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Abstract—In this paper, the capacity of airborne multiple-
input-multiple-output (MIMO) wireless communication systems
with arbitrary alignments of linear transmit and receive antenna
arrays is systematically analyzed and the maximum achievable
capacity is determined. Based on a general three-dimensional
(3D) airborne MIMO communication model, we are able to
approximate the airborne MIMO capacity as a function of
the transmit and receive antenna array geometry in the 3D
space. The capacity approximation is asymptotically tight as the
distance between the transmit and receive antenna arrays large
compared to their size. Based on the asymptotically tight capacity
approximation, we derive an upper bound as well as a lower
bound of the airborne MIMO capacity. Interestingly, both the
upper and lower bounds are achievable. We also derive a neces-
sary and sufficient condition for airborne MIMO communication
systems to achieve the capacity upper bound for any given 3D
transceiver antenna array geometry. The necessary and sufficient
condition allows us to properly select the system parameters and
design airborne MIMO communication systems that reach the
best possible performance in terms of system capacity. We prove
that when the distance between the transmit and receive antenna
arrays is within a certain range, there exists a set of system
parameter values (e.g. antenna element separation) for which
the capacity of the MIMO communication system achieves the
theoretical upper bound and this capacity value is larger than
the average capacity of the corresponding conventional MIMO
communication system under Rayleigh fading. Finally, we prove
that the airborne MIMO capacity converges to the capacity
lower bound when the distance between the transmit and receive
antenna arrays goes to infinity. Extensive numerical studies
included in this paper illustrate and validate our theoretical
developments.

Index Terms—Airborne multiple-input-multiple-output
(MIMO) communications, capacity, lower bound, upper bound,
free-space MIMO communications, Rayleigh fading.
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I. INTRODUCTION

MULTIPLE-INPUT-multiple-output (MIMO) wireless
communications can provide substantial capacity in-

crease in rich scattering and reflection environments compared
to conventional single-input-single-output (SISO) systems [1]–
[4]. In such environments, often characterized as Rayleigh
fading, wireless channel between each transmit antenna and
each receive antenna exhibits random fading which leads to
non-singular MIMO channels that allow decomposition into
multiple equivalent independent channels over which multiple
independent data steams are transmitted. More specifically, the
capacity of MIMO systems under Rayleigh fading increases
linearly with the number of transmit antennas provided that
the number of receive antennas is not less than that of trans-
mit antennas [3], [4]. Bell Laboratory Layered Space-Time
(BLAST) communication systems [5] verified the MIMO the-
ory and revealed that the capacity of the MIMO architecture is
indeed significantly greater than that of the SISO architecture.
Since then, extensive work has been carried out to analyze
MIMO communication systems and design practical space-
time codes and modulation schemes to achieve the potential
MIMO capacity (see, for example, [6]–[12] and the references
therein).

MIMO techniques have been widely used for ground or
near-ground wireless cellular and local area networks such as
4G LTE and WiFi networks which operate in rich scattering
environments. The feasibility of applying the MIMO concept
to airborne ad-hoc networks was studied in [13], where
aircrafts or unmanned-ariel-vehicles (UAV) communicate with
each other through multiple antennas carried within each
aircraft. Key challenges in airborne or free-space MIMO
wireless communications are: (i) the absence of rich scattering
and reflections; and (ii) the fact that the link between each
transmit antenna and each receive antenna is essentially a
line-of-sight Gaussian channel. Consequently, airborne MIMO
channels may be highly correlated in which case they induce
a singular MIMO channel matrix, and thus may not offer
the promising capacity increase compared to the conventional
gound/near-ground MIMO wireless communications. In [13],
the capacity of airborne MIMO channels between two F-35
jet airplanes (each equipped with 12 antenna elements) was
evaluated, and it was shown that when the distance between
the two airplanes is within a certain range, the airborne MIMO
channels do provide significant capacity increase compared to
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the single-antenna case. In fact, it was shown that, in some
cases, the capacity may even exceed the conventional ergodic
Rayleigh MIMO capacity. When the distance is long, the
capacity of the airborne MIMO channel between two airplanes
decreases dramatically. We note that in [14], an experiment
of free-space near-ground MIMO link was performed in a
parking lot at Bell Labs in Crawford Hill, New Jersey. Link
capacity was measured and showed dependence on antenna
array geometry, distance, and electric field polarization.

