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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center of
excellence in advanced technology applications thatis dedicated to the reduction of earthquake losses
nationwide. Headquartered at the University at Buffalo, State University of New York, the Center
was originally established by the National Science Foundation in 1986, as the National Center for
Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions throughout the
United States, the Center’s mission is to reduce earthquake losses through research and the
application of advanced technologies that improve engineering, pre-earthquake planning and post-
earthquake recovery strategies. Toward this end, the Center coordinates a nationwide program of
multidisciplinary team research, education and outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies: the National
Science Foundation (NSF) and the Federal Highway Administration (FHWA), and the State of New
York. Significant support is derived from the Federal Emergency Management Agency (FEMA),
other state governments, academic institutions, foreign governments and private industry.

The Center’s NSF-sponsored research is focused around four major thrusts, as shown in the figure

below:

* quantifying building and lifeline performance in future earthquake through the estimation of
expected losses;

* developing cost-effective, performance based, rehabilitation technologies for critical facilities;

* improving response and recovery through strategic planning and crisis management;

» establishing two user networks, one in experimental facilities and computing environments and
the other in computational and analytical resources.

I. Performance Assessment of the Built Environment

- using

Loss Estimation Methodologies

Il. Rehabilitation of Critical Facilities
® Facilities Network > using
¢ Computational Network Advance Technologies

! I

lll. Response and Recovery
—> using

Advance Technologies

IV. User Network

iii



This report presents the development and evaluation of simplified methods of analysis and design
for buildings with passive energy dissipation systems. The work was conducted under the auspices
of the Building Seismic Safety Council, Technical Subcommittee 12, Base Isolation and Energy
Dissipation, for the year 2000 update of the “NEHRP Recommended Provisions for Seismic
Regulations for New Buildings and Other Structures.” Topics presented in the report include
development of extended damping coefficients for modification of response spectra for damping in
excess of 5% of critical; development of relationships between elastic and inelastic displacement of
yielding systems with energy dissipating devices; a study of displacement ductility demand in
yielding structures with viscous damping systems; development of equivalent lateral force and
modal analysis procedures for buildings with damping systems; and validation studies of the
developed analysis procedures using 3- and 6-story structures with linear viscous, nonlinear
viscous, solid viscoelastic and yielding damping systems.

Technical Report MCEER-00-0010 was first published on December 8, 2000. Since then, the report
has been rigorously reviewed by Dr. Christis Chrysostomou, who independently re-worked the
examples and checked the validity of the presented results. This resulted in a substantial volume of
changes and corrections that are included in the current version of the report, which is published as
Revision 1. The changes are identified with lines on the border of each page.
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ABSTRACT

This report presents the development and evaluation of simplified methods of analysis and
design for buildings with passive energy dissipation systems. The work described in this report
was conducted under the auspices of the Buildings Seismic Safety Council Technical
Subcommittee 12, Base Isolation and Energy Dissipation, for the year 2000 update of the
NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other

Structures.

The work presented in this report includes:

(2)
(b)
(©)
(d)
(e)

Development of extended damping coefficients for modification of response spectra
for damping in excess of 5-percent of critical.

Development of relationships between elastic and inelastic displacement of yielding
systems with energy dissipating devices.

A study of displacement ductility demand in yielding structures with viscous damping
systems.

Development of equivalent lateral force and modal analysis procedures for buildings
with damping systems.

Validation studies of the developed analysis procedures using 3- and 6-story
structures with linear viscous, nonlinear viscous, solid viscoelastic and yielding
damping systems.
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SECTION 1

INTRODUCTION

1.1 Passive Energy Dissipation Systems

Conventionally designed and constructed earthquake-resistant buildings rely on significant
inelastic action (energy dissipation) in selected components of the framing system in the design
earthquake. For the commonly used moment-resisting frame, inelastic action should occur in the
beams near the columns and in the beam-column panel zones: both zones form part of the
gravity-load-resisting system. Inelastic action results in damage, which is often substantial in
scope and difficult to repair. Damage to the gravity-load-resisting system can result in significant

direct and indirect (business interruption) losses.

The desire to avoid damage to components of gravity-load-resisting frames in buildings
following the 1989 Loma Prieta and 1994 Northridge earthquakes has spurred the development
of passive energy dissipation systems. The primary objective of adding energy dissipation
systems to building frames has been to focus the energy dissipation during an earthquake into
disposable elements specifically designed for this purpose, and to substantially reduce (or
eliminate) energy dissipation in the gravity-load-resisting frame. Because energy dissipators do
not form part of the gravity frame and can be replaced after an earthquake without compromising

the structural integrity of the frame.

Passive metallic yielding, viscoelastic, and viscous energy dissipators (also termed dampers in
this report) are now available in the marketplace, both in the United States and overseas. Soong
and Dargush (1997) and Constantinou et al. (1998) describe these passive dampers and other

types of dampers under development at the time of this writing.

One impediment to the widespread use of passive energy dissipation systems has been the lack
of robust and validated guidelines for the modeling, analysis, design, and testing of the dampers.
The following section presents sample information on the procedures developed in the 1990s to

aid in the implementation of passive energy dissipation systems.



1.2 Procedures for Implementation of Passive Energy Dissipators
1.2.1 General

Up to the time of this writing, five code-oriented procedures have been published related to the
implementation of passive energy dissipation devices in buildings. The first procedures were
published in 1992 by the Structural Engineers Association of Northern California (SEAONC).
The Federal Emergency Management Agency (FEMA) included draft guidelines for the
implementation of passive energy dissipation devices in new buildings in the 1994 edition of the
NEHRP Recommended Guidelines for Seismic Regulations for New Buildings (NEHRP, 1994).
Guidelines for the implementation of passive energy dissipation devices in retrofit construction
were published in 1997 in the NEHRP Guidelines for the Seismic Rehabilitation of Buildings
(FEMA, 1997). In 1999, the SEAOC Ad-Hoc Committee on Energy Dissipation published
guidelines for implementing energy dissipation devices in new buildings in the SEAOC Blue

Book (SEAOC, 1999) in a format consistent with that of the 1997 Uniform Building Code.

This year (2000), FEMA is to publish the 2000 edition of the NEHRP Recommended Guidelines

for Seismic Regulations for New Building. Summary remarks on each of these documents follow.
1.2.2 1992 SEAONC Energy Dissipation Working Group

The first draft code requirements in the United States for the design and implementation of
passive energy dissipation systems were prepared by the Energy Dissipation Working Group of
the Base Isolation Subcommittee of SEAONC (Whittaker, et al. 1993). The philosophy adopted
in this draft document was to confine inelastic activity in the structure to the energy dissipators
and keep the gravity-load-resisting system elastic in the design-basis earthquake. Because the
energy dissipation devices did not form part of the gravity-load-resisting system, they were
considered to be replaceable following strong earthquake shaking. The SEAONC document
required that the framing system exclusive of the energy dissipation system comply with all
requirements of the 1988 Uniform Building Code, including those of base shear strength and

maximum interstory drift.

The document provided general design requirements applicable to a wide range of systems, and,

as such, relied on testing of system hardware to confirm the engineering parameters used in the



design, and to verify the overall adequacy of the energy dissipation system. Two types of
dampers were recognized in the document: rate-independent (or displacement-dependent)
dampers and rate-dependent (or velocity-dependent) dampers. Maximum responses in the energy
dissipation system were computed using dynamic analysis, including response-spectrum
analysis, and linear and non-linear response-history analysis. Seismic demands were described
by the spectral demands of the design-basis earthquake. Design actions and deformations in the
energy dissipation system were based on the design-basis earthquake analysis. All components
of the energy dissipation system exclusive of the dampers were designed for forces
corresponding to 120 percent of the design-basis earthquake damper displacement. Stability of
the dampers had to be verified by testing for displacements and velocities corresponding to the
maximum level of earthquake shaking that was expected at the building site. Whittaker et al.
note that the SEAONC document “...was prepared in keeping with the most current information
and the present state-of-the-practice of energy dissipation” and that because “...seismic energy
dissipation is a relatively new technology and there are many design-related issues that require

additional research...” that a conservative approach was taken to develop the design guidelines.
1.2.3 1994 NEHRP Recommended Provisions for Seismic Regulations for New Buildings

Whereas the 1992 SEAONC guidelines required that the lateral-force-resisting system exclusive
of the dampers comply in full with the strength and interstory drift requirements of the Uniform
Building Code, the 1994 NEHRP Recommended Provisions for Seismic Regulations for New
Buildings (NEHRP, 1994) permitted the engineer to use the dampers to reduce the base shear
strength of the building. The underlying assumption of these Provisions was that the damped
building would suffer no more damage in a design earthquake than the corresponding
conventionally framed building. The minimum design forces in the building frame could be
calculated as the product of the forces associated with the framing system exclusive of the
dampers and the reduction factors listed in Table 1-1 below, which were based on the work of
Wu and Hanson (1989). The Provisions noted “Structural members that transmit the forces from
the energy dissipation devices to the foundation [including all damper framing members] should
be designed to remain elastic for 1.2 times the maximum devices forces associated with the
design basis earthquake.” Two types of dampers were identified in the provisions: linear viscous

devices, and other energy dissipation devices. Linear analysis procedures were presented for



each type of damper. The Provisions recommended that the building design be verified by

nonlinear response-history analysis.

Table 1-1 1994 NEHRP Reduction Factors for Increased Damping (NEHRP, 1994)

Fraction of Critical Reduction Factor
Damping
0.05 1.00
0.10 0.84
0.15 0.72
0.20 0.64
0.25 0.58
0.30 0.53

1.2.4 1997 NEHRP Guidelines for the Seismic Rehabilitation of Building

The 1997 NEHRP Guidelines for the Seismic Rehabilitation of Building (FEMA, 1997), widely
known as FEMA 273, presented unified procedures for the implementation of energy dissipation
devices in retrofit building construction. Consistent with the remainder of the guidelines, four
analysis procedures were presented for analyzing buildings incorporating energy dissipation
devices: linear static, linear dynamic, nonlinear static, and nonlinear dynamic. All four
procedures were displacement (damage)-based methods rather than the traditional force-based
methods such as the 1992 SEAONC and 1994 NEHRP Recommended Provisions. Because the
products of any of these procedures were displacements and deformations, the procedures
represented a paradigm shift in the practice of earthquake engineering, and have been used for
performance-based earthquake engineering. FEMA 273 permitted the engineer to select

performance levels and objectives, so no limits on minimum base shear strength and maximum



interstory drift were established in the Guidelines. Two types of dampers were identified in the

Guidelines: displacement-dependent dampers; and velocity-dependent dampers.

