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Abstract

Diffusion in polymer solutions and gels has been studied by various techniques such as gravimetry, membrane
permeation, fluorescence and radioactive labeling. These studies have led to a better knowledge on polymer
morphology, transport phenomena, polymer melt and controlled release of drugs from polymer carriers. Various
theoretical descriptions of the diffusion processes have been proposed. The theoretical models are based on
different physical concepts such as obstruction effects, free volume effects and hydrodynamic interactions.
With the availability of pulsed field gradient NMR techniques and other modern experimental methods, the
study of diffusion has become much easier and data on diffusion in polymers have become more available.
This review article summarizes the different physical models and theories of diffusion and their uses in describing
the diffusion in polymer solutions, gels and even solids. Comparisons of the models and theories are made in an
attempt to illustrate the applicability of the physical concepts. Examples in the literature are used to illustrate the
application and applicability of the models in the treatment of diffusion data in various systems.q 1999 Elsevier
Science Ltd. All rights reserved.
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Nomenclature

a Parameter dependent on the diffusant size in Phillies’ model [52,101,102], and independent of
the diffusant size in the model of Altenberger et al. [97]

b Constant dependent on the solute size and on the temperature in the model of Petit et al. [33]
c Concentration (g/ml)
cp Critical overlap concentration, or overlap concentration, at which the entanglement of polymer

chains starts according to Refs. [122,123]
ce Entanglement concentration,ce < cp according to Refs. [137,138]
D Diffusion coefficient (m2/s) (self- or tracer diffusion coefficient)
D0 Diffusion coefficient in the absence of the polymer network (m2/s)
Ea Activation energy (kJ/mol)
DE Energy barrier (kJ/mol)
wp Volume fraction of polymer
w s Volume fraction of solvent
HPC Hydroxypropyl cellulose
HPMC Hydroxypropyl methyl celluclose
k Screening parameter in Cukier’s model [26]
k Jump frequency in the model of Petit et al. [33], which depends on temperature and diffusant

size
kB Boltzmann’s constant (1.380658× 10223 J K21)
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M Polymer molecular weight
Mc Number-average molecular weight between cross-links
Mc

p Theoretical molecular weight between cross-links below which diffusion of a solute of sizers

could not occur, in the model of Peppas and Reinhart [195]
Mn Number-average molecular weight of uncross-linked polymer
n Scaling parameter characteristic of the system in Phillies’ model [52,101,102], and parameter

dependent on the system in the model of Petit et al. [33]
NMR Nuclear magnetic resonance
P Matrix polymer molecular weight in the model of de Gennes [123]
PA Polyacrylamide
PEG Poly(ethylene glycol)
PGSE Pulsed-gradient spin-echo
PMA Poly(methyl acrylate)
PMMA Poly(methyl methacrylate)
PS Polystyrene
PVA Poly(vinyl alcohol)
PVAc Poly(vinyl acetate)
PVME Poly(vinyl methyl ester)
r Radius of the polymer or fiber (A˚ )
Rh Hydrodynamic radius of the diffusing molecule (A˚ )
Rg Radius of gyration (A˚ )
T Temperature (K)
Tg Glass transition temperature
THF Tetrahydrofuran
j Correlation length or network mesh size as defined by de Gennes [123], and end-to end distance

of a polymer chain in the model of Amsden [28]

1. Introduction

Diffusion is the process responsible for the movement of matter from one part of a system to another
[1], and it is mainly due to random molecular motions. In gases, diffusion processes are fast (10 cm/min)
whereas they are much slower in liquids (0.05 cm/min) and solids (0.00001 cm/min) [2]. According to
Cussler [2], diffusion in both gases and liquids can be successfully predicted by theories. Diffusion is
known to depend on temperature, pressure, solute size and viscosity. Diffusion has a much larger range
of values in solids, where diffusion coefficients can differ by more than a factor of 1010. Therefore,
diffusion in solids is difficult to estimate with theoretical models [2]. Diffusion in polymers is complex
and the diffusion rates should lie between those in liquids and in solids. It depends strongly on the
concentration and degree of swelling of polymers. Consequently, it remains a challenge to understand,
predict and control the diffusion of small and large molecules in polymer systems. The theories and
physical models of diffusion may help to realize these goals.

The first mathematical treatment of diffusion was established by Fick [3] who developed a law for
diffusion in one dimension:

J � 2Aj � 2AD
2c
2z

�1�
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whereJ is the flux, j the flux per unit area,A the area across which diffusion occurs,D the diffusion
coefficient,c the concentration,z the distance and2c

2z the gradient of the concentration along thez axis.
This equation is also known as Fick’s first law. In the case of diffusion without convection and a unitary
area, Eq. (1) can be written as

J � 2D
2c
2z

: �2�

Eq. (2) is the starting point of numerous models of diffusion in polymer systems.
In the study of solvent diffusion in polymers, different behaviors have been observed. It is known that

the diffusion of the solvent is linked to the physical properties of the polymer network and the interac-
tions between the polymer and the solvent itself. Alfrey et al. [4] proposed a classification according to
the solvent diffusion rate and the polymer relaxation rate: Fickian (Case I) and non-Fickian (Case II and
anomalous) diffusions. The amount of solvent absorbed per unit area of polymer at timet, Mt, is
represented by

Mt � ktn �3�
wherek is a constant andn a parameter related to the diffusion mechanism, the value of which lies
between 1/2 and 1. Eq. (3) can be used to describe solvent diffusional behaviors for any polymer–
penetrant system whatever the temperature and the penetrant activity.

1.1. Fickian diffusion

Fickian diffusion (Case I) is often observed in polymer networks when the temperature is well above
the glass transition temperature of the polymer (Tg). When the polymer is in the rubbery state, the
polymer chains have a higher mobility that allows an easier penetration of the solvent [5]. Therefore,
Fickian diffusion is characterized by a solvent diffusion rate,Rdiff, slower than the polymer relaxation
rate,Rrelax (Rdiff p Rrelax). A large gradient of solvent penetration is observed in the system. The solvent
concentration profile shows an exponential decrease from the completely swollen region to the core of
the polymer. The diffusion distance is proportional to the square-root of time [6]

Mt � kt
1=2

: �4�
Few examples of Fickian diffusion in polymer systems are reported in the literature, since solvent

absorption studies have been often carried out at ambient temperature which is often belowTg. Never-
theless, Fickian diffusion can be observed in polymer systems belowTg with the addition of a plasticizer.
Grinsted et al. [5] studied the diffusion of methanol in poly(methyl methacrylate) (PMMA) as a function
of water concentration by NMR imaging. They found that the diffusion rate of methanol increased with
increasing water concentration. In addition, the diffusion of methanol changed from Case II (see Section
1.2) to Fickian when the water content was increased. This change in methanol diffusional behavior was
explained by the presence of water that acted as a plasticizer. Ercken et al. [7] also reported studies of
methanol diffusion in PMMA. They showed that methanol diffusion followed Case II behavior at
ambient temperature, whereas Fickian behavior was observed at higher temperatures.
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1.2. Non-Fickian diffusion

Non-Fickian diffusion processes are mainly observed in glassy polymers, i.e. when the temperature of
study is belowTg. At a specific temperature belowTg, the polymer chains are not sufficiently mobile to
permit immediate penetration of the solvent in the polymer core [5]. Two kinds of non-Fickian diffusion
were defined: Case II diffusion and anomalous diffusion. The main difference between these two diffu-
sion categories concerns the solvent diffusion rate. In Case II diffusion, the solvent diffusion rate is faster
than the polymer relaxation process (Rdiff q Rrelax), whereas in anomalous diffusion the solvent diffu-
sion rate and the polymer relaxation are about the same order of magnitude (Rdiff , Rrelax) [4].

In general, Case II diffusion is observed when solvents have high activities [8]. The characteristics of
Case II diffusion are the following: (1) a rapid increase in the solvent concentration in the swollen region
which leads to a sharp solvent penetration front between the swollen region and the inner polymer core;
(2) the solvent concentration is quite constant in the swollen region behind the solvent penetration front;
(3) the solvent penetration front is sharp and advances at a constant rate, thus the diffusion distance is
directly proportional to time

Mt � kt: �5�
(4) There is an induction time of Fickian concentration profile which precedes the solvent penetration
front into the glassy polymer core [9–13].

Fickian and Case II diffusions are considered as limiting types of transport processes. Anomalous
diffusion lies in between and is characterized by the following equation:

Mt � ktn and 1
2 , n , 1: �6�

Examples of Case II diffusion with polymer/solvent systems are abundant in the literature. For
example, Weisenberger and Koenig [14] showed that methanol diffusion in PMMA obeys Eq. (5)
(Case II). Dioxane in polystyrene (PS) [15], acetone in poly(vinyl chloride) [16] and in polycarbonate
[6] have the same diffusional behavior.

1.3. Self-diffusion and mutual diffusion coefficients

According to Fick’s first law (Eq. (1)), the diffusion coefficient is defined as the rate of transfer of the
diffusant across the diffusion section divided by the space gradient concentration at this specific section.
If we consider the mixing of two pure species, A and B, without volume variation, then an equal quantity
of each component will be transferred in the opposite direction. From a diffusion point of view, we
obtain one diffusion coefficients related to both species, referred to as themutual diffusion coefficient
[1,17]. However, it is important to note that the mutual diffusion coefficient,Dm, can be expressed as the
sum of twointrinsic diffusion coefficientsrelated to each individual component [17]:

Dm � VACA�DB 2 DA�1 DA �7�
whereCA is the amount of component A contained in the system,VA the constant volume of component
A andDi the intrinsic diffusion coefficient of componenti.

In already equilibrated systems such as polymer solutions and gels, there is no volume variation and
no mass transfer. Nevertheless, the molecules are in motion and diffusion occurs without the presence of
a concentration gradient. In this case the diffusion is defined by theself-diffusion coefficient. This
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diffusion coefficient can be related to the intrinsic diffusion coefficient (thus indirectly related to the
mutual diffusion coefficient) by [17]

DA � DCA
2mA

2CA
� RTD

2ln aA

2ln CA
�8�

whereD is the self-diffusion coefficient of component A,mA the chemical potential andaA the thermo-
dynamic activity of component A.

Generally speaking, self-diffusion occurs in systems composed of chemical species in the same phase,
such as polymer solutions. When the concentration of the studied species is very small, the self-diffusion
of the species is also calledtracer diffusion. Tracer diffusion also includes the diffusion of chemical
species in different physical states, for example, the diffusion of water vapor in a polymer thin film,
which involves the diffusion of a gas in a solid [2].

Most diffusion studies have been carried out by measuring the self-diffusion coefficient as it is more
convenient to study the already equilibrated systems. In this review article, the applicability of the
diffusion models in tracer and self-diffusion will be discussed as described in the literature.

1.4. Diffusion in polymers

Diffusion in polymer solutions and gels have been studied for decades by the use of various techniques
such as gravimetry [18], membrane permeation [19], fluorescence [20] and dynamic light scattering
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Fig. 1. Semilogarithmic plot of solvent self-diffusion coefficient as a function of the polymer concentration: closed diamonds,
toluene–PS; closed triangles,tert-butyl acetate–PS; closed circles, ethylbenzene–PS; open circles, cumene–PS; closed
squares, chloroform–PS; open triangles, methyl-methacrylate–PMMA; and open squares, methylethylketone. The prediction
of the Maxwell–Fricke model (Eq. (9)) and the model of Mackie and Meares (Eq. (10)) are represented by solid lines. Reprinted
with permission from Macromolecules 1993;26:6841.q1999 American Chemical Society [36].



