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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national
center of excellence in advanced technology applications that is dedicated to the reduction
of earthquake losses nationwide. Headquartered at the University at Buffalo, State Univer-
sity of New York, the Center was originally established by the National Science Foundation
in 1986, as the National Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions
throughout the United States, the Center’s mission is to reduce earthquake losses through
research and the application of advanced technologies that improve engineering, pre-
earthquake planning and post-earthquake recovery strategies. Toward this end, the Center
coordinates a nationwide program of multidisciplinary team research, education and
outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies: the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA),
and the State of New York. Significant support is derived from the Federal Emergency
Management Agency (FEMA), other state governments, academic institutions, foreign
governments and private industry.

MCEER’s NSF-sponsored research objectives are twofold: to increase resilience by devel-
oping seismic evaluation and rehabilitation strategies for the post-disaster facilities and
systems (hospitals, electrical and water lifelines, and bridges and highways) that society
expects to be operational following an earthquake; and to further enhance resilience by
developing improved emergency management capabilities to ensure an effective response
and recovery following the earthquake (see the figure below).
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A cross-program activity focuses on the establishment of an effective experimental and
analytical network to facilitate the exchange of  information between researchers located
in various institutions across the country. These are complemented by, and integrated with,
other MCEER activities in education, outreach, technology transfer, and industry partner-
ships.

The study described in this report is the first phase of research on the seismic performance evaluation
of block-type nonstructural components. The analytical work was performed at Cornell University,
while the experimental study was conducted at the University at Buffalo. The objective was to
characterize the coefficients of friction of three interfaces for rigid blocks with low, medium, and high
coefficients of friction. The three interfaces selected for this purpose were Poly-Tetra-Fluoro-
Ethylene on steel, wood on steel, and carpet on steel, which represented interfaces with low, moderate,
and high coefficients of friction, respectively. Two sets of blocks with different geometry were
designed and constructed to model block-type nonstructural components. The static coefficients of
friction for the three interfaces were characterized by a series of standard pull and tilt tests. The
uncertainties associated with the imperfections in the block-floor interfaces were accounted for by
repeated testing. Estimates of the kinetic coefficient of friction were calculated using the maximum
responses of the blocks obtained through laboratory experiments and analytical relationships
between the maximum responses and the kinetic coefficient of friction. The method explicitly
accounted for the uncertainty in experimental errors, imperfections in block-floor interfaces, and the
relationship between the kinetic friction coefficient and the loading and block size.



v 

ABSTRACT 

The study described in this report is the first phase of research on the seismic 
performance evaluation of the block-type nonstructural components, supported by the 
Multidisciplinary Center for Earthquake Engineering Research. The main objective of 
this study was to characterize the coefficients of friction of three interfaces for rigid 
blocks with low, medium, and high coefficients of friction. The three interfaces selected 
for this purpose were Poly-Tetra-Fluoro-Ethylene on steel, wood on steel, and carpet on 
steel, which were representatives of interfaces with low, moderate, and high coefficients 
of friction, respectively. Two sets of blocks with different geometry were designed and 
constructed to model block-type nonstructural components. The block geometries were 
selected to assure that the blocks would respond to a broad range of uniaxial sinusoidal 
base excitations by either sticking or sliding. The static coefficients of friction for the 
three interfaces were characterized by a series of standard pull and tilt tests. The 
uncertainties associated with the imperfections in the block-floor interfaces were 
accounted for by repeated testing. Estimates of the kinetic coefficient of friction were 
calculated using the maximum responses of the blocks obtained through earthquake 
simulator experiments and analytical relationships between the maximum responses and 
the kinetic coefficient of friction. The implemented method explicitly accounted for the 
uncertainty in experimental errors, imperfections in block-floor interfaces, and the 
relationship between the kinetic friction coefficient and the loading and block size.  
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SECTION 1 
INTRODUCTION 

1.1 Block-Type Nonstructural Components 

The seismic performance of building structures depends on the performance of their structural 
and nonstructural systems. Regardless of the performance of structural systems, a building might 
lose its functionality just because of the damage to its nonstructural components or critical 
equipments (Soong and Yao, 2000; Filiatrault et al, 2001). Furthermore, recent studies have 
shown that the financial consequences of earthquakes result mainly from the poor performance of 
nonstructural components and systems. Consequently , without consideration of the nonstructural 
components, performance-based design of buildings seems to be unachievable (Gould, 2003; 
Kircher, 2003). 

A large number of nonstructural components respond to the floor excitation like rigid blocks. 
These nonstructural components are categorized as block-type nonstructural components. The 
block-type nonstructural components are either freestanding or restrained (tied to the building 
floor or wall by bolts, cables, etc.). Most nonstructural components are freestanding by either 
necessity or choice. 

In two dimensions, the response of a restrained block is fully described by two response states: 
stick and slide. For the two-dimensional response of a freestanding block on the other hand, five 
different modes are possible: stick, slide, rock, slide-rock, and free flight. Possible response 
modes for rigid blocks have been identified by many researchers including Ishiyama (1982), 
Shenton (1996), Pompei et al. (1998), Zhu and Soong (1998), Taniguchi (2002 and 2004), and 
Garcia  and Soong (2003). 

Sliding is preferred to rocking for freestanding rigid blocks because high acceleration spikes 
developed during rocking can damage nonstructural components, energy dissipation during 
impact is minimal, and rocking might result in overturning, which is often destructive.  

Excessive absolute acceleration and relative displacement should be avoided for sliding of a 
block-type nonstructural component. Excessive absolute acceleration is detrimental for the 
acceleration-sensitive nonstructural components, and excessive relative displacement during 
sliding might result in  collision of neighboring nonstructural components, or blockage of a 
doorway required for evacuation after an earthquake.  

Several studies have emphasized the influence of the static and kinetic coefficients of friction of 
the rigid block-floor interface on the response of the block. Shenton (1996) showed that the initial 
mode of the response is governed by the static coefficient of friction. The initial mode is 
important because it often remains the predominant mode for the ongoing response. 

Garcia and Soong (2003) studied the sliding fragility of rigid blocks and showed that for the case 
of absolute acceleration limit state, evaluation of the static coefficient of friction is essential for 
the deterministic fragility assessment. They showed that at a given threshold (absolute 
acceleration limit), the fragility curves depended only on two parameters: the kinetic coefficient 
of friction and the vertical peak base acceleration. Garcia and Soong (2003) proved that in 
presence of high friction, the fragility assessment without consideration of the vertical base 
acceleration was noticeably un-conservative for both freestanding and restrained rigid blocks.   

The analytical and experimental study of Warren and Matzen (2001) showed that a numerical 
model that included only one of the static and kinetic coefficients of friction was incapable  of 
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prediction of sliding block response. They suggested a velocity-dependent kinetic coefficient of 
friction be used for better prediction of the sliding block response. 

1.2 Scope of Study 

The study described in this report is the first phase of the research on the block-type nonstructural 
components supported by the Multidisciplinary Center for Earthquake Engineering Research 
(MCEER). The main objective of this study is to characterize the static and kinetic coefficients of 
friction of three interfaces for rigid blocks with low, medium, and high coefficients of friction.    

The three interfaces selected for this study were 1) Poly-Tetra-Fluoro-Ethylene (PTFE) on steel, 
2) wood on steel, and 3) carpet on steel, which were considered likely to result in low, moderate, 
and high coefficients of friction, respectively.  

Two sets of blocks with different geometry were designed and constructed to model block-type 
nonstructural components. The block geometries were selected to assure that the blocks would 
respond to a broad range of uniaxial sinusoidal base excitations by either sticking or sliding.   

The static coefficients of friction were characterized by series of standard pull and tilt tests. 
Characterization tests were repeated to generate a sufficient number of data points to account 
explicitly for the uncertainties associated with imperfections in the block-floor interfaces. At the 
end of the characterization tests, preliminary estimates of the kinetic coefficients of friction were 
obtained by series of tilt tests for the wood-steel and carpet-steel interfaces. In these experiments, 
the acceleration of a block sliding down an inclined surface was measured by an accelerometer 
attached to the sliding block.  

The kinetic coefficients of friction of the three interfaces were established by analys is of the 
acceleration and displacement response of the blocks throughout series of earthquake simulator 
experiments with uniaxial sinusoidal input excitation. The implemented method explicitly  
accounted for the uncertainty in experimental errors, imperfections in block-floor interfaces, and 
the relationship between the kinetic friction coefficient and the loading and block size.  

1.3 Report Organization 

This report consists of two major parts. The first part of the report (Sections 2 to 4), which 
addresses the experimental part of the study was prepared by the authors at University at Buffalo, 
the State University of New York. The second part of the report (Sections 5 to 8), which presents 
the analytical part of the study was prepared by the authors at Cornell University. 

In Section 2, the design and construction of the blocks are described. Section 3 presents the test 
plan, instrumentation, and results of the characterizations tests for the static coefficients of 
friction of the three interfaces and preliminary estimates for the kinetic coefficient of friction of 
wood-steel and carpet-steel interface. Section 4 describes the earthquake simulator experiments 
conducted to provide data to establish the kinetic coefficients of friction.  

Section 5 describes the dynamic analysis of the block-floor system. The methodology for 
establishing the kinetic friction coefficient using acceleration and displacement-based approaches 
is presented in Section 6. The experimental results obtained from earthquake simulator 
experiments are analyzed in Section 7. The kinetic coefficients of friction are given in Section 8, 
followed by summary and conclusions in Section 9. 
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SECTION 2 

DESIGN AND CONSTRUCTION OF TEST SPECIMENS 

2.1 Test Specimen Design 

The block geometry and interface materials were selected to ensure that the blocks would respond 
to a broad range of uniaxial sinusoidal base excitations by either sliding or sticking modes of 
response. 

