Random Vectors (Continued)

Independent Random Variables:

Two random variables *X* and *Y* are said to be (statistically) independent if:

Discrete case:

$$p_{X|Y}(x_i|y_j) = p_X(x_i)$$
. And since $p_{X|Y}(x_i|y_j) = \frac{p_{X,Y}(x_i,y_j)}{p_Y(y_i)}$,

then $p_{X,Y}(x_i, y_i) = p_X(x_i)p_Y(y_i)$ results, and could be shown to be equivalent to condition of independence.

Continuous case:

$$f_{X|Y}(x|y) = f_X(x)$$
, which is equivalent to $f_{X,Y}(x,y) = f_X(x)f_Y(y)$. Similarly $F_{X,Y}(x,y) = F_X(x)F_Y(y)$.

Generally, n random variables are independent iff

$$f_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n) = f_{X_1}(x_1) f_{X_2}(x_2) ... f_{X_n}(x_n)$$

Example: Gas in thermal equilibrium at temperature *T*.

Experiment: Pick a molecule at random. define three random variables:

 $V_X(s) = v_x$, $V_Y(s) = v_y$, $V_Z(s) = v_z$, which map sample point (picked molecule) into its three velocities along the three axes x, y, and z.

From statistical thermodynamics, $f_{V_x}(v_x) = \sqrt{\frac{m}{2\pi kT}}e^{-mv_x^2/2kT}$, same for y, z. $V_X(s)V_Y(s)$, V_Z are independent R.V's, then

$$f_{V_x, V_y, V_z}(v_x, v_y, v_z) = \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-m(v_x^2 + v_y^2 + v_z^2)/2kT}$$
, Maxwell-Boltzman distribution.

Kinetic energy
$$E = \frac{m}{2}(V_x^2 + V_y^2 + V_z^2)$$
, $E(s) = e$, so $e = \frac{m}{2}(v_x^2 + v_y^2 + v_z^2)$.

$$F_{E}(e_{0}) = P(\lbrace E \leq e_{0} \rbrace) = \int dv_{x} \int dv_{y} \int dv_{z} \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-m(v_{x}^{2} + v_{y}^{2} + v_{z}^{2})/2kT}$$

$$v_{x}^{2} + v_{y}^{2} + v_{z}^{2} \leq 2e_{0}/m''''$$

Transform to spherical coordinates. Element volume $4\pi r^2 dr$ is a shell volume, then

$$F_E(e_0) = \int\limits_0^{\sqrt{2e_0/m}} 4\pi r^2 dr \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mr^2/2kT} \text{. Since } f_E(e_0) = \frac{d}{de_0} F_E(e_0) \text{, then we differentiate directly } f_E(e_0) = \frac{d}{de_0} F_E(e_0) = \frac{d}{de_0} F_E(e_0) \text{.}$$

without solving integral, to get
$$f_E(e_0) = \frac{2}{\sqrt{\pi}(kT)^{3/2}}e_0^{1/2}e^{-e_0/kT}$$

Functions of Random Variables

Let $Z \equiv g(X)$ be a real-valued function of a real variable. Let X be a random variable defined on S, where X(s) = x. Then $Z \equiv g(X)$ is a random variable on S, defined by Z(s) = g(X(s)) = g(x) = z.

Statement of Problem:

If Z = g(X) and $f_X(x)$ is known, find $f_Z(z)$.

Step 1:

Find Cumulative Distribution Function (C.D.F.) of Z., i.e. $F_Z(z)$.

$$F_Z(z_0) = P\{Z \le z_0\} = P\{g(X) \le z_0\}$$

Define $I_{z_0} = \{x : (g(x) \le z_0)\}$, which is a collection of intervals on the x axis.

Then
$$F_Z(z_0) = P\{X \in I_{z_0}\} = \int_{I_{z_0}} f_X(x) dx$$
.

$$f_Z(z_0) = \frac{d}{dz_0} F_Z(z_0)$$

Examples:

$$1- E = V^2$$

Given $f_V(v)$, find $f_E(e)$.

Step 1:

$$F_{E}(e_{0}) \ = \ P\{E \leq e_{0}\} \ = \ P\{V^{2} \leq e_{0}\} \ = \ P\{V \in I_{e_{0}}\} \ = \ P\{-\sqrt{e_{0}} < V < \sqrt{e_{0}}\} \ = \ \begin{cases} \int_{-\sqrt{e_{0}}}^{\sqrt{e_{0}}} f_{V}(v) dv, \text{ for } e_{0} > 0 \\ 0, \text{ for } e_{0} < 0 \end{cases}$$

$$f_{E}(e_{0}) = \frac{d}{de_{0}} \int_{-\sqrt{e_{0}}}^{\sqrt{e_{0}}} f_{V}(v) dv = \begin{cases} f_{V}(\sqrt{e_{0}}) \frac{d}{de_{0}} \sqrt{e_{0}} - f_{V}(-\sqrt{e_{0}}) \frac{d}{de_{0}} (-\sqrt{e_{0}}), e_{0} > 0 \\ 0, e_{0} < 0 \end{cases}$$

