Problem 4.31 The circular disk of radius a shown in Fig. 4-7 has uniform charge density ρ_s across its surface.

(a) Obtain an expression for the electric potential V at a point $P = (0,0,z)$ on the z-axis.

(b) Use your result to find E and then evaluate it for $z = h$. Compare your final expression with (4.24), which was obtained on the basis of Coulomb’s law.

Solution:

![Circular disk of charge.](image)

(a) Consider a ring of charge at a radial distance r. The charge contained in width dr is

$$dq = \rho_s (2\pi r \, dr) = 2\pi \rho_s r \, dr.$$

The potential at P is

$$dV = \frac{dq}{4\pi \varepsilon_0 R} = \frac{2\pi \rho_s r \, dr}{4\pi \varepsilon_0 (r^2 + z^2)^{1/2}}.$$

The potential due to the entire disk is

$$V = \int_0^a dV = \frac{\rho_s}{2\varepsilon_0} \int_0^a \frac{r \, dr}{(r^2 + z^2)^{1/2}} = \left[\frac{\rho_s}{2\varepsilon_0} \frac{r}{(r^2 + z^2)^{1/2}} \right]_0^a = \frac{\rho_s}{2\varepsilon_0} \left[(a^2 + z^2)^{1/2} - z \right].$$
\[E = -\nabla V = -\hat{x} \frac{\partial V}{\partial x} - \hat{y} \frac{\partial V}{\partial y} - \hat{z} \frac{\partial V}{\partial z} = \hat{z} \frac{\rho_s}{2\varepsilon_0} \left[1 - \frac{z}{\sqrt{a^2 + z^2}} \right]. \]

The expression for \(E \) reduces to Eq. (4.24) when \(z = h \).
Problem 4.34 Find the electric potential V at a location a distance b from the origin in the x–y plane due to a line charge with charge density ρ_l and of length l. The line charge is coincident with the z-axis and extends from $z = -l/2$ to $z = l/2$.

Solution: From Eq. (4.48c), we can find the voltage at a distance b away from a line of charge [Fig. P4.34]:

$$V(b) = \frac{1}{4\pi\varepsilon} \int \frac{\rho_l}{R'} \, dl' = \frac{\rho_l}{4\pi\varepsilon} \int_{-l/2}^{l/2} \frac{dz}{\sqrt{z^2 + b^2}} = \frac{\rho_l}{4\pi\varepsilon} \ln \left(\frac{l + \sqrt{l^2 + 4b^2}}{-l + \sqrt{l^2 + 4b^2}} \right).$$

Figure P4.34: Line of charge of length ℓ.
Problem 4.38 Given the electric field

\[\mathbf{E} = \hat{\mathbf{R}} \frac{18}{R^2} \text{ (V/m)} \]

find the electric potential of point A with respect to point B where A is at +2 m and B at −4 m, both on the \(z \)-axis.

Solution:

![Diagram of points A and B with z-axis](image)

Figure P4.38: Potential between B and A.

\[V_{AB} = V_A - V_B = - \int_B^A \mathbf{E} \cdot d\mathbf{l}. \]

Along \(z \)-direction, \(\hat{\mathbf{R}} = \hat{\mathbf{z}} \) and \(\mathbf{E} = \hat{\mathbf{z}} \frac{18}{z^2} \) for \(z \geq 0 \), and \(\hat{\mathbf{R}} = -\hat{\mathbf{z}} \) and \(\mathbf{E} = -\hat{\mathbf{z}} \frac{18}{z^2} \) for \(z \leq 0 \). Hence,

\[
V_{AB} = - \int_{-4}^{2} \hat{\mathbf{z}} \frac{18}{z^2} \cdot \hat{\mathbf{z}} \, dz = - \left[\int_{-4}^{0} -\hat{\mathbf{z}} \frac{18}{z^2} \cdot \hat{\mathbf{z}} \, dz + \int_{0}^{2} \hat{\mathbf{z}} \frac{18}{z^2} \cdot \hat{\mathbf{z}} \, dz \right] = 4 \text{ V}.
\]
Problem 4.48 With reference to Fig. 4-19, find E_1 if $E_2 = \hat{x}3 - \hat{y}2 + \hat{z}2$ (V/m), $\varepsilon_1 = 2\varepsilon_0$, $\varepsilon_2 = 18\varepsilon_0$, and the boundary has a surface charge density $\rho_s = 3.54 \times 10^{-11}$ (C/m2). What angle does E_2 make with the z-axis?