For a rigid block subjected to a general tri-directional motion in the 1x , 1y , and 1z (vertical)  
directions, the conditions to prevent rocking are given by equations 2-1 through 2-4 (Chong and 
Soong, 2000) : 

≥
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B 1
gH -k
x&&

                                                                                                   (2-1)  
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where: 

B = width of the block’s base in direction 1x   
W = width of the block’s base in direction 1y    
H = height of the block in direction 1z  
 g  = acceleration due to gravity 

1x&&  = peak base acceleration in direction 1 x    
1y&&  = peak base acceleration in direction 1y  
1z&&  = peak base acceleration in direction 1z  

1yk  = ratio of the peak base acceleration in direction 1y  to the peak base acceleration in 
direction 1x   

1zk  = ratio of the peak base acceleration in direction 1z  to the peak base acceleration in 
direction 1x   

The condition under which sliding occurs is given by equation 2-5 (Taniguchi, 2002) : 

Min

Max   
1

1 1( )

s

z

1 B W
 ( , , )g H H+k

 x , y

µ <

&& &&
                                                                       (2-5)               

where: 

sµ  = static coefficient of friction of the interface   
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If the base excitation is in the 1x  direction only (this study), equations 2-1 and 2-5 simplify to 
equations 2-6 and 2-7, respectively: 

≥ 1xB
H g

&&
                                                                                                                         (2-6) 

Min 1s
x B

 ( , )
g H

µ <
&&

                                                                                                        (2-7)                       

Equations 2-6 and 2-7 can be combined to form equation 2-8: 

≥ >1 s
xB

H g
µ

&&
                                                                                                                (2-8)                                             

Equation 2-8 summarizes the conditions required for sliding and no-rocking response of a rigid 
block to a uniaxial base excitation. Width-to-height ratios greater than 0.8 for the blocks would 
satisfy equation 2-8 over a broad range of input motions and interface materials. Two six-block 
sets were constructed of different sizes for this study and a potential future study to investigate 
the influence of block geometry on response. Six nominally identical blocks in each set were 
deemed sufficient to provide data for statistical analysis accounting explicitly for the randomness 
associated with the block-floor interfaces.  

Three different interfaces PTFE-steel, wood-steel, and carpet-steel were chosen as representative 
of interfaces with low, moderate, and high coefficients of friction, respectively. The coefficients 
of friction (both static and kinetic) of the PTFE-steel and wood-steel interfaces were estimated to 
be between 0.05 to 0.20, and 0.2 to 0.5, respectively and the coefficients of friction (both static 
and kinetic) of the carpet-steel interface were estimated to be larger than 0.4. 

2.2 Test Specimen Construction  

The test blocks were constructed by joining multiple layers of plywood with glue and pins. Steel 
plates were attached to the bottom and top surfaces of each block to act as backing for the 
interface material. The carpet was glued to the steel. The wood and PTFE surfaces were screwed 
to the blocks. Figure 2-1 presents some construction details. Figure 2-2 presents photographs 
taken during and after the construction of the blocks. 

Table 2-1 lists the dimensions and mass of the twelve constructed blocks. Block names have 
general format of Bij; i indicates the block type and is either 1 or 2. B1j are the smaller of the two 
sets of blocks. In this report, B1 and B2 are used instead of B1j and B2j when referring to a block 
set. Since there are six nominally identical blocks of each size, j varies from 1 to 6.                                                                                                                                         
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(a) Block type B1 (b) Block type B2 

  

(c) Steel plate (29.2 29.2 0.47 cm),× × attached 
      to the top and bottom of the block type B1 

(d) Steel plate (59.7 29.2 0.47 cm),× × attached  
      to the top and bottom of the block type B2 

                                  
(e) Detail A 

FIGURE 2-1 Block Details 
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(a) Plywood layers used for the blocks (b) Steel plates screwed to top and 
bottom of the blocks 

  

(c) Block type B1, wood surface (d) Block type B1, carpet surface 

  

(e) Block type B2, wood surface (f) Block type B2, carpet surface 

FIGURE 2-2 Block Construction 
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(g) Block type B1, PTFE surface (h) Block type B2, PTFE surface 

FIGURE 2-2 (cont’d.) Block Construction  

 

 

 

TABLE 2-1 Block Dimensions and Mass 

Block  
Name  

Dimension 
 (cm) 

Mass 
 (kg) 

B11 29.2 ×  29.2 ×  20.5 16.1 

B12 29.2 ×  29.2 ×  20.5 15.6 

B13 29.2 ×  29.2 ×  20.5 15.9 

B14 29.2 ×  29.2 ×  20.5 15.6 

B15 29.2 ×  29.2 ×  20.5 15.6 

B16 29.2 ×  29.2 ×  20.5 15.9 

B21 59.7 ×  29.2 ×  32.4 44.9 

B22 59.7 ×  29.2 ×  32.4 44.5 

B23 59.7 ×  29.2 ×  32.4 44.0 

B24 59.7 ×  29.2 ×  32.4 44.0 

B25 59.7 ×  29.2 ×  32.4 44.0 

B26 59.7 ×  29.2 ×  32.4 44.2 
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SECTION 3 

CHARACTERIZATION TESTS:  
PULL AND TILT TESTS 

3.1 Tilt and Pull Tests to Establish Static Coefficient of Friction  

The static coefficient of friction controls the initiation of sliding of a rigid block. Rigid blocks are 
more likely to experience sticking or rocking rather than slid ing if the static coefficient of friction 
is high (Shenton 1996; Taniguchi, 2002).  

A relatively accurate evaluation of the static coefficients of friction between the interface 
materials and the steel plate was essential to plan for the earthquake simulator experiments and to 
perform analytical studies throughout this study. A series of tilt and pull tests was conducted to 
establish the static coefficients of friction of the three interfaces. The pull and tilt tests are 
straightforward and provide satisfactory results (Chong and Soong, 2000; Konstantinidis and 
Makris, 2003). 

3.1.1 Test Plan and Instrumentation 

The pull tests were undertaken by manually applying a horizontal force to the block up to the 
point at which the block slid (see figure 3-1(a)). The horizontal load was applied at a very slow 
rate and was measured by a load cell calibrated to measure forces up to 45 kilogram-force (kgf). 
The load cell used for the pull test series is shown in figure 3-1(b).  

The pull tests for the wood-steel and carpet-steel interfaces were repeated twice for each of the 
twelve blocks. To prevent scoring of the PTFE surfaces of the blocks (see figure 3-1(c)), the 
characterization tests were conducted for only two of the twelve blocks: B16 and B26. The pull 
test for each of the two blocks was repeated 10 times. 

A series of tilt tests was conducted to confirm the values of the static coefficient of friction 
determined by pull tests. The tilt tests were conducted by lifting one edge of the sliding surface 
(5.1 cm thick, 152 by 274 cm steel plate) until the block slid (see figure 3-1(d)). The static 
coefficient of friction,  sµ , is related to α,  the angle of the surface to  the horizontal at the 
initiation of the sliding: 

tansµ α=                                                                                                                       (3-1) 

The angle α was measured directly by an inclinometer and calculated indirectly by measuring the 
height and horizontal distance from the pivot point of the steel plate.  
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(a) Pull test, block type B2, horizontal force 

applied manually  
(b) Load cell used to measure horizontal 

force 

  
(c) Showing evidence of scoring of PTFE 

surface 
(d) Tilt test, block type B1, crane used to lift 

the steel plate 

FIGURE 3-1 Tilt and Pull Tests  

3.1.2 Test Results  

The data generated in each pull test was the horizontal force history measured by the load cell. To 
calculate the static coefficient of friction, the force at the initiation of sliding was divided by the 
weight of the block.  

Figure 3-2 presents the horizontal force history of the pull test conducted with the carpet surface 
of block B11. Given the force at the initiation of sliding (7.81 kgf) and block B11 mass (16.08 
kg), the static coefficient of friction is calculated as: 

sµ
7.81 

0.49
16.08 

= =                                                                                                        (3-2) 

The reduction in the horizontal force after initiation of sliding seen in figure 3-2 is attributed to 
the static coefficient of friction being greater than the kinetic coefficient of friction (Blau, 1996).  

The same procedure was implemented to compute the static coefficient of friction of the three 
interfaces from the pull test results. The measured angle at which each block slid and equation 3-
1 were used to compute the static coefficient of friction of the three interfaces from the tilt tests 
results.  
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FIGURE 3-2 Pull Test Horizontal Force History, Carpet-Steel Interface, Block B11 

Tables 3-1 and 3-2 list the static coefficients of friction of the carpet-steel and wood-steel 
interfaces of the block types B1 and B2, respectively. Table 3-3 presents the results of the tilt and 
the pull tests for the static coefficient of friction of the PTFE-steel interface. Tables 3-4, 3-5, and 
3-6 summarize the results for the static coefficient of friction of carpet-steel, wood-steel, and 
PTFE-steel interfaces, respectively. The mean and standard deviation values presented in tables 
3-4 through 3-6, are calculated assuming that the static coefficients of friction are Gaussian. 

 

 
TABLE 3-1 Static Coefficients of Friction, Wood-Steel and 

Carpet-Steel Interfaces, B lock Type  B1  

Block Name  Surface Pull Test Tilt Test 
Carpet 0.49 0.49 0.49 0.45 

B11 
Wood 0.42 0.42 0.36 0.40 

Carpet 0.43 0.42 0.47 0.42 
B12 

Wood 0.45 0.35 0.36 0.36 

Carpet 0.48 0.42 0.41 0.48 
B13 

Wood 0.42 0.39 0.34 0.34 

Carpet 0.46 0.43 0.46 0.43 
B14 

Wood 0.42 0.37 0.38 0.38 

Carpet 0.49 0.47 0.44 0.43 
B15 

Wood 0.42 0.38 0.38 0.37 

Carpet 0.47 0.45 0.51 0.48 
B16 

Wood 0.46 0.40 0.38 0.37 
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TABLE 3-2 Static Coefficients of Friction, Wood-Steel and 
Carpet-Steel Interfaces, B lock Type  B2  

Block Name  Surface Pull Test Tilt Test 

Carpet 0.42 0.43 0.42 0.43 
B21 

Wood 0.46 0.49 0.32 0.37 

Carpet 0.51 0.48 0.41 0.43 
B22 

Wood 0.42 0.49 0.38 0.38 

Carpet 0.48 0.47 0.44 0.42 
B23 

Wood 0.43 0.38 0.38 0.36 

Carpet 0.49 0.48 0.44 0.43 
B24 

Wood 0.44 0.42 0.33 0.36 

Carpet 0.48 0.42 0.41 0.41 
B25 

Wood 0.47 0.46 0.37 0.39 

Carpet 0.47 0.45 0.45 0.43 
B26 

Wood 0.42 0.36 0.39 0.40 
 
 
 
 
 
                       

TABLE 3-3 Static Coefficients of Friction, PTFE-Steel 
Interface, B locks B16 and B26 

Block B16 Block B26 Test 
No. Pull Test Tilt Test Pull Test Tilt Test 

1 0.23 0.23 0.26 0.31 

2 0.21 0.26 0.25 0.36 

3 0.22 0.34 0.23 0.32 

4 0.22 0.35 0.24 0.30 

5 0.20 0.33 0.25 0.35 

6 0.20 0.29 0.23 0.34 

7 0.17 0.26 0.20 0.32 

8 0.23 0.32 0.22 0.32 

9 0.23 0.35 0.23 0.33 

10 0.23 0.23 0.21 0.29 
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TABLE 3-4 Static Coefficient of Friction, Carpet-Steel Interface1 

Block 
Type sµ  

isµ  
iσ  

sµ  σ  

0.49 0.49 0.49 0.45 0.43 0.42 0.47 0.42 0.48 0.42 0.41 0.48 
B1 

0.46 0.43 0.46 0.43 0.49 0.47 0.44 0.43 0.47 0.45 0.51 0.48 
0.46 0.030 

0.42 0.43 0.42 0.43 0.51 0.48 0.41 0.43 0.48 0.47 0.44 0.42 
B2 

0.49 0.48 0.44 0.43 0.48 0.42 0.41 0.41 0.47 0.45 0.45 0.43 
0.45 0.030 

0.45 0.030 

1. sµ is the static coefficient of friction; isµ is the mean and iσ is the standard deviation of the static 
coefficient of friction obtained in tests with each block type; sµ is the mean andσ is the standard 
deviation of the static coefficient of friction obtained in all the tests conducted. 

