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Introduction sively for modeling geomaterials, concrete, metals and alloys, De-
When semiconductor devices are used in a vibratin enviroSfili [3], Desai and Tottj4], Desai et al[S], Basaran et al6,7],
9 Eﬁsaran and Chandar$§,9,10,11. The DSC is a material mod-

ment, dynamic strains contribute to the failure mechanism and cat h : ;
sometimes become the cause for dominant failure. Presently in %](tguraep?;?ﬁecrht’hva\(zlzg t;eﬁ(t)smtgee(;]c;rg)tlljrlsu;rg d?jn?n A'E?ggﬁ]geg)e?hu;
microelectronics industry, all vibration-induced stresses on sol g : g

joints are considered to be elastic. It is assumed that there is N C, the continuum is composed of intact and fully adjusted

contribution to the low cycle fatigue life from vibrations, Barkerparts. The intact part represents the virgin material reference state.

et al.[1]. In this paper it is shown that vibration effects cannot bghe fully adjusted part represents the material that is in the re-

classified categorically as elastic only and ignored in low cyc! eidqal asymptotic reference state. The fglly adjusted part can be
fatigue studies. It is also shown that at elevated temperatur§ S|gn_eo_l different referen_ce states for qln‘ferent materials. In thls
irreversible strains due to vibrations are greatly amplified. In this ndr%/otlt(;er?szsa%mi?]e}g?tsgpe;zebzutlIgaidg:?asrﬁedhs:j?gesltet:t}g gﬁevgls_
study it was observed that even the dynamic loads that are { y any - : ry ny L p
small to induce irreversible deformations, could induce significal fve stresses only. We will refer to this particular definition of the
damage when coupled with thermal cycI’ing. uIthad_Justed St?t? ats the (:amageldtstat?' the DSC be ai
A unified damage mechanics based constitutive model has b%&H—Dgslgi([:gi)mBe:Sgr:nr(;?Sa-F65aln relation in the can be given

developed and then implemented in a nonlinear finite eleme ' :
analysis procedure for fatigue life analysis under coupled dynamic do? =CPSCye! 1)
and thermal loads. The purpose of the study has been to observe ik
the contribution of thermal and vibration induced strains to thﬁheredgiﬁ} is the incremental average stress tensl@t{d is the
fatigue life of solder joints. The fatigue life of the solder joint wasncremental strain tensor for the intact part, and the DSC tangen-
determined by Miner’s rule and also by coupled finite elemefj| constitutive tensor is given by,
analyses. For Miner’s rule the damage due to each load type act- ) _
ing individually was determined and then superposed to assess theC{5“=[(1—D)'Cfi?’+D(1+a)°C{ip’+ (of, — al;)Ru]
overall fatigue life of the joint. It should be pointed out that Min- 2
er’s rule is commonly used in the industry, Barker ef 4], Stein- i . ) o
berg[2]. In coupled analyses both vibrations and thermal cyclinghere'Cijq and“Cy;, are the tangential constitutive tensors for
were applied simultaneously and the fatigue life was directly corfhe intact and damaged parts respectivefy,andaj; are the total
puted by the finite element code. stress tensors for the damaged and intact parts, respectivéy,

the accumulative damage, is the empirical relative strain coef-

ficient, andRy, is the material moment tensor.
Material Model In this proposed model a damage criterion based on the second

The constitutive model proposed in this paper is based on i@ of thermodynamics and statistical continuum mechanics is

Disturbed State ConcepbSC). The DSC has been used exten-ufsed- Thfe damage model utilizes entropy, which is a measure of
disorder in the system as a damage metric, Basaran anfilgan

Contributed by the Electronic and Photonic Packaging Division for publication iﬁouzma.nn[ll]’ using Statls.tlcal mechanics, g.ave a precise mean-

the DURNAL OF ELECTRONIC PACKAGING. Manuscript received at ASME Head- INg t0 disorder and established the connection between disorder

quarters March 15, 2001. Associate Editor: Yi-Hain Pao. and entropy by the following equation,

60 / Vol. 124, MARCH 2002 Copyright © 2002 by ASME Transactions of the ASME

Downloaded 11 Sep 2008 to 128.205.19.142. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