Solution: We know that $E_{1t} = E_{2t}$ for any 2 media. Hence, $E_{1t} = E_{2t} = \hat{x}3 - \hat{y}2$. Also, $(D_1 - D_2) \cdot \hat{n} = \rho_s$ (from Table 4.3). Hence, $\varepsilon_1(E_1 \cdot \hat{n}) - \varepsilon_2(E_2 \cdot \hat{n}) = \rho_s$, which gives

$$E_{1z} = \frac{\rho_s + \varepsilon_2E_{2z}}{\varepsilon_1} = \frac{3.54 \times 10^{-11}}{2\varepsilon_0} + \frac{18(2)}{2} = \frac{3.54 \times 10^{-11}}{2 \times 8.85 \times 10^{-12}} + 18 = 20 \text{ (V/m)}.$$

Hence, $E_1 = \hat{x}3 - \hat{y}2 + \hat{z}20$ (V/m). Finding the angle E_2 makes with the z-axis:

$$E_2 \cdot \hat{z} = |E_2| \cos \theta, \quad 2 = \sqrt{9+4+4 \cos \theta}, \quad \theta = \cos^{-1}\left(\frac{2}{\sqrt{17}}\right) = 61^\circ.$$
Problem 4.55 In a dielectric medium with \(\varepsilon_r = 4 \), the electric field is given by

\[
E = \hat{x}(x^2 + 2z) + \hat{y}x^2 - \hat{z}(y + z) \quad (\text{V/m})
\]

Calculate the electrostatic energy stored in the region \(-1 \text{ m} \leq x \leq 1 \text{ m}, 0 \leq y \leq 2 \text{ m}, \) and \(0 \leq z \leq 3 \text{ m} \).

Solution: Electrostatic potential energy is given by Eq. (4.124),

\[
W_e = \frac{1}{2} \int \varepsilon |E|^2 \; dV = \frac{\varepsilon}{2} \int_{z=0}^{3} \int_{y=0}^{2} \int_{x=-1}^{1} [(x^2 + 2z)^2 + x^4 + (y + z)^2] \; dx \; dy \; dz
\]

\[
= \frac{4\varepsilon_0}{2} \left(\left(\frac{2}{5}x^5 yz + \frac{2}{3}z^2 x^3 y + \frac{4}{3}z^3 xy + \frac{1}{12}(y+z)^4 x \right) \bigg|^{1}_{x=-1} \right) \bigg|^{2}_{y=0} \bigg|^{3}_{z=0}
\]

\[
= \frac{4\varepsilon_0}{2} \left(\frac{1304}{5} \right) = 4.62 \times 10^{-9} \quad (\text{J}).
\]
Problem 4.58 The capacitor shown in Fig. P4.58 consists of two parallel dielectric layers. Use energy considerations to show that the equivalent capacitance of the overall capacitor, C, is equal to the series combination of the capacitances of the individual layers, C_1 and C_2, namely

$$ C = \frac{C_1 C_2}{C_1 + C_2} \quad (22) $$

where

$$ C_1 = \varepsilon_1 \frac{A}{d_1}, \quad C_2 = \varepsilon_2 \frac{A}{d_2} $$

(a) Let V_1 and V_2 be the electric potentials across the upper and lower dielectrics, respectively. What are the corresponding electric fields E_1 and E_2? By applying the appropriate boundary condition at the interface between the two dielectrics, obtain explicit expressions for E_1 and E_2 in terms of ε_1, ε_2, V, and the indicated dimensions of the capacitor.

(b) Calculate the energy stored in each of the dielectric layers and then use the sum to obtain an expression for C.

(c) Show that C is given by Eq. (22).

Figure P4.58: (a) Capacitor with parallel dielectric layers, and (b) equivalent circuit (Problem 4.58).
Solution:

Figure P4.58: (c) Electric fields inside of capacitor.

(a) If V_1 is the voltage across the top layer and V_2 across the bottom layer, then

$$V = V_1 + V_2,$$

and

$$E_1 = \frac{V_1}{d_1}, \quad E_2 = \frac{V_2}{d_2}.$$

According to boundary conditions, the normal component of D is continuous across the boundary (in the absence of surface charge). This means that at the interface between the two dielectric layers,

$$D_{1n} = D_{2n}$$

or

$$\varepsilon_1 E_1 = \varepsilon_2 E_2.$$

Hence,

$$V = E_1 d_1 + E_2 d_2 = E_1 d_1 + \frac{\varepsilon_1 E_1}{\varepsilon_2} d_2,$$

which can be solved for E_1:

$$E_1 = \frac{V}{d_1 + \frac{\varepsilon_1}{\varepsilon_2} d_2}.$$

Similarly,

$$E_2 = \frac{V}{d_2 + \frac{\varepsilon_2}{\varepsilon_1} d_1}.$$
We \begin{align*}
W_e &= \frac{1}{2} \varepsilon_1 E_1^2 \cdot \gamma_1 = \frac{1}{2} \varepsilon_1 \left(\frac{V}{d_1 + \frac{\varepsilon_1}{\varepsilon_2} d_2} \right)^2 \cdot A d_1 = \frac{1}{2} V^2 \left[\frac{\varepsilon_1 \varepsilon_2^2 A d_1}{(\varepsilon_2 d_1 + \varepsilon_1 d_2)^2} \right], \\
W_e &= \frac{1}{2} \varepsilon_2 E_2^2 \cdot \gamma_2 = \frac{1}{2} \varepsilon_2 \left(\frac{V}{d_2 + \frac{\varepsilon_2}{\varepsilon_1} d_1} \right)^2 \cdot A d_2 = \frac{1}{2} V^2 \left[\frac{\varepsilon_2 \varepsilon_1^2 A d_2}{(\varepsilon_1 d_2 + \varepsilon_2 d_1)^2} \right], \\
W_e &= W_e + W_e = \frac{1}{2} V^2 \left[\frac{\varepsilon_1 \varepsilon_2^2 A d_1 + \varepsilon_2 \varepsilon_1^2 A d_2}{(\varepsilon_1 d_2 + \varepsilon_2 d_1)^2} \right].
\end{align*}

But \(W_e = \frac{1}{2} CV^2 \), hence,
\begin{align*}
C &= \frac{\varepsilon_1 \varepsilon_2^2 A d_1 + \varepsilon_2 \varepsilon_1^2 A d_2}{(\varepsilon_2 d_1 + \varepsilon_1 d_2)^2} = \frac{\varepsilon_1 \varepsilon_2 A}{(\varepsilon_2 d_1 + \varepsilon_1 d_2)^2} = \frac{\varepsilon_1 \varepsilon_2 A}{\varepsilon_2 d_1 + \varepsilon_1 d_2}.
\end{align*}

(c) Multiplying numerator and denominator of the expression for \(C \) by \(A/d_1 d_2 \), we have
\begin{align*}
C &= \frac{\frac{\varepsilon_1 A}{d_1} \frac{\varepsilon_2 A}{d_2}}{\frac{\varepsilon_1 A}{d_1} + \frac{\varepsilon_2 A}{d_2}} = \frac{C_1 C_2}{C_1 + C_2},
\end{align*}
where
\begin{align*}
C_1 &= \frac{\varepsilon_1 A}{d_1}, \quad C_2 = \frac{\varepsilon_2 A}{d_2}.
\end{align*}
Problem 4.62 Conducting wires above a conducting plane carry currents I_1 and I_2 in the directions shown in Fig. P4.62. Keeping in mind that the direction of a current is defined in terms of the movement of positive charges, what are the directions of the image currents corresponding to I_1 and I_2?

![Figure P4.62: Currents above a conducting plane (Problem 4.62).](image)

Solution:

(a) In the image current, movement of negative charges downward = movement of positive charges upward. Hence, image of I_1 is same as I_1.

\[I_1 \uparrow \quad + q @ t=t_1 \]
\[\quad \cdot \quad + q @ t=0 \]

\[\cdots \cdots \cdots \cdots \cdots \cdots \cdots \]

\[I_1 \downarrow \quad - q @ t=0 \]
\[\quad \cdot \quad - q @ t=t_1 \]

![Figure P4.62(a): Solution for part (a).](image)

(b) In the image current, movement of negative charges to right = movement of positive charges to left.
Figure P4.62(b): Solution for part (b).
Problem 5.5 In a cylindrical coordinate system, a 2-m-long straight wire carrying a current of 5 A in the positive z-direction is located at $r = 4$ cm, $\phi = \pi/2$, and $-1 \text{ m} \leq z \leq 1$ m.

(a) If $\mathbf{B} = \hat{r}0.2 \cos \phi$ (T), what is the magnetic force acting on the wire?

(b) How much work is required to rotate the wire once about the z-axis in the negative ϕ-direction (while maintaining $r = 4$ cm)?

(c) At what angle ϕ is the force a maximum?

Solution:

(a)

$$\mathbf{F} = I \ell \times \mathbf{B} = 5 \hat{z} \times [\hat{r}0.2 \cos \phi] = \hat{\phi}2 \cos \phi.$$