 
 
 

TABLE 3-5 Static Coefficients of Friction, Wood-Steel Interface 1 

Block 
Type sµ  

isµ  
iσ  

sµ  σ  

0.42 0.42 0.36 0.40 0.45 0.35 0.36 0.36 0.42 0.39 0.34 0.34 
B1 

0.42 0.37 0.38 0.38 0.42 0.38 0.38 0.37 0.46 0.40 0.38 0.37 
0.39 0.030 

0.46 0.49 0.32 0.37 0.42 0.49 0.38 0.38 0.43 0.38 0.38 0.36 
B2 

0.44 0.42 0.33 0.36 0.47 0.46 0.37 0.39 0.42 0.36 0.39 0.40 
0.40 0.050 

0.40 0.040 

1. sµ is the static coefficient of friction; isµ is the mean and iσ is the standard deviation of the static 
coefficient of friction obtained in tests with each block type; sµ is the mean andσ is the standard 
deviation of the static coefficient of friction obtained in all the tests conducted. 

 
 
 

TABLE 3-6 Static Coefficients of Friction, PTFE-Steel Interface 1 

Block 
Type sµ  

isµ  
iσ  

sµ  σ  

0.23 0.21 0.22 0.22 0.20 0.20 0.17 0.23 0.23 0.23 
B1 

0.23 0.26 0.34 0.35 0.33 0.29 0.26 0.32 0.35 0.23 
0.26 0.055 

0.26 0.25 0.23 0.24 0.25 0.23 0.20 0.22 0.23 0.21 
B2 

0.31 0.36 0.32 0.30 0.35 0.34 0.32 0.32 0.33 0.29 
0.28 0.052 

0.27 0.054 

1. sµ is the static coefficient of friction; isµ is the mean and iσ is the standard deviation of the 
static coefficient of friction obtained in tests with each block type; sµ is the mean andσ is 
the standard deviation of the static coefficient of friction obtained in all the tests conducted. 
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3.2 Tilt Tests for Preliminary Estimation of Kinetic Coefficient of Friction 

3.2.1 Test Plan and Instrumentation 

Tilt tests were undertaken to provide preliminary estimates of the kinetic coefficients of friction, 
which were required to predict the maximum displacement of the blocks in the earthquake 
simulator experiments. The predicted maximum displacement response of the blocks were used to 
arrange the blocks on the steel plate so that they could slide without hitting each other or sliding 
off the steel plate during the earthquake simulator experiments. 

The acceleration of a block sliding down the inclined steel plate was used to estimate the kinetic 
coefficient of friction of the wood-steel and carpet-steel interfaces.  

The steel plate (the sliding surface) was held at either 30 or 45 degrees to the horizontal. The 
acceleration of the blocks sliding down the steel plate was measured by an accelerometer. As 
shown in figure 3-3, the accelerometer was attached to one of the side faces of the sliding block.  

  
(a) Accelerometer (b) Signal conditioning system  

FIGURE 3-3 Tilt Tests Instrumentation  

The test plan is presented in table 3-7. Because of the heavy weights of the block type B2 and the 
difficulty in placing them on the sliding surface, only block B26 was used in this series of tilt 
tests. Tests were repeated 6 times for each of the carpet and wood surfaces of block B26. This 
series of tilt tests did not include the PTFE-steel interface because the block with PTFE surface 
would not slide down the inclined surface in a straight line (would rotate whiling sliding down), 
and repeated testing would damage the PTFE surfaces. 

 

 

 



15 

TABLE 3-7 Plan of Tilt Tests for Preliminary Estimation of the Kinetic Coefficient of 
Friction of Wood-Steel and Carpet-Steel Interfaces1  

Test 
No. 

Block 
Name 

α Surface Test 
No. 

Block 
Name 

α Surface Test 
No. 

Block 
Name 

α Surface 

1 B11 30 Carpet 13 B11 30 Wood 25 B11 45 Carpet 

2 B12 30 Carpet 14 B12 30 Wood 26 B12 45 Carpet 

3 B13 30 Carpet 15 B13 30 Wood 27 B13 45 Carpet 

4 B14 30 Carpet 16 B14 30 Wood 28 B14 45 Carpet 

5 B15 30 Carpet 17 B15 30 Wood 29 B15 45 Carpet 

6 B16 30 Carpet 18 B16 30 Wood 30 B16 45 Carpet 

7 B26 30 Carpet 19 B26 30 Wood 31 B11 45 Wood 

8 B26 30 Carpet 20 B26 30 Wood 32 B12 45 Wood 

9 B26 30 Carpet 21 B26 30 Wood 33 B13 45 Wood 

10 B26 30 Carpet 22 B26 30 Wood 34 B14 45 Wood 

11 B26 30 Carpet 23 B26 30 Wood 35 B15 45 Wood 

12 B26 30 Carpet 24 B26 30 Wood 36 B16 45 Wood 

1. α is the angle of the sliding surface to the horizontal in degree. 

3.2.2 Test Results 

If a block sliding down on an inclined surface is subjected only to gravity and friction forces, the 
sliding acceleration of the block will be constant along its path and will be related to the kinetic  
coefficient of friction of the block-surface interface as follows: 

tan
cosk

sx
  

g 
µ α

α
= −

&&
                                                                                                     (3-3) 

where: 

kµ = The kinetic coefficient of friction of the interface 
sx&&  = constant acceleration of the block along the sliding path 

α = the angle of the sliding surface to the horizontal (either 30 or 45 degrees)   
g = acceleration due to gravity 

In this series of tilt tests, the constant acceleration was calculated as an average over an interval in 
which the block experienced almost constant acceleration. A sample of the constant acceleration 
window is illustrated in figure 3-4 for the carpet-steel interface of block B16 sliding on a 45-
degree surface. For this particular test, the kinetic  coefficient of friction is calculated as: 

043
tan 45 039

cos 45
  k

.
 ( ) .

 ( )
µ = − =o

o                                                                                     (3-4) 
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FIGURE 3-4 Sliding Acceleration, Carpet-Steel Interface, 45 Degree Surface, Block B16 

Thirty-six tilt tests were conducted but only thirty results are presented here. For the six 
remaining experiments, it was not possible to define a constant acceleration window in the 
acceleration history. Consequently, the kinetic coefficient of friction was not calculated for those 
six experiments. The results of the thirty experiments were sufficient to provide preliminary 
estimates for the kinetic coefficients of friction and supplemental tests were deemed unnecessary.  

Table 3-8 lists the kinetic  coefficients of friction estimated for the carpet-steel and wood-steel 
interfaces. Tables 3-9 and 3-10 collect the results of table 3-8 and present values for the mean and 
standard deviation of the kinetic coefficients of friction of the wood-steel and carpet-steel 
interfaces.   

TABLE 3-8 Kinetic Coefficients of Friction for Wood-Steel and 
Carpet-Steel Interfaces1 

Block Name  Surface α  
kµ  Block Name  Surface α  

kµ  

30 0.31 Carpet 45 0.37 
Carpet 

45 0.38 
B15 

Wood 45 0.17 
30 0.17 Carpet 45 0.40 

B11 
Wood 

45 0.15 
B16 

Wood 45 0.19 
30 0.31 30 0.31 

Carpet 
45 0.31 30 0.32 
30 0.17 30 0.32 

B12 
Wood 

45 0.20 30 0.32 

Carpet 45 0.33 30 0.33 
30 0.17 

Carpet 
 

30 0.31 B13 
Wood 

45 0.12 30 0.20 
30 0.31 30 0.21 

Carpet 
45 0.33 30 0.28 
30 0.19 30 0.28 

B14 
Wood 

45 0.17 

B26 

Wood 

30 0.25 

1. α is the angle of the sliding surface to the horizontal in degree; kµ is the 
kinetic coefficient of friction. 
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TABLE 3-10 Kinetic Coefficients of Friction for the Carpet-Steel Interface1 

Block 
Type kµ  

ikµ  
iσ  

kµ  σ  

B1 0.31 0.38 0.31 0.31 0.33 0.31 0.33 0.37 0.40 0.34 0.035 

B2 0.31 0.32 0.32 0.32 0.33 0.31 ?  ?  ?  0.32 0.008 
0.33 0.029 

1. kµ is the kinetic coefficient of friction; ikµ is the mean and iσ  is the standard deviation of the kinetic 
coefficient of friction obtained in tests with each block type; kµ is the mean and σ is the standard  
deviation of the kinetic coefficient of friction obtained in all the tests conducted. 