The linear procedures of FEMA 273 could only be used if it could be demonstrated that the
framing system exclusive of the dampers remained essentially elastic for the level of earthquake
shaking under consideration. Further, the effective damping provided by the energy dissipation
system could not exceed 30 percent of critical. The linear methods accounted for energy
dissipation (damping) in the elastic frame and the dampers. FEMA 273 promoted the use of
nonlinear analysis for retrofit building construction using passive energy dissipation devices.
Two methods of nonlinear static analysis were presented: Method 1, also known as the
Coefficient Method; and Method 2, which was a variant of the well-known Capacity Spectrum
Method. These nonlinear methods accounted for energy dissipation in both the yielding frame

and the dampers.
1.2.5 1999 SEAOC Recommended Lateral Force Requirements

In 1999, the Structural Engineers Association of California (SEAOC) published guidelines for
implementing passive energy dissipation devices in buildings as part of the Recommended
Lateral Force Requirements and Commentary. The guidelines follow the same format as that of
the 1997 Uniform Building Code, and use the same (linear) analysis procedures as those
presented in the Code for design of conventional construction, namely, equivalent lateral force,
response-spectrum, and response-history analysis. Nonlinear response-history analysis is also
permitted but no guidance is offered. Two types of dampers were identified in the Requirements:
displacement-dependent dampers and velocity-dependent dampers. The framing system
exclusive of the dampers has to comply with the base shear strength requirements of the Uniform
Building Code regardless of the type of analysis used. Metallic-yielding (displacement-
dependent) dampers can be included as part of the lateral-force-resisting system to meet these
strength requirements. If either the equivalent lateral force or response-spectrum procedures is
used, or if linear response-history analysis is used and the resultant demand-capacity ratios
exceed 2.0, the framing system exclusive of the dampers must meet the drift requirements of the

Code. If nonlinear response-history analysis is used, or if linear response-history analysis is used



and the resultant demand-capacity ratios are less than 2.0, the energy dissipation provided by the

damping system may be used to satisfy the drift requirements of the Code.
1.2.6 2000 NEHRP Recommended Provisions for Seismic Regulations for New Buildings

The 2000 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and
Other Structures present completely revised procedures for implementing passive energy
dissipation devices in new buildings. The December 1999 ballot version of the energy dissipation
provisions (Appendix to Chapter 13) is presented in Appendix A of this report. Robust linear
procedures (equivalent lateral force and response-spectrum methods) are presented for use with
displacement- and velocity-dependent dampers. These procedures were developed in part by the
author as part of his doctoral studies at the University at Buffalo, in close co-operation with the
members of BSSC Committee TS12, who were tasked with writing new energy dissipation
procedures for the Provisions. The studies presented in this report served to validate these
procedures, which will form the national standard for implementing passive energy dissipation
devices in buildings. Much additional discussion on the procedures are presented in the

following chapters.
1.3  Report Organization

This report is divided into nine sections, references, and eleven appendices. Section 2 provides a
description of the FEMA 273 and 274 nonlinear static analysis procedures. Procedures for
modifying response spectra to account for damping in excess of 5 percent of critical are
presented in Section 3. Simplified methods of analysis of yielding systems are described in
Section 4. Relationships between inelastic and elastic displacement responses are presented in
Section 5. A method for estimating the displacement ductility demand in yielding systems
including viscous energy dissipation devices is presented in Section 6. Information from Sections
2 through 6 are integrated in Section 7 in the form of new equivalent lateral force and modal
analysis procedures for implementing energy dissipation devices in new buildings. Section 8
describes the results of validation studies of the methods of Section 7 using 3- and 6-story
frames. A summary, conclusions and recommendations for future work are presented in Section
9. A list of references follows Section 10. The eleven appendices provide supplemental

information and detailed calculations in support of Sections 2 through 9.



SECTION 2

DESCRIPTION OF NONLINEAR STATIC ANALYSIS PROCEDURES OF FEMA 273

2.1 Introduction

The intent of performance-based seismic design is to produce structures with predictable
performance levels. To achieve this, nonlinear analysis procedures are used. The most realistic
of the nonlinear procedures is response-history analysis. However, this method of analysis
requires a complex description of the analyzed system and the response is strongly sensitive to
the models and the characteristics of the ground motion used in the analysis. Simplified
nonlinear analysis methods have been developed based on the use of equivalent linear

representations of the structural system.

FEMA (1997) describes two simplified nonlinear static methods of analysis: Method 1 and
Method 2. Both methods are briefly described herein and subsequently some clarifications and

improvements of these methods are presented.
2.2  Nonlinear Static Procedure, Method 2
2.2.1 General Description

The seismic response of yielding systems may be estimated by simplified methods of analysis in
which the yielding system is replaced by an equivalent linear elastic and viscous system. Chopra
and Goel (1999) recently presented a brief historical review of these methods and Iwan and

Gates (1979) presented a collection of such methods and a study of their accuracy.

Method 2 of FEMA (1997) is largely based on the capacity spectrum method (Freeman et al.,
1975; Freeman, 1978) but extended to include structures with damping systems. Method 2
contains a number of steps as explained below for structures with damping systems and

illustrated in Figure 2-1.

(1) A mathematical model of the structure including all the characteristics of the framing system

and energy dissipation devices is developed. A relation between the base shear force and
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roof displacement is established. This relationship is commonly known as the pushover
curve. Although the pushover curve should be a description of the capacity of a given
structure, its shape varies as a function of the pattern of lateral loads used to monotonically

push the structure.
A value of the roof displacement is assumed and the effective damping is determined from

WD

P =

2-1)

where Wp is the energy dissipated in a cycle of harmonic motion to the assumed
displacement and Wy is the strain energy at the assumed displacement. The value of Wp
includes the damping effect of the supplemental damping devices, by yielding of the
framing system, and due to the structural damping inherent in the frame. For the assumed
value of the roof displacement, eigenvalue analysis is performed using the secant stiffness
properties of the structural elements. Using the fundamental mode properties, the pushover
curve is converted to the spectral capacity curve, that is, a plot of spectral acceleration
versus spectral displacement. The spectral acceleration (S,) for the first mode representation

of the structure is given by

s = 22
=58 (2-2)

where V is the base shear, and W ; is the first modal weight given by

N

Z (Wi i1 )2
Z W; ¢121
i=1

and where ¢; is the first mode shape vector, w; is the reactive weight of the i degree of

Wi (2-3)

freedom, and N is the number of degrees of freedom.
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In a similar way, the spectral displacement (S;) for the first mode representation of the

structure is given by

Sqg=—" (2-4)

where &, is the roof displacement, /7 is the first mode modal participation factor, and ¢,; is

the ordinate of the first mode shape at the roof.

The capacity curve computed in step 2 is superimposed on the design demand curve, which
is a plot of spectral acceleration versus spectral displacement after modification for the
effective damping. The displacement demand is determined from the intersection point of

the capacity curve and the design demand curve.

The assumed and computed values of the displacement are compared and the process is

repeated until satisfactory convergence is achieved.

The contribution of higher modes to the total response is calculated by utilizing modal
analysis procedures and assuming elastic behavior with properties based on the secant

stiffnesses at the displacement calculated in step (4). For this calculation, Equations (2-1) to
(2-4) are used but with Wi is replaced by W, ¢i1 is replaced by @im, ¢; is replaced by @y

and 77 is replaced by 7;,, where the subscript m denotes the m™ mode of vibration. It should
be noted that in this calculation, iteration is not required due to the assumption of elastic
behavior. The total response is finally calculated trough the use of an appropriate

combination rule.

2.2.2 Pushover Curve

The pushover curve constitutes an important major step in the simplified method of analysis. In

a practical sense it represents the capacity of the structure to resist lateral loads. The pushover

curve is constructed by “pushing” a mathematical model of the structure by monotonically

increasing lateral loads of constant proportions. As the magnitude of the load increases,

progressive yielding of the model occurs, which is accompanied by a change in the dynamic

properties of the structure. Recognizing that the structural capacity and, therefore, its



degradation pattern is not independent of the demand, it can be concluded that the ordinates of

pushover curve are a function of the assumed pattern of lateral loads.

The pattern of loads should be consistent with the expected distribution of inertia forces in the
yielding structure. Some studies have suggested that the most appropriate distribution is one in
which the loads change as the structure is displaced. This approach is termed adaptive load
pattern. Researchers have proposed the use of a lateral pattern consistent with the deflected
shape of the structure (Fajfar and Fischinger, 1988), the use of load patterns based on mode
shapes derived from secant stiffnesses (Eberhard and Sozen, 1993), and the use of patterns in
which the lateral forces are related to story resistances at each increment of loading (Reinhorn et
al., 1995; Bracci et al., 1997).

The simplified analysis procedure described in FEMA (1997) requires the use of at least two
different patterns of lateral loads in order to produce bounds on the response. The first one,
termed a uniform pattern, is based on the lateral forces being proportional to the total mass at
each level. The second pattern, termed a modal pattern, is nearly proportional to the first modal
shape. Furthermore, FEMA (1997) suggests that the load pattern be computed by combination
of modal responses using response-spectrum analysis and considering as many modes as

necessary to capture 90% of the total mass.
2.2.3 Design Demand Curve

The seismic hazard is typically represented by the 5%-damped pseudo-acceleration response
spectrum, that is a plot of spectral acceleration (acceleration at the time of maximum
displacement) of a single-degree-of-freedom elastic system with 5% equivalent viscous damping
versus the structural period. The pseudo-acceleration S, and the spectral displacement Sy
(maximum drift) of the single-degree-of-freedom system are related through
T2

Sy = _472—Sa (2-5)

where T is the period. A plot of spectral acceleration versus the spectral displacement is termed

the design demand curve. In this figure, points of equal period are located along lines radiating
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from the origin as shown in Figure 2-2. Plots for different levels of damping are also presented in

the figure.

The design demand curves for levels of damping higher than 5% are constructed by dividing the
5%-damped curve by the damping coefficient B. Values of the damping coefficient have been
presented in FEMA, 1997. As shown in Table 2-1, FEMA utilizes two factors, one for the
constant acceleration region of the response spectrum (B;) and the other for the constant velocity
region of the spectrum (B;). Interestingly, the values in the constant acceleration region are
larger than those in the constant velocity region, which contradicts the fact that there is little or
not reduction of displacement with increasing damping in very stiff structures. Also, the values
of the damping coefficient are terminated at the damping ratio of 0.5 in an apparent exercise of

conservatism due to lack of data for larger levels of damping.

New values of the damping coefficient, which correctly account for reduction of the damping
coefficient with reducing period and extend to critically damped systems have been established
in Section 3. The case of critically and over-critically damped systems may actually arise in the
higher modes of structures with viscous damping devices. Presented in Figure 2-3, the values of
this study may be seen as large for damping ratio larger than 0.5 by comparison to the values in
FEMA (1997). However, the damping coefficient values of this study are realistic and their use
is important in correctly assessing the benefits of energy dissipation systems. The values
established in this study have been utilized, after some minor simplification, in the 2000 NEHRP
Recommended Provisions for Seismic Regulations for New Buildings and Other Structures,
Appendix to Chapter 13, Structures with Damping Systems (NEHRP, 2000). The values of the
damping coefficient in NEHRP (2000) are presented in Table 2-1 and graphically compared to
the FEMA (1997) and the values of this study in Figure 2-3. As an example, Figure 2-4 presents
response spectra established by using damping coefficients developed in this study. The 5%-
damped spectrum is that described in NEHRP (2000) for parameters Sps= 1.0, Sp; = 0.6 and 7=
0.6 sec.