In this paper, we systematically analyze the capacity of
airborne MIMO wireless communication systems with lin-
ear transmit and receive antenna arrays and arbitrary three-
dimensional (3D) alignments (a 3D model is necessary for
two flying aircrafts with transceiver antenna arrays). We
develop a necessary and sufficient condition for the airborne
MIMO systems to achieve maximum capacity for any given
transceiver antenna array geometry in the 3D space. First,
we develop a general three-dimensional model for airborne
MIMO communications that is able to accommodate arbitrary
alignments of the transmit and receive antenna arrays. Second,
we approximate the airborne MIMO capacity as a function
of the transmit and receive antenna array geometry. The
capacity approximation is (asymptotically) tight when the
distance between the transmit and receive antenna arrays
is large compared to their size, which is true in practical
airborne MIMO communication scenarios. Third, based on
the asymptotically tight capacity approximation, we deter-
mine an upper and a lower bounds for the airborne MIMO
capacity. Interestingly, both bounds are achievable. Fourth,
we derive a necessary and sufficient condition for airborne
MIMO communication systems to achieve the capacity upper
bound. We note that the capacity of airborne MIMO channels
was also investigated in [15]–[17] under the term of line-of-
sight MIMO channels. In particular, [15] proposed a condition
on optimal antenna element separation for the case where
the transmitter and receiver antenna arrays are parallel, while
[16], [17] considered the more general non-parallel/arbitrary
3D alignment case. The necessary and sufficient condition
developed in this paper shows that the conditions presented
in [15]–[17] are sufficient, but not necessary. In addition, the
condition presented in [16], [17] for the selection of system
parameters (e.g. antenna element separation) to reach the best
possible capacity value for any given transceiver antenna array
geometry in the 3D space is true only when the zenith angle
of the linear transmit and receive antenna arrays is zero, i.e.
the transmitter and receiver antenna arrays are aligned on the
same plane which is a rare event to happen with two flying
aircrafts as the transceiver antenna arrays are carried within
two different aircrafts respectively. In this paper, we develop
a necessary and sufficient condition on system parameters to
achieve the best possible capacity for any given transceiver
antenna array geometry in the 3D space. The necessary
and sufficient condition allows us to design airborne MIMO
communication systems by selecting proper system parameters
to reach the best possible capacity and it is worth noting
that the capacity value is larger than the average capacity of
the corresponding conventional MIMO communication system
under Rayleigh fading. Finally, we prove that the airborne
MIMO capacity converges to the capacity lower bound when
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Fig. 1. System model of airborne MIMO wireless communications.

the distance between the transmit and receive antenna arrays
goes to infinity. Extensive numerical studies are provided to
illustrate and validate our theoretical developments.

The rest of the paper is organized as follows. In Sec-
tion II, we develop the general model for airborne MIMO
wireless communication systems with arbitrary antenna array
alignment. In Section III, we first determine the lower and
upper bounds for the capacity of the airborne MIMO systems.
Then we develop a necessary and sufficient condition for
the airborne MIMO communication systems to achieve the
capacity upper bound, and also discuss under what conditions
the airborne MIMO capacity reaches the capacity lower bound.
Extensive numerical studies are carried out in Section IV.
Finally, some conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider an airborne (free-space) MIMO wireless com-
munication system with Mt transmit antennas and Mr receive
antennas, as shown in Fig. 1. The transmit antennas are equally
spaced with separation st meters while the receive antennas
are equally spaced with separation sr meters. Let us consider
a three-dimensional Cartesian coordinate system and, without
loss of generality, assume that the transmit antenna array
is in the (x, y)-plane with its center located at the origin.
The transmit antenna array is assumed to have an angle
θt ∈ [0, 2π) from the x-axis. We further assume that the center
of the receive antenna array is on the x-axis, and the distance
between the centers of the two antenna arrays is d meters. The
receive antenna array is assumed to be at an angle θr ∈ [0, 2π)
from the (x, z)-plane and at a zenith angle φ ∈ [−π, π) from
the (x, y)-plane.