Then
$$f_E(e_0) = \begin{cases} \frac{1}{2\sqrt{e_0}} [f_V(\sqrt{e_0}) + f_V(-\sqrt{e_0})], \ e_0 > 0 \\ 0, e_0 < 0 \end{cases}$$

 $2-Y = \sin\Theta$

Given
$$f_{\Theta}(\theta) = \begin{cases} \frac{1}{2\pi}, & -\pi \leq \theta < \pi \\ 0, & \text{else} \end{cases}$$
, find $f_{Y}(y)$.

Step 1:

$$F_{Y}(y_{0}) = P\{Y \le y_{0}\} = P\{\sin\Theta \le y_{0}\} = P\{\Theta \in I_{y_{0}}\}$$

$$F(y_0) = \begin{cases} 1, y_0 > 1 \\ \int_{I_{y_0}} f_{\Theta}(\theta) d\theta &= \frac{1}{2\pi} (\pi + 2 \sin y_0) = \frac{1}{2} + \frac{1}{\pi} \sin y_0, -1 < y_0 < 1 \\ 0, y_0 < -1 \end{cases}$$

$$f_{Y}(y_{0}) = \frac{d}{dy_{0}} F_{Y}(y_{0}) = \begin{cases} 0, y_{0} > 1, y_{0} < 1 \\ \frac{1}{\pi \sqrt{1 - y_{0}^{2}}}, -1 \le y_{0} \le 1 \end{cases}$$

Functions of Two Random Variables

Let Z = g(X, Y) be a real-valued function of two real variable. Let X and Y be joint-random variable defined on S. Then Z is a random variable on S, defined by Z(s) = g(X(s), Y(s)) = g(x, y) = z.

Statement of Problem:

Given Z=g(X, Y) and $f_{X, Y}(x, y)$, find $f_{Z}(z)$.

Step 1:

Find
$$F_Z(z_0) = P\{Z \le z_0\} = P\{g(X, Y) \le z_0\} = \int_{R_{z_0}} f_{X, Y}(x, y) dx dy$$

where
$$R_{z_0} = \{x, y : g(x, y) \le z_0\}$$

$$f_Z(z_0) = \frac{d}{dz_0} F_Z(z_0)$$

Sum of Two Random Variables

This is a very important example of a function of two random variables.

$$Z = X + Y$$

Step 1:

$$F_{Z}(z_{0}) = P\{Z \le z_{0}\} = P\{X + Y \le z_{0}\} = \int_{R_{z_{0}}} f_{X, Y}(x, y) dx dy = \int_{-\infty}^{\infty} dx \int_{-\infty}^{z_{0} - x} dy f_{X, Y}(x, y)$$

Step 2:

$$f_{Z}(z_{0}) = \frac{d}{dz_{0}}F_{Z}(z_{0}) = \int_{-\infty}^{\infty} dx \frac{d}{dz_{0}} \int_{-\infty}^{z_{0}-x} dy f_{X, Y}(x, y) = \int_{-\infty}^{\infty} dx f_{X, Y}(x, (z_{0}-x))$$

Which is the general formula of the pdf of the sum of two R.V.'s

Example: Two resistors in series with uniform pdf's. find pdf of series combination. Assume two R. V's to be independent.

Let R_1 and R_2 be two random variables with identical pdf,s

$$f_{R_1}(r_1) = \left\{ \begin{array}{l} 0.01, & 950 \leq r_1 \leq \ 1050 \\ 0, & \text{else} \end{array} \right. \text{, and } f_{R_2}(r_2) = \left\{ \begin{array}{l} 0.01, & 950 \leq r_2 \leq \ 1050 \\ 0, & \text{else} \end{array} \right. \text{.}$$
 and let there sum be $R_T = R_1 + R_2$. Since independent, $f_{R_1, R_2}(r_1, r_2) = f_{R_1}(r_1) f_{R_2}(r_2)$

Step1:

Step 2:

Another Method:

General formula
$$f_{R_T}(r_T) = \int_{-\infty}^{\infty} dr f_{R_1, R_2}(r, (r_T - r))$$
.

Since independent, then $f_{R_T}(r_T) = \int dr f_{R_1}(r) f_{R_2}(r_T - r)$, which is a *convolution*.

Theorem:

If Z is the sum of two

independent R. V's
$$X$$
 and Y , then;

independent R. V's X and Y, then;
$$\int_{-\infty}^{\infty} d\xi f_X(\xi) f_Y(z-\xi) = f_X(z) * f_Y(z)$$