000 0.18 2111 2185 33.68 129 393.9
2 274 579 213 474 58 123 58401 0.1060.941 0.61 7196 2055 3521 232 1342.6
3 274 853213474 58 182 86064 0.1560.835 1.33 15629 1823 31.24 342 2915.8
4 2741128213 474 58 240 113727 0.2070.678 2.33 27290 1482 25.39 451 5091.4
5 274 14.022.13 505 58 298 150597 0.2740.472 3.84 44928 1030 17.65 598 8382.0
6 2.74 16.762.13 305 58 357 1089650.1980.198 3.32 38868 433 7.41 433 7251.4
3 2734 Ngg= 247 550308 1.000 hes= 11.62 136022 2185 25377.1

Step 1: Determine adjustment factor for specified non-exceedance (NE) probability at the
design drift limit.

The inter-story drift limit for seismic hazard Level 3 (MCE) is 4% with an 80% non-
exceedance probability. All other hazard levels were associated with 50% NE probabilities (i.e.,
median values). The design spectrum specified in both ASCE/SEI-7 (2005) and ASCE/SEI-41
(2006) represents the median demand for the specified hazard level. In order to design for a
target non-exceedance probability of inter-story drift greater than the median, the design spectral

value must be adjusted upward to reflect the increase in the design non-exceedance probability.

The design spectral acceleration adjusted for NE probability, Sx, is equal to the product of the

code-specified spectral acceleration value (median) and the adjustment factor, Cyg:

Sx=C,,S, (5)
The factor Cyg is assumed to be lognormally distributed with a median value of 1.0 (assuming

that the code specified median value is unbiased) and a logarithmic standard deviation, Sz, which
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accounts for the uncertainty of the ground motions, frp, as well as the uncertainty associated

with the design procedure (i.e., simplified DDD procedure), fps:

ﬂR = \IIBEQZ + IBDS2 (6)

Figure 4-1 shows the response spectra of the ATC-63 far-field ground motion ensemble scaled to
the MCE level (Level 3) and the logarithmic standard deviation of the response spectra, fzo. The
uncertainty due to the ground motion varies from about 0.35 to 0.5. Following the ATC-63
study, a fixed value of 0.4 was assumed for the fzp. The simplified DDD procedure does not
explicitly account for a number of factors that might affect the actual inter-story drift response
such as torsion, higher mode effects, anchor tiedown system (continuous rod) elongation and
compression of the chord members, or flexible diaphragms. The uncertainties introduced into the
analysis arising from these assumptions/simplifications, fps, was assumed to be 0.6 and the total

uncertainty S, rounded up to the nearest 0.05, was determined to be 0.75 using equation (6).
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Figure 4-1: ATC-63 far-field ground motion ensemble scaled to the Level 3 (MCE) design
spectrum.
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The adjustment factor for the NE probability can be determined using the inverse of the
lognormal cumulative distribution function (CDF) with median value of 1.0 (logarithmic median
=0).

Cy; = exp[®@(NE,) B, +In(1)] = exp[®@ (NE,) 5, ] (7)
where ®7'(.) is the inverse CDF of the standard normal distribution. Figure 4-2 shows two CDFs
with logarithmic standard deviations of 0.40 and 0.75. The CDF with logarithmic standard
deviation, £, , of 0.40 includes only the ground motion uncertainty while the CDF with £, of
0.75 includes both the ground motion and the design procedure uncertainties. The CDF with the
higher logarithmic standard deviation (i.e., 0.75) has a greater dispersion and it produces a larger
adjustment factor, Cyz. Using equation (7), the Cyg factor for the Capstone Building Level 3

design with 80% non-exceedance probability was determined to be 1.88 (Figure 4-2).
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Figure 4-2: Adjustment factor for non-exceedance probability.

Step 2: Select a design inter-story drift.

The proposed NEESWood drift limit for seismic hazard Level 3 is 4%. The design inter-
story drift adjusted for NE probability was 4%/Cng =2.13%, an equivalent 50% NE drift limit,
B.450. Figure 4-3 shows the target peak inter-story drift curve for seismic hazard Level 3. Note
that the median of the new peak inter-story drift distribution curve is equal to &.,45. The
equivalent 50% NE inter-story drift limit was used in the displacement-based design of the six-
story building (Table 4-1). While a constant inter-story drift limit was used throughout the design
of the six-story Capstone Building, the procedure allows different inter-story drift limits to be

assigned to each story if desired.
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Figure 4-3: Target peak inter-story drift distribution curve.

Step 3: Calculate the vertical distribution factors for base shear, C , as:

C = VI/onf
! Z Wihoi
1

Where subscript i is the floor number, W is the lumped seismic weight of the floor or the roof

(8)

diaphragm and A, is the target floor displacement relative to the ground (Figure 4-4). The

seismic weights listed in Table 4-1 were estimated based on the tributary area of the shear walls

(i.e., half of the wall weight was assigned to the floor above and half to the floor below).
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Figure 4-4: Example 6-story building and substitute structure for DDD procedure.

Step 4: Calculate the effective height, 7, , for the substitute structure modeled as a single-
degree-of-freedom (SDOF) system.

The effective height is located at the centroid of the assumed lateral force distribution and

1s calculated as:

; C, h,,;
h‘?ff = —Z CV‘ - = Zi:cvi hOl (9)
7 i

where f,; 1s the story shear factor computed as the sum of the vertical distribution factors, ¢,;, on
and above the i floor and 4, is the floor height with respect to the ground. For typical multi-
story buildings with approximately equal story heights and seismic weights at each story, the
ratio of effective-to-roof height generally is about 0.7. The effective height for the six-story

Capstone Building was determined to be 11.62 m (see Table 4-1), or 0.69 times the roof height

(16.76 m).

31



Step S: Use interpolation to obtain the target displacement at the effective height, A, or
target drift at effective height, ¢, .

The effective height, 11.62 m (38.11 ft), for the NEESWood Capstone Building is located
between levels 4 and 5 (Table 4-1). Using interpolation, the effective displacement with respect
to the ground level is 247 mm (9.73 inches).

Step 6: Calculate the effective seismic weight, 7, , of the substitute structure:

2]

Wy = Swa, (10)

The > A, and Y wA,* terms are shown in last row of Table 4-1. The effective seismic
weighlt for the six—;tory NEESWood Capstone Building is (550308)%/(136022x10%) = 2226 kN
(500.5 kip). For most mid-rise buildings of regular plan, the effective seismic weight usually is
about 80% of the total seismic weight. For the Capstone Building, the effective seismic weight is

81% of its total weight.

Step 7: Determine the damping reduction factor, B,, per ASCE/SEI-41 (2006) section

1.6.1.5 as:
4

Ty (11)
where ¢, is the effective viscous damping as a fraction of the critical damping, computed as the
sum of the hysteretic damping of the shear walls, ¢, (see equation (4)), and the intrinsic
damping, ¢,

Copr = Gint T Sy (12)

In the design of the six-story NEESWood Capstone Building, 5% intrinsic damping was
assumed. The intrinsic damping accounts for the damping contributions of building components

other than the shear walls (e.g., gypsum partition walls and floor diaphragms). At the equivalent
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50% NE inter-story drift limit (2.13%), and assuming most walls are built with a 51 mm (2 in.)
or 76 mm (3 in.) perimeter nailing, the K/K, ratio is about 0.30 (from Figure 3-6, Table 3-2 or ).
Substituting K/K, of 0.30 into the equivalent hysteretic damping equation (4) gives an estimated
hysteretic damping of 0.21. The total equivalent viscous damping, including the intrinsic
damping, therefore is 0.26. Using equation (11), the damping reduction factor therefore is 1.71.