With the above model, the coordinates of the m-th transmit
antenna element, m = 1, 2, · · · ,Mt, can be given by

[xt(m), yt(m), zt(m)] =
(Mt − 2m+ 1)st

2
[cos θt, sin θt, 0],

(1)
and the coordinates of the n-th receive antenna element, n =
1, 2, · · · ,Mr, can be given by

[xr(n), yr(n), zr(n)] = [d, 0, 0] +
(Mr − 2n+ 1)sr

2
× [cosφ cos θr, cosφ sin θr, sinφ].

(2)

In airborne or free-space environment, the channel coefficient
between the m-th transmit antenna and the n-th receive
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antenna can be modeled as [18]

hm,n =
λ

rm,n
e−j2π

rm,n
λ , 1 ≤ m ≤ Mt, 1 ≤ n ≤ Mr, (3)

where λ is the carrier wavelength and rm,n is the distance
between the m-th transmit antenna and the n-th receive
antenna, i.e. rm,n =

√
(xt − xr)2 + (yt − yr)2 + (zt − zr)2.

From (1) and (2), the square of the distance rm,n can be
calculated as

r2m,n = a2m + b2n − 2ambn cosφ cos(θt − θr)

− 2d(am cos θt − bn cosφ cos θr) + d2, (4)

where

am =
(Mt − 2m+ 1)st

2
, m = 1, 2, · · · ,Mt, (5)

bn =
(Mr − 2n+ 1)sr

2
, n = 1, 2, · · · ,Mr. (6)

The received signal of the airborne MIMO communication
system can be modeled as

Y =
√
P XH +N, (7)

where Y = [y1 y2 · · · yMr ] is the received signal vector,
P is the transmission power, X = [x1 x2 · · · xMt ] is the
transmitted signal vector with a normalized average power
constraint E|xm|2 = 1√

Mt
, 1 ≤ m ≤ Mt, and H is the

channel coefficient matrix given by

H =

⎡
⎢⎢⎢⎣

h1,1 h1,2 · · · h1,Mr

h2,1 h2,2 · · · h2,Mr

...
...

. . .
...

hMt,1 hMt,2 · · · hMt,Mr

⎤
⎥⎥⎥⎦ . (8)

In (7), N = [n1 n2 · · · nMr ] is an additive noise vector
whose elements are assumed to be i.i.d. complex Gaussian ran-
dom variables with zero mean and variance N0 = 3.52×10−21

watts/Hz, (i.e. −174.5dBm at atmospheric temperature 255K
[19]). Then, the signal-to-noise ratio (SNR) at the n-th receive
antenna, n = 1, 2, · · · ,Mr, is

SNRn =
Pλ2

MtN0

Mt∑
m=1

1

r2m,n

. (9)

The capacity of the airborne MIMO communications is [13]

Cairborne = log2

[
det

(
IMt +

P

MtN0
HHH

)]
, (10)

where IMt is the identity matrix of size Mt and H stands for
the Hermitian operator.

III. MAXIMUM AND MINIMUM CAPACITY OF AIRBORNE

MIMO COMMUNICATIONS

In this section, we first determine a lower bound and an
upper bound on the capacity of the airborne MIMO system.
Then, we develop a necessary and sufficient condition for such
a system to achieve the capacity upper bound. Finally, we
show that the capacity converges to the lower bound when
the distance between the transmit and receive antenna arrays
goes to infinity.

Let us denote

HHH �
=

⎡
⎢⎢⎢⎣

g1,1 g1,2 · · · g1,Mt

g2,1 g2,2 · · · g2,Mt

...
...