[21]. The studies have resulted in a better knowledge on polymer morphology and structure [22],
transport phenomena [23] and, more recently, the controlled release of drugs from polymer carriers
[24]. In addition, these studies have led to theoretical descriptions of the diffusion of solvents and/or
solutes in polymer solutions, gels and even solids [25–27]. These physical models are based on different
physical concepts (the obstruction effects, the hydrodynamic interactions and the free volume theory)
and their applicability varies [28]. With the development of modern techniques such as the pulsed-
gradient nuclear magnetic resonance (NMR) spectroscopy [29], the study of diffusion has become much
easier than with the other techniques mentioned above [30]. With the availability of the diffusion data,
several new models of diffusion, concepts, as well as modifications or improvements of the existing
theories have appeared in the literature in the last decade [28,31–33]. Limitations in the use of many of
these models have been observed in the literature [28,31,34–59]. Review articles have been published
by Murh and Blanshard [60], von Meerwall [61,62] and Tirrell [63]. It is the intention of this article to
review the various theoretical models, the recent development and the use of the models in the inter-
pretation of the experimental results of diffusion in polymers.

2. Theories and physical models of diffusion

We intend to use homogeneous notations in the text, but the physical significance of the symbols may
still differ, which will be indicated.

2.1. Diffusion models based on obstruction effects

In the diffusion models based on obstruction effects, polymer chains are regarded as motionless
relative to the diffusing molecules, i.e. solvents and/or solutes. This approximation is based on the
assumption that the polymer self-diffusion coefficient is much smaller than that of the diffusant. Thus
the polymer is represented as fixed and impenetrable segments immersed in a solution. The presence of
the motionless polymer chains leads to an increase in the mean path length of the diffusing molecules
between two points in the system.

2.1.1. The Maxwell–Fricke model
The obstruction concept was first introduced by Fricke [25] in 1924 who studied electric conductivity

and capacitance of spheroids dispersed in dog blood medium. In this study, the author considered
different geometries of spheroids (oblates and prolates) and the best results were obtained with spheres.
The following equation was given [36]:

D�1 2 w�
D0

� 1 2 w 0

1 1 w 0=x
�9�

whereD is the diffusion coefficient,D0 is the diffusion coefficient in pure solvent,w is the volume
fraction of the polymer,w 0 is the volume fraction of the polymer plus non-diffusing solvent bound to the
polymer, andx is a factor depending on the solvent shape (ranging from 1.5 for rods to 2.0 for spheres).
This model was called the Maxwell model [64,65] or the Maxwell–Fricke model [36,37].

Langdon and Thomas [66] studied mutual diffusion coefficient of small diffusants such as anions
(36Cl2, 131I2) and a cation (22Na1) in agar gels of composition ranging from 0.67 to 4 wt%, by
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radioactive labeling (softb-emitters). They found a linear dependence of the self-diffusion coefficient on
the gel composition, when the electrolyte concentration was below 0.1 M. Their analysis in regard to the
Maxwell–Fricke model suggested that the hindrance to diffusion was due to the hydration of the agar
molecules. According to Cheever et al. [64], diffusion of water in a suspension of latex at low concen-
trations was predicted correctly by the Maxwell–Fricke model. Griffith et al. [37] reported that the
diffusion of water in a suspension of impenetrable spherical particles which showed no hydration effect
was closely predicted by this model. Therefore, the Maxwell–Fricke model seems to provide good
results for small diffusing particles in dilute polymer solutions. Waggoner et al. [36] showed that this
model overestimates the diffusion coefficient at higher polymer concentrations. They studied the self-
diffusion of solvents (toluene, ethylbenzene, cumene,tert-butyl acetate, chloroform and methylethylk-
etone) in PS and PMMA systems. The polymer concentration ranged from 0 up to 50 wt%. From their
data, it is clear that the Maxwell–Fricke model did not fit well the experimental data even for low
polymer concentrations, as shown in Fig. 1. The same results were observed by Mustafa et al. [35], who
studied the self-diffusion coefficient of fluorescein dye in dilute and concentrated aqueous hydroxypro-
pyl cellulose gels (wHPC ranging from 0 to 0.65) as illustrated in Fig. 2.

The Maxwell–Fricke equation gives a dependence of the self-diffusion coefficient on the polymer
volume fraction and on the solvent shape,w andx , respectively. However, the diffusion is closely linked
to the size of the diffusant. For example, variation of the self-diffusion coefficient between a small
molecule such as water (D � 2:77× 1029 m2/s) and a macromolecule such as poly(ethylene glycol) with
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Fig. 2. Normalized self-diffusion coefficient of fluorescein dye as a function of the polymer volume fraction. Reprinted with
permission from Macromolecules 1993;26:370.q1999 American Chemical Society [35].



a molecular weight of 2000 (D � 1:73× 10210 m2/s) in the same poly(vinyl alcohol) (PVA) system
(�PVA� � 0:03 g/ml,T � 438C) is more than one order of magnitude and far from being identical [67].

Therefore, this model can be used in the study of small molecules such as solvents [36] in dilute
polymer solutions [37] and/or gas diffusion in highly swollen membranes, for which the difference of
self-diffusion coefficients is insignificant for the different diffusants.

2.1.2. The model of Mackie and Meares
In 1955, Mackie and Meares [68] employed the physical concept proposed by Fricke to describe the

diffusion of electrolytes in a resin membrane, assuming that the polymer mobility is less important than
the mobility of ions or water, so that sites occupied by the polymer are permanently unavailable to ions
or water. Thus, the motionless polymer chains impose a tortuosity or an increase in the path length for
the molecules in motion. The diffusion coefficient of a small molecule, equal in size to the monomer
segment in the polymer, is given by the following equation:

D
D0
� 1 2 w

1 1 w

� �2

�10�

whereD, D0 andw are the same as defined for Eq. (9).
This model provided satisfactory results over a wide range of concentrations (up to 60 wt% of

cellulose) as shown by Brown and coworkers [69–71]. Their work was based upon a series of diffusants
with increasing size: water,tert-butanol, dioxane, [69] ethylene glycol, poly(ethylene glycol), oligo-
saccharides and poly(hydric alcohol) [70]. In each case, they analyzed the data in regard to the model of
Mackie and Meares. These studies led to the conclusion that the diffusion of small-sized diffusants can
be described by the obstruction model, while for oligomers and polymers they observed a weaker
correlation between the experimental data and the theory. The authors attributed this divergence to
the interactions between the larger diffusants and the polymer chains. In a later work, Brown et al. [71]
studied the diffusion of diffusants with increasing size such as ethylene glycol and 15-crown-5 in
cellulose gels. The results were analyzed with the model of Mackie and Meares and another model
defined by Wang [72]:

D
D0
� 1 2 aw �11�

wherea is a parameter depending on the diffusant geometry (1.5 for prolate and 3 for oblate ellipsoids).
This model is also based on the obstruction effect and is generally used to describe diffusion in micro-
emulsion systems [35,73]. Despite the introduction of a diffusant shape parameter, comparison between
these two models led to the conclusion that Wang’s model was valid only for small diffusants in the
dilute regime, whereas the model of Mackie and Meares was valid for regimes slightly more concen-
trated [71]. However, their results showed that neither model is in good agreement with the data in the
concentrated regions. The divergence is smaller with the model of Mackie and Meares in semi-dilute
regime but keeps on increasing with higher polymer concentration [71].

The model of Mackie and Meares has provided satisfactory results for the diffusion of molecules of
various sizes in cellulose networks with polymer concentration up to 60 wt% as well as for the diffusion
of organic solvents in PS and PMMA, as shown in Fig. 1. However, this model showed significant
deviations from the experimental data with large diffusants in polymer solutions as demonstrated by
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several researchers [34–36,65]. An example is provided in Fig. 2. In addition, Eq. (10) does not provide
diffusant size or shape dependence either, as in the case of Eq. (9) discussed in Section 2.1.1.

2.1.3. The model of Ogston et al.
In order to provide a theoretical explanation for the empirical equation of Laurent and coworkers

[74,75], which relates the sedimentation of proteins in hyaluronic acid solutions, Ogston et al. [76]
developed an approach for the diffusion of larger diffusants. The authors considered the polymer as
barriers formed by a random distribution of long molecular fibers. Consequently, the self-diffusion
coefficient for a given diffusant molecule depends both on the size of the obstacle present in the solution
and on the size of the diffusant, as shown in the following equation:

D
D0
� exp 2

Rh 1 r

r
w1=2

� �
�12�

wherew represents the volume fraction of the polymer,Rh the hydrodynamic radius of the diffusing
molecule andr defines the effective cylindrical radius of the fiber. Diffusing molecules are considered as
non-perturbing for the network. Therefore, this model should be applicable to polymer solutions and
gels. Nevertheless, their data showed different results depending on the polymers employed (dextran and
hyaluronic acid [77]. They attributed these differences to the morphology of the polymers, i.e. the
rigidity and/or thickness of the polymer chains.

According to Johansson et al. [77], the differences observed by Ogston and coworkers were due to
differences in the flexibility of the polymer chains. In a companion paper, they showed that the phenom-
enological approach of Ogston et al. [76] did not give consistent explanation in regard to their experi-
mental results [31]. They demonstrated that the model of Ogston et al. remained valid for dilute or semi-
dilute polymer solutions. This conclusion is in agreement with several other studies [26,38,78]. For
example, Petit [78] showed that the model of Ogston et al. did not provide satisfactory results for large
molecules despite the introduction of parameters related to the sizes of both the solute and the polymer.
The deviation is more pronounced for concentrated polymer solutions.

2.1.4. Hard sphere theory
In order to expand the approach of Ogston et al. [76] to flexible polymers, Johansson and coworkers
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Fig. 3. Simulation ofD=D0 versus the polymer volume fraction for particles with 5 A˚ (squares), 12 A˚ (circles), 20 Å(triangles)
and 30 Å(diamonds). The solid lines are the predictions with the hard sphere theory (Eq. (13)). Reprinted with permission from
J Chem Phys 1993;98(9):7471.q1999 American Institute of Physics [82].



[31,79] elaborated a new diffusion model for spherical solutes in polymer solutions and gels. This model
was based upon three main assumptions: (1) steric hindrance is the cause of the reduction of solute
diffusion, and hydrodynamic interactions are negligible in the polymer solutions and gels; (2) the steric
hindrance is caused by the static network, not by the interaction with diffusing species; (3) the structure
of the network is decomposed into a set of cylindrical cells and the contribution from each cell to the
diffusion coefficient is determined by the distribution of spaces in the network [31].

In this model, the hindrance due to the polymer chains is considered to depend not only on the size of
the diffusant and the amount of polymer but also on the properties of the polymer chains, i.e. their
thickness and stiffness [31]. Basically, they regarded the diffusion quotient,D=D0, as the result of local
flows in microscopic subsystems. Consequently, in order to quantify the hindrance of the polymer
chains, the authors evaluated by the use of computational methods the closest distance (R) between a
point in the network and the fiber, which is represented as a cylindrical cell. According to the computa-
tional modeling, the diffusion coefficient is given by

D
D0
� e2a 1 a2eaE1�2a� �13�

wherea is a parameter related to the physical properties of both the polymer and the diffusant,

a � w
�Rh 1 r�2

r2 �14�

wherew is the volume fraction of the network,r is the polymer radius andRh the hydrodynamic radius
of the diffusant. In Eq. (13),E1 is an exponential integral:

E1�x� �
Z∞

x

e2u

u
du �15�

Application of this model provided good results for the diffusion of albumin,M ù 69 000 Da [80], in
hyaluronic acid and dextran solutions and gels,w � 0:004 and 0.006, respectively [31]. Several simula-
tions [81–83] of the hard sphere theory were made and limitations of the model were shown. For
example, the theory failed when the authors attempted to simulate the self-diffusion coefficients of
diffusants with increasing radius (5–30 A˚ ) for a fixed polymer radius of 5 A˚ and a given persistence
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Table 1
Summary of the diffusion models based on obstruction effect (Section 2.1) with their applicability and restraints

Author(s) Reference(s) Application(s) Limitation(s)

Maxwell–Fricke [25] Solvents and small-sized diffusants Large diffusants
Very dilute polymer solutions Semi-dilute and concentrated

polymer solutions
Mackie and Meares [68] Solvents and small-sized diffusants Large diffusants

Semi-dilute polymer solutions Concentrated polymer solutions
Ogston et al. [76] Solvents and small-sized diffusants Large diffusants

Semi-dilute polymer solutions Concentrated polymer solutions
Hard sphere theory [31,79] Solvents and small-sized diffusants Diffusants withRh . 20 Å

Semi-dilute polymer solutions Concentrated polymer solutions



length of 200 Å[81]. In fact, Eq. (13) does not fit Brownian dynamic simulations of spheres when the
diffusant radius was above 20 A˚ (Fig. 3). Moreover, the authors were unable to provide an interpretation
concerning the parametera (Eq. (14)), which depends on the volume fraction and radius of the polymer
as well as the hydrodynamic radius of the diffusant. The correlation between the theory and the simula-
tion is good for lowa , but discrepancy appears especially for higher values ofa which correspond to
large-sized diffusants [81]. The model also failed for nonionic micelles systems in ionic polymers [83].