 
 
 
 
 
 
 
 

TABLE 3-9 Kinetic Coefficients of Friction for the Wood-Steel Interface1 

Block 
Type kµ  

ikµ  
iσ  

kµ  σ  

B1 0.17 0.15 0.17 0.20 0.17 0.12 0.19 0.17 0.17 0.19 0.17 0.016 

B2 0.20 0.21 0.28 0.28 0.25 ?  ?  ?  ?  ?  0.24 0.038 
0.20 0.042 

1. kµ is the kinetic coefficient of friction; ikµ is the mean and iσ  is the standard deviation of the kinetic 
coefficient of friction obtained in tests with each block type; kµ is the mean and σ is the standard  
deviation of the kinetic coefficient of friction obtained in all the tests conducted. 
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3.3 Remarks 

Representative values for the static coefficient of friction were established for three interfaces in 
this section. The mean static coefficients of friction found to be 0.45 for the carpet-steel, 0.40 for 
the wood-steel, and 0.27 for the PTFE-steel interfaces. Differences in the coefficients of 
individual blocks for a given interface are attributed to minor differences in the properties of the 
materials and change in the material properties due to testing. The coefficient of variation for 
static coefficients of friction was less than 7% for the carpet-steel interface, 10% for the wood-
steel interface, and 20% for the PTFE-steel interface. 

The average value of the preliminary estimates of the kinetic coefficients of friction were 0.33 for 
the carpet-steel and 0.20 for the wood-steel interfaces. The coefficient of variation was less than 
10% and 20% for the estimated kinetic coefficients of friction of the carpet-steel and wood-steel 
interfaces, respectively. It should be noted that the preliminary estimates of the kinetic coefficient 
of friction for wood-steel and carpet-steel interfaces are 50.00% and 26.67% less than their mean 
static coefficient of frictions, respectively. These values are greater than the 15% difference 
commonly found in other studies (Blau, 1996), and are due to the difficulty in defining proper 
constant acceleration windows in the blocks’ acceleration response histor ies in the estimation 
procedure.  

The kinetic coefficient of friction for the carpet-steel, wood-steel and PTFE-steel interfaces will 
be estimated using the results of the earthquake simulator tests described in the next section and 
theoretical considerations described in Section 6. 
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SECTION 4 

EARTHQUAKE SIMULATOR TESTS FOR 
 KINETIC COEFFICIENT OF FRICTION CHARACTERIZATION  

4.1 Test Plan 

The purpose of the earthquake simulator experiments was to provide data to establish the kinetic 
coefficients of friction. The displacement and acceleration response of the sliding blocks during 
the earthquake simulator experiments were to be used to compute the kinetic coefficients of 
friction (Sections 5 to 7). In these experiments, the six nominally identical blocks were arranged 
on the steel plate, which was bolted to the earthquake simulator platform. Sinusoidal input 
motions per figure 4-1 were used for the experiments. To provide result of statistical significance, 
tests were repeated with different input motions. The amplitude and period of the input motion 
were varied to generate different input motions. The duration of the sinusoidal histories was set 
initially at a minimum of 50 cycles.  
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FIGURE 4-1 Parameters Generating Different Sinusoidal Input Motions  

The amplitudes of the sinusoidal input motion were selected so that blocks experienced both 
sliding and sticking modes of response. Table 4-1 lists the amplitudes of the sinusoidal input 
motions. For each interface, one amplitude was selected for the sticking mode. For the sliding 
mode, two amplitudes were selected for the PTFE-steel interface and three amplitudes for the 
wood-steel and carpet-steel interfaces. The period of the sine waves was set to 0.75, 0.50, or 0.10 
second. Input motions with long period and large amplitude would exceed the velocity and 
displacement capacity of the earthquake simulator. Therefore, for the amplitudes larger than 0.6g 
only short periods (0.5 and 0.1 sec.) were used. Table 4-2 presents the target test plan for 50 
experiments with sinusoidal input motions.  
 

TABLE 4-1 Sinusoidal Input Motion Amplitudes (g) 

 Expected Block Response Mode  

Interface Sticking Sliding 

Carpet-Steel 0.3 0.6, 0.8, 1.0 

Wood-Steel 0.2 0.6, 0.8, 1.0 

PTFE-Steel 0.2 0.6, 1.0 
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TABLE 4-2 Earthquake Simulator Test Plan 

Sine Wave Characteristics 
Test No. Block 

Type Interface 
Amplitude (g) Period (sec) 

1 B1 0.2 0.75 

2 B1 0.2 0.50 

3 B1 0.2 0.10 

4 B1 0.6 0.75 

5 B1 0.6 0.50 

6 B1 0.6 0.10 

7 B1 0.8 0.50 

8 B1 0.8 0.10 

9 B1 

Wood-Steel   
s( 0.40)µ ≈   

1.0 0.10 

10 B1 0.3 0.75 

11 B1 0.3 0.50 

12 B1 0.3 0.10 

13 B1 0.6 0.75 

14 B1 0.6 0.50 

15 B1 0.6 0.10 

16 B1 0.8 0.50 

17 B1 0.8 0.10 

18 B1 

Carpet-Steel   
s( 0.45)µ ≈  

1.0 0.10 

19 B1 0.2 0.75 

20 B1 0.2 0.50 

21 B1 0.2 0.10 

22 B1 0.6 0.75 

23 B1 0.6 0.50 

24 B1 0.6 0.10 

25 B1 

PTFE-Steel   
s( 0.27)µ ≈  

1.0 0.10 
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TABLE 4-2 (cont’d.) Earthquake Simulator Test Plan 

Sine Wave Characteristics 
Test No. Block 

Type Interface 
Amplitude (g) Period (sec) 

26 B2 0.2 0.75 

27 B2 0.2 0.50 

28 B2 0.2 0.10 

29 B2 0.6 0.75 

30 B2 0.6 0.50 

31 B2 0.6 0.10 

32 B2 0.8 0.50 

33 B2 0.8 0.10 

34 B2 

Wood-Steel   
s( 0.40)µ ≈   

1.0 0.10 

35 B2 0.3 0.75 

36 B2 0.3 0.50 

37 B2 0.3 0.10 

38 B2 0.6 0.75 

39 B2 0.6 0.50 

40 B2 0.6 0.10 

41 B2 0.8 0.50 

42 B2 0.8 0.10 

43 B2 

 
Carpet-Steel   

s( 0.45)µ ≈  

1.0 0.10 

44 B2 0.2 0.75 

45 B2 0.2 0.50 

46 B2 0.2 0.10 

47 B2 0.6 0.75 

48 B2 0.6 0.50 

49 B2 0.6 0.10 

50 B2 

 
PTFE-Steel   

s( 0.27)µ ≈  

1.0 0.10 
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4.2  Earthquake Simulator and Instrumentation 

The earthquake simulator used for the experiments, shown in figure 4-2, is located in the 
laboratory of Department of Civil, Structural, and Environmental Engineering at University at 
Buffalo, the State University of New York. The simulator has five controlled degrees of freedom. 
Only the transverse translational movement is restrained. The simulator has a useful frequency 
range of up to 50 Hz.   

The simulator itself is 3.66 by 3.66 m in plan. However, a reinforced concrete platform installed 
on the simulator increases the useful testing area to 6.10 by 3.66 m. The performance envelope of 
the simulator in the horizontal direction at a payload less than 196 kN is ± 15.24 cm for 
displacement, 76.2 cm/sec for velocity, and 1.15g for acceleration. In the vertical direction, for a 
payload less than 489.3 kN, the performance envelope is ± 7.62 cm for displacement, 50.8 cm/sec 
for velocity, and 2.30g for acceleration.  

 
FIGURE 4-2 Earthquake Simulator  

In each experiment, the displacement and acceleration of the simulator and the blocks were 
measured. A part view of the instrumentation and the arrangement of the blocks on the steel plate 
are shown in figures 4-3 and 4-4.  

The displacement of the blocks was measured by a Krypton coordinate measurement machine 
(CMM). The CMM camera traces the displacement of light-emitting diodes (LEDs) moving in its 
field of view (see http://nees.buffalo.edu/docs/labmanual/html/chapter%203.htm for details). The 
CMM camera is shown in figure 4-5. Two LEDs were used to describe the displacement of each 
block (see figure 4-6). To measure the displacement of the sliding surface, three LEDs were 
attached to the steel plate. As shown in figure 4-7, a displacement transducer was used to measure 
the actual displacement of the simulator, which could be different from the motion input to the 
simulator. Accelerometers were attached to the north face of each block (see figure 4-8) and to 
the earthquake simulator  (see figure 4-7). The instrumentation for the tests with block type B1 
and B2 is shown in figures 4-9 and 4-10, respectively. Table 4-2, associated with figures 4-9 and 
4-10, lists all the instrumentation used in the earthquake simulator experiments. 
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FIGURE 4-3 Arrangement of Blocks Type B1 on the Steel Plate  

 
FIGURE 4-4 Arrangement of Blocks Type B2 on the Steel Plate  
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FIGURE 4-5 Coordinate Measurement Machine  

 

FIGURE 4-6 Two LEDs Attached to Each Block to Measure  Displacement 

Krypton 
Camera 

Light Emitting Diodes 
(LED) 
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FIGURE 4-7 Displacement Transducer and Accelerometer Used to Measure 
the Simulator Platform Response 

 
FIGURE 4-8 Accelerometer Attached to the B lock   

Accelerometer 

Displacement 
Transducer 
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TABLE 4-3 Instrumentation List 

No. Measured Parameter Type / Location 

1 Steel Plate Displacement LED / South-east corner of the steel plate 

2 Steel Plate Displacement LED / Middle of the east edge of the steel plate 

3 Steel Plate Displacement LED / North-east corner of the steel plate 

4 Block Displacement LED / North-east-top corner of the block B11 or B22 

5 Block Displacement LED / South-east-top corner of the block B11 or B21 

6 Block Displacement LED / North-east-top corner of the block B12 or B22 

7 Block Displacement LED / South-east-top corner of the block B12 or B22 

8 Block Displacement LED / North-east-top corner of the block B13 or B23 

9 Block Displacement LED / South-east-top corner of the block B13 or B23 

10 Block Displacement LED / North-east-top corner of the block B14 or B24 

11 Block Displacement LED / South-east-top corner of the block B14 or B24 

12 Block Displacement LED / North-east-top corner of the block B15 or B25 

13 Block Displacement LED / South-east-top corner of the block B15 or B25 

14 Block Displacement LED / North-east-top corner of the block B16 or B26 

15 Block Displacement LED / South-east-top corner of the block B16 or B26 

16 Shake Table Displacement Displacement transducer / South edge of the simulator 

17 Block Acceleration Accelerometer / North face of block B11 or B21 

18 Block Acceleration Accelerometer / North face of block B12 or B22 

19 Block Acceleration Accelerometer / North face of block B13 or B23 

20 Block Acceleration Accelerometer / North face of block B14 or B24 

21 Block Acceleration Accelerometer / North face of block B15 or B25 

22 Block Acceleration Accelerometer / North face of block B16 or B26 

23 Shake Table Acceleration Accelerometer / South edge of the simulator 
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4.3  Remarks 

In some of the earthquake simulator tests, blocks slid and rotated around their vertical axis. This 
type of response can be attributed to a non-uniform frictional force per unit area across the 
contact surface. Figure 4-11 shows the combined response of the blocks and their positions at the 
end of an earthquake simulator experiment for small blocks sliding on a wood surface. The blocks 
response in such experiments could not be used to calculate the kinetic coefficients of friction.  
 