2.2.4 Calculation of Velocity Dependent Forces

Velocity dependent forces are calculated in Method 2 by utilizing pseudo-velocities as estimates

of maximum velocities. This simple approach introduces errors since it is known that pseudo-
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velocity generally under-estimates the maximum velocity for long-period structures and it
generally over-estimates the maximum velocity for short-period structures. Moreover, the
degree of error depends on the amount of effective damping. Sadek et al. (1999) proposed the
use of correction factors to multiply the pseudo-velocity in order to obtain a better estimate of
maximum velocity. The Sadek approach has been investigated in this study and found
promising. Results are presented in Section 4, where it is shown that correction factors

established by the approach of Sadek et al. (1999) produce good estimates of drift velocities.
2.2.5 Calculation of Maximum Actions

The seismic design forces are calculated at three stages: (a) maximum drift, (b) maximum
velocity, and (c) maximum acceleration. Stages (b) and (c) are important only for structures with
velocity dependent damping systems because maximum actions in buildings incorporating

displacement dependent damping systems will occur at the time of maximum displacement.

The design forces at the stage of maximum acceleration are calculated as a linear combination of
the forces calculated at the stages of maximum drift and maximum velocity after multiplication
by combination factors CF; and CF,, respectively. These factors have been developed on the
basis of the assumption of linear-elastic and linear-viscous behavior (Tsopelas et al., 1997,

Constantinou et al., 1998).

It is now recognized that the combination factors in FEMA (1997) are incorrect for yielding
structures and for structures with nonlinear viscous damping systems. Section 4 herein presents

the corrected combination factors, which have been implemented in NEHRP (2000).
2.3 Nonlinear Static Procedure, Method 1

Method 1 was developed as a simple one-step analysis method in which the roof (or target)

displacement of structures exhibiting bilinear behavior is prescribed by an equation of the form

T2

5,=C0-C,-C2-C3-SQ-LZ (2-6)
ir
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where T, is the elastic period of the structure, S, is the spectral acceleration for period T, C, is a
coefficient relating roof displacement to spectral displacement, C; is a coefficient relating
maximum inelastic displacements to displacements calculated assuming linear elastic response,
and C;, and Cj are coefficients to represent the effects of stiffness and strength degradation, and

dynamic P-A effects, respectively.

As originally conceived, Method 1 can bypass steps (2) to (5) of Method 2 and can obtain the
design forces and member deformations by only performing pushover analysis until the target
roof displacement is reached. However, the application of Method 1 is complicated when

velocity-dependent damping systems are utilized. Specifically:

(a) The effect of added damping must be considered in the evaluation of the spectral
acceleration. This requires that step (2) of Method 2 is performed, however excluding the
contribution from yielding of the building frame. For linear viscous and viscoelastic
damping systems, this represents a simple calculation. For nonlinear viscous damping

systems, an iterative procedure similar to that of Method 2 must be performed.

(b) The effects of higher modes need to be considered. These effects are important in the

calculation of velocity-dependent forces.

(c) Coefficient C;, as described in FEMA (1997), does not account for the effect of added
viscous damping on the ratio of inelastic displacements to displacement calculated assuming
elastic response. It will be shown in Section 5 that added viscous damping affects coefficient

C;. New expressions prescribing coefficient C; are derived and presented in Section 5.
2.4 Calculation of Effective Damping

Equation (2-1) describes a general approach for calculating the effective damping of a structural
system. The calculation requires that information on the properties and configuration of the
damping system, and information on the properties of the structural frame (period, mode shape,
reactive floor weights) are available. The details of calculation differ depending on the nature of
the damping system. Details are presented in Section 4 where simplified methods of analysis of
single-degree-of-freedom systems are evaluated and in Section 7.4 where the calculation of the

effective damping in multiple-degree-of-freedom-systems is presented.
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TABLE 2-1 Values of Damping Coefficient B

. This Study NEHRP
ggf;‘;x; FEMA 273 (Section 3) 2000
; B, B, B, B, B
1 2 3 4 5

<0.02 0.8 0.8 0.80 0.80 0.8
0.05 1.0 1.0 1.00 1.00 1.0
0.10 13 12 1.20 1.20 12
0.20 18 15 1.50 1.50 15
0.30 23 17 1.70 1.70 18
0.40 27 19 190 | 1.90 21
0.50 3.0 2.0 220 | 2.20 24
0.60 3.0 2.0 2.30 2.60 27
0.70 3.0 2.0 235 2.90 3.0
0.80 3.0 2.0 2.40 3.30 33
0.90 3.0 2.0 2.45 3.70 36
1.00 3.0 2.0 2.50 4.00 40

1 Validfor T<T,B,/B,
2 Valid for T >T,B, /B,

3 Valid at T=T,/5. For T,/5<T <T,, B is determined by linear interpolation between
values B and B;. For T <T; / 5, B is determined by linear interpolation between values of
1.0 (valid at T=0.0) and B; (valid at T =T, /5).

4 Validfor T 2T,

5 Valid for T>T,/5. Also B = 1.0 for T = 0.0. Values of B for 0<T <T;/5 may be
obtained by linear interpolation.

T = period, T, = period at which the constant acceleration and constant velocity regions of the

response spectrum intersect.
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STEP 1 PUSHOVER ANALYSIS

63 F3
Vv
62 F2
64 Fi 6
I Assumed
I / Displacement
Y/
V=ZF; PUSHOVER CURVE
STEP 2 PERFORM EINGENVALUE ANALYSIS USING EFFECTIVE MEMBER
STIFFNESSES AT ASSUMED DISPLACEMENT
CONVERT PUSHOVER CURVE TO SPECTRAL CAPACITY CURVE
\ Saq
P\\
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STEP 3 ESTABLISH DESIGN DEMAND SPECTRUM USING
EFFECTIVE DAMPING IN FUNDAMENTAL MODE

OVERLIE SPECTRAL CAPACITY CURVE ON DESIGN DEMAND
SPECTRUM AND CALCULATE RESPONSE

So
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Capacity
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STEP 4 IF CALCULATED 53¢ ASSUMED DISPLACEMENT, REPEAT STEPS 2 TO 5
STEP 5 OBTAIN HIGHER MODE RESPONSE

FIGURE 2-1 Illustration of Nonlinear Static Procedure, Method 2
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FIGURE 2-3 Damping Coefficient B as Function of Period and Damping
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SECTION 3

MODIFICATION OF RESPONSE SPECTRUM FOR HIGHER DAMPING

3.1 Introduction

The 5%-damped elastic response spectrum represents the usual seismic loading specification.
Spectra for higher damping need to be constructed for the application of simplified methods of
analysis of structures with damping systems. Elastic spectra constructed for higher viscous
damping are useful in the analysis of linear elastic structures with linear viscous damping
systems. Moreover, they are used in the simplified analysis of yielding structures since
simplified methods of analysis are based on the premise that yielding structures with damping
systems may be analyzed by using equivalent linear and viscous representations. The validity

and accuracy of such representations is the subject of the study reported in Section 4.

The typical approach of constructing an elastic spectrum for damping greater than 5-percent is to

divide the 5%-damped spectral acceleration by a damping coefficient B:

- S,(7,5%)

S.(T.8) ===

(-1
where S,(7, p) is the spectral acceleration at period 7 for damping ratio . Note that the spectral
acceleration is the acceleration at maximum displacement (it does not contain any contribution
from the viscous force) and is therefore related directly to the spectral displacement through
equation (2-5). The damping coefficient is a function of the damping ratio and may be a function

of the period.

The derivation of damping coefficients or their inverse (which may be extracted from spectrum
amplification factors) may be traced back nearly 30 years (e.g., see Newmark and Hall, 1982 and
several of their references). Table 3-1 has been prepared to compare values of the damping
coefficient from various sources. The values attributed to Newmark and Hall (1982) have been
derived from the spectrum amplification factors, that is, factors used to multiply the peak ground
motion to obtain the response spectrum. These factors likely originated from data on response

spectra of earthquakes which occurred prior to 1973. It should also be noted that Newmark and
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Rosenblueth (1971) and Newmark and Hall (1969) reported amplification factors, which have
not been utilized herein. The data of Newmark and Hall (1982) are limited to damping ratio of
0.20. However, the equations presented by Newmark and Hall (1982) for the amplification
factor in the constant velocity region of the spectrum were utilized herein to obtain values of the
damping coefficient for damping ratios up to 1.0. These values are reported in Table 3-1.
Specifically, Newmark and Hall (1982) proposed for the constant velocity region of the

spectrum:

Ay =2.31-0.41In(100) (3-2)

where 4z = amplification factor for damping ratio B. Since the damping coefficient B is equal to

B= A0.05 (3_3)
Ap

it follows that in the constant velocity region

~ 1.65
2.31-0.41In(100)

(3-4)

The values for the damping coefficient of Newmark and Hall (1982) in the constant velocity
region of the spectrum are basically the same as those of NEHRP (2000). This is surprising
since the NEHRP (2000) values were based on the study reported herein, which used different
earthquake records and a different analysis procedure than that of Newmark and Hall (1982).
Nevertheless, this fact may enhance our confidence in the damping coefficient values in NEHRP
(2000).

The values of the damping coefficient that appeared in the 1994 NEHRP (NEHRP, 1994) were
based on a study of Wu and Hanson (1989). Later, the FEMA 273 Guidelines (FEMA, 1997)
were developed in which the damping coefficients were based on the work of Newmark and Hall
(1982) but were extended to higher values of the damping ratio. The extension to higher values
of the damping ratio was necessary since simplified methods of analysis introduced in FEMA

273 could result in high effective damping due to the combined effects of yielding of the
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building frame and added viscous damping. There are two drawbacks to the damping
coefficients of FEMA 273:

(a) The values for the constant acceleration region of the spectrum (region of low periods) are
higher than those valid in the constant velocity region. This contradicts the fact that there is
little or no reduction of displacement with increasing damping in very stiff structures. It also
leads to the erroneous impression that damping systems are most effective when used on stiff

structures.

(b) The effect of damping in reducing displacement is ignored when the damping ratio exceeds
50% of critical leading to conservative estimates of displacement in highly damped
buildings, which may be the case for frames having good hysteretic behavior, enhanced with

viscous damping systems and undergoing significant inelastic action.

The study reported in this section resulted in values of the damping coefficient in the constant
velocity region which are larger than those in FEMA 273 (see column of results labeled best fit
in Table 3-1). For this reason, conservative values of the damping coefficient are proposed in
this study. The proposed values of the damping coefficient have been utilized, after some

simplification, in the NEHRP Recommended Provisions (NEHRP, 2000).
3.2 Procedure to Establish Values of the Damping Coefficient

Using (3-1), values of coefficient B may be obtained as

T (V)

B=~—————S"( ’5ﬁ) (3-5)
S.(T.5)

Equation (3-5) may be used to obtain values of coefficient B for a range of values of period T

and for selected earthquake motions. The results for the selected earthquake motions may then

be statistically processed to obtain average or median values.

The procedure followed herein is based on the use of scaled earthquakes which on the average
represent well a specific design response spectrum. The scaling process of these earthquakes has

been presented in Tsopelas et al. (1997). Herein it is sufficient to mention that the scaling
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process preserves the frequency content of the records and ensures an equal contribution of these

records to the average response spectrum.