. . .
...

gMt,1 gMt,2 · · · gMt,Mt

⎤
⎥⎥⎥⎦ , (11)

then according to (3) and (8), each element gk,l of the above
matrix in (11), 1 ≤ k, l ≤ Mt, can be specified as

gk,l =

Mr∑
n=1

hk,nh
∗
l,n =

Mr∑
n=1

λ2

rk,nrl,n
e−j2π

rk,n−rl,n
λ . (12)

For simplicity of notation, for any m,n such that 1 ≤ m ≤ Mt

and 1 ≤ n ≤ Mr, we rewrite the square of the distance rm,n

in (4) as
r2m,n = Am,n +Bm,nd+ d2, (13)

where

Am,n
�
= a2m + b2n − 2ambn cosφ cos(θt − θr), (14)

Bm,n
�
= −2am cos θt + 2bn cosφ cos θr. (15)

Then, for any k, l, n such that 1 ≤ k ≤ Mt, 1 ≤ l ≤ Mt and
1 ≤ n ≤ Mr, we have

rk,n − rl,n =
√
Ak,n +Bk,nd+ d2 −

√
Al,n +Bl,nd+ d2

= d× F

(
1

d

)
, (16)

where

F (x)
�
=

√
Ak,nx2 +Bk,nx+ 1−

√
Al,nx2 +Bl,nx+ 1.

(17)
If we consider the second-order Taylor expansion of F (x), i.e.

F (x) ≈ F (0) + F ′(0)x+
1

2
F ′′(0)x2, (18)

where F (0) = 0 and

F ′(0) =
1

2
(Bk,n −Bl,n) = −(ak − al) cos θt,

F ′′(0) = (Ak,n −Al,n)− 1

4
(B2

k,n −B2
l,n)

= (a2k − a2l ) sin
2 θt − 2(ak − al)bn cosφ sin θt sin θr,

then the approximation in (18) is tight when x is small. In
other words, when the distance d is large (or equivalently 1

d
is small), we may approximate rk,n − rl,n in (16) as

rk,n − rl,n ≈ −(ak − al) cos θt

+
(a2k − a2l ) sin

2 θt − 2(ak − al)bn cosφ sin θt sin θr
2d

.

(19)

Note that for any n, such that 1 ≤ n ≤ Mr, bn can be written
as bn = b1 + (n− 1)sr, so the approximation in (19) can be
rewritten as

rk,n − rl,n ≈ (rk,1 − rl,1)

− (ak − al)(n− 1)sr cosφ sin θt sin θr
d

, (20)
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Fig. 2. Comparisons of the exact value and the approximation of the airborne
MIMO capacity (Mt = Mr = 2).

for any n = 1, 2, · · · ,Mr. Therefore, for any k, l such that
1 ≤ k ≤ Mt and 1 ≤ l ≤ Mt, each element gk,l of the matrix
in (11) can be tightly approximated as follows:

gk,l ≈
Mr∑
n=1

λ2

rk,nrl,n
e−j2π

rk,1−rl,1
λ

× ej2π
(ak−al)(n−1)sr cos φ sin θt sin θr

λd

≈ λ2

d2
e−j2π

rk,1−rl,1
λ

Mr∑
n=1

ej2π
(l−k)(n−1)stsr cos φ sin θt sin θr

λd

�
= g̃k,l, (21)

where the second approximation is due to the fact that rk,n ≈
d and rl,n ≈ d for large d.

If we denote

G̃
�
=

⎡
⎢⎢⎢⎣

g̃1,1 g̃1,2 · · · g̃1,Mt

g̃2,1 g̃2,2 · · · g̃2,Mt

...
...

. . .
...

g̃Mt,1 g̃Mt,2 · · · g̃Mt,Mt

⎤
⎥⎥⎥⎦ , (22)

then (11) and (21) imply that the capacity of the airborne
MIMO communication system in (10) can be approximated
by

C̃airborne = log2

[
det

(
IMt +

P

MtN0
G̃

)]
. (23)