Step 8. Determine the design base shear coefficient, C., using the capacity spectrum

approach as:
CNESXS

B,

2
g (CNESXI J
2
4 Aeﬁ Bg

Equation (13) is the solution for the intersection between the demand and the capacity spectra

(13)

C. =min

(Shama and Mander 2003) (Figure 4-5). For seismic hazard Level 3, the spectral design values
for short-period, Sy, and 1-second period, Sy, are 0.9 and 1.5 g, respectively (Table 2-2). The
first term of equation (13) is for a structure having a secant period (at the design displacement,
Acsr) less than or equal to the short-period, 7, defined in Section 11.4 of ASCE/SEI-7 (2005). For
most mid-rise buildings, where the secant periods are generally greater than 7 but less than 7},
the second term usually governs the design. The long-period transition period, 77, can be
obtained from ASCE/SEI-7 (2005). Using equation (13), the base shear coefficient for seismic

hazard level 3 therefore is 0.981.
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Figure 4-5: Determination of the design base shear coefficient using capacity spectrum approach.

Step 9. Calculate design forces

Once the base shear coefficient is obtained, the base shear, lateral forces, story shears,

overturning moments and the required story secant stiffnesses are calculated as:

Base shear, 7,

Equivalent static lateral forces, F;

Story shears, 7,

Overturning moment, M,

F=C,CW,, =Cy 1y

Ns
s, :ZCVJVb =BV,
Jj=i

Ny
M@:é@@%w”

where N is the total number of stories (i.e., six for the Capstone Building).

Effective secant stiffness (SDOF), K,

(14)

(15)

(16)

(17)
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_ CCVVq’f _ CcWeﬁ (18)
eeﬁ’heff Ae_ﬁ’

Required secant stiffness for each story,

K, = (19)

From Table 4-1, the design base shear and overturning moment are approximately 2185 kN (491
kips) and 25377 kN-m (18718 kip-ft), respectively. The required effective secant stiffness of the
building at the target drift limit, computed using equation (18), is 8.84 kN/mm (50.47 kip/in).
The effective secant period, computed as 27\ (gx K/ W, ), therefore is 1.01 s. Recall that the
secant-to-initial stiffness ratio of 0.30 was assumed when determining the hysteretic damping,
the minimum initial design stiffness therefore is K.;/0.30 = 29.46 kN/mm (168.23 kip/in) and the
associated initial period is 0.55 second.
Step 10. Select shear walls to meet the design story shears

The design points, or expected design inter-story drift and required story shear pairs (6
and V), are shown in Table 4-1. Shear wall nailing schedules were selected from the shear wall
database (Table 3-2 or Figure 3-6). Shear wall backbone forces were taken from the “2% drift”
column since the equivalent 50% NE inter-story drift was determined to be 2.13% for seismic
hazard Level 3. The design story shears were distributed to wall lines according to their tributary
areas. Direct summation of the equivalent stiffness of shear wall segments was used to generate
the story backbone curves. Note that this assumes no torsion and that all shear walls at the same
floor level experience the same drift. The nailing patterns for the shear walls for each floor were
determined such that the story backbone curve was above the design points (i.e., design NE 50%
drift and required story shear pairs) associated with that floor (see Figure 4-6). The required story

shears, determined using equation (16), for Levels 1 to 3 are listed in Table 4-2 (see Appendix C
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for details). The complete shear wall nail schedules for stories 1 to 6 are provided in Appendix
D. In the 1% story, most of the standard shear walls are sheathed with two layers of OSB (one
layer on each side of the wall) attached using nails with either a 51 mm (2 in.) or 76 mm (3 in.)
edge spacing (see Appendix D). At wall line B (parallel to the longitudinal direction) in the 1*

story, double-layer midply shear walls with 76 mm (3 in.) edge nail spacing were used.

Table 4-2: Design 50% NE drift limits and required story shears for Performance Levels 1 to 3.

Performance Level Level 1 Level 2 Level 3
Seismic Hazard 50%/50yr 10%/50yr 2%/50yr
Drift Drift Drift
- V. L Vs L V.
Story Limit v Limit Limit s
(%) (kN) (%) (kN) (%) (kN)
1 1.00 158.2 2.00 349.1 2.13 2184.6
2 1.00 148.9 2.00 328.5 213 2055.3
3 1.00 1321 2.00 291.4 2.13 1823.5
4 1.00 107.3 2.00 236.8 213 1481.8
5 1.00 74.6 2.00 164.7 213 1030.4
6 1.00 31.3 2.00 69.1 213 432.6
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Figure 4-6: Design points for seismic hazard Level 3 and inter-story backbone curves (a)

transverse direction and (b) longitudinal direction.
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4.1 Comparison between Force-based Design (FBD) and Displacement-
based Design (DDD)

In force-based design (FBD) procedure, the design base shear equation in the current

edition of International Building Code (ICC 20006) is:

p, = (20)

where W is the total seismic weight and /z is the occupancy important factor. For the six-story
Capstone Building, the total seismic weight was estimated to be 2734 kN (615 kip) and I =1
was assumed. R is the response modification factor which is equal to 6.5 for light-frame wood
shear wall system. S,(7;) is the design spectral acceleration at the approximate fundamental
period of the building, 7,. The approximate fundamental period of the six-story building

determined using the empirical equation provided in the ASCE/SEI 7-05 (ASCE 2005) is 0.40s.

T =Ch’ (21)
where £, is the roof height of the structure (55 ft or 16.76 m) and C; is the approximate period
parameter which is equal to 0.0488 or 0.02 when the building height is expressed in SI or US
customary units, respectively. For woodframe structures, the exponent x is equal to 0.75. Note
that the design hazard level for the FBD procedure is the same as the NEESWood seismic hazard
Level 2. Therefore, the design spectral acceleration, S,(7,=0.40s), is equal to 1.0 g (Figure 2-1).
The design forces, determined using the FBD procedure, are summarized in Table 4-3.
The FBD base shear and overturning moment are 421 kN (95 kip) and 4886 m-kN (3604 ft-kip),
respectively. According to the FBD procedure, the design base shear-to-total building weight
ratio, V/W, is 0.154 (Table 4-4). Note that the seismic hazard associated with the FBD procedure

is the same as the NEESWood seismic hazard Level 2. The DDD V/W ratio for seismic hazard

Level 2 is 0.128 which is slightly lower than the FBD V/W ratio. However, Figure 4-6 shows that
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the controlling design level is seismic hazard Level 3. In order to satisfy the design requirement

for Performance Level 3 (i.e., 4% drift limit with 80% NE probability), the six-story Capstone

Building must have a maximum base shear capacity of at least 79.9% of the total building weight.

Note that the FBD procedure considers only one design requirement/objective. Furthermore, the

FBD base shear ratio is computed as 1/R which means the V/W ratio is a constant value for all

buildings with light-frame wood shear wall systems. On the other hand, the DDD V/W ratios are

function of the design requirements (i.e., seismic hazard level, drift limit and target NE

probability). This means that, using the DDD procedure, structures can be designed to meet

owners’ specifications or needs that are beyond the current code requirement.

Table 4-3: Design forces for force-based procedure.

w h, W*h,

W*ho/

F

Vs

F*h,

2
SOV (N)  (m) (kN-m) S(W'hy) (kN)  (kN) (m-kn) KN/ FIW

1 502 3.05 1530 0.059 24.88 420.6 75.8 1.910 0.050
2 474 579 2745 0.106 4464 3957 2585 1.797 0.094
3 474 853 4045 0.156 65.78 3511 5614 1.595 0.139
4 474 11.28 5345 0.207 86.93 285.3 980.3 1.296 0.183
5 505 14.02 7078 0.274 11511 1984 16139 0.901 0.228
6 305 16.76 5121 0.198 83.29 83.3 1396.2 0.378 0.273
)y 2734 25863 1.000 420.62 4886.2

@ Approximate Fundamental Period = 040 s

®)Base Shear/Total Weight = 0.154

@ T, = Cih,*= 0.0488(16.76)""° = 0.404s

P R=65

Table 4-4: Comparison between FBD and DDD base shears and overturning moments.