The selected 20 horizontal components of 10 earthquake motions are presented in Table 3-2
together with their scale factors. Each of these earthquakes was selected to have a magnitude
larger than 6.5, epicentral distance between 10 and 20 km, and site conditions characterized by
site class C to D in accordance with NEHRP (2000). That is, the selected records did not include
motions recorded on soft soil sites and motions with near-fault characteristics. The applicable
design response spectrum had parameters Sps = 1.0, Sp; = 0.6 and 75 = 0.6 sec. Figure 3-1
presents the average response spectrum of the 20 scaled motions and compares that to the target
NEHRP design response spectrum. The average of the 20 scaled motions represents well the
target spectrum. Figure 3-1 presents also the maximum and minimum spectral acceleration
values of the 20 scaled motions. These spectra demonstrate the variability in the characteristics

of the scaled motions. This variability is implicit in the definition of seismic hazard.

The 20 scaled motions have been used in the construction of elastic response spectra for higher
damping. Average spectra (average of spectral acceleration values of the 20 scaled motions) are
presented in Figure 3-2 for damping ratio in the range of 2 to 100-percent. The damping
coefficient for a particular period was determined as the ratio of the 5%-damped design spectral
acceleration to the average spectral acceleration for higher damping, as described by (3-5).
Representative plots of the damping coefficient are shown in Figure 3-3. On the basis of such
plots, it is reasonable to propose a trilinear relation for the damping coefficient as shown in
Figure 3-4. In this relation, the damping coefficient is constant in the constant velocity region of
the spectrum and it gradually reduces towards unity at zero. The proposed model requires three

parameters for each damping value, Bs, B; and T, as shown in Figure 3-4.

Figure 3-5 presents graphs of the calculated damping coefficient for damping ratio in the range
of 2 to 100-percent together with graphs of the coefficient produced by the calibrated trilinear
model. The parameters of the model are presented in Table 3-3 and described as been based on
best fit. The values of parameter B; based on the best fit of the calculated damping coefficient

are generally higher than the values of the same parameter in the FEMA 273 Guidelines (FEMA,
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1997). Accordingly, conservative values of parameters Bs and B; have been established to be

consistent with the FEMA (1997) values. These values are listed in Table 3-3.

The proposed conservative trilinear model for the damping is utilized for all calculations
described in this report. The data in Table 3-3 were made available at the time of writing of the
2000 NEHRP Recommended Provisions, and were used to establish the simpler two-parameter

model for the damping coefficient that is presented in NEHRP (2000) and listed in Table 3-1.
3.3 Conclusions

This section established new values for the damping coefficient which is used in the calculation
of spectral acceleration values for damping higher than 5-percent. The presented damping
coefficient values are valid for viscous damping ratio in the range of 2 to 100-percent of critical.
The derivation of these values was based on the analysis of response of structural systems to
selected ground motions which did not include records on soft soil sites and records with near-
fault characteristics. The presented values have been utilized, after some simplification, in the
NEHRP (2000) Recommended Provisions.
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Table 3-2 Motions used in Analysis and Scale Factors

Year Earthquake Station Components Scale Factor
1949 Washington 325 (USGS) N04W, N86E 2.74
1954 Eureka 022 (USGS) N11W, N79E 1.74
1971 San Fernando 241 (USGS) NOOW, SO0W 1.96
1971 San Fernando 458 (USGS) SO0W, S90W 222
1989 Loma Prieta Gilroy 2 (CDMG) 90,0 1.46
1989 Loma Prieta Hollister (CDMG) 90,0 1.07
1992 Landers Yermo (CDMG) 360,270 1.28
1992 Landers Joshua (CDMG) 90,0 1.48
1994 Northdridge Moorpark (CDMG) 180,90 2.61
1994 Northdridge Century (CDMQG) 90,360 2.27
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TABLE 3-3 Values of Parameters Bs and B; in Proposed Model of Damping Coefficient

Damping Values Based on Best Fit Conservative Values
Ratio (as shown in Fig. 3-5) (Consistent with FEMA 273)
Bs B Bs B
0.02 0.80 0.80 0.80 0.80
0.05 1.00 1.00 1.00 1.00
0.10 1.25 1.25 1.20 1.20
0.20 1.75 1.75 1.50 1.50
0.30 2.10 2.10 1.70 1.70
0.40 2.20 2.45 1.90 1.90
0.50 2.30 2.90 2.20 2.20
0.60 2.40 3.30 2.30 2.60
0.70 2.50 3.60 2.35 2.90
0.80 2.60 4.00 2.40 3.30
0.90 2.70 4.30 2.45 3.70
1.00 275 4.65 2.50 4.00
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SECTION 4

EVALUATION OF SIMPLIFIED METHODS OF ANALYSIS OF YIELDING
SINGLE-DEGREE-OF-FREEDOM SYSTEMS WITH
ENERGY DISSIPATION DEVICES

4.1 Introduction

Simplified methods of analysis of structures with energy dissipation systems are based on several
approximations. An important approximation is the representation of the yielding structure by an
equivalent linear elastic, viscously damped single-degree-of-freedom system. The capability of
such an approximation to produce realistic estimates of the peak dynamic response has been the
subject of many studies (e.g, Iwan and Gates, 1979a and 1979b; Tsopelas et al., 1997; Chopra
and Goel, 1999). These studies concentrated on yielding structures without damping systems
and assessed the accuracy of various approximate methods in estimating the peak displacement
response. Exception has been the study of Tsopelas et al.(1997) which included structures with

linear viscous damping systems.

The study reported in this section extends the work of Tsopelas et al.(1997) to include nonlinear
viscous and hysteretic damping systems and assesses the accuracy of Method 2 of FEMA (1997)
in predicting the peak displacement, velocity and acceleration responses of single-degree-of-
freedom systems. Note that by concentrating on single-degree-of-freedom systems, the
application of Method 2 did not require to perform pushover analysis and to account for the
contribution of higher modes to the dynamic response. These two steps may also be sources of
significant errors. The contribution of these steps of the analysis to the total error is investigated

in Section 8 where multi-story buildings with damping systems are analyzed.

Method 2 of FEMA (1997) requires, for single-degree-of-freedom systems, estimation of the
peak displacement, calculation of the effective (secant) stiffness or equivalently the effective
period, and the effective damping at the peak displacement, calculation of the peak displacement
as the intersection of the capacity and demand curves, and iteration until convergence. Details of

the calculation of the effective stiffness and effective damping are presented in Section 4.3 for
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structures with damping systems consisting of linear viscous, nonlinear viscous and yielding
damping devices. Further details are presented in Section 7 where the calculation of the effective
properties is derived for multi-degree-of-freedom systems. Moreover, this section presents
methodologies for improved prediction of the maximum velocity and presents the derivation of
revised load combination factors (factors CF; and CF, in FEMA 1997) for calculating the
maximum acceleration in viscously damped structures. The revised load combination factors

account for inelastic action in the structural system and nonlinear viscous behavior.

Among the studies of evaluation of simplified methods of analysis the one of Chopra and Goel
(1999) presented a bleak view of these simplified methods of analysis despite evidence to the
contrary presented in the earlier study of Tsopelas et al. (1997). Herein the approach of Tsopelas
et al. (1997) is utilized to extend the evaluation study to nonlinear viscous and hysteretic
damping systems, and to assess the accuracy of improved methodologies for predicting peak
velocities and peak accelerations. The results of this study are extensively presented in Gomez

(2000), whereas herein only results in condensed form are presented.

4.2 Non-Linear Time History Analysis
4.2.1 General Description

Non-linear time history analysis of single-degree-of-freedom inelastic systems with damping

devices were performed by numerically integrating the equation of motion:

47, mi(?)

mii(t) + F, (£) + + Fo () = —ma, (f) (4-1)

eff

where m is the mass, u is the relative velocity, i is the relative acceleration, a, is the ground
acceleration, 7, is the effective (or secant) period, g, is the inherent damping ratio, F), is the

force from damping devices, and F; is the force from inelastic structural system.

Equation (4-1) is basically identical to the one utilized by Tsopelas et al.(1997) except that the
forms of the damping force F, and structural system force F, are different. Key to this

equation is the description of inherent damping, which is described as linear viscous with
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damping ratio equal to f,. This ratio is defined with respect to the effective (or secant) stiffness
K of the structure (equal to the peak restoring force divided by the peak displacement). The

€]

effective (or secant) period in (4-1) is given by:

m
T, =21 /— 4-2
eff Kw ( )

All analyses were performed with £, equal to 0.05. Equation (4-1) was numerically integrated

using an adaptive predictor-corrector integration scheme and a linear interpolation scheme for

the ground acceleration input (Tsopelas at al., 1997).
4.2.2 Description of Structural System Behavior

Two types of structural system behavior were considered. The first was smooth perfect bilinear
hysteretic behavior (without deterioration of any kind or P-A effects) as depicted in Figure 4-1

and described by (Tsopelas et al., 1997) using:

Fy
FFZOCH‘U‘F(I—(I)F),ZF (4-3)

y

D,Z,+05|1|Zp | Z " +0.50 | Zp |" =i =0 (4-4)

where |.| stands for the absolute value, Z,. is a dimensionless variable and 7 is a dimensionless

parameter. In this study, 77 was set equal to 5.0.

The perfect bilinear hysteretic system represents the best possible behavior of a yielding system.
The opposite to this (but still without deterioration of either strength or stiffness) is a system that
lacks the ability to dissipate energy. Such a system was analyzed by modeling it as a bilinear
elastic system having the force-displacement relation depicted in Figure 4-1. This relation is

mathematically described by
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( Ku,|ul<D,

_ _ 2
FF _ (Kz K1)(u D]) sgn(u)+ Klu , Dlsl u IS D2 (4-5)
2(D, - Dy)

(K;—Ky )(D;+D,)
2

sgn(u)+ Kou, |u> D,

Note that this mathematical relation is smooth with transition points (from linear to nonlinear

behavior) at displacements D, and D,, which were selected to be at 0.7D  and 13D ,

respectively. The smoothness of the force-displacement relation, as expressed by the fact that

the derivative of F, with respect to u is continuous, facilitates numerical integration.

4.2.3 Description of Viscous Damping System

Viscous damping systems were modeled as having either linear or non-linear behavior. That is,

for linear viscous behavior
F, = Cii (4-6)
and
Fp,=Cy|ul|* sgn(u) 4-7)

for non-linear viscous behavior. In (4-6) and (4-7) C and C,, are coefficients, u is the relative

velocity and a is the damping eXponent which was set equal to 0.5 in this study.
4.2.4 Description of Yielding Damping System
Yielding damping systems were modeled with smooth elasto-plastic behavior described by

F,=F,Z, (4-8)

D, Z,+05|i|Zy|Z, " +0.50| Z, |" =i =0 (4-9)

34



where Z), is a dimensionless variable, 7 is equal to 5, and F; and D, are the yield force and

yield displacement of the damping system, respectively.
4.2.5 Ground Motions used in the Time History Analysis

The 20 scaled horizontal components of the ten earthquakes listed in Table 3-2 were used in this

study. The selection and scaling of these motions is presented in Tsopelas et al. (1997).
4.3 Analyzed Systems

The formulations of the systems analyzed in this report were described in Section 4.2. Figure 4-
2 illustrates the force-displacement relations of the analyzed systems and identifies the
parameters in the description of these systems. Each of these systems is characterized by the
force-displacement relation of the structural frame exclusive of the damping devices (shown on

the left column of Figure 4-2). Note that A represents the acceleration at yield of the single-

degree-of-freedom system. It is convenient to describe the behavior of the structural frame in

terms of the following parameters:

(a)  Elastic period, T,:
D 1/2
T, = 2%(4] (4-10)
A

(b)  Post-yielding to elastic stiffness ratio: &

(¢)  Ductility-based portion of the R -factor

R, == (4-11)

where S, is the spectral acceleration at period 7, and damping ratio of 5% (elastic conditions).