At $\phi = \pi/2$, $\hat{\phi} = -\hat{x}$. Hence,

$$\mathbf{F} = -\hat{x}2 \cos(\pi/2) = 0.$$

(b)

$$W = \int_{\phi=0}^{2\pi} \mathbf{F} \cdot d\mathbf{l} = \int_{0}^{2\pi} \hat{\phi} [2 \cos \phi] \cdot (-\hat{\phi}) r \, d\phi \bigg|_{r=4 \text{ cm}}$$

$$= -2r \left[\cos \phi \right]_{\phi=0}^{2\pi} \bigg|_{r=4 \text{ cm}} = -8 \times 10^{-2} \left[\sin \phi \right]_{0}^{2\pi} = 0.$$
The force is in the \(+\hat{\phi} \)-direction, which means that rotating it in the \(-\hat{\phi} \)-direction would require work. However, the force varies as \(\cos \phi \), which means it is positive when \(-\pi/2 \leq \phi \leq \pi/2 \) and negative over the second half of the circle. Thus, work is provided by the force between \(\phi = \pi/2 \) and \(\phi = -\pi/2 \) (when rotated in the \(+\hat{\phi} \)-direction), and work is supplied for the second half of the rotation, resulting in a net work of zero.

(c) The force \(\mathbf{F} \) is maximum when \(\cos \phi = 1 \), or \(\phi = 0 \).
Problem 5.12 Two infinitely long, parallel wires are carrying 6-A currents in opposite directions. Determine the magnetic flux density at point P in Fig. P5.12.

\[B = \hat{\Phi} \frac{\mu_0 I_1}{2\pi(0.5)} + \hat{\Phi} \frac{\mu_0 I_2}{2\pi(1.5)} = \hat{\Phi} \frac{\mu_0}{\pi} (6 + 2) = \hat{\Phi} \frac{8\mu_0}{\pi} \text{ (T)}. \]
Problem 5.19 Three long, parallel wires are arranged as shown in Fig. P5.19. Determine the force per unit length acting on the wire carrying I_3.

![Figure P5.19: Three parallel wires of Problem 5.19.](image)

Solution: Since I_1 and I_2 are equal in magnitude and opposite in direction, and

![Figure P5.19: (a) B fields due to I_1 and I_2 at location of I_3.](image)
equidistant from \(I_3 \), our intuitive answer might be that the net force on \(I_3 \) is zero. As we will see, that’s not the correct answer. The field due to \(I_1 \) (which is along \(\hat{y} \)) at location of \(I_3 \) is

\[
B_1 = \hat{b}_1 \frac{\mu_0 I_1}{2\pi R_1}
\]

where \(\hat{b}_1 \) is the unit vector in the direction of \(B_1 \) shown in the figure, which is perpendicular to \(\hat{R}_1 \). The force per unit length exerted on \(I_3 \) is

\[
F'_{31} = \frac{\mu_0 I_1 I_3}{2\pi R_1} (\hat{y} \times \hat{b}_1) = -\hat{R}_1 \frac{\mu_0 I_1 I_3}{2\pi R_1}.
\]

Similarly, the force per unit length excited on \(I_3 \) by the field due to \(I_2 \) (which is along \(-\hat{y} \)) is

\[
F'_{32} = \hat{b}_2 \frac{\mu_0 I_2 I_3}{2\pi R_2}.
\]

The two forces have opposite components along \(\hat{x} \) and equal components along \(\hat{z} \). Hence, with \(R_1 = R_2 = \sqrt{8} \) m and \(\theta = \sin^{-1}(2/\sqrt{8}) = \sin^{-1}(1/\sqrt{2}) = 45^\circ \),

\[
F_3 = F'_{31} + F'_{32} = 2 \left(\frac{\mu_0 I_1 I_3}{2\pi R_1} + \frac{\mu_0 I_2 I_3}{2\pi R_2} \right) \sin \theta
= 2 \left(\frac{4\pi \times 10^{-7} \times 10 \times 20}{2\pi \times \sqrt{8}} \right) \times \frac{1}{\sqrt{2}} = 2 \times 10^{-5} \text{ N/m}.
\]
Problem 5.20 A square loop placed as shown in Fig. P5.20 has 2-m sides and carries a current $I_1 = 5 \text{ A}$. If a straight, long conductor carrying a current $I_2 = 10 \text{ A}$ is introduced and placed just above the midpoints of two of the loop’s sides, determine the net force acting on the loop.

Solution: Since I_2 is just barely above the loop, we can treat it as if it’s in the same plane as the loop. For side 1, I_1 and I_2 are in the same direction, hence the force on side 1 is attractive. That is,

$$F_1 = \frac{\mu_0 I_1 I_2 a}{2\pi (a/2)} = \frac{4\pi \times 10^{-7} \times 5 \times 10 \times 2}{2\pi \times 1} = 2 \times 10^{-5} \text{ N}.$$

I_1 and I_2 are in opposite directions for side 3. Hence, the force on side 3 is repulsive, which means it is also along \hat{y}. That is, $F_3 = F_1$.

The net forces on sides 2 and 4 are zero. Total net force on the loop is

$$F = 2F_1 = 4 \times 10^{-5} \text{ N}.$$