 
FIGURE 4-11 Combination of Sliding and Rotation Response in Some Tests 
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SECTION 5

DYNAMIC ANALYSIS OF BLOCK-TABLE SYSTEM

Consider a freestanding rigid block of massm, which can represent a sliding nonstructural
component, sitting on a shake table. Letz(t) and y(t) be the displacement of the shake table
and of the block relative to an absolute frame whose origin corresponds to the vertical position of
the block centroid, respectively,µs andµk be the static and kinetic coefficients of friction between
the block and the surface of the shake table, respectively, and g be the acceleration of the gravity
as shown in figure 5-1. Denote the displacement of the block relative to the shake table byx(t),

z(t) 

g, gravity 

x(t) 

friction (µ s, µ k)

y(t) 

+

 block 

table 

absolute frame 

m 

FIGURE 5-1 System of Sliding Block and Shaking Table

so thaty(t) = z(t) + x(t). The displacementsy(t) andx(t) are referred as the total displacement
response of the block and the relative displacement response of the block, respectively, throughout
the report.

5.1 Equation of Motion

The equation of motion of the block results from its free bodydiagram in figure 5-2, illustrating

f, friction force 

+

, inertia force m )(tym &&

FIGURE 5-2 Free Body Diagram of the Block

only the horizontal forces. At any timet, the only external horizontal force acting on the block is
the force of kinetic frictionf . The force of kinetic frictionf changes its sign according to (hence a
function of) the velocity of the block relative to the table,ẋ(t) = ẏ(t)− ż(t), so that we have

f =

{

µk g m, if ẋ(t) < 0,
−µk g m, if ẋ(t) > 0,

= −µk g msign(ẋ(t)), (5-1)
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for dynamic equilibrium, whereµk is a constant representing the kinetic coefficient of friction and
sign(b) = −1, 0 and1 if b is negative, zero and positive, respectively. Note that fora freestanding
block at rest, the friction force is always less than or equalto µs g m.

5.1.1 Sliding Condition

If there is relative motion at timet, that is, if ẋ(t) 6= 0, thenmÿ(t) = −µk g msign(ẋ(t)), so that

ÿ(t) = −µk g sign(ẋ(t)). (5-2)

Note thatẋ(t) 6= 0 if the block is in motion before timet and|ÿ(t)| = µk g, or, the block is at rest
before timet and|ÿ(t)| > µs g. The equation of motion for the block, provided thatẋ(t) 6= 0, is

ÿ(t) + µk g sign(ẏ(t)− ż(t)) = 0 (using block’s total response), (5-3)

ẍ(t) + µk g sign(ẋ(t)) = −z̈(t) (using block’s relative response). (5-4)

5.1.2 Sticking Condition

If there is no relative motion at timet, that is, if ẋ(t) = 0, thenẏ(t) = ż(t). Note thatẋ(t) = 0
if the block is at rest before timet and|ÿ(t)| < µsg, or, the block is in motion before timet and
|ÿ(t)| < µkg. Hence, provided thaṫx(t) = 0, we have

ÿ(t) = z̈(t) (using block’s total response), (5-5)

ẍ(t) = 0 (using block’s relative response). (5-6)

5.2 Numerical Solution

If ẋ(t) > 0, equation 5-4 becomes̈x(t) = −µk g − z̈(t), so that, fort2 ≥ t1 ≥ 0, we have
∫ t2

t1

ẍ(s)ds =

∫ t2

t1

(−µk g − z̈(s))ds

ẋ(t2)− ẋ(t1) = −µk g(t2 − t1)−

∫ t2

t1

z̈(s)ds

ẋ(t2) = ẋ(t1)− µk g(t2 − t1)−

∫ t2

t1

z̈(s)ds. (5-7)

Let t1 = t andt2 = t1 + ∆t, then equation 5-7 becomes

ẋ(t + ∆t) = ẋ(t)− µk g∆t−

∫ t+∆t

t
z̈(s)ds. (5-8)
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Using equation 5-7 we can also write
∫ t2

t1

ẋ(s)ds =

∫ t2

t1

(

ẋ(t1)− µk g(s− t1)−

∫ s

t1

z̈(r)dr

)

ds

x(t2)− x(t1) = ẋ(t1)

∫ t2

t1

ds− µk g

∫ t2

t1

(s− t1)ds−

∫ t2

t1

∫ s

t1

z̈(r)drds

x(t2)− x(t1) = ẋ(t1)(t2 − t1)− µk g (
s2

2
− st1)|

t2
t1
−

∫ t2

t1

∫ s

t1

z̈(r)drds

x(t2)− x(t1) = ẋ(t1)(t2 − t1)− µk g (
t22
2
− t2t1 −

t21
2

+ t21)−

∫ t2

t1

∫ s

t1

z̈(r)drds

x(t2) = x(t1) + ẋ(t1)(t2 − t1)− µk g
(t2 − t1)

2

2
−

∫ t2

t1

∫ s

t1

z̈(r)drds

(5-9)

Again, for t1 = t andt2 = t1 + ∆t, equation 5-9 becomes

x(t + ∆t) = x(t)− µk g
∆t2

2
−

∫ t+∆t

t

∫ s

t
z̈(r)drds (5-10)

Similarly, for ẋ(t) < 0, the equation of motion given by equation5-4 using the relative response of
the block becomes̈x(t) = µk g − z̈(t), and we have

ẋ(t + ∆t) = ẋ(t) + µk g ∆t−

∫ t+∆t

t
z̈(s)ds, (5-11)

x(t + ∆t) = x(t) + ẋ(t)∆t + µk g
∆t2

2
−

∫ t+∆t

t

∫ s

t
z̈(r)drds. (5-12)

Hence, ifẋ(t) 6= 0, that is, if the block is sliding at timet, and assuming that sliding continues in
(t, t + ∆t), we can write

ẍ(t + ∆t) = −µk g sign(ẋ(t))− z̈(t + ∆t), (5-13)

ẋ(t + ∆t) = ẋ(t)− µk g ∆tsign(ẋ(t))−

∫ t+∆t

t
z̈(s)ds, (5-14)

x(t + ∆t) = x(t) + ẋ(t)∆t− µk g
∆t2

2
sign(ẋ(t))−

∫ t+∆t

t

∫ s

t
z̈(r)drds, (5-15)

by equations 5-4, 5-8, 5-10, 5-11, and 5-12.

If ẋ(t) = 0, that is, if the block is not sliding at timet, and continue to stick to the table during
(t, t + ∆t), we can write

ẍ(t + ∆t) = 0, (5-16)
ẋ(t + ∆t) = 0, (5-17)
x(t + ∆t) = x(t). (5-18)

If ∆t is small, the following approximations hold
∫ t+∆t

t
z̈(s)ds ≃

z̈(t + ∆t) + z̈(t)

2
∆t, (5-19)

∫ t+∆t

t

∫ s

t
z̈(r)drds ≃

z̈(t + ∆t) + z̈(t)

4
∆t2, (5-20)
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so that the relative response of the block in sliding and sticking phases in(t, t + ∆t) can be written
as

sliding phase:ẋ(s), s ∈ (t, t + ∆t),

ẍ(t + ∆t) = −µk g sign(ẋ(t))− z̈(t + ∆t), (5-21)

ẋ(t + ∆t) = ẋ(t)− µk g ∆tsign(ẋ(t))−
z̈(t + ∆t) + z̈(t)

2
∆t, (5-22)

x(t + ∆t) = x(t) + ẋ(t)∆t− µk g
∆t2

2
sign(ẋ(t))−

z̈(t + ∆t) + z̈(t)

4
∆t2, (5-23)

sticking phase:ẋ(s) = 0, s ∈ (t, t + ∆t),

ẍ(t + ∆t) = 0, (5-24)
ẋ(t + ∆t) = 0, (5-25)
x(t + ∆t) = x(t). (5-26)

5.3 Input Motion

The shake table acceleration used in the experiments performed at the University at Buffalo has the
form

z̈(t) = ω(t)αg sin(ν t), t ∈ [0, tf ], (5-27)

whereω(t) is a modulation function increasing to 1 and starting atω(0) = 0. We have modeled
ω(t) by

ω(t) = p1(t)e1(t) + p2(t)e2(t) + p3(t)e3(t), (5-28)

where

p1(t) = t3, t ∈ [0, t1),

p2(t) = a0 + a1(t− t1) + a2(t− t1)
2 + a3(t− t1)

3 + a4(t− t1)
4, t ∈ [t1, t2),

p3(t) = 1, t ∈ [t2,∞), (5-29)

are some polynomials,

e1(t) =

{

1, if t ∈ [0, t1),
0, otherwise,

e2(t) =

{

1, if t ∈ [t1, t2),
0, otherwise,

e3(t) =

{

1, if t ∈ [t2,∞),
0, otherwise,

(5-30)

and 0 < t1 < t2 are predetermined values derived from experiments. The coefficients a0, a1,
a2, a3 and a4 in p2(t), in equation 5-29, have been obtained using following continuity and
smoothness requirements;p2(t1) = p1(t1), ṗ2(t1) = ṗ1(t1), p̈2(t1) = p̈1(t1), p2(t2) = p3(t2), and
ṗ2(t2) = ṗ3(t2).

Figure 5-3 shows the acceleration of the shake table forα = 0.8, ν = 2π/T , T = 0.5 sec,t1 = 0.2T ,
t2 = 10T andtf = 20.2T .
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5.4 Algorithm

We present an algorithm for calculating the response of the block. Recall thatz(t) andy(t) are
the displacement of the shake table and of the block relativeto an absolute frame, respectively, and
x(t) is the displacement of the block relative to the shake table,so thaty(t) = z(t) + x(t). We
use an example to explain the algorithm for calculating the acceleration, velocity and displacement
responses of the block in equations 5-21 - 5-26.