Each system analyzed in this study had inherent viscous damping of 5-percent as described in

Section 4.2.1.
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4.3.1 Bilinear Hysteretic System with Linear Viscous Damping Devices

The bilinear hysteretic system with linear viscous damping devices was originally analyzed by
Tsopelas et al. (1997). Additional analyses were performed in this study for a wider range of
values of period 7, and for calculating velocities which were omitted in the earlier study. This
system is described by the parameters presented in Section 4.3 and the added viscous damping

ratio, S, , under elastic conditions:

By = (4-12)

 4mm
The parameters used in the analysis of this system are presented in Table 4-1.
4.3.2 Bilinear Hysteretic System with Nonlinear Viscous Damping Devices

The bilinear hysteretic system with nonlinear viscous damping devices is characterized by the
parameters presented in Section 4.3 and two additional parameters describing the nonlinear

viscous damping devices: exponent a and coefficient C,, (see Section 4.2.3 and equation 4-7).
It is inconvenient to use parameter C, and a dimensionless parameter with a physical

significance similar to that of the damping ratio for linear viscous damping systems (eq. 4-12)
was used instead. This parameter is defined as the effective damping ratio under elastic

conditions

a-2
CyA ol 27
_CyA paa[ 27 4-13
s o
2
,1:4.2‘1M (4-14)
I'C+a)

where D is the maximum displacement (drift) and I'is the gamma function. Equation (4-13) is

based on the effective damping ratio being

p= (4-15)
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where W, is the energy dissipated per cycle at period 7, and displacement D, and W, is the

strain energy at amplitude D. An expression for W,, has been derived in Constantinou et al.

(1998) and utilized in FEMA (1997):

W, = AC, D™ (‘ZT—”J (4-16)

e

Values of parameter A are presented in Table 4-2. It may be seen that for linear viscous devices

for which a equals 1.0, A equals 3.142 (=7) and (4-13) reduces to (4-12).

The effective damping in (4-13) depends on the amplitude of displacement D as a result of the
nonlinear behavior of the viscous devices. In general, iteration is needed to obtain the value of
the effective damping given the properties of the structural frame and damping devices, and the

characteristics of the excitation. However, herein the value of £, is selected (say 0.15) and used
for the calculation of the corresponding value of C, . Given the period 7, and total damping
under elastic conditions (,BV + ), displacement D is calculated and then used in (4-13) and (4-
14) to calculate C, for the application of the simplified method of analysis and the time history

analysis. The values of the parameters used for the studies described in this report are presented

in Table 4-1.
4.3.3 Bilinear Elastic System with Linear Viscous Damping Devices

The bilinear elastic system with linear viscous damping devices is characterized by the elastic

period 7, (eq. 4-10), the ductility-based R -factor R, (eq. 4-11), the viscous damping ratio B,

(eq. 4-12), the stiffness ratio @ (=0.05) and the inherent damping ratio S, (=0.05). The values

of the parameters used for the studies described in this report are presented in Table 4-3.
4.3.4 Bilinear Hysteretic System with Yielding Damping Devices

The bilinear hysteretic system with yielding damping devices is characterized by the elastic

period, T,, in the absence of the yielding damping devices (eq. 4-10), the ductility-based portion
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of the R-factor R, (eq. 4-11), the stiffness ratio & (=0.05), the inherent damping ratio S,

(=0.05) and the following two additional parameters:

(1) Ratio of the elastic stiffness of the structure inclusive of the damping devices to the

elastic stiffness of the structure exclusive of the damping devices (see Fig. 4-3)
B e (4-17)

where F, and D, are the yield strength and yield displacement of the structural frame
exclusive of the damping system, respectively, Ky is the elastic stiffness of the structural
fame exclusive of the damping system (= F,/D,), Fy and D4 are the yield strength and
yield displacement of the damping system, respectively, and K is the elastic stiffness of

the frame inclusive of the damping system.

(2) Ratio of the strength of the damping devices F, to the strength of the structural frame

F,, F,/F,.

The values of the parameters used in this study are presented in Table 4-4.

4.4 Application of Simplified Method of Analysis for Bilinear Hysteretic System with

Linear Viscous Damping Devices

Given values of the parameters 7,, R,, a, f3;, and S, (see Section 4.3 and Table 4-1) and the

response spectrum, the behavior of the system is completely defined. In the simplified method

of analysis, the peak displacement D is assumed (and presumed larger than D)) and the

effective period, T

.7 » and effective damping, S, , are calculated:

D

1/2
T, =212 4-18
eff (A) ( )
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Ty  24x (4,0-4D,)

ﬂq}f ﬂz ﬂV Te 7ZAD ( )
where
S T?
D =—£° 4-20
7 471'2Ry (4-20)

Note that (4-19) is based on (4-15) and includes the inherent damping, the component due to
inelastic action (presumed perfectly hysteretic) and the viscous component. Moreover quantity

A is defined in Figure 4-2 and represents the acceleration at maximum displacement:

a=4,+a2(D-D) (4-21)

y

It should be noted that the component of the effective damping in (4-19) due to yielding of the
structural frame includes the hysteretic loop adjustment factor gy which is utilized to reduce the
area under the perfect bilinear hysteretic loop to better represent the behavior of the real
structural systems. However, the systems studied in this report have perfect bilinear hysteresis

behavior a value of gy equal to 1.0 has been used.

4.5 Application of Simplified Method of Analysis for Bilinear Hysteretic System with

Nonlinear Viscous Damping Devices

The behavior of this system is defined by parameters 7,, R, a, B;, B, and a (see Section 4.3

and Table 4-1) and the response spectrum. The peak displacement D is assumed and the
effective period is calculated using (4-18), (4-20) and (4-21). The effective damping is
calculated using (4-15):

—re (4-22)

e

2-a
T, 2q,(4,D- 4D
ﬂeﬁ”zﬂi"'ﬂV(Tﬂ] 00 ' y)

Note that for a equal to1.0 (linear viscous damping devices), (4-22) reduces to (4-19).
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4.6 Application of Simplified Method of Analysis for Bilinear Elastic System with Linear

Viscous Damping Devices

This system exhibits all the characteristics of the bilinear hysteretic system with linear viscous
damping devices except for the damping contribution due to inelastic action in the structure.

Accordingly, (4-18), (4-20) and (4-21) hold but the effective damping is given by

Ty
T

e

By =B+5 (4-23)

4.7 Application of Simplified Method of Analysis for Bilinear Hysteretic System with
Yielding Damping Devices
The behavior of this system is described by parameters 7,, R, , «, f;, K,/ K, and F,/F, (see

Section 4.3 and Table 4-4). The yield displacement of the structural frame, D, is determined

from (4-20) and the yield displacement of the yielding damping devices (see Figure 4-2) is

determined from:
D,V F d
K,

It is assumed hereafter that F, < F, and that D, <D which are both reasonable assumptions

D, = (4-24)

for the implementation of yielding damping systems in flexible building frames. The combined
structural frame and yielding damping device lateral force-displacement relation is tri-linear as

depicted in Figure 4-3. Consider now that the peak displacement D is larger than D, as shown

in Figure 4-3. The effective period is then given by

1/2
D
T, =2rn 4-25
eff (A‘FAd) ( )

where 4 is given by (4-21). The effective damping is given by
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y ]”2 , 2an (4,0-4D,)+24,(D-D,,) w26)

ﬁeﬂ:ﬁ"LAmd 7(4+4,)D

Note that in this formulation, the inherent damping of the combined system is reduced due to the
increase in stiffness under elastic conditions. It is presumed in this case that the damping system

does not dissipate any energy for displacements less than D , so that 7,; in (4-1) is calculated

on the basis of the assumption that 4,=0. It is also presumed that the yielding damping system

has perfect bilinear hysteretic behavior.

4.8 Calculation of Maximum Velocity and Acceleration in Systems with Viscous

Damping Devices

The simplified analysis method described in Sections 4.4 to 4.7 is iterative since it is based on an
assumed value of displacement D, calculation of the effective period and effective damping,
calculation of the displacement using the response spectrum after modification for increased
damping, and comparison of the calculated and assumed values of displacement. A limit on the
calculated displacement, not being less than the displacement calculated for elastic conditions, is
then enforced. The results of this analysis are values of the maximum displacement D and the

acceleration 4 (or A+ A,) at maximum displacement. In addition, for systems with viscous

damping devices the maximum velocity is needed for the calculation of the peak damping force.
Moreover, the maximum acceleration, which is larger than 4 and occurs at some displacement

less than D, must be calculated.

The maximum velocity is taken in this method as the pseudo-velocity, that is:

V= (—21]1) (4-27)

T,

The maximum acceleration can be determined by the procedure described by Tsopelas at al.
(1997) and incorporated in FEMA (1997). A more general procedure for nonlinear viscous

damping devices and yielding structures is presented below.
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The procedure for a linear elastic structure with a nonlinear viscous damping device is described
first. It is assumed that the structure of stiffness K and mass m undergoes harmonic vibration at

its natural frequency @, and amplitude D:

u=Dcosw,t (4-28)
with velocity

u=-Do,sinw,t (4-29)
The combined restoring and damping force is given by

F=ku+C, |u|" sgn(u) (4-30)
Equation (4-30) may be written in the form

F
mo!D

=—27ﬂﬂ,, sin® w,t +cosw,t (4-31)
in which A is given by (4-14), S, is given by (4-13), and

1/2
©, = (ﬁ) _z (4-32)

Equation (4-31) was derived using (4-28) and (4-29). The velocity is negative during the

considered cycle of motion as shown in Figure 4-4.

The maximum value of F (and acceleration) occurs at a time ¢ when the derivative of the right
hand side of (4-31) with respect to time is zero. This results in the following
sin"“w,t”  2mp,

M- 4-33
cosw,t A (*+-33)

This equation cannot be exactly solved for time ¢  except for the case of linear viscous device

(a=1). However, an approximate solution can be derived assuming that (see Fig. 4-4)
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ot =1-0 (4-34)

in which 6 is a small phase lag as shown in Figure 4-4. This assumption is good when a is

small (e.g., 6 =0 when a=0) and the phase lag can be calculated as
1

_(2map, \2-a )
o= (—l ] (4-35)

For linear viscous damping devices, the phase lag § may be calculated exactly as
§=tan"'(23,) (4-36)

Note that (4-35) provides a good approximation even in the case of linear viscous damping

devices. For such a case, a=1 and A =7 so that (4-35) yields 6 =24, . By comparison to (4-
36), use of (4-35) results in an error of about 3% for B, =0.15 and an error of about 7% for f,

=0.25.