Zhang and Lindman [84] reported the application of the obstruction model of Johansson and cowor-
kers [31,79] for the diffusion of micelles in cellulose solutions (w , 2 wt%). The obstruction due to the
polymer was predicted correctly by the model. This diffusion study was carried out only in very dilute
polymer concentrations. Bu and Russo [39] tried to interpret their diffusion data of dextran in 1 wt%
hydroxypropyl cellulose solutions with the hard sphere theory, they found that the model of Johansson et
al. [31,79] underestimated the diffusion coefficient at largerRh. They concluded that the diffusants were
structurally too complex to agree with Eq. (13). Other discrepancies with the hard sphere theory were
also found in the literature [28,85].

2.1.5. Summary
It appears that all the obstruction effect models can fit self-diffusion coefficient data of small mole-

cules in dilute or semi-dilute polymer solutions. We would like to point out that others theories, such as
the models of Laurent et al. [86], Jo¨nsson et al. [87], Hanai [88] and Phillips and Janssons [89] (see Fig. 2
for example) were also proposed. Their application is similar to those described in this section
[37,64,90]. The uses and constraints for the models described in this section are summarized in Table 1.
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Fig. 4. Representation of the (a) dilute (b) semi-dilute and (c) concentrated regimes of polymer solution as well as the (d)
correlation length in the concentrated regime.



Several self-diffusion studies in polymer solutions and gels have led to similar conclusions concerning
the model of Mackie and Meares and the Maxwell–Fricke model [35,36,65]. The phenomenological
approach of Ogston et al. [76] for larger molecules and the hard sphere theory failed at high polymer
concentrations when hydrodynamic interactions became non-negligible [28]. In a study of self-diffusion
in aqueous solutions of PVA, Petit et al. [34] demonstrated that the diffusion behavior of very small
molecules such as water and methanol can be described by the obstruction models. But the same study
showed that the theoretical prediction by the model of Mackie and Meares [68] deviates progressively
from the experimental data with increasing diffusant size. Even for small diffusants, problems arose
when the polymer concentration was high.

2.2. Hydrodynamic theories

The hydrodynamic theories take into account the hydrodynamic interactions present in the whole
system. These interactions include frictional interactions between the solute and the polymer, likely the
most important, between the solute and the solvent, and also between the solvent and the polymer. Such
considerations allow the description of the diffusion in more concentrated regimes when the polymer
chains start to overlap, which seemed difficult with the obstruction models.

2.2.1. Cukier’s model
In 1984, Cukier [26] developed an equation to describe the diffusion of Brownian spheres in semi-

dilute polymer solutions based upon hydrodynamic interactions. In this theory, the semi-dilute solution
was considered as a homogeneous monomer unit environment as the polymer coils overlap, in compar-
ison to the dilute solutions where the polymer chains do not interact with each other (Fig. 4(a)). In fact,
the whole semi-dilute solution was viewed as a uniform solvent–polymer mixture. The dilute solution
was considered as an inhomogeneous system composed of both polymer–solvent and pure solvent
domains [26]. This semi-dilute solution of the polymer was approximated as motionless relative to
the diffusing solvent, and represented by randomly distributed spheres immersed in an incompressible
Navier–Stokes fluid. Thus, the diffusant was considered to undergo screening effects due to the over-
lapping of the polymer chains, and its diffusion coefficient as follows:

D � D0 exp�2kRh� �16�
wherek represents the screening hydrodynamic interactions between the polymer and the solute in a
semi-dilute polymer solution, andRh is the hydrodynamic radius of the diffusing sphere. The screening
parameter relates the resistance of the polymer network to the diffusion of the remaining molecules, i.e.
solvent(s) and diffusant particle(s). For dilute polymer solutions, assuming that screening remains
dominated by hydrodynamic interactions, Eq. (16) can be rewritten as

D
D0
� 1 2 kRh: �17�

Cukier compared screening effects between rod and coil polymer solutions for the diffusion of
Brownian spheres of radiusR, but basically no difference was found. In the case of rod-like polymer

L. Masaro, X.X. Zhu / Prog. Polym. Sci. 24 (1999) 731–775 743



molecules, the screening parameter was found to have the following relationship:

k2
L � jLnL

h
�18�

wherejL is the friction coefficient for one rod,nL the number density of rod-like polymer molecules and
h the solution viscosity. The rod friction coefficient depends on the length and diameter of the rod (L and
b, respectively, withL q b):

jL � 6ph�L=2�
ln�L=b� �19�

Similar to Eq. (18), the dependence of the screening parameter for coil-like polymer molecules can be
written as

k2
D � jnp

a

h
� 6pnp

aa �20�

wherenp
a is the monomer number density anda the monomer radius.

In semi-dilute solutions and with small-sized diffusants (Rh smaller), a dependence was found with the
polymer concentration:k , cn with n � 1=2, but not with the geometric factors of the polymer.

This model was initially elaborated with theoretical considerations and calculations. It was employed
often in the literature [40,91,92]. Mel’nichenko et al. [91] studied tracer self-diffusion of water in
moderately concentrated hydrogels. The results were found to be in agreement with the theory. More
recently, the same research group presented evidence that Cukier’s model remained valid for water self-
diffusion in polyacrylamide (PA) and silica gels [92]. These studies showed clearly the validity domain
of Cukier’s model: diffusion of small diffusants in semi-dilute networks, i.e. semi-dilute polymer solu-
tions and slightly cross-linked gels. Limitations were shown when the model was used for large-sized
diffusants such as polymers or proteins. For example, Park et al. [40] showed that Eq. (16) is not
applicable for protein diffusion in PA gels. This conclusion was corroborated by the work of Lodge
and coworkers [41,42] who studied the diffusion of linear and star-branched polystyrene in poly(vinyl
methyl ether) (PVME) gels and by Johansson and co-workers [31,79], who studied diffusion of albumin
in hyaluronic acid and dextran gels.

The screening parameter which was found proportional to the polymer concentration (cn ) have been
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Table 2
List of the parameters found in the literature for the hydrodynamic equations in the form ofD � D0 exp�2acn� (Section 2.2)

Author(s) Reference a n

Cukier [26] / R1
h 0.5

Laurent et al. [95] / R1
h 0.5

Freed and Edwards [93] / R1
h 1

Brown and Stilbs [96] / R1
h 1

de Gennes [94] / R1
h 0.75

Altenberger et al. [97] / R0
h 0.5

Ogston et al. [76] / �Rh 1 r�=r 0.5
Matsukawa and Ando [98] – 0.71



shown to vary in different studies [93,94] as noted by Cukier [26]. Freed and Edwards [93] obtained an
exponent equal to 1 forc for an ideal chain, defined as a polymer chain in an undiluted polymer solution
without entanglements. This result was re-examined by de Gennes [94], who described the stochastic
motion of long flexible chains in good solvents and concluded that in such systems the diffusion
coefficient should scale withc3/4. Other studies listed in Table 2 reported values between 0.5 and 1.

All the studies showed that the self-diffusion coefficient of a diffusant in a polymer solution is closely
related to the polymer concentration. However, the exponent of the polymer concentration dependence
is not a simple constant value and disagreement remains.

2.2.2. The model of Altenberger et al.
Altenberger et al. [97] described the rigid body of the polymer as immobilized points randomly

distributed in a solution. The solvent is considered as an incompressible Newtonian fluid, filling the
space between these points. A small molecule present in the solvent will interact with these points which
represent the network. Thus, the hydrodynamic interactions were represented by the friction with the
stationary points. The mobility of a diffusant will depend on the concentration of the obstacle, i.e. the
polymer. At low concentrations (dilute or semi-dilute regimes) the interactions are weak and the diffu-
sion coefficient is given by

D � D0 exp�2ac1=2� �21�
wherea is a parameter depending on the diffusing particle, andc represents the number concentration of
obstacle (the polymer). Eq. (21) is a generalization of a previous prediction elaborated by the same
research group also based on hydrodynamic interactions [99]:

D
D0
� 1 2 Ac1=2 2 Bc1 … �22�

whereA is proportional to the diffusant radius, andB defines a constant that relates the interactions
between the polymer network and the diffusant particle.

These two equations (Eqs. (21) and (22)) bear resemblance to the equations defined by Cukier (Eqs.
(16) and (17)). Kosar and Phillips [100] demonstrated that Eqs. (16) and (21) are mathematically
equivalent, although derived differently. But the authors predicted a larger validity domain than that
of Cukier’s (higher obstacle concentration and/or for particles which interact strongly with the solvent).
Several studies showed that this model had similar limitations in its applications [40–42]. Petit et al. [34]
also showed that these models were less satisfactory in the interpretation of diffusion data of large
molecules such as PEG-4000 in PVA solutions. The motion of larger diffusants can happen on the same
scale as the motion of the polymer networks [78]. The applicability of these two models seems to be
limited to small molecules as in the case of the obstruction models (Section 2.1).

2.2.3. Phillies’ model
A more phenomenological approach was used by Phillies [52,101,102] to describe the self-diffusion

behavior of macromolecules (polymer and protein) self-diffusion over a wide range of concentrations.
The stretched exponential equation was proposed based upon numerous experimental data from
his own research as well as those from the literature [52]. According to his observations, the polymer
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self-diffusion coefficient obeys a scaling law

D � D0exp�2acn� �23�
wherea andn represent the scaling parameters which should depend on the molecular weight of the
diffusant polymer. Experimentally,a was found to depend on the diffusant molecular weight
(a , M0:9^0:1) for macromolecules, whereasa depends on the diffusant hydrodynamic radius
(a , Rh) for smaller molecules [102,104,105]. The scaling parametern should scale between 1 for
low molecular weight diffusant and 0.5 for high molecular weight diffusant [101]. Inside these limits
n , M21=4 [101]. Phillies considered the three regimes of concentrations (Fig. 4) defined for reptation
theories, i.e. dilute solution where polymer chains move independently, semi-dilute solutions where
polymer chains start to overlap, and concentrated solutions where diffusion is dominated by polymer
friction. These regimes can be regarded as close to the polymer solutions examined by Cukier (Section
2.2.1), where forces in solution were defined as predominantly hydrodynamic for the last two regimes
(Fig. 4(b) and (c)). Nevertheless, an important difference between this model and the models of Cukier
[26] and Altenberger et al. [97] is that the polymer chains are regarded here as mobile and are described
as spheres joined by rods that can rotate as defined by Kirkwood and Riseman [103].

