PARALLEL MACHINE MODELS (DETERMINISTIC)

IE 661 Scheduling Theory
Fall 2003
Department of Industrial Engineering
University at Buffalo (SUNY)

September 2003
Parallel Machine Models (Deterministic)

Outline

- Introduction
- Makespan without preemptions
- Makespan with preemptions
- Total completion time without preemptions
- Total completion time with preemptions
- Due-Date related objectives
Introduction

- Parallel machines: generalization of single machine, special case of flexible flow shop

- 2 step process
 1. allocation of jobs to machines
 2. sequence of jobs on a machine

- Assumption: $p_1 \geq p_2 \geq \ldots \geq p_n$

- Consider three objectives: minimize
 1. makespan
 2. total completion time
 3. maximum lateness
MAKESPAN WITHOUT PREEMPTIONS
Longest Processing Time Heuristic

- Consider $Pm || c_{max}$
- Special case: $P2 || c_{max}$: NP-hard in the ordinary sense
- LPT:
 1. assign at $t = 0$, m largest jobs to m machines
 2. assign remaining job with longest processing time to next free machine
- Theorem 5.1.1: Upper bound for
 \[
 \frac{c_{max}(LPT)}{c_{max}(OPT)^*} \cdot \frac{c_{max}(LPT)}{c_{max}(OPT)} \leq \frac{4}{3} - \frac{1}{3m}
 \]
- Proof: by contradiction
LPT: A Worst Case Example

<table>
<thead>
<tr>
<th>Jobs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_j</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

- 4 parallel machines
- $c_{max}(OPT) = 12$, $c_{max}(LPT) = 15$
- $\frac{c_{max}(LPT)}{c_{max}(OPT)} = \frac{15}{12}$
- $\frac{4}{3} - \frac{1}{3m} = \frac{15}{12}$
LPT: Proof

• Contradiction: Counter example with smallest \(n \)
 1. Property: Shortest job \(n \) is the
 1.1. last job to start processing (LPT)
 1.2. last job to finish processing
 2. If \(n \) is not the last job to finish processing, then:
 2.1. deletion of \(n \) does not change \(c_{max}(LPT) \)
 2.2. but it may reduce \(c_{max}(OPT) \) (or remain same)

• A counter example with \(n - 1 \) jobs

• All machines busy in time interval \([0, c_{max}(LPT) - p_n]\)

\[
\sum_{j=1}^{n-1} p_j
\]

\[
c_{max}(LPT) - p_n \leq \frac{\sum_{j=1}^{n-1} p_j}{m}
\]

\[
\Rightarrow c_{max}(LPT) \leq p_n + \frac{\sum_{j=1}^{n-1} p_j}{m} = p_n(1 - \frac{1}{m}) + \frac{\sum_{j=1}^{n} p_j}{m}
\]
Parallel Machine Models (Deterministic)

LPT: Proof Contd.

\[\sum_{j=1}^{n} p_j \]

\[\frac{\sum_{j=1}^{n} p_j}{m} \leq c_{\text{max}}(OPT) \]

\[\frac{4}{3} - \frac{1}{3m} < \frac{c_{\text{max}}(LPT)}{c_{\text{max}}(OPT)} \leq \frac{p_n(1-\frac{1}{m}) + \sum_{j=1}^{n} p_j}{c_{\text{max}}(OPT)} = \]

\[\frac{p_n(1-\frac{1}{m})}{c_{\text{max}}(OPT)} + \frac{\sum_{j=1}^{n} p_j}{m} \leq \frac{p_n(1-\frac{1}{m})}{c_{\text{max}}(OPT)} + 1 \]

\[\frac{4}{3} - \frac{1}{3m} < \frac{p_n(1-\frac{1}{m})}{c_{\text{max}}(OPT)} + 1 \Rightarrow c_{\text{max}}(OPT) < 3p_n \]

- On each machine at most 2 jobs
- LPT is optimal for this case \(\Box \)
Parallel Machine Models (Deterministic)

Precedence Constraints

- Arbitrary ordering of jobs: \[
\frac{c_{\text{max}}(\text{LIST})}{c_{\text{max}}(\text{OPT})} \leq 2 - \frac{1}{m}
\]
 for LPT