The maximum acceleration is determined by substituting (4-34) and (4-35) into (4-31):

A, = A[CF1 +2—7;’B—"CFZJ (4-37)
where

CF, =cosd (4-38)
and

CF, = (sins)" (4-39)

Parameters CF, and CF, are load combination factors used to calculate the response at the time

of maximum acceleration by combining the effects at the instants of maximum drift and

maximum velocity.
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Equation (4-38) describes the contribution of the restoring force to the maximum acceleration. It

is valid for elastic behavior, that is, for D < D,. As inelastic action occurs, the value of CF;

increases and eventually obtains the maximum value of unity. This is recognized when
considering that the maximum acceleration occurs when u =cosd-D as seen in Figure 4-4.
Moreover, the effective viscous damping ratio increases with inelastic action. Accordingly, it

can be shown that

27
A = A(CFI + ﬁ i CFZJ (4-40)
where
IfD<D, CF, =cosd
If D>D, and u-cosd<1, CF; = u-cosd (4-41)

If D>D, and u-cosé21, CF, =10

T

e

Teﬂ 2-a
ﬂveﬁ‘ = ﬂi + ﬂV (4-42)

p= (4-43)

D}’

and CF, is still given by (4-39). Parameter 0 is computed from (4-35) with £, replaced by .4

Equations (4-39) and (4-41) have been used to calculate the values of the force coefficients that

are tabulated in NEHRP (2000).

4.9 Results of Simplified Method of Analysis and Comparison to Results of Nonlinear

Time History Analysis

The response of each analyzed system was determined using the simplified method of analysis

described in Sections 4.4 to 4.8. The response spectrum with parameters S,; =1.0, S, =0.6
and T, = 0.6 sec was utilized together with the “conservative” values of the damping coefficient

of Table 3-3. The spectra for these parameters and for damping ratio up to 100% are shown in
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Figure 2-4. Figures 4-5 to 4-13 present a comparison of the results of time history analysis
(average of 20 values) and the results of the simplified method of analysis. The graphs compare
the calculated peak displacement, peak velocity and peak acceleration (including the viscous
component) by plotting the results of the time history analysis on the vertical axis against the
results of the simplified method of analysis on the horizontal axis. Points located below the
diagonal “45-degree” line indicate conservatism in the prediction of the simplified method of

analysis.
These figures clearly demonstrate that:

(a) The simplified methods of analysis produce exact or conservative estimates of the peak

displacement and peak acceleration.

(b) The simplified method of analysis underpredicts the peak velocities for structures with a

large effective period (say T,; >1.5sec) but overpredicts the peak velocity for structures
with a moderate-to-short effective period (say 7,, <1.0sec). The differences are as large

as 50% for large effective period and as much as 100% for short effective period.

The results are consistent with the use of pseudo-velocity as a predictor of the maximum relative
velocity (Chopra, 1995; Constantinou et al., 1998). The greatest errors occurred for framing
systems with low ratio of post-elastic stiffness to elastic stiffness («) and large ductility-based

portion of the R -factor (R, ). It will be demonstrated later herein that structures with damping

systems designed on the basis of NEHRP (2000) typically exhibit nearly elastic behavior for the
design basis earthquake. Under such conditions, the error in predicting the relative velocity by

using the pseudo-velocity is relatively small and acceptable for design purposes.
4.10 Correction Factors for Velocity

It is worthy of investigating the likelihood that a simple method is developed for obtaining better
estimates of the relative velocity. Sadek et al. (1999) and Pekcan et al. (1999) proposed that the
relative velocity is determined as the product of pseudo-velocity and a correction factor. The
correction factor was determined in these studies as the ratio of the exact relative velocity of

single-degree-of-freedom to the pseudo-velocity, which was calculated as the exact displacement
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times the natural frequency of the system. The two studies primarily differed in the selection of
the earthquake records used with (a) Sadek et al. utilizing 72 horizontal components of
Californian earthquakes including some with near-fault characteristics, and (b) Pekcan et al.
utilizing 36 horizontal components of Californian, Japanese and other earthquakes, of which
most had near-fault characteristics with peak ground velocities in the range of 1 to 1.8 m/s.
Moreover, Pekcan et al. (1999) scaled the earthquake motions to have a peak ground velocity of
1 m/sec, which is somehow similar to the scaling employed by Tsopelas et al. (1997) and in our
study. This scaling results in a more balanced contribution of the various earthquake

components to the average response.

Values of the correction factor from the study of Sadek et al. (1999) are presented in Table 4-5.
The study of Pekcan et al. (1999) utilized least square regression analysis to establish equations
for the correction factor. The following equation describes the correction factor CFV for period,
T, values in the range of Ty/S to 3 sec. and damping ratio, S, values in the range of 5 to 40-
percent, where T is the period value at the intersection of the constant acceleration and constant

velocity regions of the response spectrum:

T 0.4558+0.132
CFV = (—] (4-44)

N

The availability of a significant number of response-history analysis results for a wide range of
parameters for yielding systems in this study facilitated the calculation of improved velocity
correction factors. Utilizing results on the exact relative velocity and the pseudo-velocity from
the study reported in Section 4.9, revised velocity correction factors were derived and are
presented in Table 4-6. Note that these correction factors differ from those of Sadek et al. and
Pekcan et al. In the following: (a) the earthquake motions used in either derivation do not contain
any with near-fault characteristics, (b) the analyzed systems are nonlinear, (c) the pseudo-
velocity is calculated as the product of the peak displacement and the effective frequency, both
of which were calculated by approximate means (use of 5-percent damped spectrum, damping
coefficient B and the effective period and damping), and (d) the factors extend to values of

effective period of 4.0 sec and effective damping of 100-percent.
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The utility of the correction factors in Tables 4-5 and 4-6, and of equation (4-44) has been
investigated by recalculating the velocity in all cases of the present study as the product of
pseudo-velocity and the correction factor and interpreting the period in (4-44) and in Table 4-5
as the effective period and the viscous damping ratio in (4-44) and in Table 4-5 as the effective
damping. Results are presented in Figures 4-14 to 4-18 where they are compared to results of the
time history analysis. Each of these figures contains four graphs in which the vertical axis
represents the average value of the results of nonlinear time history analysis on the velocity and
the horizontal axis represents the velocity calculated by simplified methods and without and with
the use of correction factors. It is apparent that the correction factors reduce the scatter in the
data and produce either very conservative results (factors of Sadek et al., 1999) or results of

acceptable accuracy (factors of Pekcan et al., 1999 and revised factors of Table 4-6).
4.11 Conclusions

The simplified method of analysis, as described herein including the correction for velocity
prediction of either Pekcan et al. (1999) in (4-44) or the revised ones in Table 4-6, produces
estimates of the peak displacement, peak velocity and peak acceleration (including the viscous
component) which are either conservative or in good agreement with the average of results of
nonlinear time history analysis. The simplified method of analysis is not error-free. However, it
is simple to apply, it systematically converges and produces results of sufficient accuracy for

design purposes.

It should be noted that the presented results were based on the use of damping coefficients (Table
3-3, “conservative” values), which were derived from analyses using earthquake motions that did
not include records on very soft soil and records with near-field characteristics. Therefore, the

results may not apply in these cases.
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TABLE 4-1 Values of Parameters in Study of Bilinear Hysteretic System with Viscous

Damping Devices

Elastic Period
T, (second)

0.3,0.5,0.7,1.0, 1.5, 2.0

of R-factor, R,

Ductility-based Portion

2,3.33,5

Post-Elastic to
Elastic Stiffness

0.05,0.10,0.25,0.50,1.0 (elastic)

Under Elastic Conditions, S,

Ratio, a
Inherent Damping
Ratio, f; 0.05
Added Viscous Linear Viscous
Damping Ratio 0,0.15,0.25

Nonlinear Viscous (a=0.5)

0.15, 0.25

TABLE 4-2 Values of Parameter A

Exponent a Parameter A
0.00 4.000
0.25 3.723
0.50 3.496
0.75 3.305
1.00 3.142 (=m)
1.25 3.000
1.50 2.876
1.75 2.765
2.00 2.667
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TABLE 4-3 Values of Parameters in Study of Bilinear Elastic System

with Linear Viscous Damping Devices

Elastic Period
T. (second)

0.3,0.5,0.7,1.0, 1.5, 2.0

Ductility-based Portion

under Elastic Conditions, £,

of R-factor, R, 2,333,5
Post-Elastic to
Elastic Stiffness 0.05
Ratio,
Inherent Damping
Ratio, £ 0.05
Added Viscous
Damping Ratio 0,0.15,0.25

TABLE 4-4 Values of Parameters in Study of Bilinear Hysteretic System
with Yielding Damping Devices

Elastic Period
T, (second)

0.5,0.7,1.0, 1.5, 2.0

Ductility-based Portion
of R-factor, R,

2,3.33,5

Post-FElastic to
Elastic Stiffness
Ratio, a

0.05

Inherent Damping
Ratio, £

0.05

Stiffness Ratio
Kt/Kf

2,6,10

Strength Ratio
Fy/F,

0.1,0.2,0.3,0.4,0.5
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Table 4-5 Correction Factor for Velocity (from Sadek et al., 1999)

Period Viscous Damping Ratio
(se¢) | 002 | 005 | 010 | 015 | 020 | 030 | 040 | 050 | 0.60
01 | 070 | 063 | 057 | 053 | 051 | 047 | 045 | 043 | 041
03 | 096 | 094 | 091 | 088 | 086 | 082 | 079 | 078 | 077
05 | 099 | 099 | 099 | 099 | 099 | 100 | 100 | 100 | 1.00
10 | 106 | 108 | 111 | 113 | 115 | 122 | 128 | 132 | 136
15 | 113 | 120 | 127 | 131 | 136 | 146 | 154 | 161 | 165
20 | 120 | 128 | 139 | 147 | 153 | 163 | 173 | 182 | 1.90
25 | 123 | 133 | 147 | 155 | 164 | 178 | 189 | 199 | 2.09
30 | 139 | 147 | 156 | 164 | 172 | 188 | 202 | 210 | 226
35 | 151 | 160 | 170 | 179 | 187 | 201 | 216 | 220 | 242
40 | 161 | 174 | 188 | 200 | 200 | 223 | 236 | 250 | 262

Period is interpreted as the effective period and viscous damping ratio is interpreted as
the effective damping