FBD DDD
Performance Level Level 2 Level 1 Level 2 Level 3
Seismic Hazard ®10%/50yr | 50%/50yr  10%/50yr  2%/50yr
Base Shear (kN) 421.6 158.2 349.1 2184.6
Base Shear/Total Building Weight® 0.154 0.058 0.128 0.799
Base Overturning Moment (m-kN) 4976 1838 4056 25382

@ Total building weight = 2734 kN (614.7 kip)
® The spectral acceleration values for the FBD are computed as 2/3 of the mapped spectral accelerations at the

MCE level (2%/50yr).

39






5. NUMERICAL MODELS FOR THE SIX-STORY CAPSTONE BUILDING

5.1 Pseudo-3D / 2D Model for Nonlinear Time-history Analysis (NLTHA)

A numerical model for the Capstone Building was constructed using the M-SAWS
program, a Matlab version of the SAWS (Seismic Analysis of Woodframe Structures) program,
which considers only the pure-shear deformation of the shear walls (Folz and Filiatrault, 2001b).
In the M-SAWS model, rigid diaphragms with one rotational and two in-plane translational

degrees of freedom are assumed for each floor and roof diaphragm (Figure 5-1). Each shear wall
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was modeled as a zero-height nonlinear SDOF spring using the modified Stewart hysteretic
model in the M-CASHEW program (see

Figure 3-3). Since the height of the shear wall was not explicitly considered, the M-
SAWS model is herein referred to as the pseudo-3D or 2D model.

The load-displacement responses for 2.44 m (8 ft) wide standard and midply shear walls
built with different nail spacings were predicted using the M-CASHEW and a system
identification procedure was used to obtain a set of ten parameters to describe the global
hysteretic behavior of each shear wall. The values for parameters K,, F,, and F; were then
divided by the width of the shear wall (i.e. 2.44 m or 8 ft) to obtain the unit-width hysteretic
parameters (see Appendix E). In the M-SAWS model, only the full-height shear wall segments
were considered and the sheathing panel above and below the windows and door openings were
ignored. For each full-height shear wall in the Capstone Building, the hysteretic parameters K,,
F,, and F; were adjusted for the length of the wall pier while other parameters (r;, 7, 73, r4, A, &
and f) were unchanged. All perimeter shear walls were sheathed with one layer of GWB on one
side of the wall only while both sides of the interior shear walls were sheathed with GWBs.

The damping matrix used in the NLTHA was determined using the Rayleigh damping
model with equal damping ratios assigned to the 1" and 2" modes. Since the hysteretic damping
is accounted for in the nonlinear hysteresis model itself, low level of damping values (2% and
5% of critical dampings) were used in the nonlinear time-history analysis (NLTHA). Assuming a
2% damping in the NLTHA is believed to be a conservative estimate for the viscous damping of
the test building since the lateral stiffness of the structural panels above and below the door and
window openings were not explicitly considered in the numerical model. On the other hand,

assigning a 5% viscous damping in the NLTHA is consistent with the 5% intrinsic damping
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value assumed in the DDD procedure (see equation (12)). The 2% and 5% damping values

approximately bound the actual viscous damping of the test building.

—

e,
Bl seismic Analysis of Wood Structures [File: NWood 6story DDD_UB10de 17Apr2009 ATCERSSSmme,

)/ * dgiaae

File Time History Analysis  Display Figure Export Window Tools Da_t=

-

&-story NEESWood Buiking DD, UB 10dc

y-aKis

Total Seismic Mass : 1.6008

%! znem) Cpon | [rier] [ cusr] [ 0 | s

. 48 Panel, Dec-22-08 G

X-QRie

.| @ visble @ fi
-/ [7) dependents
[ ozse7 |
L m

a5T  frea 341202

Coordinate (X,1.2)

478,0,120
478,714,120
0,714,120

=

Total Diaphragm hizss: 16001

G E)

Y-SN&Y-TD

-

F-TD 10 0-=1 ¥: 478

Connectivity [

¥-Coordinate |

' Bidinear ,,7

¥ Biinear ,,7

=l _': (7 visible @) label

| V-Coordinate | | Spacing|

WBeam-Y Sgrings [ 2ol |

0 vt - (om -
500 -5V 2 <h09wds16c10n0212_kIf par= 1:0=
'f-5¥W 3 : <h09w4s16c10n0212_kif par= 1:
&00 . .
Nonlinear Spring
- 400 (-5 B: <h03w4s16¢10n0312_df par=1: _
i UG NG BA10RT1 T W nars 1.
= 4| m | r
¥ 300 T T Ta R Pigplaramant
Comectivtyln  w| |1 v |(@ visiole @ fll @ hyst  nisyer T i
00 ¥Coordinate | 0 | Y-Coordinate [gsgzs | Widh 12 || 1 |[sgerr|  Fudog
Ko il ] B ) Fo Fi deha  apha  beta
1o Fetation (ceg) 30402 0033066 0071273 101 [0.033434] 10004 [024247 | 288 |078009 | 12409 |
o010 —-Tie-cown | gaq | pa |
il M VID 1 0ot X —
Eiinfo: i
Y- -
Y-TD4:0->1X:0
f-TD 5 0-=1 3121
'f-TD 6 0-=1 30121
Y-TD 7: 0-=1 X: 239
f-TD & 0-=1 ) 239
'f-TD 9: 0-=1 }: 238

__ Discrete Seismic Mass : Del B . Eeam-XSprings (g | | 0o
—— Coordingte (¥, Z—  visible = e :
= () visible = () visible Diaphragm Humber: I &l = hdl visible | visible
comneetivty | | |y e Comnectivty [p o1 || w Selsmis Mass Bending Stiffness: | Bending Stiffness: ]
%Coordnate| | V-Coorinata ||| Y.Coordinste | ¥ Coardinate | Retational hiass ‘ T
e | el Dy: | | ke[ T o] Total Disrete hhass © - - -

Figure 5-1: M-SAWS model for the six-story NEESWood Capstone Building.

5.2 3D Model for Nonlinear Time-history Analysis (NLTHA)

Although light-frame wood buildings generally are treated as lateral shear-dominant
systems in design, they can also be affected by vertical excitation and overturning moment which
induces tension forces in the shear wall hold-down system and can cause cumulative elongation
of the hold-down rods, especially in buildings exceeding three stories. Pei and van de Lindt
(2009) developed a simplified model that is capable of incorporating the effect of overturning
and uplift as well as the vertical ground motion excitation in the seismic responses of woodframe
structures. The proposed model for wood structures with vertical/uplift effects is quite different
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from the shear-only model in that the model assigns six degrees-of-freedom at each story
diaphragm and includes the stiffness of the hold-down system and the vertical stiffness of shear
walls provided by the vertical framing members. The diaphragm is allowed to move and rotate
out of the horizontal plane, adding another dimension to the dynamic analysis to make it three-
dimensional (3D). Figure 5-2 illustrates the kinematics of the 3D diaphragm model. It is also
worth pointing out that the lateral displacement of higher stories will be effected by the out-of-

plane rotation (rocking) of lower floors and this effect is cumulative.

Diaphragm / | h
M oci s
A
ZI-)I/)”.{

1 \General spring

Diaphragm {

Figure 5-2: Kinematics of six degrees-of-freedom diaphragm model.

The same nonlinear hysteretic shear springs used in the 2D model also were used to
model the shear walls in the 3D model. In addition to the nonlinear horizontal shear spring, an
un-symmetrical linear vertical spring was used to model the uplift effect of the hold-downs/tie-
down rods and the compression of the stud packs (Figure 5-3). The 3D model has been
implemented into the SAPWood program, developed as part of the NEESWood project. The
SAPWood program also was used to perform the 3D NLTHA to verify the applicability of the

DDD procedure.
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Figure 5-3: SAPWood model for the six-story NEESWood Capstone Building.