The input acceleration is̈z(t) = ω(t)αg sin(ν t), t ∈ [0, tf ], with α = 0.8, ν = 2π/T , T = 0.5 sec,
tf = 3.1T , t1 = 0.1T andt2 = 2T (equations 5-27 and 5-28). Figure 5-4 shows the calculated total
and relative acceleration and velocity responses of the block, and the acceleration and the velocity
of the shake table, forµs = 0.45 andµk = 0.40.
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FIGURE 5-4 Algorithm

Figure 5-4 also shows four regions,A, B, C andD, with following properties.

• Region A: In this region |z̈(t)| < µs g, hence the block sticks to the table. The
relative acceleration, velocity and displacement responses of the block are obtained using
equations 5-24, 5-25 and 5-26.
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• Region B: At the beginning of regionB, z̈(t) becomes equal to−µs g and the motion of
the block relative to the table starts. The block motion continues in the same direction with a
constant total acceleration̈y(t) = −µk g until the end of regionB, at which point the relative
velocity of the blockẋ(t) becomes zero. The relative responses of the block are obtained
using equations 5-21, 5-22 and 5-23 with sign(ẋ(t)) = 1.

• Region C: At the beginning of regionC, z̈(t) < µk g hence the block sticks to the table
again and remains at rest until the end of regionC. In this region equations 5-24, 5-25 and
5-26 are used to obtain the relative responses of the block.

• Region D: At the beginning of regionD, z̈(t) becomes equal toµs g and block’s relative
motion starts again and continues with a constant total acceleration ÿ(t) = µk g until the
block relative velocityẋ(t) becomes zero at the end of the regionD. Equations 5-21, 5-22
and 5-23 with sign(ẋ(t)) = −1 are used to obtain the relative response of the block in this
region.

A computer algorithm for calculating the block relative acceleration ẍ(t), velocity ẋ(t) and
displacementx(t), developed by implementing equations 5-21 - 5-26, is presented below.
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Algorithm in MATLAB:

ẍ(1) = 0

ẋ(1) = 0

i = 1

while i < lt, (lt = length of the time vector)
if ẍ(i) + z̈(i) > µs g, then

ẍ(i) = µk g − z̈(i)

ẋ(i) = ẋ(i− 1) + µk g ∆t− 0.5 (z̈(i) + z̈(i− 1))∆t

x(i) = x(i− 1) + ẋ(i)∆t + µk g 0.5∆t2 − 0.25 (z̈(i) + z̈(i− 1))∆t2

while ẋ(i) < 0,
i = i + 1

ẍ(i) = µk g − z̈(i)

ẋ(i) = ẋ(i− 1) + µk g ∆t− 0.5 (z̈(i) + z̈(i− 1))∆t

x(i) = x(i− 1) + ẋ(i)∆t + µk g 0.5∆t2 − 0.25 (z̈(i) + z̈(i− 1))∆t2

if ẋ(i) > 0 ⇒ ẋ(i) = 0, x(i) = x(i− 1)

end
i = i + 1

if ẍ(i) + z̈(i) < −µs g, then

ẍ(i) = −µk g − z̈(i)

ẋ(i) = ẋ(i− 1)− µk g ∆t− 0.5 (z̈(i) + z̈(i− 1))∆t

x(i) = x(i− 1) + ẋ(i)∆t− µk g 0.5∆t2 − 0.25 (z̈(i) + z̈(i− 1))∆t2

while ẋ(i) > 0,
i = i + 1

ẍ(i) = −µk g − z̈(i)

ẋ(i) = ẋ(i− 1)− µk g ∆t− 0.5 (z̈(i) + z̈(i− 1))∆t

x(i) = x(i− 1) + ẋ(i)∆t− µk g 0.5∆t2 − 0.25 (z̈(i) + z̈(i− 1))∆t2

if ẋ(i) < 0 ⇒ ẋ(i) = 0, x(i) = x(i− 1)

end
i = i + 1

otherwise,

ẍ(i) = 0

ẋ(i) = 0

x(i) = x(i− 1)

i = i + 1

end

After obtaining the relative responses,ẍ(t), ẋ(t) andx(t), of the block, the total responses can be
calculated from̈y(t) = z̈(t)+ ẍ(t), ẏ(t) = ż(t)+ ẋ(t) andy(t) = z(t)+x(t). The calculated steady
state total block acceleration, velocity and displacementresponses have zero temporal mean, and
are symmetric about the time axis, under the sinusoidal excitation defined in Section 5.3, because of
the symmetry of the equation of motion. On the other hand, recorded block responses exhibit drifts
since the properties of the block-table interface exhibit spatial variation. To relate calculated results
to experimental results, block response records need to be corrected, as shown in the following
section.
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SECTION 6

ESTIMATION OF KINETIC COEFFICIENT OF FRICTION

The unknown kinetic coefficient of frictionµk is estimated using the maximum responses of
the blocks obtained through experiments at the University at Buffalo, and relationships between
the maximum responses and the kinetic coefficient of friction, obtained at Cornell University
using theoretical considerations. This section presents the relationships between the maximum
acceleration/displacement responses of the block and the kinetic coefficient of friction.

6.1 Maximum Acceleration Response

The maximum absolute total acceleration response,maxt |ÿ(t)|, of a block subjected to the input
acceleration defined in Section 5.3, is obtained using equations 5-3 and 5-5 as follows,

during sliding: ẋ(t) 6= 0 ⇒ ÿ(t) + µk g sign(ẏ(t)− ż(t)) = 0,

⇒ |ÿ(t)| = µk g,

⇒ max
t

|ÿ(t)| = µk g, (6-1)

during sticking: ẋ(t) = 0 ⇒ ÿ(t) = z̈(t),

⇒ max
t

|ÿ(t)| = max
t

|z̈(t)| = max
t

|ω(t)αg sin(ν t)|,

(6-2)

hence, we have

max
t

|ÿ(t)| =

{

µk g, sliding condition,
maxt |z̈(t)|, sticking condition.

(6-3)

Figure 6-1 illustrates the relation betweenmaxt |ÿ(t)| andµk given by equation 6-3. The unknown

  

maxt |ÿ(t)|

maxt |z̈(t)|

µk

stickingsliding

FIGURE 6-1 Relation betweenmaxt |ÿ(t)| and µk

kinetic coefficient of friction can be estimated, for a givenmaximum acceleration response
measured in an experimental study, using the relationship given by equation 6-3 and illustrated
in figure 6-1.
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6.2 Maximum Displacement Response

Similar to the acceleration response, velocity and displacement responses can be obtained using
equations 5-3 and 5-5 as follows,

during sliding: ẋ(t) 6= 0 ⇒ ÿ(t) + µk g sign(ẏ(t)− ż(t)) = 0,

if ẏ(t) > ż(t) ⇒ ÿ(t) = −µk g,

⇒ ẏ(t) = −µk g t + c1,

⇒ y(t) = −µk g t2/2 + c1 t + c2, (6-4)

if ẏ(t) < ż(t) ⇒ ÿ(t) = µk g,

⇒ ẏ(t) = µk g t + d1,

⇒ y(t) = µk g t2/2 + d1 t + d2, (6-5)

during sticking: ẋ(t) = 0 ⇒ ÿ(t) = z̈(t),

⇒ ẏ(t) = ż(t),

⇒ y(t) = y(t) + e. (6-6)

It is difficult to obtain a relationship in closed form between the maximum absolute displacement
response,maxt |y(t)|, and the kinetic coefficient of frictionµk. The development of this
relationship would require to calculate the constants of integration c1, c2, d1, d2 and e in
equations 6-4, 6-5 and 6-6 at each time the block changes its direction of motion relative to the
table or stops, as illustrated in figure 6-2.
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FIGURE 6-2 Displacements of the Table and the Block

The numerical integration scheme given by equations 5-21 - 5-26, and the algorithm defined
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in Section 5.4 are used to obtain the relationship between the maximum absolute displacement
responsemaxt |y(t)| and the kinetic coefficient of frictionµk as illustrated in figure 6-3. The

  

maxt |y(t)|

maxt |z(t)|

µk

stickingsliding

FIGURE 6-3 Relation betweenmaxt |y(t)| and µk

unknown kinetic coefficient of friction can be estimated, for a given maximum displacement
response measured in an experimental study, using the relationship given by equations 6-4 - 6-6
and illustrated in figure 6-3.

The solution is very sensitive to the time step∆t used in equations 5-21 - 5-26, especially for high
frequency input. Switch from sticking to sliding, or visa versa, may happen during the time step
∆t and error might build up. It is observed that the maximum response is stable for∆t ≤ 0.00005
for the highest frequency (corresponding to 0.1 sec period)sinusoidal input motions used in the
experimental study (see table 4.2). Accordingly, we have used∆t = 0.00001 for our analysis in
this study.

An example of maximum total displacement versus kinetic coefficient of friction curve is shown in
figure 6-4. The plot is for (i) an input acceleration given by equations 5-27 and 5-28 withα = 0.8,
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FIGURE 6-4 Examplemaxt |y(t)| versusµk

ν = 2π/T , T = 0.5 sec,tf = 40.2T , t1 = 0.2T andt2 = 20T , (ii) kinetic coefficient of friction
µk ∈ [0.1,0.9], and (iii) ∆t = 0.00001.
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SECTION 7

DATA ANALYSIS

A series of shake table experiments on rigid blocks have beenperformed at the University at Buffalo
to characterize the kinetic coefficient of friction for three different interfaces, (i) wood on steel,
(ii) carpet on steel, and (iii) Poly-Tetra-Fluoro-Ethylene (PTFE) on steel (explained in detail in
Section 4). The interfaces are selected such that there would be low, medium and high level of
friction. The surface of the shake table is steel and the other surface, that is, wood, carpet or PTFE,
is attached to the bottom of the blocks. The excitations are modulated unidirectional sine waves
with different amplitudes and frequencies to account for the uncertainty related to the dependence
of the kinetic coefficient of friction on the loading. To account for the uncertainty related to the
experimental errors six nominally identical blocks are tested simultaneously for a given amplitude,
period pair.

7.1 Data Source

A total of 50 tests were performed at the University at Buffalo and were assigned numbers form 1
to 50. Some of the tests were not useful in the estimation of kinetic coefficient of friction due to
several reasons.