The approximation of the airborne MIMO capacity is tight for
large d, i.e. when the distance between the transmit antenna
array and the receive antenna array is large compared to the
sizes of the antenna arrays, which is true in practical airborne
MIMO communication scenarios. The tightness of the capacity
approximation in shown in Fig. 2 for different transceiver
antenna array alignments. In particular, we compare the exact
value of the capacity Cairborne in (10) and the capacity
approximation C̃airborne in (23) with varying distance d. In
this example, the airborne MIMO system has two transmit
antennas (Mt = 2) and two receive antennas (Mr = 2),
and the antenna separation is st = sr = 1m. We assume

that the system operates at 10GHz band (λ = 0.03m) and
the transmission power is P = −10dBm (watts/Hz). We
consider three different transceiver antenna array alignments:
(i) θt =

π
2 , θr = π

2 , φ = 0; (ii) θt =
π
3 , θr = π

3 , φ = π
8 ; and

(iii) θt = π
6 , θr = π

6 , φ = π
4 . We observe that with distance

varying, the eigenvalues of the corresponding airborne MIMO
channel matrix in (11) change which may result in airborne
MIMO capacity fluctuation. From the figure, we can see that
the difference between the exact value and the approximation
of the capacity is almost indistinguishable. In the rest of
this paper, we will analyze the capacity based on the tight
approximation C̃airborne in (23).

Let us denote the eigenvalues of the matrix G̃ in (22) as
λ1, λ2, · · · , λMt . Then, the airborne MIMO capacity C̃airborne

in (23) can be calculated as

C̃airborne = log2

Mt∏
i=1

(
1 +

P

MtN0
λi

)
. (24)

Since the eigenvalues λ1, λ2, · · · , λMt are nonnegative and
λ1 + λ2 + · · · + λMt = trace(G̃) = MtMr

λ2

d2 , then a lower
bound of the airborne MIMO capacity can be determined as
follows:

C̃airborne ≥ log2

(
1 +

P

MtN0

Mt∑
i=1

λi

)

= log2

(
1 +Mr

Pλ2

N0d2

)
. (25)

On the other hand, since the geometric mean of nonnegative
numbers is less than or equal to the arithmetic mean, we have

C̃airborne ≤ log2

[
1

Mt

Mt∑
i=1

(
1 +

P

MtN0
λi

)]Mt

= Mt log2

(
1 +

Mr

Mt

Pλ2

N0d2

)
. (26)

The above upper bound is valid for arbitrary Mt and Mr.
When Mr < Mt, a sharper upper bound can be ob-
tained by rewriting the MIMO capacity as Cairborne =

log2

[
det

(
IMr +

P
MtN0

HHH
)]

. Then, following similar rea-
soning as above, an upper bound can be obtained as

C̃airborne ≤ Mr log2

(
1 +

Pλ2

N0d2

)
. (27)

By combining (25), (26) and (27), the capacity of airborne
MIMO wireless communication systems can be bounded as
follows:

log2

(
1 +Mr

Pλ2

N0d2

)
≤ C̃airborne

≤ min(Mt,Mr) log2

(
1 +

max(Mt,Mr)

Mt

Pλ2

N0d2

)
.

(28)

The airborne MIMO capacity upper bound in (28) is achiev-
able. In the following section, we identify conditions under
which the airborne MIMO systems reach the above capacity
upper and lower bounds.
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A. Maximum Achievable Capacity

Theorem 1 below shows a necessary and sufficient condition
for airborne MIMO communication systems to achieve the
capacity upper bound in (28). The necessary and sufficient
condition reveals the optimal alignment of the transceiver
antenna arrays to achieve the maximum capacity.

Theorem 1: An airborne MIMO communication system
achieves the maximum capacity, i.e.

C̃airborne = min(Mt,Mr) log2

(
1 +

max(Mt,Mr)

Mt

Pλ2

N0d2

)
,

(29)
if and only if the following two conditions are satisfied:
(i) There exists a non-zero integer p such that

stsr cosφ sin θt sin θr =
pλd

max(Mt,Mr)
. (30)

(ii) For any m = 1, 2, · · · , min(Mt,Mr)−1, there does not
exist any integer qm such that

stsr cosφ sin θt sin θr =
qmλd

m
. (31)

Proof: First, we will prove the theorem for the case where
Mt ≤ Mr. Since the matrix G̃ in (22) is positive semi-definite,
the matrix IMt +