5.3 Static Pushover Analyses

Monotonic pushover analyses were performed using the M-SAWS model. Figure 6-3
shows the monotonic pushover curves obtained by applying an inverted triangular lateral load
parallel to the transverse (x-axis) and the longitudinal (y-axis) of the test building. The maximum
base shears in the transverse and longitudinal directions are 2320 kN (521.6 kips) and 2303 kN
(517.5 kips), respectively, which occurs at a roof drift ratio of 1.27% and 1.18%, respectively

(roof height is 16.76 m). The model predicted base shear-to-building weight ratios at the peak of
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the pushover curves, V/W are approximately 0.84. It should be noted that the static pushover
curves include only the nonlinear restoring force of the shear walls. Therefore, the maximum
“dynamic” base shears based on earthquake/shake-table tests are expected to be higher than that
predicted by the pushover analyses. For comparison purposes, the design base shear values for
the FBD and DDD are also labeled in Figure 6-3. The maximum pushover base shears in both
directions are higher than the design base shears thus confirmed that the as-designed six-story

Capstone Building has adequate base shear capacity for performance Levels 1 to 3.

Roof Drift (%)
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Figure 5-4: Pushover curves of the as-designed six-story Capstone Building (M-SAWS model)
and DDD vs. FBD base shear-to-total building weight ratios.
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5.4 Modal Analyses

Modal analyses were performed to obtain the periods and mode shapes of the Capstone
Building (Appendix F). The fundamental periods calculated using the initial stiffness of the M-
SAWS and SAPWood models were 0.375s and 0.398s, respectively (Table 5-1). Including the
vertical effects in the SAPWood model results in slightly higher initial periods than those
obtained from the 2D M-SAWS model. The models predicted fundamental periods are very close
to the approximate fundamental period specified by the design code (0.40s).

Table 5-1: First three periods of the M-SAWS and SAPWood models.

Model M-SAWS SAPWood
Mode Initial Stiffness Tangent Stiffness Initial Stiffness
at 0.15% Drift
1 0.375 0.537 0.398
0.359 0.505 0.391
3 0.320 0.443 0.321

The model predicted periods listed in Table 5-1 include the stiffness contribution of GWBs
attached to the shear walls. However, full-scale wall tests show that the stiffness contribution of
GWB diminishes quickly at very low drift level (~0.5%, see Figure 3-5). To obtain an upper
bound estimate of the fundamental period, modal analysis also was performed using the global
tangent stiffness of the M-SAWS model at a very low drift level (0.15% roof drift or 2.54 cm (1
in) roof displacement). Specifically, pushover analysis was first performed at each of the
horizontal directions to achieve a 0.15% drift at the roof level. Then, modal analysis was
performed using the global tangent stiffness of the lightly “damaged” building. The first three
mode shapes and periods of the Capstone Building based on the tangent stiffness at 0.15% drift
are shown in

Figure 5-5. The fundamental period at 0.15% drift is about 0.54s which corresponds to a

primary translational mode shape drift in the Y (longitudinal) direction. The second mode is a
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pure translational mode in the X (transverse) direction with negligible rotation. Mode 3 is a pure
rotational or torsional mode which causes the building to twist around the center of gravity of the
floor diaphragms. The fundamental period at 0.15% drift (0.54s) is relatively close to the upper

limit of the approximate period specified by the design code (0.57s, see Appendix G).
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Figure 5-5: First three mode shapes of the M-SAWS model based on tangent stiffness at 0.15%
drift.

5.5 Ground Motions

Two sets of ground motion ensembles were considered in the 2D NLTHA: (1) 22 bi-axial
ATC-63 far-field ground motions scaled according to the ATC-63 methodology (ATC 2008) for
seismic hazard Levels 1-3, and (2) six bi-axial CUREE unscaled near-fault ground motions

(Krawinkler et al. 2003) for seismic hazard Level 4 (Appendix H). For hazard Levels 1-3, the
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median response spectrum of the normalized ground motion ensemble was scaled using a single
scaling factor to match the design 5%-damped spectral acceleration at the upper limit of the code
prescribed fundamental period of the building (ATC 2008).

According to ASCE-07 (2005), the upper limit of the approximate fundamental period, 7,
of the Capstone Building is 0.57s. The median spectral acceleration, S,, of the normalized ATC-
63 far field ground motion suite at 7,,= 0.57s is 0.655 g (Figure 5-6). Therefore, the ensemble
scaling factor for seismic hazard Level 3 (2%/50yr or MCE) is 1.50g/0.655g = 2.290, where 1.50
g is the code specified spectral acceleration value for the MCE level. The scale factors for
adjusting the 22 bi-axial ATC-63 far-field ground motions to match the design seismic hazard
Levels 1 to 3 are given in Appendix G.

The ground motions were scaled and the building was analyzed at each of the three
performance levels. The bi-axial ground motions also were rotated by 90-degrees and thus, at
each performance level, the building was analyzed twice for each of the 22 record pairs for a
total of 44 analyses. Similarly, the building was also analyzed using the six pairs of near-fault
ground motions rotated at 0 and 90 degrees for seismic hazard Level 4 for a total of 12 analyses.
These ground motion ensembles were used in both the 2D and 3D NLTHA to obtain the
maximum inter-story drifts of the designed structure at the four design ground motion intensity

levels.
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Figure 5-6: Example scaling of the ATC-63 far-field ground motion ensemble.
5.6 Expected Peak Inter-story Drift Distributions
The peak inter-story drifts obtained from the 2D NLTHA for seismic intensity Level 3
(2%/50yr or MCE) are shown in Figure 5-7. Each point represents the maximum inter-story drift
recorded from a NLTHA for a particular bi-axial ground motion record rotated at either 0 or 90
degrees. The sample cumulative distribution function (CDF) was constructed from the rank-
ordered peak inter-story drifts (dots in Figure 5-7) which were also fitted to a lognormal

distribution function given by :

Py (0) = q)(ln—(eg,_ﬂJ (22)

where ®(.) is the CDF of the standard normal distribution, A is the logarithmic median, and & is
the logarithmic standard deviation. The term Pyg(6) defines the non-exceedance probability at a

given inter-story drift, 6.
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Figure 5-7: Lognormal distribution fit of the peak inter-story drifts for Seismic Hazard Level 3.

The peak inter-story drift distributions based on results from the 3D and 2D NLTHA are
shown in Figure 5-8 and the corresponding NE probabilities at the design drift limits are
summarized in Table 5-2. Note that the upper and lower bounds of the peak drift distributions are
based on the NLTHA results with viscous damping values of 2% and 5%, respectively. For the
six-story woodframe structure designed in this study, the differences in the inter-story drifts
between the shear-only (2D) model and the three-dimensional model are not felt to be
significant. This result is not unexpected because of the aspect ratio (lateral dimension to height
ratio approximately equal to one) of the building that makes the dynamic behavior shear-
dominant, which is commonly seen in most typical woodframe building floor plans, i.e. multi-
unit residential structures.

In summary, both the 2D and 3D NLTHA indicate that the Capstone Building designed
using the simplified DDD procedure satisfies all four design objectives. As stated previously, the
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peak drift distribution curves with 5% viscous damping are felt to be most representative of the
actual performance of the test building. As can be seen from the peak drift distribution curves
with 5% damping (Figure 5-8), the Capstone Building designed using DDD procedure performs
satisfactorily (i.e., meets performance requirements) at all four hazard levels. The median peak
drifts at the Levels 1 and 2 were considerably lower than the 1% and 2% drift limits, while the
median peak drift at the Level 3 was 1.41% with a 97% probability of not exceeding the 4% drift
limit. At Level 4, the probability of exceeding the 7% drift limit was approximately 13% which
satisfied the near-fault ground motion performance requirement.