- Better algorithms (bounds) exist

- \(P_m | prec | c_{\text{max}} \Rightarrow \) at least as hard as \(P_m | | c_{\text{max}} \) (strongly NP hard for \(2 \leq m < \infty \))

- Special case \(m \geq n \Rightarrow P_\infty | prec | c_{\text{max}} \)
 - \(P_m | p_j = 1, prec | c_{\text{max}} \rightarrow \) NP hard
 - \(P_m | p_j = 1, tree | c_{\text{max}} \rightarrow \) easily solvable with Critical Path Method (CPM)

 * intree
 * outtree
Parallel Machine Models (Deterministic)

CPM: An Example

<table>
<thead>
<tr>
<th>jobs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_j</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>

c_j' = earliest completion time of job j

c_j'' = latest possible completion time of job j

<table>
<thead>
<tr>
<th>jobs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_j'</td>
<td>4</td>
<td>13</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>21</td>
<td>32</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>c_j''</td>
<td>7</td>
<td>16</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>32</td>
<td>24</td>
<td>32</td>
</tr>
</tbody>
</table>

Diagram of a project network.
Parallel Machine Models (Deterministic)

Tree Precedence

- Highest level \(l_{max} \)
- \(N(l) \) = number of jobs at level \(l \)
- \(H(l_{max} + 1 - r) = \sum_{k=1}^{r} N(l_{max} + 1 - k) \) = Total # of nodes at highest \(r \) levels
- Critical Path rule \(\equiv \) Highest Level First rule for trees
- Theorem 5.1.5: CP rule optimal for \(Pm|p_j = 1, intree|c_{max} \) and \(Pm|p_j = 1, outtree|c_{max} \)
- Arbitrary precedence constraints: \(\frac{c_{max}(CP)}{c_{max}(OPT)} \leq \frac{4}{3} \) for 2 machines with Critical Path rule
Parallel Machine Models (Deterministic)

Worst Case Example of CP

6 jobs, 2 machines, unit processing times

\[c_{\text{max}} = 4 \]

\[c_{\text{max}} = 3 \]
Example: Application of LNS Rule

- **LNS**: Largest Number of Successors First
- Optimal for in and outtree
- 6 jobs, 2 machines, unit processing times
- Sub-optimal for arbitrary precedence constraints

```
1  2  3
4  5
6

1  4  1  2  3  
2  6  5

max = 4

1  1  2  3
2  4  6  5

max = 3
```
Parallel Machine Models (Deterministic)

\[Pm|M_j|C_{max} \]

- \(Pm|p_j = 1, M_j|C_{max} \)
- \(M_j \) are nested: 1 of 4 conditions is valid for jobs \(j \) and \(k \)
 1. \(M_j = M_k \)
 2. \(M_j \subset M_k \)
 3. \(M_k \subset M_j \)
 4. \(M_j \cap M_k = \emptyset \)
- Least Flexible Job First (LFJ) rule
- Machine is free \(\rightarrow \) Pick job that can be scheduled on least number of machines
- Drawback: Pick which machine when several machines available at the same time?
- LFJ optimal for \(Pm|p_j = 1, M_j|C_{max} \) if \(M_j \) are nested
Proof of Optimality of LFJ for Nested M_j’s

- Proof by contradiction
 - j is the first job that violates LFJ rule
 - j^* could be placed at the position of j
 - by use of LFJ rules
 - $M_j \cap M_{j^*} = \emptyset$ and $|M_{j^*}| < |M_j|$ (Note $M_{j^*} \subset M_j$)
 - Exchange of j and j^* still results in an optimal schedule

- LFJ optimal for $P2|p_j = 1, M_j|C_{max}$ (M_j’s are always nested)
Parallel Machine Models (Deterministic)

Example of LFJ

- $P_4|p_j = 1, M_j|C_{max}$
- 8 jobs \Rightarrow 8 M_j sets:
 1. $M_1 = \{1, 2\}$
 2. $M_2 = M_3 = \{1, 3, 4\}$
 3. $M_4 = \{2\}$
 4. $M_5 = M_6 = M_7 = M_8 = \{3, 4\}$