• In 17 tests (tests 1, 2, 3, 10, 11, 12, 19, 20, 21, 26, 27, 28, 35,36, 44, 45 and 46) amplitudes
of the input accelerations were not sufficiently large to initiate sliding, that is, the blocks were
stuck to the shake table during the tests.

• 3 tests (tests 17, 36 and 50) did not result in any or useful data due to errors in measuring
devices for acceleration or displacement responses.

The remaining 30 tests are tabulated below according to the interface types and input acceleration
properties. Tables 7-1, 7-2 and 7-3 give the tests numbers for input accelerations with different
amplitudes and accelerations for carpet-steel, wood-steel and PTFE-steel interfaces, respectively.

TABLE 7-1 Test Numbers for Carpet-Steel Interface

Period (sec)

Amplitude (in g units) 0.75 0.50 0.10

low (∼0.60) 38 14; 39 15; 40

medium (∼0.80) 13 16; 41 42

high (∼1.00) 18; 43

Experiments were performed using small (tests 1, 2,. . ., 25) and large (tests 26, 27,. . ., 50) blocks to
determine the effect of the size of the contact surface on thekinetic coefficient of friction estimates.
Acceleration and displacement measuring devices were attached to each block and to the shake
table. Figures 7-1, 7-2 and 7-3 show the acceleration and displacement records of block 1 in tests
4 and 9 for wood-steel interface, tests 38 and 43 for carpet-steel interface, and tests 22 and 25 for
PTFE-steel interface, respectively. Low frequency (ν = 2π/0.75) excitations were used for tests 4,
38 and 22, and high frequency (ν = 2π/0.1) excitations were used for tests 9, 43 and 25. Further
details about the tests can be found in Section 4.
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TABLE 7-2 Test Numbers for Wood-Steel Interface

Period (sec)

Amplitude (in g units) 0.75 0.50 0.10

low (∼0.60) 4; 29 5; 30 6; 31

medium (∼0.80) 7; 32 8; 33

high (∼1.00) 9; 34

TABLE 7-3 Test Numbers for PTFE-Steel Interface

Period (sec)

Amplitude (in g units) 0.75 0.50 0.10

low (∼0.60) 22; 47 23; 48 24; 49

high (∼1.00) 25
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ÿ
(t

)
(in

g
)

y
(t

)
(in

g
se

c2
)

y
(t

)
(in

g
se

c2
)

t (sec)t (sec)

test 22, block 1, acc.

test 22, block 1, disp.

test 25, block 1, acc.

test 25, block 1, disp.

FIGURE 7-3 PTFE-Steel Interface Sample Responses

45



7.2 Estimation Procedure

Two methods are used to estimate the kinetic coefficient of friction. The methods are based on
acceleration and displacement records of blocks obtained in Section 4.

7.2.1 Acceleration-Based Estimates of Kinetic Coefficientof Friction

Let a(t), t ∈ [0, tf ], be the recorded acceleration time history of a block in a given test, with respect
to a fixed frame. The corresponding block acceleration in calculations is denoted bÿy(t). The
following 4-step procedure was used to find estimatesµk,acc of µk based on acceleration records.

• Step 1: The acceleration recorda(t), t ∈ [0, tf ], is corrected by subtracting its temporal mean

ma =
1

tf

∫ tf

0

a(s)ds. (7-1)

The corrected acceleration record is

ac(t) = a(t)−ma, t ∈ [0, tf ]. (7-2)

• Step 2: The steady state part of the corrected acceleration response recordac(t) is obtained
using its energy at timet defined by

e(t) =

∫ t

0

a2
c(s)ds, 0 ≤ t ≤ tf . (7-3)

The time interval of the steady state part,[ta, tb], is defined by the conditions

e(ta) = 0.15e(tf ), (7-4)
e(tb) = 0.85e(tf ).

Hence, the steady state corrected acceleration is

ass,c(t) = ac(t), t ∈ [ta, tb]. (7-5)

Figure 7-4 shows the table accelerationz̈(t) andass,c(t) for block 1 in test 38 (low frequency

          excitation).
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• Step 3: The maximum absolute accelerationmaxt |ass,c(t)| for t ∈ [ta, tb] is estimated by
its most likely value from the histogram of|ass,c(t)|. Figure 7-5 shows the histogram of
|ass,c(t)| and the proposed estimate formaxt |ass,c(t)| for block 1 in test 38. This estimate
has been selected using the following observations.

– If the amplitude of the excitation̈z(t) is much larger than the kinetic coefficient of
friction µk, the block never sticks to the table during the steady state excitation. In this
case, the calculated steady state total block accelerationÿ(t) is a piecewise constant
function with zero temporal mean and constant absolute value (figure 7-6 (a)). The
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FIGURE 7-6 Acceleration Illustration for No Sticking Case

histogram of steady state|ÿ(t)| is then a delta function centered atmaxt |ÿ(t)|, as
illustrated in figure 7-6 (b).

– If the amplitude of the excitation̈z(t) is larger than but close toµk, the block has
consecutive sticking and sliding phases as illustrated in figure 7-7 (a). Then,maxt |ÿ(t)|
in the sliding phase can also be estimated by the most likely value of|ÿ(t)|, obtained
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from the histogram of|ÿ(t)|, as shown in figure 7-7 (b). Note that the most likely value
of |ÿ(t)| does not correspond to the last bin of the histogram sinceµs > µk.

– In an actual experiment, assuming that sliding occurs, the steady state acceleration
record resembles the plot in figure 7-7 (a). Figure 7-8 shows aportion of ass,c(t) of
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FIGURE 7-8 Accelerations (Test 38, Block 1)

block 1 in test 38. This suggests that an estimate for the maximum absolute steady state
accelerationmaxt |ass,c(t)| in the sliding phase can be obtained from the histogram of
|ass,c(t)|, as in the ideal cases above.

• Step 4: The kinetic coefficient of friction is obtained using equation 6-3. Figure 7-9 shows
the kinetic coefficient of frictionµk,acc obtained using the acceleration response of block 1
in test 38.
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Another example, using the acceleration response of block 1in test 43, is provided to show the
effect of high frequency excitation.Steps 1 to 4 were applied to the acceleration record of the
block. Figure 7-10 shows the input accelerationz̈(t) and the steady state, corrected acceleration
ass,c(t) of the block, figure 7-11 shows the histogram of|ass,c(t)| andmaxt |ass,c(t)|, and figure 7-
12 shows the kinetic coefficient of frictionµk,acc, for block 1 in test 43.

0 5 10 15 20 25
−1

−0.5

0

0.5

1

t (sec)

ac
ce

le
ra

tio
n

(in
g
)

ass,c(t)z̈(t)

FIGURE 7-10 Steady State Corrected Acceleration (Test 43, Block 1)

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

|ass,c(t)| (in g)

maxt |ass,c(t)| = 0.387

FIGURE 7-11 Histogram of |ass,c(t)| (Test 43, Block 1)

49



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

µk

m
ax

t
|a

ss
,c
(t

)|
(in

g
)

maxt |z̈(t)| = 0.915g

from the histogram of|ass,c(t)|

µk,acc = 0.387

FIGURE 7-12 Kinetic Coefficient of Friction from Accelerati ons (Test 43, Block 1)

50



7.2.2 Displacement-Based Estimates of Kinetic Coefficientof Friction

Let d(t), t ∈ [0, tf ], be the recorded displacement time history of a block in a given test, with
respect to a fixed frame. The corresponding block displacement in calculations is denoted byy(t).
The following 4-step procedure was used to find estimatesµk,disp of µk based on displacement
records.

• Step 1: The displacement recordd(t), t ∈ [0, tf ], is corrected by subtracting its drift

da(t) =

∫ t+tc/2

t−tc/2

d(s)ds. (7-6)

The corrected displacement record is

dc(t) = d(t)− da(t), t ∈ [0, tf ]. (7-7)

In equation 7-6tc = 1/fc is the window length. The cut-off frequencyfc is selected such
that the low frequencies are removed fromd(t). It is assumed thatfc = fmax/2, where
fmax = 1/T andT is the period of the excitation. The corrected displacementrecorddc(t)
has zero mean and has no drift. Figure 7-13 (a) shows the displacement recordd(t), figure 7-
13 (b) shows the Fourier amplitude spectra ofd(t) and the cut-off frequencyfc, figure 7-13
(c) shows the driftda(t), and figure 7-13 (d) shows the corrected displacement responsedc(t),
for block 1 in tests 65 (low frequency excitation).

• Step 2: The steady state part of the corrected displacement response recorddc(t) is obtained
as inStep 2 in Section 7.2.1. The steady state corrected displacement is

dss,c(t) = dc(t), t ∈ [ta, tb]. (7-8)

Figure 7-14 shows the displacement of tablez(t) anddss,c(t) for block 1 in test 38.

• Step 3: The maximum absolute displacementmaxt |dss,c(t)| for t ∈ [ta, tb] is estimated by
its most likely value from the histogram of|dss,c(t)|. Figure 7-15 shows the histogram of
|dss,c(t)| and the proposed estimate formaxt |dss,c(t)| for block 1 in test 38. This estimate
has been selected using the following observations.

– If the amplitude of the excitation̈z(t) is much larger than the kinetic coefficient of
friction µk, the block never sticks to the table once the excitation becomes steady
state. In this case, the calculated steady state total blockdisplacementy(t) consists of
pieces of parabola (see figure 6-2) and is illustrated in figure 7-16 (a). Since the data is
clustered around the peaks ofy(t) and the total displacement response has zero temporal
mean, the maximum absolute total block displacementmaxt |y(t)| in the sliding phase
is estimated by the most likely value of|y(t)| as illustrated in figure 7-16 (b).

– If the amplitude of the excitation̈z(t) is larger than but close toµk, the block
has consecutive sticking and sliding phases as illustratedin figure 7-17 (a). Again,
maxt |y(t)| in the sliding phase is estimated by the most likely value of|y(t)|, obtained
from the histogram of|y(t)|, as shown in figure 7-17 (b).

– In an actual experiment, assuming that sliding occurs, the steady state displacement
record resembles the plot in figure 7-17 (a). Figure 7-18 shows a portion ofdss,c(t) of
block 1 in test 38. This suggests that an estimate for the maximum absolute steady state
displacementmaxt |dss,c(t)| in the sliding phase can be obtained from the histogram of
|dss,c(t)|, as in the ideal cases above.
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FIGURE 7-13 Drift Correction (Test 38, Block 1)

• Step 4: The kinetic coefficient of friction is obtained using the relation between
maxt |dss,c(t)| andµk as illustrated in figure 6-4. Figure 7-19 shows the kinetic coefficient
of friction µk,disp obtained using displacement responses from block 1 in test 38.