While the peak drift distribution curves with 5% damping were used to verify the seismic
performance of the Capstone Building, it should be noted that the design criteria are not tied to
the 5% equivalent damping value. An appropriate equivalent viscous damping should be
determined for each specific building based on the amount of damping expected from the non-
structural elements such as the partition walls and exterior cladding. In addition to the NLTHA
with 5% damping, a more conservative assumption of 2% equivalent viscous damping value also
was used in the NLTHA to estimate the upper bounds for peak inter-story drifts. The peak drift
distribution curves with 2% damping show that the performance requirements are met at all
hazard levels except for Level 3 (Table 5-2). Based on the 2D model with 2% equivalent
damping, the probability of not exceeding the design drift limit at seismic hazard Level 3 was
75%, which was slightly lower that the design goal (i.e. 80% NE probability). The uncertainties
associate with the numerical model and ground motion justify the acceptance of this design since
the non-exceedance probability of inter-story drift was within few percents of the design goal
and furthermore it was based on a more conservative damping assumption.

The drift profiles (relative to the ground) of two selected earthquake records at the MCE

level (2%/50yr) also are shown in Figure 5-8. It can be seen that the drift profiles are relatively
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Curnulative Probability

uniform which means the seismic demand was distributed evenly among the stories. In other

words, the Capstone Building does not have “weak-story”.
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Figure 5-8: Peak inter-story drift distributions of the NEESWood Capstone Building.

Table 5-2: Summary of nonlinear time-history analyses of six-story NEESWood Capstone
Building designed using DDD.

Performance Expectation

2D NLTHA (£=2%)
Upper Bound

2D NLTHA (£=5%)
Lower Bound

3D

NLTHA ({=2%)

HLZZVaLd f/lrg;g: ?)2")‘ NE; E/)V(I?: ng @ Pass? ?\Ig PgE' @ Pass? ?V(E@t PgE' @ Pass?
(%) " (%) " (%) "

Level 1 50%/50yr 1 05| 033 0.98 Yes 0.27 >0.99 Yes 0.30 >0.99 Yes

Level 2 10%/50yr | 2 0.5| 1.11 0.81 Yes 0.77 0.96 Yes 1.04 0.88 Yes

Level 3 2%/50yr 4 08| 463 0.75 Almost| 2.27 0.97 Yes 4.36 0.77 Almost

Level 4 Near-Fault| 7 05| 452 0.68 Yes 2.71 0.87  Yes 4.74 0.67 Yes
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6. ATC-63 COLLAPSE MARGIN RATIO

In addition to considering the four NEESWood performance requirements, monotonic
pushover and incremental dynamic analyses (IDA) (Vamvatsikos and Cornell 2002) were
performed to evaluate the collapse margin ratio of the test building using the ATC-63
methodology (ATC 2008). The ATC-63 methodology was developed for evaluating the collapse
risk of structures designed using the current code specified force-based procedures under
Maximum Considered Earthquake (MCE) ground motions. An evaluation of the collapse margin

ratio using the ATC-63 procedure provides additional perspective on collapse risk of the
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Capstone Building designed using the DDD procedure. To compute the collapse capacity, IDA
was performed using the ATC-63 far-field ground motions. The spectral intensity of the ground
motion causing 50% of the analyses/cases to collapse is 2.57g and the unadjusted collapse
margin ratio (CMR) is 2.57/1.50 = 1.71 (Figure 6-1). According to the ATC-63 methodology, the
raw CMR must be adjusted for the spectral shape before the acceptance criterion can be
determined.

The spectral shape factor (SSF) is a function of the seismic design category (SDC),
ductility of the structure which is determined through the pushover curve and the upper limit of
the code-defined fundamental period of the structure (ATC 2008). The Capstone Building is
designed for SDC Dy, (Southern California regions) and the code-defined period, determined
per ASCE/SEI-07 Section 12.8.2, is 0.57 second. Figure 6-3 shows the monotonic pushover
curve obtained by applying an inverted triangular lateral load parallel to the transverse direction
(x-axis) of the test building. The maximum base shear in the transverse direction is 2734 kN
(514.7 kips) and occurs at a roof drift ratio of 1.27% (roof height is 16.76 m). The seismic
coefficient at the peak of the pushover curve, V/W is 0.849. The ultimate drift (1.54%) is defined
at the point where the base shear deteriorates to 80% of the maximum value. An idealized
elastic-plastic curve is determined by defining the initial stiffness using a secant-stiffness line
that passes through the point where the base shear is at 60% of the maximum. From the elastic-
plastic curve, the “yield” drift is 0.52% and the ductility factor, u., is computed as 1.54/0.52 =
2.96. Using Table B-4 in the ATC-63 90% draft report, the SSF is 1.22 (ATC 2008). Therefore,
the adjusted collapse margin ratio (ACMR), is computed as CMRxSSF = 2.09. While only the
pushover response in the transverse direction is discussed herein, it should be noted that the
pushover curve in the longitudinal direction is very similar to that in the transverse direction.

This is because the inter-story backbone curves of the Capstone Building designed using the
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DDD procedure are very similar in two horizontal directions (Figure 4-6). Therefore, the

ACMR’s are approximately the same in both directions (ACMR in the Y-direction is 2.07).
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Figure 6-1: Collapse fragility curve of the NEESWood Capstone Building.
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Inverted Triangular Lateral Load Applied Parallel to the X-direction (Transverse)
Max. Base Shear = 521.60 kip, Seismic Weight = 614.7 kip, Roof Height = 660 in.
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Figure 6-2: Monotonic Pushover curve (transverse, X-direction) of the NEESWood Capstone
Building.
Inverted Triangular Lateral Load Applied Parallel to the Y-direction (Longitudinal)
Max. Base Shear = 517.50 kip, Seismic Weight = 614.7 kip, Roof Height = 660 in.
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Building.
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The acceptable value for the ACMR of an individual system (i.e., < 20% collapse
probability) depends on the uncertainties of the model and the design procedure. Using the same
assumptions as the ATC-63 wood building design examples, the uncertainty in ground motion
records is 0.40, design requirement uncertainty (B-Good) is 0.30, test data quality (B-Good) is
0.30, and modeling uncertainty (C-Fair) is 0.45. Thus the composite/total uncertainty, Sror, is
0.75 (Table 7-2¢, ATC 2008). The Capstone Building satisfies the ATC-63 collapse margin
requirement, since the ACMR of the Capstone Building (2.09) is higher than the acceptable
ACMR for individual building with fror of 0.75 is 1.88 (determined from Table 7-3, ATC 2008).
Based on the adjusted collapse fragility curve, the collapse probability of the Capstone Building

at MCE Level is approximately 16% (Figure 6-4).
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Figure 6-4: Adjusted collapse fragility curve of the 6-story NEESWood Capstone Building.

59






7. SUMMARY AND DISCUSSION

A simplified direct displacement design (DDD) procedure for performance-based design
of multi-story wood buildings is presented. The design procedure can be used to consider drift
limit non-exceedance probabilities other than 50%. The proposed design procedure is relatively
simple and the shear wall design process can be performed using a spreadsheet. The simplified
DDD procedure was used to design the shear walls of the six-story NEESWood Capstone
Building. To validate the design procedure, two numerical models (2D and 3D models) were
constructed and nonlinear time-history analyses (NLTHA) were performed using the ATC-63

far-field ground motions and a set of near-fault ground motions. The results of the NLTHA
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confirmed that the Capstone Building designed using the simplified DDD procedure satisfies all
four design performance requirements. Additionally, the results of the NLTHA show that the
seismic demand was distributed evenly among the stories (uniform drift profiles). Finally, the
collapse margin ratio of the Capstone Building under MCE ground motions was determined to be
acceptable per the ATC-63 methodology.

