Problem 4.3 Find the total charge contained in a cone defined by $R \leq 2$ m and $0 \leq \theta \leq \pi/4$, given that $\rho_v = 10R^2\cos^2\theta$ (mC/m3).

Problem 4.8 An electron beam shaped like a circular cylinder of radius r_0 carries a charge density given by

$$\rho_v = \left(-\frac{\rho_0}{1 + r^2} \right) \text{ (C/m}^3)$$

where ρ_0 is a positive constant and the beam’s axis is coincident with the z-axis.

(a) Determine the total charge contained in length L of the beam.

(b) If the electrons are moving in the $+z$-direction with uniform speed u, determine the magnitude and direction of the current crossing the z-plane.

Problem 4.14 A line of charge with uniform density $\rho_l = 8$ (μC/m) exists in air along the z-axis between $z = 0$ and $z = 5$ cm. Find E at $(0,10\text{ cm},0)$.

Problem 4.20 Three infinite lines of charge, $\rho_l = 3$ (nC/m), $\rho_l = -3$ (nC/m), and $\rho_l = 3$ (nC/m), are all parallel to the z-axis. They pass through the respective points $(0,-b)$, $(0,0)$, and $(0,b)$ in the x-y plane, find the electric field at $(a,0,0)$. Evaluate your result for $a = 2$ cm and $b = 1$ cm.

Problem 4.22 Given the electric flux density

$$\mathbf{D} = \mathbf{\hat{x}}2(x+y) + \mathbf{\hat{y}}(3x-2y) \text{ (C/m}^2)$$

determine

(a) ρ_v by applying Eq. (4.26).

(b) The total charge Q enclosed in a cube 2 m on a side, located in the first octant with three of its sides coincident with the x-, y-, and z-axes and one of its corners at the origin.

(c) The total charge Q in the cube, obtained by applying Eq. (4.29).

Problem 4.24 Charge Q_1 is uniformly distributed over a thin spherical shell of radius a, and charge Q_2 is uniformly distributed over a second spherical shell of radius b, with $b > a$. Apply Gauss’s law to find E in the regions $R < a$, $a < R < b$, and $R > b$.
Problem 4.25 The electric flux density inside a dielectric sphere of radius a centered at the origin is given by

$$\mathbf{D} = \hat{R} \rho_0 R \quad (\text{C/m}^2)$$

where ρ_0 is a constant. Find the total charge inside the sphere.

Problem 4.27 An infinitely long cylindrical shell extending between $r = 1 \, \text{m}$ and $r = 3 \, \text{m}$ contains a uniform charge density ρ_r. Apply Gauss’s law to find \mathbf{D} in all regions.