P
MtN0

G̃ is positive definite. According to the
Hadamard inequality ([24], p.477), we have

det

(
IMt +

P

MtN0
G̃

)
≤

Mt∏
i=1

(
1 +

P

MtN0
g̃i,i

)
. (32)

In (32), the equality holds if and only if IMt +
P

MtN0
G̃ is

diagonal [24], which happens only when the matrix G̃ is
diagonal. From (21), we know that g̃i,i = Mr

λ2

d2 for any
i = 1, 2, · · · ,Mt. Thus, we conclude that the airborne MIMO
communication system achieves the maximum capacity

C̃airborne = Mt log2

(
1 +

Mr

Mt

Pλ2

N0d2

)
(33)

i.e. (32) holds with equality, if and only if the matrix G̃ is
diagonal.

From (21), we can see that for any k and l, 1 ≤ k �= l ≤ Mt,
if ej2π

(l−k)stsr cos φ sin θt sin θr
λd �= 1, then

g̃k,l =
λ2

d2
e−j2π

rk,1−rl,1
λ

1− ej2π
(l−k)Mrstsr cos φ sin θt sin θr

λd

1− ej2π
(l−k)stsr cosφ sin θt sin θr

λd

.

(34)
Thus, when ej2π

(l−k)Mrstsr cosφ sin θt sin θr
λd = 1, the off-diagonal

element g̃k,l = 0. Therefore, we conclude that the matrix G̃
is diagonal if and only if for any k and l, 1 ≤ k �= l ≤ Mt,

ej2π
(l−k)Mrstsr cos φ sin θt sin θr

λd = 1, (35)

ej2π
(l−k)stsr cos φ sin θt sin θr

λd �= 1. (36)

It is not difficult to check that the requirement in (35) is
satisfied if and only if there exists a non-zero integer p such
that

stsr cosφ sin θt sin θr =
pλd

Mr
, (37)

which is the condition (i) of the theorem. Similarly, the
constraint in (36) is equivalent to the condition (ii) of the

theorem, i.e. for any m = 1, 2, · · · , Mt − 1, there does not
exist any integer qm such that

stsr cosφ sin θt sin θr =
qmλd

m
. (38)

So far, we proved the theorem for the case of Mt ≤ Mr.
When Mt > Mr, we may rewrite the MIMO capacity as

Cairborne = log2

[
det

(
IMr +

P

MtN0
HHH

)]
. (39)

Then, following the above discussion we can similarly prove
that

C̃airborne ≤ Mr log2

(
1 +

Pλ2

N0d2

)
, (40)

and the equality is achieved if and only if for any k and l,
1 ≤ k �= l ≤ Mr,

ej2π
(l−k)Mtstsr cosφ sin θt sin θr

λd = 1, (41)

ej2π
(l−k)stsr cosφ sin θt sin θr

λd �= 1. (42)

We can see that the requirement in (41) is satisfied if and only
if there exists a non-zero integer p such that

stsr cosφ sin θt sin θr =
pλd

Mt
, (43)

which is the condition (i) of the theorem, while the constraint
in (42) is satisfied when for any m = 1, 2, · · · , Mr−1, there
does not exist any integer qm such that

stsr cosφ sin θt sin θr =
qmλd

m
, (44)

which is the condition (ii) of the theorem. Therefore, we have
the results in the theorem for the case of Mt > Mr, which
completes the proof. �

We note that [16], [17] presented a condition on optimal
antenna element separation to achieve the best possible line-of-
sight MIMO capacity for any given transceiver antenna array
geometry in the 3D space. In terms of the notation used in
this paper, the condition of [16], [17] is given by

stsr sin θt sin θr =
λd

max(Mt,Mr)
. (45)

However, expression (30) of Theorem 1 indicates that the
antenna element separation condition in (45) is optimal only
when the zenith angle of the transceiver antenna arrays is zero
(φ = 0), i.e. when the transmitter and receiver antenna arrays
are aligned on the same plane. When the zenith angle of the
transceiver antenna arrays is not zero (φ �= 0), the condition
in (45) is not optimal. For example, when Mt = Mr = 2,
φ = π