In the simplified DDD procedure, an adjustment factor Cyz was introduced to design for
performance requirements associated with non-exceedance probabilities other than the median.
While it is possible to determine Cyg for each specific building using the procedure outlined in
this study, the current procedure for determining Cyz requires the engineers to be familiar with
fragility analysis and the treatment of uncertainties at the outset. This may be viewed as a
disadvantage of the procedure since most engineers do not have expertise in fragility analysis.
One possible way to address this drawback is to pre-analyze a portfolio of buildings (e.g., the
ATC-63 woodframe structure archetypes) and develop design charts or tables for determining
Cng for use in the simplified DDD procedure. Then, design charts can be created for selection of
the adjustment factor considering different non-exceedance probabilities. This would provide a
relatively simple procedure for direct displacement design of multi-story woodframe buildings in
which the engineer is given flexibility in setting non-exceedance probabilities associated with the

different performance requirements/drift limits.
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Appendix A

Seismic Hazard for Southern California
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Seismic Hazard for Southern California:
e Seismic Design Category D
e Site Class D (stiff soil)
e Spectral values determined following the requirements of ASCE/SEI 7-05 and ASCE/SEI
41-06

Table A-1: Design spectral acceleration parameters for 5% damping.

Spectral Acceleration
Short-period 1-second T,® T
S (g)  Su®(@)  (s)  (s)

Intensity  Exceedance

Hazard Level (% of DBE) ~ Probability

Short Return Period Earthquake 44% 50%/50yr 0.44 0.26 0.12 0.59
Design Basis Earthquake (DBE) 100% 10%/50yr 1.00 0.60 0.12 0.60
Maximum Credible Earthquake (MCE)  150% 2%/50yr 1.50 0.90 0.12 0.60

@)% = M = Maximum Credible Earthquake
D = Design Basis Earthquake
S = Short Return Period Earthquake
® To = 0.2 Sxs/Sx1
© Ts = Sxs/Sxa

Mapped values for short and one-second spectral acceleration:

Ss=15¢g [representative mapped values for Southern California]
S;=06g

Site Coefficients:

F.=1.0 [Fa from ASCE/SEI 7-05, Table 11.4-1]

F,=1.5 [Fy from ASCE/SEI 7-05, Table 11.4-2]

Maximum Credible Earthquake (MCE) [ASCE/SEI 7-05, Section 11.4]
Sms=SsxF,=15%x1.0=1.5
SMi=S;xF,=0.6x1.5=0.9

Design Basis Earthquake (DBE) [ASCE/SEI 7-05, Section 11.4.4]
Sps= 2/3 X Sms = 2/3x15=1.0
Sp1 = 2/3 X Smi = 2/3x0.9=0.6

Short Return Period Earthquake (SRE) [ASCE/SEI 41-06, Section 1.6.1.3.2]
10%/50yr spectral value (i.e., Sps) < 1.5 g, use Equation 1-3:

P n
SSO%/SOyr = SlO%/SOyr (4_;5)

where Py is the mean return period
n = 0.44 for California [ASCE/SEI 41-06, Table 1-2]

0.44

Su =S 1] =044
0.44

5. =S, (47—725j ~026¢g
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Appendix B

Displacement-based Shear Wall Design Database
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Figure B-1: Shear wall backbone and ky/k, curves for 2.44 m (8 ft) tall (a) standard and (b)
Midply walls built with 10d common nails and 11.9 mm (15/32 in.) OSB.
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Appendix C

Direct Displacement Design Calculations
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Appendix D

Shear Wall Nail Schedules
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Figure D-1: Story 1 shear wall nail schedule.
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Figure D-2: Story 2 shear wall nail schedule.
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Figure D-3: Story 3 shear wall nail schedule.
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Figure D-4: Story4 shear wall nail schedule.
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Figure D-5: Story 5 shear wall nail schedule.
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Figure D-6: Story 6 shear wall nail schedule.
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Appendix E

Shear Wall Hysteretic Parameters
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Table E-1: Shear wall hysteretic parameters for unit wall width (per ft) in US customary units.

Wall Edge Nail
Height \évi?ga-lt-lﬁzl Spacing Ko r 2 3 fa Fo Fi A a B
(ft) Layer (in) (kip/in per ft) (kip per ft) (kip perft)  (in)
2 3.949 0.034 -0.071 1.010 0.033 1.900 0.242 2.188 0.759 1.241
Standard® 3 3.239 0.030 -0.062 1.010 0.024 1.268 0.161 2.108 0.759 1.286
4 2.761 0.033 -0.056 1.010 0.022 0.941 0.127 2.042 0.714 1.286
6 1.981 0.024 -0.050 1.034 0.021 0.673 0.087 2.035 0.714 1.286
9 2 5.030 0.033 -0.106 1.010 0.048 4.206 0.219 2.159 0.768 1.150
Midply(b) 3 4.375 0.014 -0.079 1.010 0.037 2.895 0.162 1.989 0.759 1.195
4 3.844 0.011 -0.066 1.010 0.034 2.189 0.133 1.880 0.759 1.241
6 3.155 0.008 -0.054 1.010 0.027 1.470 0.082 1.848 0.759 1.286
GwWB© 16 1.294 0.026 -0.024 1.028 0.005 0.116 0.013 0.694 0.855 1.143
2 4.232 0.030 -0.073 1.010 0.033 1.989 0.247 1.972 0.759 1.241
Standard® 3 3.787 0.032 -0.060 1.010 0.023 1.277 0.170 1.898 0.714 1.286
4 3.028 0.026 -0.056 1.010 0.022 1.006 0.146 1.850 0.759 1.286
6 2.359 0.025 -0.049 1.010 0.019 0.675 0.091 1.841 0.714 1.286
8 2 5.171 0.046 -0.114 1.010 0.053 4.315 0.255 1.990 0.723 1.150
Midply(b) 3 4.582 0.024 -0.084 1.010 0.040 2.916 0.155 1.791 0.814 1.241
4 4.171 0.013 -0.068 1.010 0.035 2.202 0.121 1.735 0.759 1.241
6 3.459 0.009 -0.054 1.010 0.028 1.499 0.087 1.652 0.759 1.286
GWB© 16 2.142 0.028 -0.019 1.010 0.005 0.111 0.015 0.568 0.845 1.141

@ standard wall model is built with 15/32 in. thick OSB connected to framing members by 10d common nails (0.148 in. diameter) in single-shear.

“"Midply wall model is built with 15/32 in. thick OSB connected to framing members by 10d common nails (0.148 in. diameter) in double-shear

e Gypsum wall board model is built with 1/2 in. thick GWB connected to framing members by #6 bugle head drywall screws (0.142 in. diameter) in single-shear.

@ All wall models are built using edge nail distance of 0.5 in. and panel shear modulus of 180 ksi.

©n M-CASHEW, each panel-to-frame connection is modeled using two orthogonal uncoupled non-linear springs. The peak backbone forces predicted by M-CASHEW are about 10~15%
higher than the peak force predicted by the Fortran version of CASHEW.

Table E-2: Shear wall hysteretic parameters for unit wall width (per m) in SI units.