<table>
<thead>
<tr>
<th>LFJ</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 2 3</td>
<td>1 2 3</td>
</tr>
<tr>
<td>2 4</td>
<td>2 1 4</td>
</tr>
<tr>
<td>3 5 7</td>
<td>3 5 6</td>
</tr>
<tr>
<td>4 6 8</td>
<td>4 7 8</td>
</tr>
<tr>
<td>$c_{\text{max}} = 3$</td>
<td>$c_{\text{max}} = 2$</td>
</tr>
</tbody>
</table>
MAKESPAN WITH PREEMPTIONS
Parallel Machine Models (Deterministic)

\[Pm|prmp|C_{\text{max}} \]

- Linear Programming formulation

\[x_{ij} = \text{total time job } j \text{ spends on machine } i \]

minimize \(C_{\text{max}} \)

subject to

\[
\sum_{i=1}^{m} x_{ij} = p_j, \quad \forall j = 1, \ldots, n \quad \text{[processing time]}
\]

\[
\sum_{i=1}^{m} x_{ij} \leq C_{\text{max}}, \quad \forall j = 1, \ldots, n \quad \text{[processing less than } C_{\text{max}]}
\]

\[
\sum_{j=1}^{n} x_{ij} \leq C_{\text{max}}, \quad \forall i = 1, \ldots, m \quad \text{[makespan on each m/c]}
\]

\[x_{ij} \geq 0 \quad \forall i = 1, \ldots, m, \quad \forall j = 1, \ldots, n \quad \text{[non-negativity]} \]
Parallel Machine Models (Deterministic)

$Pm|prmp|C_{max} - $ LP Formulation

- C_{max} is a variable
- Solution of LP: optimal values of x_{ij} and $C_{max} \Rightarrow$ generation of a schedule
- Lower Bound

$$C_{max} \geq \max \left\{ p_1, \sum_{i=1}^{n} \frac{p_j}{m} \right\} = C^*_m$$
Parallel Machine Models (Deterministic)

\[
Pm|prmp|C_{max} - \text{LRPT}
\]

- **Longest Remaining Processing Time** first (LRPT)
- LRPT yields optimal schedule for \(Pm|prmp|C_{max} \)
- 2 machines, 3 jobs, \(p_1 = 8, p_2 = 7, p_3 = 6 \)

\[
\begin{array}{cccc}
1 & 3 & 2 & 1 \\
2 & 3 & 2 & 1 & 3 \\
\end{array}
\]

\[
0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \\
\]

- **Notations:**
 1. \(p_j(t) \) = remaining processing time of job \(j \) at time \(t \)
 2. \(\bar{p}(t) = (p_1(t), p_2(t), \ldots, p_n(t)) \) = vector of remaining processing times at time \(t \)
LRPT - Majorization of Vectors

- $\bar{p}(t)$ majorizes $\bar{q}(t)$ if $\sum_{j=1}^{k} p(j)(t) \geq \sum_{j=1}^{k} q(j)(t)$ for all $k = 1, \ldots, n$

- $p(j)(t) = j^{th}$ largest element of $\bar{p}(t)$

- Example:
 1. $\bar{p}(t) = (4, 8, 2, 4)$ and $\bar{q}(t) = (3, 0, 6, 6)$
 2. Arrange elements of each vector in descending order
 3. Verify $\bar{p}(t)$ majorizes $\bar{q}(t)$

- Result: If $\bar{p}(t)$ majorizes $\bar{q}(t)$, then LRPT applied to $\bar{p}(t)$ results in a larger or equal makespan than obtained by applying LRPT to $\bar{q}(t)$
TOTAL COMPLETION TIME WITHOUT PREEMPTIONS
Parallel Machine Models (Deterministic)

$P_m|| \sum C_j$ and SPT Rule

- Recall $p_1 \geq p_2 \geq \ldots \geq p_n$
- $p(j) =$ processing time of job in position j on a single machine
- $\sum C_j = np(1) + (n - 1)p(2) + \ldots + 2p(n-1) + p(n)$
- $p(1) \leq p(2) \ldots \leq p(n-1) \leq p(n)$ for optimal schedule
- SPT rule optimal for $P_m|| \sum C_j$

- Proof:
 - $\frac{n}{m}$ is integer (otherwise add job with processing time 0) and mn coefficients:
 - n coefficients: m in number
 - $n - 1$ coefficients: m in number
 - \ldots
 - 2 coefficients: m in number
 - 1 coefficients: m in number
Parallel Machine Models (Deterministic)