TABLE 4-6 Revised Correction Factors

Effective Effective Damping Ratio
Period
(sec) 0.10 | 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.3 0.72 | 0.70 0.69 0.67 0.63 0.60 0.58 0.58 0.54 0.49
0.5 0.75 | 0.73 0.73 0.70 0.69 0.67 0.65 0.64 0.62 0.61
1.0 0.82 | 0.83 0.86 0.86 0.88 0.89 0.90 0.92 0.93 0.95
1.5 095 | 0.98 1.00 1.04 1.05 1.09 1.12 1.14 1.17 1.20
2.0 1.08 | 1.12 1.16 1.19 1.23 1.27 1.30 1.34 1.38 1.41
2.5 1.05 | 1.1 1.17 1.24 1.30 1.36 1.42 1.48 1.54 1.59
3.0 1.00 | 1.08 1.17 1.25 1.33 1.42 1.50 1.58 1.67 1.75
3.5 1.09 | 1.15 1.22 1.30 1.37 1.45 1.52 1.60 1.67 1.75
4.0 095 | 1.05 1.15 1.24 1.38 1.49 1.60 1.70 1.81 1.81
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Perfect Bilinear Hysteretic System (a=0.05, 0.15, 0.25, 0.5, 1.0, i=0.05)
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Perfect Bilinear Hysteretic System (a=0.05, 0.15, 0.25, 0.5, 1.0, i=0.05)
With Linear Viscous Damping Devices
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Perfect Bilinear Hysteretic System (0=0.05, 0.15, 0.25, 0.5, 1.0, 3i=0.05)
With Linear Viscous Damping Devices
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Perfect Bilinear Hysteretic System (0=0.05, 0.15, 0.25, 1.0, $i=0.05)
With Non-Linear Viscous Damping Devices (a=0.5)
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Perfect Bilinear Hysteretic System With (¢t=0.05, 0.15, 0.25, 1.0, 3i=0.05)
Non-Linear Viscous Damping Devices (a=0.5)
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Bilinear Elastic System (0=0.05, 3i=0.05)
Without Damping Devices
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FIGURE 4-10 Comparison of Time History Analysis Results (Average of 20 values)
to Results of Simplified Method of Analysis for Bilinear Elastic System without
Damping Devices
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Bilinear Elastic System (a=0.05, 3i=0.05)

With Linear Viscous Damping Devices
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FIGURE 4-11 Comparison of Time History Analysis Results (Average of 20 values)
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Bilinear Elastic System (a=0.05, 3=0.05)
With Linear Viscous Damping Devices
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FIGURE 4-12 Comparison of Time History Analysis Results (Average of 20 values)
to Results of Simplified Method of Analysis for Bilinear Elastic System with Linear
Viscous Damping Devices, £, = 0.25
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Bilinear Hysteretic System (a=0.05, 3i=0.05)
With Yielding Damping Devices
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FIGURE 4-13 Comparison of Time History Analysis Results (Average of 20 values)
to Results of Simplified Method of Analysis for Bilinear Hysteretic System with
Yielding Damping Devices
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Perfect Bilinear Hysteretic System (a=0.05, 0.15, 0.25, 1.0, 3i=0.05)
With Linear Viscous Damping Devices, Bv=0.15
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Perfect Bilinear Hysteretic System (2=0.05,0.15, 0.25, 1.0, $i=0.05)
With Linear Viscous Damping Devices, v=0.25
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Perfect Bilinear Hysteretic System With (a=0.05,0.15, 0.25, 1.0, 3=0.05)
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without and with Correction Factors for Bilinear Hysteretic
System with Non-Linear Viscous Damping Devices, 3v=0.15
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Perfect Bilinear Hysteretic System With (c=0.05,0.15, 0.25, 1.0, 3=0.05)
Non-Linear Viscous Damping Devices (a=0.5), pv=0.25
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Nonlinear Time History Analysis

Bilinear Elastic System (a=0.05, Bi=0.05)
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SECTION 5

RATIO OF INELASTIC DISPLACEMENT TO DISPLACEMENT CALCULATED
ASSUMING ELASTIC BEHAVIOR

5.1 Introduction

The ratio of maximum inelastic displacement to maximum displacement calculated under elastic
conditions was introduced in FEMA (1997) as coefficient C; to facilitate the calculation of the

displacements in yielding structures.

Several studies considered the problem of deriving simple expressions for the coefficient C;.
Typically, these studies proposed expressions that relate the coefficient C; to structural
parameters such as the elastic period, parameters related to the seismic excitation such as the
value of period at the intersection of the constant velocity and constant acceleration regions of
the design response spectrum, and parameters related to the response such as the ratio of elastic
strength demand to yield strength. These studies did not consider the response of structures with

added viscous damping.

The large nonlinear time history analysis dataset for yielding structures with damping systems
permitted a re-evaluation of the C; coefficient. The results presented in Section 4 were used to

establish damping-dependent expressions for this coefficient.
5.2 Coefficient C; and Review of Past Studies

Figure 5-1 illustrates the idealized behavior of a single-degree-of-freedom structure in terms of
its base shear-drift relation. Under elastic conditions, the seismic demand consists of the peak
force F, and peak displacement D,;. Under inelastic conditions the peak displacement is D;,. By

definition

C,=—2= = (5-1)
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where

p="t (52)

is the displacement ductility ratio and

D

F
R,=_e="% (5-3)
F)’ y

>

is the ratio of the elastic strength demand to the yield strength. R, is the ductility-based portion
of the R-factor. For the study below, the elastic period is 7, (based on stiffness K,), the ratio of
post-elastic stiffness to elastic stiffness is equal to «, D, is the yield displacement and F, is the

yield strength.

Miranda and Bertero (1994) presented an evaluation of studies on the ductility-based portion of
the R-factor. The data of Miranda and Bertero were used to establish values for coefficient C; in
FEMA 273. Some of the studies evaluated in Miranda and Bertero (1994) are reviewed below

together with a review of other studies.
5.2.1 Study of Mander et al. (1984)
Mander et al. (1984) proposed the following relation

i é[n(&—]{—?ﬂ > |

Cr= X (5-4)
1 forT,>2T,

-
where 7, is the period that separates long-period from medium-period structures. Mander et al.

(1984) proposed a values of 7, = 1 sec.

More recently, Chang and Mander (1994) re-visited the 1984 work of Mander and modified
equation (5-4) by replacing the term (7,/T,) with the term (7,/T.)" where 7 is an exponent

dependent on R, with values in the range of 1.2 to about 1.35. Moreover, T, has been interpreted
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as the period at which the maximum spectral velocity response occurs. For a typical design
spectrum such as the 5%-damped spectrum depicted in Figure 3-1, and utilizing the pseudo-
velocity as a measure of the maximum velocity, period 7, coincides with period Ty, that is, the
period at which the constant acceleration and constant velocity regions of the design spectrum
intersect. Interestingly, (5-4) is used in FEMA (1997) with T, being the aforementioned period
T..

5.2.2 Study of Riddell et al. (1989)

Riddell et al. (1989) established a relationship between the ductility-based portion of the R-
factor, ductility and period. Such relations are useful in selecting appropriate response
modification factors that are dependent on the period of the structure. Riddell et al. (1989)

proposed the relation

T,
I+(u-1=% , T,<T,
TO
R, = (5-5)
Y7 , T,2T,

where 7, ranges between 0.1 and 0.4 sec. Use of (5-1) and (5-5) results in equation (5-4).
5.2.3 Study of Nassar and Krawinkler (1991)

Nassar and Krawinkler (1991) developed a relation similar to that of Riddell et al. (1989). Their
relationship was based on the results of analysis of systems with a wider range of structural

parameters and different seismic excitations. The relationship is
R, =[1+(u-1)c]’ (5-6)

where ¢ is a parameter dependent on the elastic period and the post-elastic to elastic stiffness

ratio (o). Inverting (5-6) and using (5-1) results in an expression for C;, namely:

)i R¢ -1
C,=R—(1+ = J (5-7)

c
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that has the same basic form as (5-4).
5.2.4 Study of Vidic et al. (1992)

Vidic et al. (1992) arrived at a relation identical to that of Riddell et al. (1989) but with
parameter 7, being dependent on the ductility ratio x and the characteristics of the seismic

excitation.
5.2.5 Study of Miranda (1993)

Miranda (1993) proposed the relation of (5-8) using results of analyses with a large number

(124) of recorded ground motion:

R =1+#=L 5 (5-8)
)

]

where @ is a parameter dependent on 4, 7, and the predominant period of the ground motion.
5.2.6 Summary

It is evident that many investigators developed similar relations, relating either the coefficient C;
to the ductility-based portion of the R-factor and the elastic period or the ductility-based portion
of the R-factor to the ductility ratio and the elastic period. The latter relation was studied as early
as 1973 by Newmark and Hall (1973) and then later by Riddell and Newmark (1979) who
considered, in addition to other parameters, the effect of viscous damping. Unfortunately, the
proposed relations are too complex to be inverted so that expressions for the coefficient C; can

be obtained.

Of interest in the analysis of structures with viscous damping systems is a calibrated relation
between coefficient C; and the post-elastic to elastic stiffness ratio, a (range < 0.5), the elastic
period, T, the viscous damping ratio under elastic conditions, £, (range of 0.05 to 0.30) and the
period T, which characterizes the design response spectrum. Such a relation does not exist in
the literature and was established in this study using the results of the nonlinear time history

analysis presented in Section 4.
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5.3 Procedure for Development of Coefficient C; and Results

The bilinear hysteretic simple structural system with linear viscous devices described in Section

4 was prepared with the following parameters:
(a) Elastic period 7, from 0.2 to 3.0 sec, and in steps of 0.1 sec.

(b) Post-elastic to elastic stiffness ratio a equal to 0.05, 0.15, 0.25, 0.50 and 1.0 (=1

represents elastic behavior).
(c) Ductility-based portion of the R-factor, R, equal to 2.0, 3.33 and 5.0.

(d) Linear viscous damping ratio under elastic conditions £, equal to 0.0, 0.15, and 0.25,
plus inherent viscous damping of 0.05for a total viscous damping ratio under elastic

conditions of £, equal to 0.05, 0.20, and 0.30.
Parameter R, (see eq. 5-3) can also be described by

mS,(T,, B =0.05)
R — a e 5-9
g F B >-9)

where m is the mass, S, is the spectral acceleration for damping of 5-percent and B is the
damping coefficient for the total damping ratio. The damping coefficient presented in Section 3
and described as the “conservative” trilinear model has been utilized in the calculation of the
yield strength of the analyzed systems. The seismic excitation consisted of the 20 scaled
motions described in Section 3 and used in the analyses reported in Section 4. Note that for

these motions, 7s = 0.6 sec.

The coefficient C; was obtained as the ratio of the average peak inelastic displacement to the
average peak elastic displacement. Plots of this coefficient versus period 7, revealed the basic
nature of the relation. Moreover, since C; should converge to unity when either R, or « are

equal to unity, the following relation was considered:
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C =1+ (5-10)

(1-a)R, —1){a T j”

R T

i e

in which parameters a and b were obtained by calibration of the model on the basis of the results

of dynamic analysis. The simplest form of these parameters was found to be
a=a,(2+0.45R,) (5-11)

b=3.24-0.10R, -4.58, (5-12)

where q, is the parameter in Table 5-1.