80.0 . . . : ; . : 60.0 : .
o
T o
P
.
) e 500 | R
e
| T o o © o09°
60.0‘i° . { °°°°o°°o°oo°°°°° o °
.
=]
‘ v | °
_______ o
_____________ g —e— o — -
lf v 40.0 —i .
| v |I
t

S s

§ | S .

i o . B A

————— - — - - TTTTTT T T o g8 o0goan o =] o

?’;40.0—7 a = . ;5::300_, o gooBooa oo |

& | 2 Voo
“ o P L ]

L ¥ —

& ! S H  apaata®oteretoracnns int2
,lu | J-—n;—v'v—-vvvvvvvvvvvvvvvvvv‘,vv
g e A O test @ -55°C v
!/ - Vtest @ -15°C 20.0 —i i
| a o test @ 22°C k ]

'oa atest@75°C | o‘est@zoec
200 Il ° o Otest @ 125°C | ] : Stest@70°C
WO e T T T T T T — - - model | alest@ 110°C
I » \ vtest @ 130°C
I’o 100 — - _model B
[
{
0.0 1 i 4 L 11 1 " 00 N 1 i
0.000 0.010 0.020 0.030 0.040 0.050 0.060 " 0.000 0.020 0.040 0.060
True strain True strain
80.0 . . . : . , 100 ' I . . .
o
_____ D e e — - -
A o Loo° °o° 000000 000 200700
600 [ | o i - |
R 300 H
I o i
X . !
| v |
X v K
F |

3 A < !

S ulf : |

g wol! ] % |

£ [e § 200 " J

= o
§ T a v l‘__qu:_e
=~ a 2 [
e —- et e — - & i
L] o iu
! Otest@ -35C 1°
b v test @ —15°C hata
! Otest @ 22°C P,
. Atest @ 75°C A
200 [P otet@125C | - e _
y oo T s T T =T — - model 100 i
a L
F A — - model
g e — - — —a— otest@20°C
Y ° L Gtest @70°C
) o atest@110°C
viest@130°C
0.0 1 \ 1 " ! 1 N
0.000 0.010 0.020 0.030 0.040 0.050 0.0 L " ! " 1 n
True strain 0.00 0.02 0.04 0.06 0.08

True strain

Fig. 1 (a) Comparison of stress versus strain results at differ-
ent temperatures for strain rate of 1.67 X102 (b) Comparison
of stress versus strain results at different temperatures for
strain rate of 1.67 X10~*

Fig. 2 (a) Comparison of stress versus strain results at differ-
ent temperatures for strain rate of 1.0 X 1072 (b) Comparison of
stress versus strain results at different temperatures for strain
rate of 1.0 X10~*

_ exist in the state it is in relative to all the possible states, it could
s=kinw ?3) i . X :
be in. “This equation connects a thermodynamic and macroscopic
where s is the entropy is Boltzmann’s constant and is the quantity, the entropy, with a statistical microscopic quantity, the
disorder parameter, which is the probability that the system witirobability.” Halliday and Resnick12]
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to the initial reference state can be given by,

If we select an initial reference state of the material as state
then change in the disorder at any arbitrary time with respect

AW=W,—W g0~ b0 /Nok o Img_ g~ ¢/Noke/mg (5)
Using the definitions given in Eq$3) and(4) and also using the
fundamental thermodynamic relations yields the following dam-

(6)

age evolution function,
D 1_e—Ae—A¢/N0k0/ES

[

wheregy; is the total stress tensate!” i
tic strain tensorp is the unit mass density; is the heat flux

vector, y is the distributed internal heat production rate per unit

where
taq;

—dt+ fydt )

is the incremental inelas-

Ae—A¢ !
e— = —
p

mass and dt is the time increment

Thermo-Elasto-Viscoplasticity
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In service Pb/Sn solder joints operate at high homologous
is defined by JdKelvin)/

temperature (0.65.]), which
mei(Kelvin). Therefore, the contribution of creep to the fatigue
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Fig. 3 Comparison of cyclic shear stress versus strain results

at 25°C

tion is given by,

1
0.000

Shear strain

The entropy in the context of the Helmholtz free energy fundem can be separated into three parts
dejj=de]