Wall Wall Type/ Edge Nail
Height Sheathing | SPacing Ko I r ra I Fo Fi A a 5
(m) Layer (mm) | (kN/mm per m) (kN per m) (kN perm)  (mm)
51 2.269 0.034 -0.071 1.010 0.033 27.735 3.539 55.575 0.759 1.241
Standard® 76 1.861 0.030 -0.062 1.010 0.024 18.500 2.348 53.533 0.759 1.286
102 1.586 0.033 -0.056 1.010 0.022 13.735 1.857 51.874 0.714 1.286
152 1.138 0.024 -0.050 1.034 0.021 9.828 1.263 51.692 0.714 1.286
2.74 51 2.890 0.033 -0.106 1.010 0.048 61.378 3.199 54.826 0.768 1.150
Midply(b) 76 2.514 0.014 -0.079 1.010 0.037 42.246 2.364 50.531 0.759 1.195
102 2.208 0.011 -0.066 1.010 0.034 31.943 1.947 47.752 0.759 1.241
152 1.813 0.008 -0.054 1.010 0.027 21.449 1.197 46.939 0.759 1.286
GwWB®© 406 0.743 0.026 -0.024 1.028 0.005 1.687 0.191 17.631 0.855 1.143
51 2.432 0.030 -0.073 1.010 0.033 29.028 3.607 50.086 0.759 1.241
Standard® 76 2.176 0.032 -0.060 1.010 0.023 18.641 2.485 48.217 0.714 1.286
102 1.740 0.026 -0.056 1.010 0.022 14.674 2.128 46.987 0.759 1.286
152 1.356 0.025 -0.049 1.010 0.019 9.852 1.330 46.764 0.714 1.286
244 51 2971 0.046 -0.114 1.010 0.053 62.970 3.723 50.533 0.723 1.150
Midply(b) 76 2.633 0.024 -0.084 1.010 0.040 42.561 2.268 45.491 0.814 1.241
102 2.396 0.013 -0.068 1.010 0.035 32.131 1.768 44.079 0.759 1.241
152 1.988 0.009 -0.054 1.010 0.028 21.879 1.273 41.953 0.759 1.286
GwWB© 406 1.231 0.028 -0.019 1.010 0.005 1.613 0.212 14.425 0.845 1.141

@ standard wall model is built with 11.9 mm thick OSB connected to framing members by 10d common nails (3.76 mm diameter) in single-shear.

“"Midply wall model is built with 11.9 mm thick OSB connected to framing members by 10d common nails (3.76 mm diameter) in double-shear

mGypsum wall board model is built with 12.7 mm thick GWB connected to framing members by #6 bugle head drywall screws (3.61 mm diameter) in single-shear.

9 All wall models are built using edge nail distance of 12.7 mm and panel shear modulus of 1241 MPa.

) |n M-CASHEW, each panel-to-frame connection is modeled using two orthogonal uncoupled non-linear springs. The peak backbone force predicted by M-CASHEW are about 10~15% higher
than the peak force predicted by the Fortran version of CASHEW.
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Appendix F

Modal Analysis Results
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Figure F-1: Diaphragm degrees-of-freedom and corner coordinates in the M-SAWS model.
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Table F-2: First 6 mode shapes based on initial stiffness of the M-SAWS model.

Mode Shapes
Diaphragm | D.0.F.?
1 2 3 4 5 6
1 X -0.0701 0.2376 -0.2540 | -0.3309 0.0765 -0.5257
1 2 Y -0.2461 | -0.0024 | 0.1953 0.0085 0.5349 0.3992
3 0 -0.0002 0.0000 -0.0007 -0.0001 0.0002 -0.0016
4 X -0.1221 0.4173 -0.4508 | -0.4809 0.0957 -0.7325
2 5 Y -0.4381 -0.0042 0.3479 0.0140 0.7566 0.5629
6 0 -0.0003 0.0000 -0.0013 -0.0001 0.0003 -0.0022
7 X | -0.1696 | 0.5804 | -0.6296 || -0.4661 | 0.0637 || -0.6292
3 8 Y -0.6110 | -0.0059 0.4865 0.0168 0.6729 0.4934
9 0 -0.0005 0.0000 -0.0018 | -0.0001 0.0002 -0.0019
10 X -0.2077 0.7323 -0.7989 -0.2556 | -0.0053 -0.1791
4 11 Y -0.7894 | -0.0077 0.6231 0.0157 0.2073 0.1460
12 6 | -0.0006 | 0.0000 | -0.0023 | -0.0001 | 0.0000 | -0.0005
13 X -0.2330 0.8524 -0.9158 0.1098 -0.0723 0.3773
5 14 Y -0.9172 -0.0091 0.7187 0.0095 -0.4028 -0.2994
15 © -0.0006 0.0000 -0.0026 0.0000 -0.0002 0.0012
16 X -0.2479 1.0000 -1.0000 1.0000 -0.0945 1.0000
6 17 Y -1.0000 | -0.0178 | 0.7831 | -0.0529 | -1.0000 | -0.7616
18 06 -0.0007 0.0001 -0.0028 0.0003 -0.0003 0.0028

@ The units for translational and rotational degrees-of-freedom are inches and radian,

respectively.
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Table F-4: First 6 mode shapes based on tangent stiffness at 0.15% drift of the M-SAWS model.

Mode Sha pes(b)
Diaphragm | D.0.F.®
1 2 3 4 5 6
1 X -0.0833 0.2210 || -0.2386 | 0.3302 -0.0111 | -0.5344
1 2 Y -0.2160 | -0.0280 | 0.1900 0.0125 -0.5377 0.3939
3 0 -0.0002 0.0001 -0.0007 0.0001 -0.0002 | -0.0016
4 X -0.1464 | 0.4004 [ -0.4340 | 0.4944 0.0079 -0.7643
2 5 Y -0.4022 | -0.0506 0.3510 0.0193 -0.8084 | 0.5873
6 0 -0.0004 | 0.0001 -0.0013 0.0002 -0.0002 | -0.0024
7 X -0.2081 0.5726 -0.6217 0.4847 0.0495 -0.6638
3 8 Y -0.5766 | -0.0726 0.5043 0.0163 -0.7619 0.5435
9 0 -0.0005 0.0002 -0.0019 0.0002 -0.0001 | -0.0020
10 X -0.2570 | 0.7346 -0.8074 | 0.2567 0.0852 -0.1630
4 11 Y -0.7812 | -0.0943 0.6698 -0.0049 | -0.2404 | 0.1680
12 06 -0.0006 0.0002 -0.0024 | 0.0001 0.0001 -0.0005
13 X -0.2798 0.8563 -0.9200 | -0.1162 0.0381 0.3705
5 14 Y -0.9206 | -0.1080 | 0.7803 -0.0300 | 0.4220 | -0.3126
15 06 -0.0007 0.0003 -0.0028 | 0.0000 0.0002 0.0012
16 X -0.3033 1.0000 | -1.0000 [ -1.0000 | -0.0986 1.0000
6 17 Y -1.0000 | -0.1266 0.8489 0.0250 1.0000 | -0.7733
18 06 -0.0007 0.0003 -0.0030 | -0.0004 | 0.0002 0.0029

@) The units for translational and rotational degrees-of-freedom are inches and radian,

respectively.

®)The mode shapes were obtained using tangent stiffness of the building at 0.15% drift.
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(478,714)

Diaphragm 6,Z =660 in
Diaphragm 5,Z =552 in h (478,0)
Diaphragm 4,Z =444 in A

Diaphragm 3,Z=336in

Z-axis
/

Diaphragm 2,Z =228 in N

Diaphragm 1,Z=120in N

Ground O

0 o

Figure F-14: Diaphragm degrees-of-freedom and corner coordinates in the SAPWood model.
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SAPWoo0D 3D MODEL (INITIAL STIFFNESS)

Table F-5: First 6 mode shapes based on initial stiffness of the SAPWood model.

