Problem 2.65 Use CD Module 2.7 to design a quarter-wavelength transformer to match a load with $Z_L = (50 + j10) \, \Omega$ to a 100-\(\Omega\) line.

Problem 2.66 A 200-\(\Omega\) transmission line is to be matched to a computer terminal with $Z_L = (50 - j25) \, \Omega$ by inserting an appropriate reactance in parallel with the line. If \(f = 800\) MHz and \(\varepsilon_r = 4\), determine the location nearest to the load at which inserting:

(a) A capacitor can achieve the required matching, and the value of the capacitor.

(b) An inductor can achieve the required matching, and the value of the inductor.

Problem 2.67 Repeat Problem 2.66 using CD Module 2.8.

Problem 2.72 Determine Z_m of the feed line shown in Fig. P2.72. All lines are lossless with $Z_0 = 50 \, \Omega$.

![Figure P2.72: (a) Circuit of Problem 2.72.](image-url)
Problem 2.74 A 25-Ω antenna is connected to a 75-Ω lossless transmission line. Reflections back toward the generator can be eliminated by placing a shunt impedance Z at a distance l from the load (Fig. P2.74). Determine the values of Z and l.

![Circuit for Problem 2.74](image)

$Z_0 = 75 \, \Omega$, $Z = ?$, $Z_L = 25 \, \Omega$

Figure P2.74: Circuit for Problem 2.74.

Problem 2.77 In response to a step voltage, the voltage waveform shown in Fig. P2.77 was observed at the sending end of a lossless transmission line with $R_g = 50 \, \Omega$, $Z_0 = 50 \, \Omega$, and $\varepsilon_t = 2.25$. Determine the following:

(a) The generator voltage.
(b) The length of the line.
(c) The load impedance.

![Voltage waveform](image)

$V(0, t)$

5 V

3 V

0 6 μs

t

Figure P2.77: Voltage waveform for Problems 2.77 and 2.79.
Problem 2.78 In response to a step voltage, the voltage waveform shown in Fig. P2.78 was observed at the sending end of a shorted line with $Z_0 = 50$ Ω and $\varepsilon_t = 4$. Determine V_g, R_g, and the line length.

![Voltage waveform](image)

Figure P2.78: Voltage waveform of Problem 2.78.

Problem 2.79 Suppose the voltage waveform shown in Fig. P2.77 was observed at the sending end of a 50-\(\Omega\) transmission line in response to a step voltage introduced by a generator with $V_g = 15$ V and an unknown series resistance R_g. The line is 1 km in length, its velocity of propagation is 1×10^5 m/s, and it is terminated in a load $R_L = 100$ Ω.

(a) Determine R_g.

(b) Explain why the drop in level of $V(0, t)$ at $t = 6 \mu s$ cannot be due to reflection from the load.

(c) Determine the shunt resistance R_f and location of the fault responsible for the observed waveform.