In his following publications, Phillies developed theoretical arguments for Eq. (23) [101,102]. The
stretched exponential equation is based on the following assumptions: (1)the self-similar effect of
infinitesimal concentration increment on D; (2) the functional form for hydrodynamic interactions
between mobile polymer chains; (3) the dependence of chain extension on polymer concentration[101].

The first assumption means that an infinitesimal increase of the concentration dc increases the drag
coefficient of the diffusant fromf to f 1 Kdc (K may be concentration dependent). This assumption is
based on the fact that the polymer self-diffusion coefficient is related to its drag coefficient,f, by the
Einstein relation

D � kBT
f

�24�

where kB is the Boltzmann constant andT the temperature. The polymer should retard the diffusant and
increase the drag. The drag coefficient of the solution that already retards the diffusant particle should be
more important. The second assumption considers that the polymer–polymer interactions are mainly in
hydrodynamic modes rather than in entanglement modes. Nevertheless, Eq. (23) does not provide a
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Table 3
Dependence of parametera on the hydrodynamic radius of the diffusant obtained in the literature for Phillies’ diffusion model
(Section 2.2.3)D � D0exp�2acn�
Author(s) Reference(s) a d

Phillies [52,101,102] Rd
h 0 ^ 0.2

Phillies [104] Rd
h=a0 1

Park et al. [40] 3:03× Rd
h 0.59

Gibbs and Johnsson [113] 3:2 × Rd
h 0.53

Russo et al. [114] Rd
h 0

Yang et al. [115] Rd
hM0:76 0

Furukawa et al. [46] MP1=2 –



screening effect parameter because the polymer chains were regarded as mobile, thus no fixed sources of
frictional interactions were present in the solution. In fact, polymer chains in solution will reduce both
the flow rate and the molecular diffusion as the chains rotate. Moreover, the polymer chains will create
an echo phenomenon responsible for fluctuation on the whole polymer system. The final approximation,
based on Daoud law [106] for a large polymer in semi-dilute regimes, stipulates that the polymer chains
contract under the overlap concentration:R2

g < Mc2x where x is a parameter. As results of these
presumptions,n fluctuates between 1/2 for large polymers to 1 for small polymers, and inside these
limits, n , M21=4 for a given diffusant [101]. Macromolecular self-diffusion coefficient can be described
by the stretched exponential equation (Eq. (23)) witha , M andn as stipulated above [101].

Such an equation has already been employed to describe other physical transport phenomena such as
sedimentation of large colloidal particles through a semi-dilute polymer solution [107], electrophoretic
mobility [43] and viscosity [108]. Thus, Eq. (23) can be considered as a “universal” equation, as named
by Phillies, because it can be employed for different physical transport phenomena. This equation is very
flexible in nature. Walderhaug et al. [44] and Wheeler and Lodge [45] pointed out that it should be
regarded as an empirical equation.

Phillies investigated the applications of the universal equation to numerous experimental data from
the literature and found good agreements of the equation with the data for various polymer systems
[101,109,110]. Similarly, several publications showed excellent fittings of the experimental data with
Eq. (23) [40,45–48,111,112]. These articles reported the diffusion of large diffusants in dextran gels
[46,47], PA gels [40], associative polymers [48,112], and the diffusion of linear and star branched PS in
PVME gels [45,111] over large ranges of concentrations. In addition, this equation was also employed
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Fig. 5. Logarithmic plots of self-diffusion coefficients of PS in dibutyl phthalate as a function of the molecular weight of PS at
various polymer concentrations: 13 g% (open circles), 18 g% (filled circles) and 40.6 g% (half-filled circles). Curved lines
represent fittings to the stretched exponential equation (Eq. (23)) while straight lines correspond to power laws. Reprinted with
permission from J Phys Chem 1992;96:10061.q1999 American Chemical Society [117].



successfully to describe self-diffusion data of small diffusants in PA gels [40] and in PVA solutions and
gels [34]. However, Won et al. [49] reported deviations from the equation for PS sphere tracer diffusion
in PVME solutions at higher concentrations.

It was argued, however, that the physical significance of the parametersa andn in the various systems
remains vague, and the lack of theoretical justifications was underlined in the literature [34,40,43–51].
Phillies suggested thata varies withRh=a0 for the polymer diffusant, whereRh is the hydrodynamic
radius of the diffusant anda0 is defined as the distance of closest approach between the solute and the
polymer bead [104]. Other estimations ofa led to slightly different results as shown in Table 3. Masaro
et al. [116] used Eq. (23) to analyze the diffusion data of PEG in PVA solutions and gels. Eq. (23)
provided good fittings to the experimental data, but attempts to relate the scaling parameters with the
physical properties of the system (such as diffusant size) were not successful. These results are corro-
borated by several reports in the literature [34,40,43–51]. An example is provided in Fig. 2. In addition,
analyses of the variable temperature diffusion data showed that the scaling parameters are not tempera-
ture-dependent. An Arrhenius dependence ofD0 on the temperature was found. The results are different
from the temperature dependence of the scaling parameters found by Phillies.

Recently, Phillies et al. [105,117] reported the applicability of this hydrodynamic scaling model for
high molecular weight polymers over small and large concentrations. From these studies, it seems clear
that the stretched exponential form can fit easily diffusion data in solution-like systems whereas a power
law is more appropriate to fit diffusion data in melt-like systems, which correspond to very concentrated
polymer solutions. The boundary between solution-like to melt-like systems was estimated to be in the
order ofM < 106 g/mol in the case of polystyrene (Fig. 5) [117].

2.2.4. The reptation and reptation plus scaling models
The reptation theory was first introduced by de Gennes [118] who discussed the self-diffusion of a

polymer chain of molecular weightM moving inside a three-dimensional network of polymer chains of
molecular weightP, which is considered as a gel. This theory was complementary to the works of Rouse
[119] and Zimm [120], who had studied the stochastic motion of a single polymeric chain dissolved in a
solvent of low molecular weight [118].

In the reptation theory, the diffusing polymer chain is regarded as constrained by fixed obstacles that
represent the gel chains. As the polymer chain is surrounded, the leading motions of the polymer chain
are feasible only at the extremities. Thus, the motion of the central part of the polymer chain takes place
when the extremity enters inside a new tube. Consequently, the central part of the polymer chain remains
confined between the same fixed obstacles for a longer time in comparison to the extremity of the
polymer chain. Thus, this part of the polymer chain is said to remain in a tube formed by the neighboring
polymer chains [121]. Therefore, only “tubular” motion is conceivable and lateral motion is not consid-
ered, as the diffusant polymer is enveloped by the network. Brownian motion for high molecular weight
polymers in the tube was predicted to depend on their molecular weight [118]:

D , M22
: �25�

The diffusion of a high molecular weight polymer in an unentangled system, or a diluted solution, is
described by the Rouse model [119]:

D , M21
: �26�
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Several years later, de Gennes [122] reexamined the reptation theory in order to introduce the scaling
concepts. He took into account of the effect of the matrix on the self-diffusion coefficient of the diffusant.
This reexamination led to a new model, thereptation plus scalingconcept, which is defined by the
following equation [122,123]:

D , M22c�22n�=�123n� �27�
whereM is the molecular weight of the diffusant,c the polymer matric concentration andn the Flory
exponent for the excluded volume.

Eq. (27) leads to two distinct equations for diffusion in the semi-dilute regime, one for good solvents
(n � 3=5)

D , M22c21:75 �28�
and the second foru solvents (n � 1=2)

D , M22c23
: �29�

Theu solvent regime corresponds to an exact cancellation between steric repulsion and van der Waals
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Table 4
Experimental values obtained for the dependence on the molecular weight (M) of the diffusant and polymer concentration (c) in
de Gennes’ reptation models (Section 2.2.4)

Author(s) Reference(s) Description Result

Reptation model:D , M22 andD , M21

Klein [139] Polyethylene in bulk D , M22

Bartels et al. [140] Polybutadiene in bulk D , M22

Fleischera [141] PS self-diffusion by NMR D , M22

Kumagai et al. [142] PS in bulk D , M22:7

Smith et al. [143] Poly(propylene oxides)by
fluorescence photobleaching

D , M21:7

Antonietti et al. [144] PS by forced Rayleigh
scattering

D , M22:2

Wheeler and Lodge [45] PS in PVME/o-fluorotoluene D , M20:56,22:3

Yu et al. [56,57] PS in THF D , M22

PS in toluene (no
concentration scaling)

D , M23

Reptation plus scaling model:D , M22c21:75 andD , M22c23

Léger et al. [127] PS in benzene D , M22c21:75

Schaefer et al. [145] Marginal solvent D , M22c22:5

Wheeler and Lodge [45] PS in PVME/o-fluorotoluene D , c23:3

von Meerwall et al. [130] PS in THF D , M21:5c21:75

Without correction for local
friction

Cosgrove et al. [53] PS in CCl4 D , c22:25

Callaghan and Pinder [146] PS in CCl4 D , M21:4c21:75

Manz and Callaghan [147] PS in cyclohexane D , c22

a Also valid for molecular weight less than the critical molecular weight,Mc, observed in the melt viscosity.



attraction between monomers [123]. Thus, the polymer chains do not overlap inu solvents. This regime
corresponds toc , cp (Fig. 4(B)), wherecp is defined as the critical overlap concentration. In the good
solvent regime, the polymer chains tend to swell. Therefore, the polymer chains are densely packed and
start to overlap, which corresponds to the concentrated regime,c . cp (Fig. 4(C)).

Applications of de Gennes’ diffusion models are numerous in the literature. Le´ger et al. [121] showed
that the dynamics of a linear chain could be described by simple reptation (Eq. (25)). The same
correlation was reported by Gent et al. [124,125], who studied diffusion ofcis-1,4-polyisoprene into
cis-polyisoprene networks, and by Antonietti and Sillescu [126], who studied PS self-diffusion in bulk
PS network by holographic grating technique. Previously, Le´ger et al. [127] studied the self-diffusion of
labeled PS chains in unlabeled PS chains of the same molecular weight in benzene by forced Raleigh
scattering and found reasonable agreement with Eq. (28). Similar results were obtained by Kim et al.
[128] who studied the diffusion of styrene–acrylonitrile copolymers by recoil spectrometry, Pajavic et
al. [129] who studied the diffusion of linear polyelectrolyte in gels by dynamic light scattering and von
Meerwall et al. [130] who studied PS self-diffusion in tetrahydrofurane by NMR for a concentration
above the entanglement concentration and after correction for local frictions. Recently, this model was
also employed to explain the disentanglement of polymeric chains during dissolution which led to the
definition of a mathematical model for polymer dissolutions [131,132]. The reptation theory was also
used for the electrophoretic separation of DNA in gels [38,133–135]. The theoretical treatments of the
motion of DNA through gels are mainly based on the reptation model. The DNA is pictured as moving
through an impenetrable tube defined by the surrounding gel obstruction, with the motion mediated by a
snake-like reptation of the polymer ends [133].