Period (s) 0.398 0.391 0.321 0.162 0.148 0.119

Diaphragm D.O.F. Model Mode2 Mode3 Mode4 Mode5 Modeb
1 X -0.1741 | 0.0009 0.0018 0.2201 0.0004 | -0.0491

2 Y 0.0009 0.2133 0.0133 | -0.0002 | -0.4302 | -0.0020

1 3 z -0.0050 | -0.0002 | 0.0000 | -0.0039 | -0.0007 | 0.0638
4 o 0.0000 || -0.0001 | 0.0000 0.0000 | -0.0001 | 0.0000

5 B -0.0001 | 0.0000 0.0000 0.0000 0.0000 0.0001

6 0 0.0000 0.0001 | -0.0007 | 0.0000 §j -0.0001 | 0.0011

7 X -0.3205 | 0.0016 0.0032 0.3350 0.0004 | -0.0480

8 Y 0.0017 0.3883 0.0262 | -0.0003 | -0.6302 | -0.0117

) 9 z -0.0110 | -0.0004 | 0.0000 | -0.0119 | -0.0018 | 0.1528
10 o 0.0000 | -0.0001 | 0.0000 0.0000 | -0.0002 | 0.0000

11 B -0.0002 | 0.0000 0.0000 | -0.0001 | 0.0000 0.0003

12 0 0.0000 0.0002 | -0.0012 | 0.0000 | -0.0001 | 0.0016

13 X -0.4730 | 0.0023 0.0045 0.3538 0.0001 | -0.0014

14 Y 0.0025 0.5533 0.0389 | -0.0005 | -0.6029 | -0.0250

3 15 z -0.0166 | -0.0006 | 0.0000 | -0.0243 | -0.0034 | 0.2715
16 o 0.0000 || -0.0002 | 0.0000 0.0000 | -0.0004 | 0.0000

17 B -0.0004 | 0.0000 0.0000 || -0.0003 || 0.0000 0.0005

18 0 0.0000 0.0003 | -0.0017 | 0.0001 | -0.0001 | 0.0015

19 X -0.6317 | 0.0031 0.0057 0.2486 | -0.0006 | 0.0744

20 Y 0.0034 0.7267 0.0573 | -0.0006 | -0.2935 | -0.0280

4 21 z -0.0219 | -0.0007 | 0.0000 | -0.0420 | -0.0055 | 0.4352
22 o 0.0000 | -0.0002 | 0.0000 0.0000 | -0.0006 | 0.0000

23 B -0.0005 | 0.0000 0.0000 | -0.0006 §| 0.0000 0.0008

24 0 0.0000 0.0003 || -0.0022 | 0.0000 0.0000 0.0006

25 X -0.7843 | 0.0037 0.0066 0.0126 | -0.0013 | 0.1267

26 Y 0.0042 0.8650 0.0732 || -0.0005 | 0.1942 | -0.0103

5 27 z -0.0250 | -0.0009 | 0.0000 | -0.0594 | -0.0080 | 0.6644
28 a 0.0000 || -0.0003 | 0.0000 0.0000 | -0.0009 | 0.0000

29 B -0.0006 | 0.0000 0.0000 || -0.0010 || 0.0000 0.0010

30 0 0.0000 0.0004 || -0.0025 | 0.0000 0.0001 | -0.0006

31 X -1.0000 | 0.0056 | -0.0026 | -0.6612 | 0.0033 | -0.3097

32 Y 0.0051 1.0000 0.0920 0.0004 1.0000 0.0664

6 33 Z -0.0236 | -0.0010 | 0.0000 | -0.0585 | -0.0110 | 1.0000
34 o 0.0000 | -0.0003 | 0.0000 0.0000 | -0.0012 | 0.0000

35 B -0.0007 | 0.0000 0.0000 | -0.0015 | 0.0000 0.0006

36 0 0.0000 0.0004 | -0.0028 | -0.0001 § 0.0002 || -0.0025
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Appendix G
Spectral Scaling Factors for ATC-63 Far-Field Ground

Motions
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Approximate Fundamental Period of the Six-story Capstone Building [ASCE 7-05, 12.8.2]

I, =Ch> [ASCE 7-05, Equation 12.8-7]

h, = total height, measure from ground level to the roof (not including the 3-ft parapet)
=551t

C, =0.02  [ASCE 7-05, Table 12.8.2]

x =0.75

T, =0.02(55)"" =0.404s

Upper Limit of the Approximate Fundamental Period

C, = coefficient for upper limit on calculated period [ASCE 7-05, Table 12.8-1]
=1.4 for SDI > O4g
T =CT =14x0.404s =0.57s

Normalized ATC-63 Far Field Ground Motion Set
Median S, value @ [T, =0.57s] = 0.655g

Design Response Spectra for NEESWood Capstone Building

1.6]

— — Level 1
’ \ — Level 2
m 1.333 ’ \ — Level 3
o0 000 Sa @ TulLevel 1= 044 ¢
E | \ Sa@ TuLevel 2= 1.00 g
§ 1.067 \ ®ee Sa @ TulLevel 3= 1.50¢g
(5
g o
8 08
<
s
£ 0533
D
[N
w2
0.267
0
0 1 2 3 4 5

Period (s)
Figure G-1: Design spectral acceleration values at the upper limit of the approximate period for
the NEESWood Capstone Building.

Ensemble Scale Factors

Level 1 =0.44/0.655 =0.672
Level 2 =1.00/0.655 = 1.527
Level 3 =1.50/0.655 =2.290
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Table G-1: Factors for Scaling ATC-63 Far Field Ground Motion Records to the NEESWood

Capstone Design Response Spectra.

Scale Factors

EQ PEER-NGA Record File Names ATC-63
No. Norm. Level1 | Level 2 | Level 3
Factor
Component 1 Component 2 0.672 1.527 2.290
1 INORTHR/MUL009 |NORTHR/MUL279 0.651 | 0.437 0.994 1.490
2 |NORTHR/LOS000 NORTHR/LOS270 0.832 | 0.559 1.270 1.904
3 |DUZCE/BOL000 DUZCE/BOL090 0.629 | 0.423 0.961 1.441
4 |HECTOR/HEC000 |HECTOR/HECO090 1.092 | 0.734 1.667 2.500
5 |IMPVALL/H-DLT262 |IMPVALL/H-DLT352 | 1.311 | 0.881 2.003 3.003
6 |IMPVALL/H-E11140 |IMPVALL/H-E11230 | 1.014 | 0.681 1.548 2.322
7 |KOBE/NIS000 KOBE/NIS090 1.034 | 0.695 1.579 2.368
8 |KOBE/SHI000 KOBE/SHI090 1.099 | 0.739 1.678 2.517
9 |KOCAELI/DZC180 |KOCAELI/DZC270 0.688 | 0.463 1.051 1.576
10 |KOCAELI/ARC000 |KOCAELI/ARC090 1.360 | 0.914 2.077 3.115
11 |LANDERS/YER270 |LANDERS/YER360 0.987 | 0.663 1.506 2.259
12 |LANDERS/CLW-LN |LANDERS/CLW-TR | 1.149 | 0.772 1.754 2.631
13 |LOMAP/CAP000 LOMAP/CAP090 1.089 | 0.731 1.662 2.493
14 |LOMAP/G03000 LOMAP/G03090 0.880 | 0.592 1.344 2.016
15 |MANJIL/ABBAR--L  |[MANJIL/ABBAR--T 0.787 | 0.529 1.202 1.803
16 |SUPERST/B-ICC000 |[SUPERST/B-ICC090 | 0.870 | 0.584 1.328 1.992
17 |SUPERST/B-POE270|SUPERST/B-POE360| 1.174 | 0.789 1.793 2.689
18 |CAPEMEND/RIO270 |CAPEMEND/RIO360 | 0.820 | 0.551 1.252 1.878
19 |CHICHI/CHY101-E  |CHICHI/CHY101-N 0.410 | 0.276 0.627 0.940
20 |CHICHI/TCU045-E |CHICHI/TCU045-N 0.959 | 0.645 1.465 2.197
21 |SFERN/PEL090 SFERN/PEL180 2.096 | 1.409 3.201 4.800
22 |FRIULI/A-TMZ000 FRIULI/A-TMZ270 1.440 | 0.968 2.199 3.298

(a) ATC-63 Normalization factors are obtained from Table A-4D of the ATC-63 90% draft report.

(b) Scale factors for individual record are in blue color.
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Appendix H

Near-Fault Ground Motions
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