WSPT Rule - An Example

- WSPT minimizes $\sum w_j C_j$ for single machine
- Result does not extend for parallel machines
- $Pm|\sum w_j C_j \Rightarrow$ NP hard

<table>
<thead>
<tr>
<th>jobs</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_j</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>w_j</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

- 2 machines
- Any schedule WSPT
 - Job 1 and 2 on M1 and M2 at $t=0$, Job 3 on M1 at $t=1$:
 $\sum w_j C_j = 14$
 - Job 3 on M1 at $t=0$, Job 1 and 2 on M2 at $t=0$ and $t=1$:
 $\sum w_j C_j = 12$

- $w_1 = w_2 = 1 - \epsilon \Rightarrow$ WSPT not necessarily optimal
- $\frac{\sum w_j C_j(WSPT)}{\sum w_j C_j(OPT)} < \frac{1}{2}(1 + \sqrt{2})$ (tight bound)
Parallel Machine Models (Deterministic)

Precedence Constraints

- $Pm|prec|\sum C_j$: strongly NP-hard
- Result 1: Critical Path rule optimal for $Pm|p_j = 1, outtree|\sum C_j$
- Result 2: LFJ optimal for $Pm|p_j = 1, M_j|\sum C_j$ when M_j sets are nested
- $Pm|p_j = 1, M_j|\sum C_j$ special case of $Rm||\sum C_j$
- $Rm||\sum C_j$ can be formulated as an Integer Program
Parallel Machine Models (Deterministic)

$Rm || \sum C_j$ Formulation

$x_{ikj} = \begin{cases}
1 & \text{if job } j \text{ scheduled as } k^{th} \text{ to last job on } m/c \ i \\
0 & \text{otherwise}
\end{cases}$

minimize $\sum_{i=1}^{m} \sum_{k=1}^{n} \sum_{j=1}^{n} k p_{ij} x_{ikj}$

subject to

$\sum_{i=1}^{m} \sum_{k=1}^{n} x_{ikj} = 1 \ \forall j = 1, \ldots, n$ [Each job scheduled exactly once]

$\sum_{j=1}^{n} x_{ikj} \leq 1 \ \forall i = 1, \ldots, m, \forall k = 1, \ldots, n$ [Each position is not taken more than once]

$x_{ikj} = \{0, 1\} \ \forall i = 1, \ldots, m, \forall j = 1, \ldots, n, \forall k = 1, \ldots, n$

- Weighted bipartite matching problem: n jobs $\Rightarrow mn$ positions
- Relax integrality constraints on x_{ikj}
- LP solvable in polynomial time
TOTAL COMPLETION TIME WITH PREEMPTIONS
Parallel Machine Models (Deterministic)

\[Pm|prmp| \sum C_j \]

- \(Pm|prmp| \sum C_j \) special case of \(Qm|prmp| \sum C_j \)
- Result: There exists an optimal schedule with \(C_j \leq C_k \), if \(p_j \leq p_k \ \forall j, k \)
- SRPT-FM rule optimal for \(Qm|prmp| \sum C_j \)
- **Shortest Remaining Processing Time on Fastest Machine**
- \(v_1 \geq v_2 \geq \ldots \geq v_n \)
- \(C_n \leq C_{n-1} \leq \ldots \leq C_1 \)
- There are \(n \) machines
 - more jobs than machines \(\Rightarrow \) add machines with speed 0
 - more machines than jobs \(\Rightarrow \) slowest machines are not used
Parallel Machine Models (Deterministic)

Application with SRPT-FM - Example

<table>
<thead>
<tr>
<th>M/C</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_j</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jobs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_j</td>
<td>8</td>
<td>16</td>
<td>34</td>
<td>40</td>
<td>45</td>
<td>46</td>
<td>61</td>
</tr>
</tbody>
</table>

\[C_1 = 2 \quad C_2 = 5 \quad C_5 = 11 \quad C_4 = 16 \quad C_5 = 21 \quad C_6 = 26 \quad C_7 = 35 \]

\[\sum C'_j = 116 \]
Parallel Machine Models (Deterministic)