T in).
damage becomes very significant. As a result, using a viscoplastic
model for the characterization of the thermo-mechanical behavior

of the Pb/Sn solder alloy is essential. Assuming small strains, the
total strain increment tensor for a thermo elasto-viscoplastic prob-
dee+d89+d8-v»p (8)

“) whereds/, defj, andds; are the incremental thermal, elastic

J
and V|scoplast|c strain tensors, respectively. The thermal strain

dp=e—0s
whered is the Helmholtz free energg,is the internal energyd is
the absolute temperature asds the entropy. increment is defined by,
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Fig. 4 Comparison of shear stress versus strain results at 22°C and strain

rate of 0.003
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Fig. 6 Time history of thermal loading

Pb40/Sn60 bulk solder specimens, which were conducted on an
Instron 1122. The tests were performed at constant temperatures
dgﬁ=ang|ij (9) between—55°C and 125°C over a range of strain rates from
8.33x 10 ° to 8.33x 10" 2. The tests were performed at constant
crosshead speed, but since only small strain data was used this
was assumed to be approximately constant true strain rate. The
material parameters used are as follows: Young’'s modiuand
det=DE¢do;; (10) Poisson’s ratidv) values were obtained by Adams from ultrasonic
e T testing on bulk Pb40/Sn60 solder samples. The variation of E
WhereDﬁ is the inverse of the elastic constitutive tensor. In ordeind v
to define the increment of the viscoplastic strain in E). we
need to define a viscoplastic strain rate function. Tin/Lead solder
is a two phase alloy with an evolving microstructure. Chandaroy E(GP3=62.0-0.067T and @GP3=24.3-0.029T
[13] has shown that the microstructure and grain size of a solder

wherear is the coefficient of thermal expansiag is the incre-
ment of temperature, ang; is the unit vector. The elastic strain
increment is defined by,

joint depends on its cooling rate, age, temperature and strain his- E
tory. For Pb/Sn solder alloys, the creep function used must take v=——1
into account the microstructure. Yet it should be simple enough to 2G

be used in a boundary value problem. For the constitutive model

proposed in this paper the following strain rate function WagnereG is the shear modulus and T is the temperature in Kelvin.
adopted by ChandardyL3], Other material parameters used in the analysis are as follows;

-Q Viscoplastic material parameters:
7P — A(sj ndym —
&{P=A(sinfBo])"(d) exp{ Ko Laij (11)
whereA, B, n, andm are material constants; is the von Mises
equivalent stress and is given hy=3J,5, d is the average Y directions for B.C.(D
solder grain sizeQ is the creep activation energdy,s the Boltz- 4.0 , . T . .
mann’s constanty is the absolute temperature in Kelvin, ang L |
is the total stress tensor. Visco plastic material properties are giv. 30 + .
in Table 1.
2.0 -
Verification of the Constitutive Model
To verify the constitutive model a series of laboratory test daf_ e ‘ _
was simulated. Adamjgl4] performed a series of tensile tests or§ o0 L ]
o 4
-1.0 - =
g -
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g
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Fig. 9 Normal stress versus strain response for dynamic load
Fig. 7 Time history of dynamic loading of 5g—10Hz in both X and Y directions
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Fig. 10 Shear stress versus strain response for concurrent thermal and dynamic load
5g—10Hz in both X and Y directions

Tablel M ial . . . . . .
able aterial parameters For simplicity the von Mises yield surface with no hardening

Parameter Value was used for strain rate function. Figure&)land 1b) show
AGY 2 450107 c_ompar_ison between Adams test data and _constitutive model
B 0.10726 simulations at different temperatures. The difference between
N 2.4283 simulations and test data at small strain levels could be due to the
IE)/I 1_53%21 fact that hyperbolic sine creep models ignore primary creep. For
Q 57.3Kj/mole practical engineering purposes simulations match test data well.

Adding hardening function to yield surface would make the simu-
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Fig. 11 Normal stress versus strain response for concurrent thermal and dynamic
load 5g—10Hz in both X and Y directions
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lation stress-strain curves smoother but would also increase thelastic depending on the acceleration and the frequency of the

computation time. vibrations. For low cycle fatiguéup to 10 cycles Barker et al.
McDowell et al.,[15] performed tensile tests across a range ¢fl]), the damage was calculated using E@). For high cycle

temperature and strain rates on a 62Sn-36Pb-2Ag solder a"faatigue(over 10 cycles, Barker et al[1]), the damage was cal-

Figures 2a) and 2b) show true stress-true strain response fagulated using the following criterion, Barker et fd],
different temperatures.