Phillies [52] pointed out that the use of Eqs. (25) and (26) to describe diffusion does not allow an
exponential decrease of the diffusant self-diffusion coefficient with respect to the polymer concentration
which was frequently observed [34,36,65,136]. The reptation model led to two distinct regions as shown
by Eqs. (28) and (29), one for each concentration regime:c , cp andc . cp (Fig. 4(b) and (c)). The
original reptation model of de Gennes considers that the entanglement of the polymer chains occurs at
the critical overlap concentrationcp. However, Kavassalis and Noolandi [137,138] have predicted that
the entanglement concentration,ce, is about 10 times higher than the overlap concentration. In the work
of Cosgrove et al. [53,54], the reptative exponent of2 2 (Eq. (25)) was not found even for high polymer
concentrations but the spin–spin NMR relaxation time and viscosity measurements showed the presence
of chain entanglements. Nemoto et al. [55] reported studies of concentrated solutions of linear PS self-
diffusion in dibutyl phthalate (Mw from 6180 to 2 890 000). They interpreted their data by the use of the
reptation model (Eqs. (25) and (26)) and found good agreement with the model of Rouse (M21) for low
concentrations whereas a power law ofM22.6 was found for concentrated solutions instead ofM22. In the
study of linear PS (Mw from 32 000 to 1 050 000) diffusion in PVME gels, Rotstein and Lodge [41]
reported a power law ofM22.8. Yu and coworkers [56,57] studied diffusion of labeled PS chains (Mw

from 32 000 to 360 000) in unlabeled PS–THF systems (withP� M), and diffusion of labeled PS
chains (Mw from 10 000 to 1 800 000) in PS–toluene systems (withP=M $ 3:5). In both cases, the
authors did not observe any concentration scaling. The results from the use of de Gennes’ models are
summarized in Table 4. In a recent work, Cheng et al. [149] studied self-diffusion of poly(ethylene
oxide) in the melt as a function of the temperature. They showed that the power dependence for high
molecular weight diffusants varied betweenM22.24 (353.7 K) andM22.75 (413.7 K). These values are not
in good agreement with the prediction of de Gennes (Eq. (25)) and indicate that de Gennes’ reptation
model cannot be used to describe the temperature dependence of the diffusion in polymer systems. In
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addition, Wheeler and Lodge [45] studied linear and branched PS diffusion in PVME/o-fluorotoluene
solutions and observed a large variation of the scaling exponent varying fromM20.56 to M22.3 with
changes in the matrix concentration, which demonstrate that a simple power law equation is not
sufficient to describe the diffusion process. In the same study, Wheeler and Lodge have studied the
concentration effect. In concentrated polymer solutions they observed a power dependence ofc23:3,
close to the predicted value ofc23, whereas in semi-dilute solutions the predicatedc21.75scaling was not
observed. Marmonier and Le´ger [148] noticed that the diffusion coefficient depends onP when the factor
P=M is greater than 5.

The limitations in the application of the reptation model were discussed in several publications by
Phillies [52,101,102]. The main conclusion was thatreptation is probably not important for polymer
self-diffusion in solution[101]. However, de Gennes’ model succeeded in the interpretation of results of
diffusion of linear and branched polymers in concentrated polymer matrix solutions [45,111], DNA
diffusion [38], polymer dissolution [132], etc. However, some important points should be addressed
since no comprehensive illustration based on a molecular theory explains the entanglement phenomenon
(the nature of an entanglement and the criteria for the onset of entanglement effects are not established),
and no clear explanation concerning the reptation of a single linear chain in dilute solution has been
provided yet [42,150].
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Fig. 6. Plot of the self-diffusion coefficients of adinazolam as a function of the VIA concentration (w/w, %). The adinazolam
concentration is kept constant for each series. Squares, 0.5% Adinazolam plusx% glucose; Diamonds, 0.5% Adinazolam plus
x% lactose; Triangles, 0.5% Adinazolam plusx% malteose; and circles, 0.5% Adinazolam plusx% HPMC. Fitting are obtained
by the use of Eq. (32). Reprinted with permission from Pharm Res 1995;12:955.q1999 Plenum Publication Corporation [32].



2.2.5. The model of Gao and Fagerness
This model is based on measurements of drug (adinazolam) and water diffusion in hydroxypropyl

methyl cellulose (HPMC) gels studied by NMR spectroscopy [32]. The authors did not elaborate on
hydrodynamic arguments, but the form of the equation is very similar to the form of the equations based
on hydrodynamic theories.

Gao and Fagerness [32] observed exponential decrease of both adinazolam and water diffusion with
increasing HPMC concentration. Furthermore, using different HPMC gels with different viscosity grades
(100, 4000, 15 000 cps), i.e. different molecular weights, they did not observe any effect on the diffusion
process. Diffusion measurements in HPMC gels were also carried out in the presence of glucose, or
lactose, or maltoheptaose (monomer, dimer and oligomer of the HPMC, respectively), which were
defined as viscosity-inducing agent (VIA) [32]. A significant decrease in the adinazolam self-diffusion
coefficient was reported with increasing the size of the VIA in the adinazolam–water–VIA ternary
solutions.

Thus, the self-diffusion coefficient of adinazolam was found to depend on the nature of the VIA
present in solution as well as on its concentration as illustrated in Fig. 6. This dependence can be
described by an exponential function of the VIA concentration

D � D0 exp�2Kici� �30�
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Fig. 7. Plot of the self-diffusion coefficients of adinazolam as a function of HPMC concentration (w/w, %). Open symbols
represent the data for 0.5% Adinazolam plusx% HPMC, and filled symbols represent the data for 0.5% Adinazolam plus 10%
lactose andi% HPMC. Fittings are obtained by the use of Eq. (32). Reprinted with permission from Pharm Res 1995;12:955.
q1999 Plenum Publication Corporation [32].



whereD is the self-diffusion coefficient of adinazolam,i represents the VIA,Ki is a proportionality
constant andci the concentration of VIA.Ki values for adinazolam were obtained by a linear least square
fit of the diffusion data from binary systems. For example,Kglucoseis obtained from the diffusion data of
glucose–water binary solution.

Gao and Fagerness [32] examined also drug diffusion in VIA mixtures. Their results indicated that
drug diffusivity in a multi-component system (HMPC and lactose) was influenced by all the components
present in the system: VIA, polymer and even the drug concentration (Fig. 7). This result led to a re-
examination of Eq. (30)

D � D0 exp�2KHcH 2 KLcL 2 KAcA� �31�
wherecH, cL andcA are the concentrations of HPMC, lactose and the drug (adinazolam), respectively.

Good agreement was found between the measured and the calculated self-diffusion coefficients over a
wide range of HPMC concentrations (0–30 wt%). Water self-diffusion coefficient was also determined
and a dependence on the VIA concentration was also found. However, water showed the same concen-
tration dependence whichever VIA was employed, individually or mixed. These results were consistent
with the observations above and lead to the final form of the model [32]

D � D0 exp�2
X

Kici�: �32�
Variable temperature experiments were done between 10 and 508C. The activation energy of drug

diffusion, Ea, was determined in each of the solutions with a fixed concentration of VIA. The same
Arrhenius behavior was observed in these cases, leading to a similarEa. A comparable result was
obtained with water diffusion over the same temperature range [32].

If we consider the specific case of a ternary solution of low concentration of the diffusant (cD p cH)
plus solvent and HPMC, the self-diffusion coefficient of the drug will depend only on the polymer
concentration according to this model. Thus the diffusion coefficient can be written as

D � D0 exp�2KHcH� �33�
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Table 5
Summary of the diffusion models based on hydrodynamic theories (Section 2.2) with their applicability and restraints

Author(s) Reference(s) Application(s) Limitation(s)

Cukier [26] Solvents and small-sized diffusants Large diffusants
Semi-dilute polymer solutions and highly
swollen gels

Concentrated polymer solutions

Altenberger et al. [97] Solvents and small-sized diffusants Large diffusants
Semi-dilute polymer solutions Concentrated polymer solutions

Phillies [52,101,102] Solvents, small-sized diffusants and
macromolecules

Significance of the scaling parameters

Diffusion in solution-like regimes Diffusion in melt-like regime (M . 106)
de Gennes [122,123] Diffusion of macromolecules in gels and

concentrated polymer solutions
Molecular significance of
entanglements
Theoretical prediction not observed
even forc . cp

Gao and Fagerness [32] Diffusion of small-sized diffusants in
multicomponant systems

Significance of the main parameters



which is similar to the equation defined by Freed and Edwards [93] for an ideal chain, withKH , Rh

D � D0 exp�2Rhc�: �34�
Moreover, Eq. (33) represents also a particular circumstance of Phillies’ stretched exponential equa-

tion with n � 1 (Section 2.2.3).
This model provided good agreements for the diffusion of small molecules such as a drug and water in

multi-component systems over a wide range of concentrations at different temperatures. However, the
authors did not explain the importance of the proportionality constant,Ki , neither its physical signifi-
cance nor its dependence on the polymer molecular weight and/or diffusant size. In addition, no relation-
ship between the diffusion coefficient and the temperature was provided.

In a companion paper, Gao et al. [151] tried to make predictions of drug release rates in polymer
tablets. To reach this goal, they used the Higuchi equation [152] in which they introduced their diffusion
model, Eq. (32), assuming thatthe formulations exhibit identical swelling kinetics(medium penetration
rate, matrix swelling and erosion) and that the concentration of drug and VIA in the gel layer are
proportional to their respective weight concentration in the dry tablet.However, no good agreement was
found between the experimental results and the theoretical prediction, although the agreement was good
in the previous self-diffusion study. This work demonstrated that diffusion in swollen and equilibrated
gel is quite different from the drug release from a dry tablet. The self-diffusion studies of already
equilibrated systems may be quite different from real time situations such as the release of drugs. It
is important to establish correlations between these two diffusion processes.

2.2.6. Summary
The major advantages and constraints for the models described in this section are summarized in

Table 5.
The models of Cukier [26] and Altenberger et al. [77], where the polymer chains are regarded as

motionless, can be used to describe the diffusion of small-sized diffusant in semi-dilute polymer solu-
tions. These models cannot be employed to describe solute diffusion in concentrated polymer solutions.

The universal equation proposed by Phillies is a useful equation (simple form, good correlation with
experimental data) to fit diffusion data of both small-sized diffusants and macromolecules in all concen-
tration regimes, excepted for melt-like region. This model has a simple equation form which generally
provides good fittings to the experimental data. Further improvements were reported by Phillies and
coworkers on temperature effect [153], glass transition temperature dependence [154], diffusion underu
and good solvent conditions [155], a reanalysis of the stretched exponential equation [156], and justi-
fications [157–159]. However, some applications of the model remained obscure, temperature variation
was not supported and the interpretations of the scaling parameters was sometimes contested, even
though complementary justifications have been published recently [160].

The reptation model was first introduced to describe diffusion in gels but can also be used in some
cases for polymer solutions [125–128]. It seems that its application is successful in cross-linked gels,
concentrated polymer solutions and melts. It cannot be used in semi-dilute polymer solutions, especially
when the entanglement concentration is not reached [116]. The use of the reptation equations (Eqs. (25),
(26) and (27), (28)) to describe diffusion with respect to the polymer concentration does not reproduce
the exponential dependence observed experimentally. In addition, the model cannot describe the
temperature dependence, and discrepancy was underlined concerning the concentration exponent depen-
dence and the theoretical predictions, as shown in Table 4.
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The main advantage of the model of Gao and Fagerness [32] is that the diffusant concentration is also
taken into account. The physical significance of the parameters in this model needs to be elucidated. No
other application of the model was found in the literature due to novelty of the model.

2.3. Diffusion models based on the free volume theory

The free volume concept in polymer science is well known. The free volume was defined as the
volume not occupied by the matter. More generally, the free volume can be specified as the volume of a
given system at the temperature of study minus the volume of the same system at 0 K. Thus, rearrange-
ment of the free volume creates holes through which diffusing particles are able to pass through. The free
volume is contributed by all the species present in the system, solvent, solute(s) and polymer. The free
volume theories are based on the assumption that the free volume is the major factor controlling the
diffusion rate of molecules.

2.3.1. Fujita’s model
The first diffusion model based on free volume theory was proposed by Fujita [27]. The measurements

were carried out in a ternary system including a solvent, a polymer and a penetrating molecule (a
plasticizer). The concentration of the plasticizer was kept low, in comparison with the polymer concen-
tration, thus the system could be approximated as a pseudo-binary system. Therefore, the average free
volume in such a system was contributed by the polymer and the solvent. In order to estimate the free
volume, Fujita used the concept of Cohen and Turnbull [161] which defines the probabilityP�np�, to find
holes of sizen p in a liquid of identical molecules

P�np� � A exp 2
bnp

fV

 !
�35�

whereA is constant,b a numerical factor of the order of unity andfV is the average free volume per
molecule. The productbn p is interpreted as the measure of the minimum hole size required for diffusant
displacementB. The diffusion model is based on several assumptions: (1) the diffusion process occurs
because of the redistribution of the free volume within the matrix; (2) the redistribution of the free
volume does not require energy change; (3) the diffusion process is enabled when the free volume
exceeds holes of sizenp; (4) the diffusion is directly proportional to the probabilityP(n p) of finding a
hole of volumen p or larger adjacent to the diffusant molecule [161].