Another example using, the displacement record of block 1 intest 43, is provided to show the effect
of high frequency excitation.Steps 1 to 4 were applied to the displacement record of the block.
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Figure 7-20 (a) shows the displacement recordd(t), figure 7-20 (b) shows the Fourier amplitude
spectra ofd(t) and the cut-off frequencyfc, figure 7-20 (c) shows the driftda(t), figure 7-20 (d)
shows the corrected displacement responsedc(t). Figure 7-21 shows the input displacementz(t)
and the steady state, corrected displacementdss,c(t). Figure 7-22 shows the histogram of|dss,c(t)|
andmaxt |dss,c(t)|. Figure 7-23 shows the kinetic coefficient of frictionµk,disp obtained using
block 1 in test 43.

53



6.1 6.3 6.5 6.7 6.9 7.1
−5

0

5
x 10

−3

t (sec)

Displacements

y(t)

z(t)

(a)

0 0.3 0.6 0.9 1.2 1.5

x 10
−3

0

4000

8000

12000

|y(t)|

Histogram of|y(t)|

maxt |y(t)|

(b)

FIGURE 7-16 Displacement Illustration for No Sticking Case

6.1 6.3 6.5 6.7 6.9 7.1
−5

0

5
x 10

−3

t (sec)

Displacements

y(t)

z(t)

(a)

0 1 2 3 4

x 10
−3

0

4000

8000

12000

|y(t)|

Histogram of|y(t)|

maxt |y(t)|

(b)

FIGURE 7-17 Displacement Illustration for Stick-Slip Case

54



30 30.5 31 31.5

−6

−4

−2

0

2

4

6

x 10
−3

t (sec)

d
ss

,c
(t

)
(in

g
se

c2
)

dss,c(t)

z(t)

FIGURE 7-18 Displacements (Test 38, Block 1)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

0.003

0.006

0.009

0.012

µk

m
ax

t
|d

ss
,c
(t

)|
(in

g
)

µk,disp = 0.370

from the histogram of|dss,c(t)|

FIGURE 7-19 Kinetic Coefficient of Friction from Displacements (Test 38, Block 1)

55



0 5 10 15 20 25
−0.03

−0.02

−0.01

0

0.01

t (sec)

d
(t

)
(in

g
se

c2
)

Displacement record

(a)

0 5 10 15
0

0.2

0.4

0.6

0.8

1
x 10

−3

f (Hertz)

am
pl

itu
de

Fourier spectrum ofd(t)

fmax= 1/T = 10

fc = 1/fmax= 5

(b)

0 5 10 15 20 25
−0.03

−0.02

−0.01

0

0.01

t (sec)

d
a
(t

)
(in

g
se

c2
)

Drift

(c)

0 5 10 15 20 25
−2

−1

0

1

2
x 10

−4

t (sec)

d
c
(t

)
(in

g
se

c2
)

Corrected data

(d)

FIGURE 7-20 Displacements (Test 43, Block 1)
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SECTION 8

RESULTS

For a given interface type, the kinetic coefficient of friction is obtained using the acceleration and
displacement responses of all the blocks in each test for that interface type following the procedures
described in Section 7.2. Figures 8-1, 8-2 and 8-3 show the (µk,acc, µk,disp) pairs obtained for
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carpet-steel, wood-steel and PTFE-steel interfaces, respectively.
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Statistics ofµk,acc andµk,disp are calculated using (i) only the small blocks, (ii) only the large
blocks, and (iii) all the blocks, are shown in tables 8-1, 8-2 and 8-3, for carpet-steel, wood-steel

TABLE 8-1 Statistics of Kinetic Coefficients of Friction for Carpet-Steel Interface

small blocks large blocks all blocks

Statistics µk,acc µk,disp µk,acc µk,disp µk,acc µk,disp

mean 0.374 0.379 0.410 0.394 0.393 0.387

standard deviation 0.051 0.038 0.063 0.062 0.060 0.053

coefficient of variation 0.137 0.101 0.154 0.157 0.153 0.136

correlation coefficient -0.100 0.752 0.509

TABLE 8-2 Statistics of Kinetic Coefficients of Friction for Wood-Steel Interface

small blocks large blocks all blocks

Statistics µk,acc µk,disp µk,acc µk,disp µk,acc µk,disp

mean 0.299 0.317 0.339 0.330 0.320 0.324

standard deviation 0.094 0.083 0.066 0.078 0.083 0.080

coefficient of variation 0.315 0.261 0.194 0.236 0.260 0.247

correlation coefficient 0.069 0.907 0.415

and PTFE-steel interfaces, respectively. It is observed that the correlation betweenµk,acc andµk,disp

obtained using the large blocks is significantly higher thanthe correlation obtained using the small
blocks. This suggests that the estimates ofµk based on small blocks have more noise than those
corresponding to large blocks. However, the estimated means and the coefficients of variation are
insensitive to block size. It is concluded that there is no apparent size effect in the estimates of
µk,acc andµk,disp.
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TABLE 8-3 Statistics of Kinetic Coefficients of Friction for PTFE-Steel Interface

small blocks large blocks all blocks

Statistics µk,acc µk,disp µk,acc µk,disp µk,acc µk,disp

mean 0.209 0.191 0.208 0.194 0.209 0.193

standard deviation 0.016 0.011 0.016 0.009 0.016 0.010

coefficient of variation 0.077 0.059 0.078 0.048 0.076 0.054

correlation coefficient -0.020 -0.705 -0.284

Assuming thatµk,acc andµk,disp are correlated Gaussian random variables with means, standard
deviations and correlation coefficients given in tables 8-1, 8-2 and 8-3 for carpet-steel, wood-steel
and PTFE-steel interfaces, respectively, contour lines ofthe joint probability density function of
µk,acc andµk,disp corresponding to 90% probability are shown in figures 8-1, 8-2 and 8-3. Most of
the data points are in the 90% probability contour for all three interfaces.

The mean values of the estimates of the static and kinetic coefficients of friction for carpet-steel,
wood-steel, and PTFE-steel interfaces given in tables 3-4 -3-6 and tables 8-1 - 8-3, respectively, are
summarized in table 8-4. The mean kinetic coefficients of friction for carpet-steel, wood-steel and

TABLE 8-4 Coefficients of Friction for Carpet, Wood and PTFE - Steel Interfaces

Coefficient of friction

Interface static kinetic

carpet-steel 0.450 0.395

wood-steel 0.400 0.322

PTFE-steel 0.270 0.201

PTFE-steel interfaces are 12.22%, 19.50% and 25.56% less than their corresponding mean static
coefficient of frictions, respectively.

The 90% probability contours obtained using shake table tests results and theoretical consideration
for wood-steel and carpet-steel interfaces, shown in figures 8-2 and 8-1, respectively, include the
preliminary estimates of the kinetic coefficient of friction given in tables 3-9 and 3-10, which are
obtained using tilts tests.
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SECTION 9 

CONCLUSIONS 
 
This report describes the first phase of research supported by the Multidisciplinary Center for 
Earthquake Engineering Research on the seismic performance evaluation of a broad range of 
freestanding nonstructural components that can be modeled as rigid blocks. More specifically, the 
main objective of this study was to characterize the static and kinetic coefficients of friction for 
three interfaces representative of common interfaces between the block-type nonstructural 
components and their supporting floors. The established coefficients of friction can be used in the 
seismic performance analysis of block-type nonstructural components.  
 
The interfaces used in this study were Poly-Tetra-Fluoro-Ethylene on steel, wood on steel, and 
carpet on steel, which resulted in low, moderate, and high coefficients of friction, respectively. 
Two sets of blocks with different geometry were designed and constructed to model block-type 
nonstructural components. The block geometries were selected to assure that the blocks would 
respond to a broad range of uniaxial sinusoidal base excitations by either sticking or sliding.  
 
The static coefficients of friction for the three interfaces were characterized by a series of 
standard pull and tilt tests. The uncertainties associated with the imperfections in the block-floor 
interfaces were accounted for by repeating the characterization tests to generate a sufficient 
number of data points. The mean static coefficients of friction were found to be 0.45 for the 
carpet-steel, 0.40 for the wood-steel, and 0.27 for the PTFE-steel interfaces. The coefficient of 
variation was less than 7% for the carpet-steel interface, 10% for the wood-steel interface, and 
20% for the PTFE-steel interface. The established static coefficients of friction were deemed to 
be insensitive to the block size. Preliminary estimates of the kinetic coefficients of friction, which 
were required to predict the maximum displacements of the blocks in the earthquake simulator 
experiments, were obtained by a series of tilt tests for the carpet-steel and wood-steel interfaces. 
The mean values of the preliminary estimates of the kinetic coefficients of friction were 0.33 for 
the carpet-steel and 0.20 for the wood-steel interfaces, which are 26.67% and 50.00% less than 
their corresponding mean static coefficient of frictions.   
 
Estimates of the kinetic coefficients of friction for the three interfaces were obtained using 
acceleration and displacement-based methods. The methods use (i) maximum responses of the 
blocks obtained through experiments and (ii) relationships between the maximum responses and 
the kinetic coefficient of friction obtained using theoretical considerations. The methods 
accounted explicitly for the uncertainty in experimental errors, imperfections in block-floor 
interfaces, and the relationship between the kinetic coefficient of friction and the loading, and the 
block size. The mean kinetic coefficients of friction were found to be 0.40 for the carpet-steel, 
0.32 for the wood-steel, and 0.20 for the PTFE-steel interfaces. The coefficient of variation was 
less than 16% for the carpet-steel interface, 26% for the wood-steel interface, and 8% for the 
PTFE-steel interface. The mean kinetic coefficients of friction for carpet-steel, wood-steel and 
PTFE-steel interfaces were 12.22%, 19.50%, and 25.56% less than their corresponding mean 
static coefficients of friction, respectively. It is shown that most of the pairs of acceleration and 
displacement-based estimates of the kinetic coefficient of friction were included in the 90% 
probability contour of these parameters assumed to be Gaussian random variables with the second 
moment properties estimated from experiments. It is also shown that, the estimated means and the 
coefficients of variation of the kinetic coefficients of friction were insensitive to block size. 
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