Busso et al.[16] performed cyclic shear tests on Pb40/Sn60
bulk solder that was casted in air into 30 mm diameter bars and D=3(n;/N;) (12)
subsequently machined into cylindrical specimens. The cyclic
stress-strain behavior of the solder was determined from cyclic ) ) )
torsion tests performed on a feedback controlled servo-hydraufi€ren; is the number of cycles experienced axdis the total
testing machine. Cyclic tests were carried out under isothernftifmber of cycles to failure. High cycle fatigue life test data was
displacement controlled conditions with a ramp waveform arfPtained from the data presented by Steintjeig
zero mean strain at a frequency of 0.01 Hz. The tests were conh€ combined loading situation is first simulated by superpos-
trolled through the measured twist angle on the specimen’s gr[p9 the damage due to vibration and thermal loads using Miner’s
Figure 3 shows the comparison between test data and constitufiye: The damage due to each loading type acting alone is deter-
model simulation. mined and then superposed to assess the overall fatigue life of the
Schroeder et al[17] performed cyclic torsion shear tests undel0int. Barker et al.[1]. In the second stage, coupled thermo-
variable strain amplitudes on 63Sn-37 Pb eutectic solder all{fScoplastic-dynamic analyses are performed using the finite ele-
Specimen blanks were cut to 2.5 cm by 2.5 cm by 17.8 cm afgent procedure presented above, in which the total damage is
single point machined to 1.27 cm outside diameter over the gaugmputed directly. ] ) o )
section. Specimens were then gun bored to inside diameter of 1.03 the literature and in the industry it is common practice to
cm. All specimens were aged at 22C for over two months prior &PMPute the total fatigue damage caused by vibration and thermal
testing to allow microstructural thermodynamic equilibration¢ycling using Miner’s rule, Barker et al.1]. _
Comparison between shear stress-shear strain test data and moddffinite element analysis was conducted for the following load

simulations are given in Fig. 4 for different strain ranges. case. In the loading combination, the thermal cycling and the dy-
Overall comparison of test data with constitutive model simJi@mic loading of 5 g-10 Hz are applied in botrandY directions.
lations agrees very well. Figures 8 and 9 show,— v,, response and the,— e, response,

respectively, of the solder joint under dynamic loading only. Fig-
Analysis Of a Solder Joint Between a Ceramic Chip ure 8 shows that the maximum shear stress level is almost the
: . - same as when vibrations are applied in ¥adirection only(not

Carrier and a Printed Wiring Board shown). This is in spite of the fact that, the energy dissipated in

The fatigue life and stress-strain response of a Pb40/Sn60 dble joint is much larger due to the larger plastic strain. This is
der joint in a surface mount technology package subjected to thprebably due to the contribution of the vertical displacements to
mal cycling and vibrations are studied. The package shown in Fipe shear stress.
5 was subjected to a temperature cycling and base acceleratiorkigure 10 shows the,,— v,, response in the solder joint under
The time histories of the temperature cycling and the vibratiom®ncurrent thermal and dynamic loading of 5 g-10 Hz in bth
are given in Figs. 6 and 7, respectively. andY directions. The maximum strain level reached is also larger

Both low and high cycle fatigue were considered, since undethen compared to thermakingle directional dynamic loading.
dynamic loading, the behavior of the solder alloy can be elastic 8s a result, having loading in botk andY directions is the worst
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combination. Another feature observed in this response is théaval Research Young Investigator Award Program. The Program
with the reduction of temperature, the plastic strain starts to rBirector for the project is Dr. Roshdy Barsoum of ONR. We are
duce but does not go to the original position at room temperatugeateful for his valuable comments.

and even at lower temperatures, stops at a certain plastic strain

level.

Figure 11 shows ther,—&, response for the concurrent ther-

mal and dynamic loading of 5 g-10 Hz in bathand directions.
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