Fujita assumed that Eq. (35) was valid also in the case of a binary system. Further, the probability that
the molecule found in its surrounding a hole large enough to permit displacement is closely linked to the
diffusant mobility,md

md � A exp 2
B
fV

� �
�36�

whereA is a proportionality factor andB depends only on the particle size but not on the temperature or
on the polymer concentration. The definition of the mobility is given by

D � RTmd �37�
whereD is the self-diffusion coefficient of the molecule,T is the temperature and R the gas constant.
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Finally, substituting Eq. (36) into Eq. (37), we have

D � ARTexp 2
B
fV

� �
: �38�

The application of Fujita’s free volume theory showed successful correlations between the model and
the data in the case of the diffusion of small molecules in semi-crystalline polymers [162]. Stern and
coworkers [163,164] used Eq. (38) to fit their data of gas diffusion in polyethylene membranes and
concluded that Fujita’s model was applicable when the penetrant volume fraction was less than 0.20.
Zhu et al. [165,166] showed that self-diffusion of ketone and ester solvents of various sizes and shapes in
PMMA solutions can be well described by Fujita’s free volume model. Similar results of solvent or
tracer diffusion in polymer solutions and gels have appeared in the literature [46,167–169].

According to Fujita [27], the free volume theory provided a good agreement with polymer–organic-
solvent systems whereas polymer–water systems failed because of the numerous interactions between
the molecules. This conclusion was also reported by others in the literature [164,170]. Recently, Matsu-
kawa and Ando [98] studied PEG diffusion in poly(N,N-diethylacrylamide)–water system. They showed
that Fujita’s equation fitted well water diffusion data, whereas for macromolecules such as PEG, the
diffusion data was better described by de Gennes’ reptation theory. In addition, Xia and Wang [165]
showed that Fujita’s model is valid only for low polymer volume fractions. Fujita’s free volume model
seems adequate in the description of the diffusion of small-sized diffusants in dilute and semi-dilute
polymer solutions and gels, mostly organic systems.

2.3.2. The model of Yasuda et al.
Yasuda et al. [171] examined the free volume theory of diffusion assuming that the free volume of a
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Fig. 8. Semilogarithmic plot of the normalized self-diffusion coefficient of various diffusants as a function of 1=�1 2 wp�, wp

being the polymer volume fraction. The dotted lines are fittings to Yasuda’ free volume model (Eq. (40)). Reprinted with
permission from Macromolecules 1996;29:70.q1999 American Chemical Society [34].



binary system, as proposed by Fujita [27], mostly depends on the volume fraction of the solvent. This
assumption was based on the fact that: (1) the polymer was less mobile than the solvent; (2) the effective
free volume was considered mainly as a contribution from the solvent; (3) in practice, the solvent
diffusion decreased with increasing polymer concentration. Therefore, the total free volume comes
form the contributions of both the solvent and the polymer

fv � wsfs 1 �1 2 ws�fp � fp 1 ws�fs 2 fp� �39�
wherefv is the total free volume,fs the free volume contribution from the solvent,fp the free volume
contribution from the polymer,w s the volume fraction of the solvent andwp the volume fraction of the
polymer.

Substituting Eq. (39) into Eq. (38), and assuming that there is no interaction between the polymer and
the diffusing molecule, we can obtain

D
D0
� exp

B
f p
V

1 2
1

1 2 wp

 !" #
�40�

wherefv
p is the solvent free volume in the polymer solution.

Yasuda et al. [171] used the free volume theory to treat electrolyte (NaCl) diffusion in polymer
systems. They used several swellable polymers derived from methacrylate, such as methyl, hydroxy-
propyl and hydroxyethyl methacrylate as well as cellulose in different solvents (dioxane, acetone,
ethylene glycol, and water mixed with formic acid). The dependence of the diffusion coefficient on
the volume fraction of water can be described by this model [171]. Matsukawa and Ando [172] studied
water diffusion and used this model with success. Other sources of agreement were found in the work by
Chen and Lostritto [173] who studied drug diffusion (benzocaine, with size smaller than the gel mesh
size) in highly swollen poly(ethylene-co-vinyl acetate) membranes. Gilbert et al. [174] studied protein
diffusion (lysozyme, ovalbumin, bovine serum albumin and carbonic anhydrase) in collagen membrane
with glass diffusion cells and obtained results in good agreement with the model of Yasuda et al. [171]

Petit et al. [34,78] who studied diffusion of various diffusants in PVA–water systems demonstrated
that this model works well for small diffusants but gradually deteriorates with increasing molecular size
of the diffusants (such as oligomers and polymers) especially at high polymer concentrations (Fig. 8).
Similar results were reported by Amsden [28]. Hennink and coworkers [58] studied protein diffusion in
derivatized dextran hydrogels (chemically cross-linked). Their results showed disagreement between the
data and the theory when the diffusant size is close to the hydrogel mesh size. In this case, screening
effects started to occur which are not taken into account by the free volume concept. Therefore, the
model of Yasuda et al. [171] can be used to analyze the diffusion data of relatively small-sized diffusants
in dilute and semi-dilute polymer systems.

2.3.3. The model of Vrentas and Duda
A major contribution to the development of free volume theory was made by Vrentas and Duda [175–

178] and coworkers [179–181] who re-examined and improved the free volume model over the years.
They extended the free volume theory to a wide range of temperatures and polymer concentrations
[182]. The free volume contributions from both the solvent and the polymer are taken into account.
Therefore, Fujita’s free volume model [27] appeared as a special case of the newer model of Vrentas and
Duda [182]. With the numerous improvements, the free volume theory of Vrentas and Duda takes
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account of several physical parameters such as the temperature, the activation energy, the polymer
concentration, the solvent size, and the molecular weight of the diffusant. In the case of a binary system
(solvent diffusion in a polymer network) the model of Vrentas and Duda is expressed by the following
equation:

D � D01 exp 2
E

RT

� �
exp 2

v1V̂
p
1 1 v2jV̂

p
2

K11v1�K21 2 Tg1 1 T�=g1 1 K12v2�K22 2 Tg2 1 T�=g2

" #
�41�

whereD01 is the solvent self-diffusion coefficient in the absence of polymer or a constant preexponential
factor,E is the activation energy for a solvent jump,vi is the weight fraction of componenti, V̂p

1 is the
specific volume needed for one jumping unit of componenti, j is the ratio of the volume of solvent
jumping unit to that of the polymer jumping unit,g i represents the overlap factor for the free volume for
pure componenti, Tgi is the glass transition temperature of componenti, K11 andK21 are the solvent free
volume parameters andK21 andK22 are the polymer free volume parameters. The free volume para-
metersK11 andK21 were defined as follows:

K11 � V̂0
1Tg1�a1 2 �1 2 f G

H1�ac1� �42�

K21 � f G
H1

a1 2 �1 2 f G
H1�ac1

" #
�43�

wherea1 is the thermal expansion coefficient of the solvent,a c1 is the thermal expansion coefficient for
the sum of the specific occupied volume and the specific interstitial free volume,V̂0

1 is the free volume
occupied by the solvent at 0 K, andf G

H1 is the average fractional hole free volume.
The approach of Vrentas and Duda is based on the following assumptions: (1) the mixing of the

polymer and solvent partial specific volumes does not lead to volume change; (2) the polymer thermal
expansion coefficientsa2 anda c2 is approximated to the average values over the temperature interval of
interest; (3) the total hole free volume of the system is computed by using the free volume parameters
K11=g1 andK21=g2, which are determined from pure component data for solvent and polymer; (4) the
activation energy for the solvent jump,E, depends on the polymer concentration since the energy per
mole needed by the solvent molecule to overcome attractive forces depends on its neighbors. The
transition from the energy in the concentrated region to the region near the pure solvent limit is assumed
to be smooth asv1 approaches unity [183].

Eq. (41) can be simplified in the special case of pure solvent or very low polymer concentrations:

log
D
D0

� �
� 2jV2v2

2:303K11�K21 2 Tg1 1 T�=g �44�

The parametersKij , g and Tgi are available in the literature for many common organic solvents and
polymers [20,179,184,185].

Eqs. (41) and (44), though complicated in their forms, were used successfully to fit experimental data
of diffusion. For example, Lodge et al. [186] used the forced Raleigh scattering technique to measure
tracer diffusion in poly(vinyl acetate)–toluene system. Agreement between the model of Vrentas and
Duda, or Fujita’s model, and the experimental data was good over the entire range of polymer concen-
trations (0–96 wt%). Similar results were published by Zielinski et al. [187] who studied diffusion in PS
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solutions by static field gradient NMR, and Wisnudel and Torkelson [20] who studied small molecule
diffusion in PS by the Taylor dispersion technique. Other studies have also demonstrated good agree-
ment with this model [136,188,189]. However, several papers reported problems that occurred below the
glass transition temperature [65,166,184,187]. Correlation with the data was achieved only with nega-
tive values for the polymer free volume parameter, which is impossible [65,184,187]. This problem was
overcome recently by Vrentas and Vrentas who introduced a specific hole free volume,V̂0

2g; of the glassy
polymer at any temperature belowTgm (glass transition temperature of the polymer–solvent mixture) at a
particular temperature [176,184].

Despite the re-examination of the model by Vrentas and Vrentas [183,190] in order to provide a better
agreement with diffusion data over a large temperature range and under the glass transition temperature,
certain failures have been demonstrated. For example, Waggoner et al. [36] showed that this model
cannot fit the data in the low polymer concentration region. Similar conclusions were also made by Hong
et al. [191] Wisnudel and Torkelson [20] pointed out that the diffusion model of Vrentas and Duda did
not take into account the flexibility of the diffusant, as they noticed poorer agreement with flexible
diffusants than with rigid ones. Zielinski and Duda [185] expected that the model of Vrentas and Duda
will deviate from experimental observations at high temperatures (1508C aboveTg) because the diffusion
will be no longer limited by the free volume. Energy effects will become dominant.

Some papers compared the free volume models of Vrentas and Duda with the original free volume
theory of Fujita. According to Landry et al. [192], the application of both models had no difference. The
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Fig. 9. Semilogarithmic plot of the self-diffusion coefficient of ethylbenzene in polystyrene as a function of the mass fraction of
the solvent, at different temperatures. The solid lines are the theoretical predictions of the solvent diffusion using the free
volume theory of Vrentas and Duda (Section 2.3.3). Reprinted with permission from AIChE J 1992;38:405.q1999 American
Institute of Chemical Engineers [185].



same conclusion was drawn by Lodge et. al. [186], but they also concluded that the model of Vrentas and
Duda is successful as a predictive theory over the complete range of polymer concentrations, and over a
substantial range of temperatures (above the glass transition temperature), whereas Fujita’s model
cannot be used to predict or examine the temperature dependence.

Zielinski and Duda [185] used the free volume model of Vrentas and Duda to estimate the diffusion of
organic solvents in polymer systems. Their work seemed to be among the first attempts in diffusion
prediction reported in the literature. First, they reviewed the literature to evaluate the independent
parameters necessary to apply the model. Then, they estimated the diffusion of solvents (toluene,
ethylbenzene, chloroform, methyl acetate, and tetrahydrofuran) in polymer systems (PS, PVAc,
PMA, and PMMA). They obtained fairly good correlations with the experimental data (Fig. 9). Guo
et al. [59] tried to predict the diffusion coefficients of benzene,o-xylene, ethylbenzene, and chloroform
in natural rubber membranes using the approach of Zielinski and Duda [185]. They did not found good
agreements and suggested that the parameters proposed by Zielinski and Duda [185] did not yield
acceptable predictions of the diffusion coefficients.