SRPT-FM is Optimal for Qm|prmp| Cj - Proof

\[
\begin{align*}
v_1C_n &= p_n \\
v_2C_n + v_1(C_{n-1} - C_n) &= p_{n-1} \\
v_3C_n + v_2(C_{n-1} - C_n) + v_1(C_{n-2} - C_{n-1}) &= p_{n-2} \\
&\vdots \\
v_nC_n + v_{n-1}(C_{n-1} - C_n) + \ldots + v_1(C_1 - C_2) &= p_1
\end{align*}
\]

Hence

\[
\begin{align*}
v_1C_n &= p_n \\
v_2C_n + v_1C_{n-1} &= p_n + p_{n-1} \\
v_3C_n + v_2C_{n-1} + v_1C_{n-2} &= p_n + p_{n-1} + p_{n-2} \\
&\vdots \\
v_nC_n + v_{n-1}C_{n-1} + \ldots + v_1C_1 &= p_n + p_{n-1} + \ldots + p_1
\end{align*}
\]
SRPT-FM is Optimal for $Qm|prmp| \Sigma C_j$ - Proof - Contd...

- S' is optimal $\Rightarrow C''_n \leq C''_{n-1} \leq \ldots \leq C''_1$
- $c'_n \geq p_n/v_1 \Rightarrow v_1C''_n \geq p_n$
- Processing done on jobs n and $n-1 \leq (v_1 + v_2)C''_n + v_1(C''_{n-1} - C''_n)$
- $\Rightarrow v_2C''_n + v_1C''_{n-1} \geq p_n + p_{n-1}$
- Similarly $v_kC''_n + v_{k-1}C''_{n-1} + \ldots v_1C''_{n-k+1} \leq p_n + p_{n-1} + \ldots + p_{n-k+1}$

\[
v_1C''_n = v_1C_n
\]
\[
v_2C''_n + v_1C''_{n-1} = v_2C_n + v_1C_{n-1}
\]
\[
\ldots \quad \ldots \quad \ldots
\]
\[
v_nC''_n + v_{n-1}C''_{n-1} + \ldots + v_1C''_1 = v_nC_n + v_{n-1}C_{n-1} + \ldots + v_1C_1
\]
SRPT-FM is Optimal for $Qm|prmp| \Sigma C_j$ - Proof - Contd...

- Multiply inequality i by $\alpha_i \geq 0$ and obtain $\Sigma C'_j \geq \Sigma C_j$
- Proof is complete if these α_i exist
- α_i must satisfy

\[
\begin{align*}
v_1\alpha_1 + v_2\alpha_2 + \ldots + v_n\alpha_n &= 1 \\
v_1\alpha_2 + v_2\alpha_3 + \ldots + v_{n-1}\alpha_n &= 1 \\
&\quad \ldots \ldots \ldots \\
v_1\alpha_n &= 1
\end{align*}
\]

- These α_i exist as $v_1 \geq v_2 \geq \ldots v_n$
DUE-DATE RELATED OBJECTIVES
Parallel Machine Models (Deterministic)

\[Pm \mid L_{\text{max}} \]

- \(Pm \mid L_{\text{max}} \) with all due dates \(= 0 \) \(\equiv Pm \mid C_{\text{max}} \Rightarrow \) NP-hard
- \(Qm \mid prmp \mid L_{\text{max}} \)
- Assume \(L_{\text{max}} = z \)
 \(C_j \leq d_j + z \Rightarrow \) set \(\overline{d}_j = d_j + z \) (hard deadline)
- Finding a schedule for this problem equivalent to solving \(Qm \mid r_j, prmp \mid C_{\text{max}} \)
 - Reverse direction of time
 \[0 \quad \overline{d}_j \quad k \quad t \]
 \[k \quad \overline{c}_{\text{max}} \quad 0 \]
 - Release each job \(j \) at \(K - \overline{d}_j \) (for a sufficiently big \(K \))
 - Solve problem with LRPT-FM for \(L_{\text{max}} \leq z \) and perform search over \(z \)
Parallel Machine Models (Deterministic)

Minimizing L_{max} with Preemptions

<table>
<thead>
<tr>
<th>Jobs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_j</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>p_j</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

- $P2|prmp|l_{max}$

- Is there a feasible schedule with $L_{max} = 0$? ($\overline{d}_j = d_j$)

<table>
<thead>
<tr>
<th>Jobs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_j</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>p_j</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

- Is there a feasible schedule with $C_{max} < 9$? YES, apply LRPT