Figures 5-2 to 5-4 compare values of coefficient C; obtained by nonlinear time history analysis
to the predictions of the model described by (5-10). Evidently, the proposed relation described
by (5-10) describes well the calculated values of the coefficient and it follows the desired

behavior for large values of period 7,. That is, (5-10) predicts a value of near unity for 7, > T.
5.4 Summary

In this section a new relation describing the ratio of peak inelastic displacement to the peak
displacement assuming elastic behavior (coefficient C;) has been presented. The new feature of
this relation is the inclusion of the effect of added viscous damping. This relation may be used to
obtain quick estimates of displacement demands in structures with damping systems without the
need to use iterative analysis procedures. The results presented in Figures 5-2 to 5-4 illustrate
effect of viscous damping on coefficient C;. It may be noted that the effect of damping in the

range of 5 to 30-percent is not significant.
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Base Shear

TABLE 5-1 Values of Parameter a,

Damping Ratio By a=0.05 o=0.15 a=0.25 a=0.50
0.05 0.116 0.100 0.093 0.071
0.30 0.195 0.160 0.143 0.111
Linear Interpolation is Valid
Fe
/
F o]
y akKe
Ke
>
D D
g ° Drift

Figure 5-1 Elastic and Idealized Inelastic Behavior of Structure
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SECTION 6

DISPLACEMENT DUCTILITY DEMAND IN STRUCTURES WITH VISCOUS
DAMPING SYSTEMS

6.1 Introduction

A structure without a damping system would typically be designed for code-prescribed lateral
loads equal to the elastic inertia forces divided by a response modification factor (or R-factor).

Such a structure will have an actual yield strength F), given by

_ Elastic Demand

yu
R,

(6-1)

where R, is the ductility-based portion of the R-factor. In (6-1), elastic demand is the peak base
shear calculated assuming that the structure is elastic with damping ratio equal to S-percent. A
structure designed on the basis of (6-1) will undergo inelastic deformations when subjected to the

design earthquake.

Consider now that a structure with a viscous damping system is designed using a similar

approach. The structure is designed to have an actual yield strength F),; given by

_ Elastic Demand ( for 5% damping)

Fd
R, B

W

(6-2)

where B is the damping coefficient for the viscous damping ratio of the structure under elastic
conditions (say f,). The elastic demand in (6-2) is as defined (6-1), so that the ratio elastic
demand/B is the base shear of the damped structure calculated assuming that the structure is
elastic with damping ratio equal to f,. If we consider a value of £, = 0.20 (0.05 inherent plus
0.15 added viscous damping) and a relatively flexible structure so that its elastic period 7, is

larger that T, B is equal to 1.5 per Section 3. Accordingly for the same ductility-based portion
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of the R-factor, the strength of the damped structure will be substantially less that that of the

undamped structure, or for this example, Fy; < 0.67 Fy,,

A question then arises as to whether the two structures will have comparable displacement
ductility demands. The issue is further complicated by the fact that the damped structure has
also less stiffness than the undamped structure. This section presents a systematic study that
answers the displacement ductility question. This section presents results that demonstrate that

the two structures indeed have comparable displacement ductility demands
6.2 Procedure for Evaluation of Displacement Ductility Demand

Bilinear hysteretic single-degree-of-freedom systems without and with linear viscous damping
devices were considered. Each system without damping devices was characterized by the elastic
period T, ductility-based portion of R-factor, R, ratio of post-elastic to elastic stiffness, a, and
the inherent damping ratio, f = 0.05. Values of 7, = 0.2 to 2.0 sec, a = 0.05, 0.15, 0.25 and
0.50, and R, = 2.0, 3.33 and 5.0 were selected.

Each system with damping devices was characterized by the same parameters £, «, and R, a
value of elastic period 7, larger than 7, and added linear viscous damping ratio 3, = 0.15 or
0.25 under elastic conditions. Accordingly, the total damping ratio under elastic conditions was
either 0.20 or 0.30. The damped system had a lower yield strength than the undamped system as
indicated in equations (6-1) and (6-2).

The elastic period 7., of the damped system was related to the period 7, of the corresponding

undamped system (damped at 5%) on the basis of the following equation:

Ted
T

e

=B" (6-3)

where 77 is a parameter dependent on the fundamental period and the shape of the beam and
column sections of the structure, which was calculated as follows. The elastic period of the

structure is related to the moment of inertia, /, of the beam and column sections, that is,

T~ 1/ VT . The yield strength of the structure is related to the plastic moments of the beam and
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columns which are proportional to the plastic section modulus and the material yield stress.
Assuming that the damped and the undamped structure are made of the same material, it follows

that F), / Fyg =2, /Z4 where Z, and Z,; are the plastic section moduli of the sections of the

undamped and the damped structures, respectively. Consider now that both structures have
elastic periods that fall within the constant acceleration domain of the design spectrum. Use of

(6-1) and (6-2) results in Fy,, /Fyq = B. Thus,

/2
Tﬂz(l_ej 2 (6-4)

e-p (65)

where I, and I, are representative moments of inertia of the beam and columns of the undamped
and the damped structures, respectively. For a rectangular bxh section, I ~ n and Z ~ h?, so
that T ~ h~>/2. That is,

7 /R
Ted:[hej =(__Z_J _ gl (6-6)

T, |\h, Z,

e

where h, and h, are the heights of the sections of the undamped and the damped structures,
respectively. A similar expression, but with an exponent equal to 2/3 rather than 3/4, is obtained
for square sections. Similarly, for wide flange sections, equation (6-3) is valid with 7 = 0.45 to

0.65.

Moreover, analysis considering that both 7, and T, are within the constant velocity region of the
design spectrum, results again in (6-3) but with 7 of the order of or larger than unity.
Accordingly, analysis were performed utilizing (6-3) with 7 = 0.5 when T, < Ty and 77 = 1.0
when T,>T,. Note that T; is the period at the intersection of the constant acceleration and

constant velocity regions of the design spectrum.
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6.3 Results

Analyses were performed using the 20 scaled motions described in Section 3. In the calculation
of the period and the yield strength of the damped structure, the “conservative values” of the

damping coefficient B were used (see Section 3).

Figures 6-1 and 6-2 compare the calculated average displacement ductility ratio for the
undamped and the damped structures (the average is that of the 20 calculated values for each
combination of parameters). The ductility demand in the two structures is nearly the same.
Moreover, Figure 6-3 presents a further comparison of the displacement ductility ratio of the
undamped and the 20%-damped structures with & = 0.05. In this figure, in addition to the
average, the maximum, and the minimum displacement ductility ratios of the 20 calculated
values are compared. Such a representation reveals the possible scatter in the ductility demand.
Interestingly, the scatter in the ductility demand in the damped structures is similar as that in the

undamped structure. This further justifies the use of the design approach described by (6-2).
6.4 Conclusions

In this section a comparison of ductility demands in damped and undamped structures has been

presented. The structures have been designed to have a yield strength described by (6-1) to (6-

3), so that
( 1
— whenT,,T,; <T,
F
LT 6-7)
F,
1
— whenT,,T,; 2T,
B
\

That is, the yield strength of the damped systems was between 0.35 and 0.67 times the strength
of the undamped structure. The calculated average, maximum and minimum displacement
ductility ratios in the two structures were nearly the same for the same R, and ¢/. On the basis of
these results, as well as results on inelastic spectra of structures with added viscous damping

presented by Wu and Hanson (1989), NEHRP (2000) allows the design of structures with
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damping systems for a seismic base shear that is the greatest of V/B or 0.75V, where V is the
minimum seismic base shear for the design of the structure without a damping system and B is

the damping coefficient for the combined inherent and viscous damping under elastic conditions.
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Displacement Ducitility Ratio Displacement Ductility Ratio

Displacement Ducitlity Ratio

R =2.0 — 5%-damped, T=T,
_ 20%-damped, T=T,.B"
n=05T, < T,

5%-damped, T=T,
20%-damped, T=T,.B"

R, =3.33

40
RH= 5.0 — 5%-damped, T=T,
30 - Maximu - - == 20%-damped, T=T,.B"
20 -
104 "7\ e e e————
0 . n ‘
0.0 0.5 1.0 1.5 2.0

Elastic Period T,, sec

FIGURE 6-3 Comparison of Maximum, Average and Minimum

Displacement Ductility Ratios of 5% and 20%-Damped
Systems with o = 0.05.
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SECTION 7

DEVELOPMENT OF EQUIVALENT LATERAL FORCE AND MODAL ANALYSIS
PROCEDURES FOR NEW BUILDINGS WITH DAMPING SYSTEMS

7.1 Introduction

The Nonlinear Static Procedure of FEMA 273 FEMA (1997) is the most comprehensive
guideline for the evaluation of buildings with damping systems at the time of this writing.
Specifically, Method 2 of FEMA (1997) is suitable for the analysis of buildings with velocity-
dependent (i.e., viscous and viscoelastic) damping systems, whereas Method 1 of FEMA (1997)
requires modifications along the lines of Method 2 for its application to velocity-dependent

systems.

Method 2 of FEMA (1997) is somewhat cumbersome to apply because it requires to perform at
least two pushover analyses, each with repeated eigenvalue analyses utilizing secant member
stiffnesses. Moreover, the method is suitable for the analysis of existing buildings and does not

provide guidance for preliminary sizing of members.

There is interest in the development of equivalent lateral force and modal analysis procedures for
buildings with damping systems that parallel the corresponding procedures for buildings without
damping systems, as in the NEHRP Recommended Provisions for Seismic Regulations for New
Buildings and Other Structures (NEHRP, 1997). Such procedures could simplify the design of

buildings with damping systems.

An equivalent lateral force procedure and a modal analysis procedure for damped buildings are
presented in this section. They are largely based on Method 2 of FEMA (1997) but are simpler

as a result of the following assumptions:

(1) The building is designed to have a proper collapse mechanism so that the distribution of

drift may be reasonably estimated on the basis of either eigenvalue analysis under elastic
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conditions or on the basis of assumptions (e.g., the drift distribution has an inverted

triangular shape).

(2) The building is analyzed in each principal direction as a model with one degree-of-freedom

per floor.
(3) The behavior of the building can be represented by an elastoplastic model.

(4) The yield strength of the building can be estimated by either a) plastic analysis since the
collapse mechanism is known, or b) using the specified minimum seismic base shear and
values of the response modification (R), system overstrength (€2) and deflection

amplification (C,) factors presented in NEHRP (2000).
72 R, R,, £, C; Factors and Maximum Effective Ductility

The definitions of the response modification factor R, the ductility-based portion of R-factor R,
(or R; in NEHRP, 1997), the system overstrength factor () and the deflection amplification
factor C; may be found in NEHRP (1997). A review of the values of some of these factors may

be found in Uang (1991). A brief description of these parameters is presented below.

Shown in Figure 7-1 is the structural response of a one-story building. The base shear-drift
relations of this building are termed capacity curves. The “actual” capacity curve shown dashed
in the figure is replaced by the idealized elastoplastic capacity curve that is shown as a solid line.
The elastic and inelastic responses of this building are obtained as the intersection points of the
capacity curves and the demand spectra (the latter multiplied by the reactive weight /¥ to obtain
force). The yield strength of the idealized building is ¥, and the elastic demand (or required
elastic strength) is .. The inelastic displacement is D; and is shown in Figure 7-1 to be larger
than the elastic displacement D,. The effective yield displacement is D), and the force and
displacement at the formation of the first plastic hinge are V; and D;, respectively. The
displacement ductility ratio (or effective ductility demand) is 4 = D/D,. The definitions of the

various factors are:;

F
R =2¢ 7-1
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Q, = —VL (7-2)
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