An important point to be underlined is that the model of Vrentas and Duda needs numerous para-
meters. For example, Duda and coworkers [193] mentioned that 14 independent parameters are neces-
sary to apply this model. Among these 14 parameters 10 need to be evaluated in order to predict the self-
diffusion coefficient. Furthermore, these parameters are not usually available in the literature for many
polymers, especially new ones.

2.3.4. The model of Peppas and Reinhart
For the treatment of transport mechanism in cross-linked polymer networks, Peppas and Lustig [194]

considered three different kinds of structures: (1) macroporous hydrogels defined by pore size greater
than 0.1mm where the mechanism of transport is mainly due to convection; (2) microporous hydrogels
characterized by pore size in the range of 20–500 A˚ (diffusants and pores have similar dimensions)
where the mechanism of transport is due to both diffusion and convection; (3) nonporous hydrogels for
which space between the macromolecular chains is limited and where the mechanism of transport is due
to diffusion only [194].

In pharmaceutical applications such as drug releases, nonporous hydrogels seem to be more often used
than macroporous or microporous gels [194]. The discussion here is focused on nonporous hydrogels.
More information on convection and diffusion in macro- and microporous gels can be found in the paper
by Peppas and Lustig [194].

The model of Peppas and Reinhart [195] was also based on the free volume concept [27,171].
Diffusion is said to occur through the gel space not occupied by polymer chains. Thus, the self-diffusion
coefficient of a diffusant is considered proportional to the probability of moving through the gel with
mesh size,Pj , but also proportional to the probability of finding the required free volume in the gel and
solution,P00=P

1
0 ; which is given by the following equation:

D
D0
� Pj

P00
P1

0
�45�

whereD is the solute diffusion coefficient in the hydrogel,D0 is the solute diffusion coefficient in water.
The probability,P00=P

1
0 ; of finding the required free volume was analyzed by Peppas and Reinhart

[195]. They also assumed that the free volume available for the solute diffusion was mainly due to water,
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and little from the polymer. The following expression was then obtained [195].

D
D0
� Pj exp 2

Y
Q 2 1

� �
�46�

whereY � k2R2
h; andY is a structural parameter near unity and proportional toR2

h, k2 a parameter of the
polymer–water system,Rh the solute hydrodynamic radius, andQ the volume degree of swelling for the
gel.

The probability,Pj, of moving through the mesh size,j, was studied later by Reinhart and Peppas
[196] who demonstrated that this quantity is related to a critical mesh size,Mc

p, below which the diffusion
of a solute of sizeRh could not occur:

Pj � Mc 2 Mp
c

Mn 2 Mp
c

�47�

whereMc is the number average molecular weight between cross-links,Mn the number average mole-
cular weight of uncross-linked polymer. In fact,Mc

p represents the minimal distance in monomer unit
between two cross-link points for which diffusion is possible.

Combining Eqs. (46) and (47), the diffusion coefficient in highly swollen membranes can be expressed
by

D
D0
� k1

Mc 2 Mp
c

Mn 2 Mp
c

exp 2
k2R2

h

Q 2 1

 !
�48�

wherekl is a structural parameter of the polymer–water system.
To describe solute transport in moderately swollen networks [197], they considered that in a moder-

ately swollen network the free volume was not equal to the free volume of the solvent, and that diffusion
jump length of the solute in solution was not equal to that of the solute in water. A new equation was
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Table 6
Summary of the diffusion models based on the free volume theories (Section 2.3)

Author(s) Reference(s) Application(s) Limitation(s)

Fujita [27] Solvents and small-sized diffusants Large diffusants
Semi-dilute polymer solutions Concentrated polymer solutions

Yasuda et al. [171] Solvents and small-sized diffusants Large diffusants
Semi-dilute polymer solutions Concentrated polymer solutions

Vrentas and Duda [175–178] Various solutes and solvents Determination of the numerous
parameters

Both semi-dilute and concentrated
polymer solutions

Dilute polymer solutions

Peppas and Reinhart [195] Various solutes and solvents Diffusants with size closer to or greater
than the mesh size of the network

Chemically cross-linked gels and
hydrogels

Diffusion in non-cross-linked
polymers



derived:

D
D0
� l2

l2
0

B�np�exp 2ns
1
V

2
1

V 00

 !" #
�49�

wherel2 andl2
0 are the diffusion jump lengths of the solute in the hydrogel and water, respectively,

B�np� is a term representing the characteristic size of the space available for diffusion in the membrane,
n s is the size of the diffusing solute, andV andV 00 are the free volumes in the swollen membrane and
water, respectively [198].

Peppas and coworkers have published several papers with diffusants of various sizes in various
hydrogels which showed agreement with the model [198–202]. Recently, they have also pointed out
the limitations of this model. For example, Peppas and coworkers [202,203] studied the diffusion of
ionized diffusants in charged hydrogels and found that they were much more hindered than the larger
proteins because of their interactions with ionized carboxylic acid groups [203]. Thus, a parameter
relating the interactions between ionized diffusants and the network should be introduced. In addition,
problems may also occur when the diffusant size is close to or larger than the mesh size in the network
due to screening effects.

2.3.5. Summary
The free volume models have found various success in the description of diffusion in polymer

systems. The advantages and constraints for each model described in this section are summarized in
Table 6. The model of Vrentas and Duda [175,176] seems to be the most useful as it is applicable over a
large range of polymer concentrations and temperatures. However, obtaining the numerous parameters
required represent quite a task since these parameters are not always available in the literature. When
these parameters are known, it is possible to predict solvent diffusion in certain binary systems.

The model of Peppas and Reinhart [195] describes specifically diffusion in cross-linked gels.
Problems may arise when the size of the diffusant is close to or larger than the network mesh size,
and when the diffusant is bound to the polymer network by ionic interactions. It does not seem to be
applicable to describe diffusion in polymer solutions where there is no cross-linking.

Manz and Callaghan [147], and Xia and Wang [167] also suggested the use of William–Landel–Ferry
[204] (WLF) equation and Vogel–Fulcher–Tammann [167] (VFT) equation for the interpretation of
diffusion data, but they cannot be used belowTg [147,167].

2.4. Other physical models of diffusion

Many of the diffusion models did not offer temperature dependence since most experiments were
carried out at room temperature. Variable temperature diffusion data can be analyzed with physical
models that can be considered as thermodynamic models. We also include here other models that do not
fit to the descriptions in the previous categories.

2.4.1. Arrhenius’ theory
Arrhenius equation describes the temperature dependence of a chemical reaction rate as illustrated by
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[205]

k � A exp 2
Ea

RT

� �
�50�

wherek represents the kinetic rate of a chemical reaction,A a pre-exponential factor andEa the activation
energy. Eq. (50) can be written in a logarithmic form

log k � log A 2
Ea

RT
�51�

which is useful to estimateEa from a plot of logarithmick versus 1=T.
Some recent works reported diffusion experiments at different temperatures which led to the evalua-

tion of the activation energy of diffusants in polymer systems with the Arrhenius equation [32,65,69].

D � A exp 2
Ea

RT

� �
: �52�

Examples ofEa values found in the literature are given in Table 7. From the activation energy of a
diffusant in a given system, we can obtain information of the network in which the diffusion takes place.
In order to obtain complementary information, it is necessary to compare theEa values in different
systems for the same diffusant. However, the Arrhenius equation does not provide any correlation to the
diffusant size or to the polymer networks. In addition, Arrhenius model seems valid only in dilute
systems becausethe diffusion rate is limited by the energy required for the diffusing species to escape
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Table 7
Example of activation energy (Ea) studies based on Arrhenius equation found in the literature (Section 2.4.1).o-MR andp-MR
stand forortho- andpara-methyl red, respectively

System Ea (kJ/mol)

Sung and Chang [51] o-MR in toluene 11.9
Temperature: 15–558C p-MR in toluene 12.6
Polymer concentration o-MR in toluene/PS 13.6
(PS and PVAc): 10 wt% p-MR in toluene/PS 15.1

o-MR in toluene/PVAc 17.2
p-MR in toluene/PVAc 21.7

Gao and Fagerness [32] H2O 1 0.5% adinazolam
Temperature: 10–508C 12% glusose, or lactose, or HPMC

– Water diffusion 4.3–4.6
– Adinazolam diffusion 5.0–5.3

Nyström et al. [69] Cellulose/H2O 23.3
Temperature: 14–448C Cellulose/H2O/D2O 17.0
Concentration:wp � 0.093 Cellulose/H2O/D2O/Dioxane 15.0

Cellulose/H2O/D2O/t-Butanol 24.1

Pickup and Blum [65] Toluene in PS 11–68
Temperature: 25–1158C
Concentration:wp � 0.04–0.90



its present surroundings and move into an adjacent environment. However, in moderate to high concen-
tration solutions, the diffusion process is limited by the polymer molecular motions[36].

2.4.2. The modified Enskog theory
The modified Enskog theory was recognized to provide a suitable description of gas and liquid

diffusion in membranes [206]. As shown by Waggonner et al. [36], this model can also be employed
to describe the diffusion of a diffusant in polymer networks. The diffusant particle was represented as a
rigid sphere flowing through the polymer solution. The diffusion coefficient of such a tracer particle is
given by

Da � 1
1

DaM
1

1
Dab

1 2 xa 1 2
DbM

DaM

� �� � �53�

whereDa represents the self-diffusion coefficient of the tracer,a;b and M represent the tracer, the
solvent and the polymer, repectively,Dij the mutual diffusion coefficient of componenti with respect to
componentj and xa is the molar fraction of the tracer. Consequently,DaM is the mutual diffusion
coefficient of the tracer with respect to the polymer,Dab the mutual diffusion coefficient of the tracer
with respect to the solvent, andDbM the mutual diffusion coefficient of the solvent with respect to the
polymer.

Further, if the tracer molecule is present in a small quantity and if both tracer and solvent have

L. Masaro, X.X. Zhu / Prog. Polym. Sci. 24 (1999) 731–775764

Fig. 10. The self-diffusion coefficients of methyl red plotted as a function of PVAc concentration in toluene. Data displaying the
hydrogen-bonding effect (diamonds) and data with the hydrogen-bonding effect removed (squares) are fitted with the free
volume model of Vrentas and Duda (solid lines), Eq. (41), and the modified Enskog theory (dotted lines), Eq. (53). Reprinted
with permission from Macromolecules 1993;26:6841.q1999 American Chemical Society [36].



approximately the same mutual diffusion coefficient with respect to the polymer, Eq. (53) can be
rewritten as

1
Da
� 1

DaM
1

1
Dab

: �54�

This equation offers a simple dependence on the tracer diffusion coefficient in a dilute solution. The
respective mutual diffusion coefficient,Dab, can be expressed as [206]

Dab � 3
8ns2

ab

kT�ma 1 mb�
2pmamb

 !1=2
1

gab�sab� �55�

wheren is the number of molecules per unit volume or the number density (mol/cm3), sab the hard
sphere collision diameter of componenta andb , mi the molecular mass of componenti, andgab�sab� is
the rigid sphere contact radial distribution function. This function was obtained from the scaled particle
theory and depends on the molecular radius of the component and on the molecular friction coefficient
[206].

