Problem 1.1 A 2-kHz sound wave traveling in the x-direction in air was observed to have a differential pressure \(p(x,t) = 10 \text{ N/m}^2 \) at \(x = 0 \) and \(t = 50 \mu \text{s} \). If the reference phase of \(p(x,t) \) is 36°, find a complete expression for \(p(x,t) \). The velocity of sound in air is 330 m/s.

Problem 1.8 Two waves on a string are given by the following functions:

\[
y_1(x,t) = 4 \cos(20t - 30x) \quad \text{cm} \\
y_2(x,t) = -4 \cos(20t + 30x) \quad \text{cm}
\]

where \(x \) is in centimeters. The waves are said to interfere constructively when their superposition \(|y_s| = |y_1 + y_2| \) is a maximum, and they interfere destructively when \(|y_s| \) is a minimum.

(a) What are the directions of propagation of waves \(y_1(x,t) \) and \(y_2(x,t) \)?

(b) At \(t = (\pi/50) \text{ s} \), at what location \(x \) do the two waves interfere constructively, and what is the corresponding value of \(|y_s| \)?

(c) At \(t = (\pi/50) \text{ s} \), at what location \(x \) do the two waves interfere destructively, and what is the corresponding value of \(|y_s| \)?

Problem 1.9 Give expressions for \(y(x,t) \) for a sinusoidal wave traveling along a string in the negative \(x \)-direction, given that \(y_{\text{max}} = 40 \text{ cm} \), \(\lambda = 30 \text{ cm} \), \(f = 10 \text{ Hz} \), and

(a) \(y(x,0) = 0 \) at \(x = 0 \),

(b) \(y(x,0) = 0 \) at \(x = 3.75 \text{ cm} \).

Problem 1.13 The voltage of an electromagnetic wave traveling on a transmission line is given by \(v(z,t) = 5e^{-az} \sin(4\pi \times 10^9 t - 20\pi z) \) (V), where \(z \) is the distance in meters from the generator.

(a) Find the frequency, wavelength, and phase velocity of the wave.

(b) At \(z = 2 \text{ m} \), the amplitude of the wave was measured to be 2 V. Find \(\alpha \).
Problem 1.16 Evaluate each of the following complex numbers and express the result in rectangular form:

(a) \(z_1 = 8e^{i\pi/3} \)
(b) \(z_2 = \sqrt{3} \ e^{i3\pi/4} \)
(c) \(z_3 = 2e^{-j\pi/2} \)
(d) \(z_4 = j^3 \)
(e) \(z_5 = j^{-4} \)
(f) \(z_6 = (1 - j)^3 \)
(g) \(z_7 = (1 - j)^{1/2} \)

Problem 1.19 If \(z = -2 + j4 \), determine the following quantities in polar form:

(a) \(1/z \),
(b) \(z^3 \),
(c) \(|z|^2 \),
(d) \(\text{Im}\{z\} \),
(e) \(\text{Im}\{z^*\} \).

Problem 1.21 Complex numbers \(z_1 \) and \(z_2 \) are given by

\[
\begin{align*}
 z_1 &= 5 \angle -60^\circ \\
 z_2 &= 4 \angle 45^\circ
\end{align*}
\]

(a) Determine the product \(z_1z_2 \) in polar form.
(b) Determine the product \(z_1z_2^* \) in polar form.
(c) Determine the ratio \(z_1/z_2 \) in polar form.
(d) Determine the ratio \(z_1^*/z_2^* \) in polar form.
(e) Determine \(\sqrt{z_1} \) in polar form.
Problem 1.26 Find the phasors of the following time functions:
(a) \(v(t) = 9 \cos(\omega t - \pi/3) \) (V)
(b) \(v(t) = 12 \sin(\omega t + \pi/4) \) (V)
(c) \(i(x, t) = 5 e^{-3x} \sin(\omega t + \pi/6) \) (A)
(d) \(i(t) = -2 \cos(\omega t + 3\pi/4) \) (A)
(e) \(i(t) = 4 \sin(\omega t + \pi/3) + 3 \cos(\omega t - \pi/6) \) (A)

Problem 1.27 Find the instantaneous time sinusoidal functions corresponding to the following phasors:
(a) \(\overrightarrow{V} = -5 e^{j\pi/3} \) (V)
(b) \(\overrightarrow{V} = j6 e^{-j\pi/4} \) (V)
(c) \(\overrightarrow{I} = (6 + j8) \) (A)
(d) \(\overrightarrow{I} = -3 + j2 \) (A)
(e) \(\overrightarrow{I} = j \) (A)
(f) \(\overrightarrow{I} = 2 e^{j\pi/6} \) (A)

Problem 1.28 A series RLC circuit is connected to a generator with a voltage \(v_5(t) = V_0 \cos(\omega t + \pi/3) \) (V).

(a) Write the voltage loop equation in terms of the current \(i(t) \), \(R \), \(L \), \(C \), and \(v_5(t) \).
(b) Obtain the corresponding phasor-domain equation.
(c) Solve the equation to obtain an expression for the phasor current \(\overrightarrow{I} \).