The modified Enskog theory was mainly employed for gas diffusion through membranes and not often
used for polymer solutions. However, Waggoner et al. [36] used this model to draw up comparisons
between the modified Enskog theory, the model of Vrentas and Duda and the model of Mackie and
Meares in various polymer systems (PS and PMMA). They concluded that Enskog’s model provided
satisfactory correlation with the experimental data at lower polymer concentrations exclusively. At
higher polymer concentrations the authors observed little correlation between theoretical predictions
and experimental results (Fig. 10). This conclusion is consistent with the work of Pickup and Blum [65].

L. Masaro, X.X. Zhu / Prog. Polym. Sci. 24 (1999) 731–775 765

Fig. 11. Representation of the polymer solution of a network of mesh sizej and potentialE for the diffusion process of a
diffusant in a polymer network. Reprinted with permission from Macromolecules 1996;29:6031.q1999 American Chemical
Society [33].



It should be noted that the modified Enskog theory does not provide a polymer concentration
dependence.

2.4.3. The model of Petit et al.
Petit et al. [33] proposed a new physical model for the diffusion of solvents and solute molecules in

polymer solutions and gels. This model considered the medium as a transient statistical networks of an
average mesh sizej , as defined by de Gennes [123], in which the diffusing molecules have to overcome
energy barriers of equal magnitude (Fig. 11). The transient network is considered to exist over the whole
range of polymer concentrations including the dilute regime. A diffusing molecule is considered as
residing temporarily in a cavity and diffusion occurs only when the particle has enough energy to jump
over an energy barrier to move forward to the next cavity. Thus, diffusion is considered as a succession
of jumps over energy barriers. Petit et al. [33] considered one-dimensional diffusion assuming that the
energy potentials are equal in amplitude,DE, and spaced by equal intervalsj , which corresponds to the
correlation length. Introducingk as the solute jump frequency, Fick’s first law of diffusion can be written
as follows, according to Andreoli et al. [207]

D � j2k �56�
wherek, the jump frequency, is expected to depend on both temperature and size of the diffusant. The
jump frequency can be written in an Arrhenius form, according to Kramer [208] who studied the jump of
Brownian particles over one potential barrier,

k � FP exp 2
DE
kBT

� �
�57�

whereFP is a frequency pre-factor,DE the height of the potential barrier, kB is the Boltzmann constant
andT the temperature. Furthermore, dependence ofj on the concentration was given by de Gennes’
relation [122]:

j � Rg
cp

c

 !n

� bc2n �58�

whereRg is the radius of gyration of the polymer,cp the overlap concentration between the dilute and
semi-dilute regimes,c the polymer concentration andn is a parameter. In de Gennes’ theory,j was said
to depend on the polymer concentration but not on the molecular weight of the polymer whenc . cp

[123]. Substituting Eq. (58) into Eq. (56) leads to the following equation:

D � kb2c22n
: �59�

This equation is not suitable to describe the diffusion of a diffusant at zero polymer concentration.
Therefore Petit et al. [33] considered the friction coefficients of the diffusing molecules to formulate a
better expression. It is generally assumed that the total friction coefficient,f, experienced by a diffusing
molecule in a polymer solution results from an additive contribution of the background solvent,f0, and
the polymer network,fp [209,210]

f � f0 1 fP: �60�
By the use of Stokes–Einstein relation,D � kBT=f ; and by the use of Eq. (59), Eq. (60) can be
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rewritten as

1
D
� 1

D0
1

1
kb2c22n �61�

whereD0 is the diffusion coefficient of the diffusant in the absence of the polymer. Eq. (61) can be
rewritten as

D
D0
� 1

1 1 ac2n �62�

whereD0 is the diffusion coefficient of the diffusant in absence of the polymer,a� D0=kb
2 andn is a

characteristic parameter of the system that can be regarded as a constant. The value ofk is not constant
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Fig. 12. The logarithmic plots of the self-diffusion coefficients of (a) a linear PS and (b) a 12-arm star PS in PVME/o-
fluorotoluene as a function of the PVME concentration, at 308C (data from the work of Lodge and coworkers [45,111]). Dashed
lines are fittings to Eq. (62).



becauseFP andDE (Eq. (57)) should both depend on the polymer concentration. Nevertheless,k can be
approximated as a constant within a certain range of concentrations, althoughk may have a certain
dependence on the mesh size of the network. The parameterb is expected to be constant for a given
system so thatkb 2 depends only on the solute size and on the temperature.

The model of Petit et al. [33] was employed to analyze the diffusion data of both solute molecules in
ternary aqueous polymer (PVA) systems and solvents (esters and ketones) in binary polymer (PMMA)
organic solutions over a wide range of concentrations [211,212]. It has successfully described the effect
of polymer concentration and temperature dependence. Recently, this model was used to treat the
diffusion data of both small and large diffusants varying from ethylene glycol (M � 62 g/mol) up to
poly(ethylene glycol) with a molecular weight of 4000 [211]. This diffusion model provided good
agreements with the experimental data. In addition, it was used to analyze variable temperature of
diffusants of various sizes. The activation energy calculated was found to increase with increasing
size of the diffusant. Furthermore, an empirical relationship was found between the parameterkb 2

and the hydrodynamic radius of the linear PEG diffusants

log kb2 � 20:0356Rh 2 10:45: �63�
In order to further test the validity of this model, diffusion data can be gathered from the literature. For

example, Wheeler and Lodge [45] studied the self-diffusion of linear PS�M � 6:5 × 104
;1:79×

105
; 4:22× 105

; and 1:05× 106� in o-fluorotoluene solutions of PVME�M � 1:4 × 105
; 6:3 × 105

; and
1:3 × 106), with concentrations ranging from 0 to 0.30 g/ml. In a companion paper, Lodge et al. [111]
studied the self-diffusion of 3-arm�M � 6:5 × 104

;1:79× 105
;4:22× 105

; and 1:05× 106� and 12-arm
�M � 6:5 × 104

; 1:79× 105
;4:22× 105

; and 1:05× 106� star polystyrenes in the same system. These
diffusion data were analyzed with the model of Petit et al. [33], and the results are shown in Fig. 12
for the linear and 12-arm star PS diffusants, respectively. It seems that the model of Petit et al. [33] is not
accurate to describe diffusion of linear and star diffusant with molecular weight similar to the back-
ground polymer, in this organic solvent, despite its success with macromolecular diffusants in polymer
gels [211,212].

2.4.4. Amsden’s model
Recently, Amsden [28] published a brief review of several diffusion models including the models

proposed by Yasuda et al. [171], Ogston et al. [76], Johansson et al. [31], Altenberger et al. [97], Cukier
[26], and Phillips [213]. The combined obstruction and hydrodynamic theories proposed by Brady [214]
was also discussed in the review. In the author’s opinion, the obstruction and hydrodynamic models
cannot adequately describe the diffusion behavior of macromolecules within stiff-chained hydrogels,
and the combined obstruction and hydrodynamic theories can provide a better approximation of the
diffusion data but do not predict the effect of solute radius on its reduced diffusivity. Therefore, Amsden
[28] proposed a new diffusion model which is based on the equation of Lustig and Peppas [199].
According to Amsden [28], the transport of a molecule through the hydrogel is proportional to the
probability of finding a succession of holes larger than the diffusant diameter. Therefore, the effective
diffusivity of the diffusant, �De; is expressed as

�De � �Dm

Z∞

rp
g�r� dr �64�
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where �Dm is the average mutual diffusion coefficient of the solute,g�r� the distribution of spheres within
the hydrogel, andr p the critical sphere radius required for solute diffusion.

In the case of straight polymer fibers randomly dispersed in the hydrogel network, the distribution of
spheresg�r� can be expressed as

g�r� � pr

2R2 exp 2
p

4
r
R

� �2
" #

�65�

whereR is the mean radius of the distribution.
Substituting Eq. (65) into Eq. (64) and carrying out the integration, one can obtain

�De
�Dm
� exp 2

p

4
rp

R

 !2" #
: �66�

To account for the specific polymer thickness, Amsden rewrote Eq. (66) to include the average radius
of space between the polymer chains,�r ; and the radius of the polymer chain,rf:

�De
�Dm
� exp 2

p

4
rs 1 rf

�r 1 rf

� �2
" #

: �67�

�r can be approximated as the average end-to-end distance between the polymer chains,j . Further, from
scaling conceptsj was found dependent on the polymer volume fraction

j � kw21=2 � k1rfw
21=2 �68�

wherek is a constant for a given polymer–solvent system, dependent on the length of the monomer unit
and the stiffness or flexibility of the polymer chain.k can be expressed as a function of the polymer chain
radius,k � k1rf . Substitution of Eq. (68) into Eq. (67) leads to the final form of Amsden’s diffusion
model [28]

�De
�Dm
� exp 2p

rs 1 rf

rf

� �2 w

�k1 1 2w1=2�2
" #

�69�

Thus, this model takes into account the polymer structural properties such as the polymer chain
stiffness, the polymer chain radius, the polymer volume fraction as well as the size of the diffusant.
According to Amsden, the model predicts a decrease of the solute diffusion when the polymer volume
fraction increases, when the diffusant size increases, and when the radius of the polymer chain decreases
[28].

Eq. (69) was tested by studying protein (pepsin, ovalbumin, BSA andb-lactoglobulin) release from
calcium alginate matrices. Amsden found that Eq. (69) provided a good correlation with the experi-
mental data over the entire range of polymer volume fractions investigated (w � 0–0:05) [28]. The
dependence of the diffusion on the hydrodynamic radius of the solute was also predicted properly.
Amsden [28] also tried the simulation of the data published by Johansson et al. [31,77], which demon-
strated that the model was capable of describing the effect of polymer chain radius and flexibility on the
diffusion of solutes.

L. Masaro, X.X. Zhu / Prog. Polym. Sci. 24 (1999) 731–775 769



2.4.5. Summary
The theories presented in Sections 2.4.1 and 2.4.2 were not intended to describe diffusion in polymer

solutions and gels, but they are useful in the description of the diffusion behavior, particularly the
temperature effect. Other thermodynamic models such as Eyring’ model [215] were not discussed
here because of the limitations in their applicability.

The model of Petit et al. [33] describes the dependence of diffusion on the molecular size of the
diffusant, polymer concentration as well as temperature. This model was used successfully to link the
diffusion of small and macromolecules in binary and ternary polymer systems. Nevertheless, the exam-
ination of certain diffusion data from the literature showed its limitations for the diffusants of high
molecular weights in concentrated polymer networks.

The new diffusion model defined by Amsden [28] combined the obstruction effect and the hydro-
dynamic interactions and seemed an interesting approach. Further tests with more concentrated polymer
networks need to be done to verify its usefulness.

3. Concluding remarks

Diffusion in polymer systems is a complicated process. It depends on the properties of the diffusants,
the polymer network, and the solvents. The obstruction by the polymer network, the hydrodynamic
interactions in the system, and the thermodynamic agitation should be all considered to understand the
diffusion in polymer solutions, gels and even solids. Various models and theories succeeded in describ-
ing the diffusion process under different circumstances, and all contributed to the understanding of
diffusion phenomena. Enormous progress has been made in the field but controversies are not uncom-
mon. It seems also fair to say that limitations exist for the application of the physical models and care
should be taken in the use of the models for the interpretation of the results obtained. It remains difficult,
if not impossible, to estimate and predict the diffusion coefficient of a given diffusant in a given system
under specific conditions. It is also important to establish a correlation between the self-diffusion
behavior in an equilibrated state and the diffusion in a real time non-equilibrated dynamic situations,
where the swelling and the dissolution of the polymer matrix, the compatibility of the solvent, solute and
polymer should all be considered.

The rapid development of various techniques such as NMR allows the study of more complicated
systems to obtain further information on the properties of the diffusants and polymeric networks. For
example, it is now possible to track the release of solutes such as drugs from a polymer matrix in real-
time situations by NMR imaging [216]. Studies of this kind should generate more results, leading to a
better understanding of the diffusion process in polymer systems.
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