3 and θt = θr = π
2 , the antenna element separation

condition in (45) becomes stsr = λd
2 , and the corresponding

MIMO capacity is

C̃0 = log2

{
det

(
I2 +

Pλ2

2N0d2

×
[

2 (1 + j)e−j2π
r1,1−r2,1

λ

(1− j)e−j2π
r2,1−r1,1

λ 2

])}

= log2

{
1 + 2

Pλ2

N0d2
+

1

2

(
Pλ2

N0d2

)2
}
. (46)
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However, based on Theorem 1, the optimal antenna element
separation is stsr = λd

2 cosφ = λd (or pλd for any odd integer
p), and the corresponding MIMO capacity is

C̃airborne = log2

[
1 +

Pλ2

N0d2

]2
, (47)

which is the maximum achievable capacity. We can see
that C̃0 < C̃airborne, i.e. the capacity resulting from the
element separation condition in (45) is less than the maximum
achievable capacity. In Fig. 3, we plot the resulting airborne
MIMO capacity based on the antenna element separation
presented in [16], [17] and the optimal antenna separation
we propose in this paper (Theorem 1). For each case, we
plot both the exact and the approximated values which are
indistinguishable. In particular, we assume that the system
operates at 10GHz band (λ = 0.03m) and the transmission
power is P = −10dBm (watts/Hz). We observe that when
the zenith angle between the transceiver antenna arrays is not
zero (φ = π

3 in Fig. 3), the resulting MIMO capacity based
on the condition presented in [16], [17] (i.e. stsr = λd

2 ) does
not achieve the maximum capacity given by Theorem 1 (the
corresponding optimal antenna element separation should be
stsr = λd in this case). The performance gap increases as
the sizes of the antenna arrays increase, which is shown in
Fig. 4 where we perform the same study as in Fig. 3 for
Mt = Mr = 4.

We can also show that when the transmitter and receiver
antenna arrays are aligned on the same plane, i.e. the zenith
angle of the transceiver antenna arrays is zero (φ = 0), the
optimal antenna separation condition presented in [16], [17] is
sufficient, but not necessary. For example, when φ = 0, and
Mt = Mr = 3, the antenna separation condition in [16], [17]
becomes

stsr sin θt sin θr =
λd

3
. (48)

The condition in (48) is sufficient to achieve the maximum
MIMO capacity value. In fact, based on Theorem 1 (for φ = 0,
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and Mt = Mr = 3), the following condition

stsr sin θt sin θr =
2λd

3
, (49)

which is different from (48), also achieves the maximum
MIMO capacity value.

In summary, in this section we proposed a necessary and
sufficient condition (Theorem 1) to achieve the best possible
capacity for any given 3D geometry described by θt, θr, and
φ of two linear transceiver antenna arrays on board two flying
aircrafts where θt, θr, φ depend on the flying patterns of the
aircrafts. From an implementation point of view, Theorem 1
suggests, for example, that if we employ adaptively activated
antenna elements that adjust their separation according to
(29)–(31) we can achieve the best possible capacity for any
given value of θt, θr and φ. For example, if Mt = Mr, then
a simple sufficient (but not necessary condition) to achieve
maximum capacity is

stsr cosφ sin θt sin θr =
λd

Mt
, (50)

which can be obtained from Theorem 1 for p = 1.

B. Minimum Capacity

In the following, we show, in Theorem 2, that the lower
bound of the airborne MIMO capacity in (28) is reached when
the distance between the transmit antenna array and the receive
antenna array goes to infinity. The proof of Theorem 2 needs
the following lemma.

Lemma 1: For any integer K > 0 and real number t ≥ 0,
define TK(t) as follow

TK(t)
�
=

⎡
⎢⎢⎢⎣

t 1 · · · 1
1 t · · · 1
...

...
. . .

...
1 1 · · · t

⎤
⎥⎥⎥⎦
K×K

. (51)
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Then the determinant of the matrix TK(t) is

det (TK(t)) = (t− 1)K−1(t+K − 1). (52)

Proof: We prove the lemma by induction. When K = 2, it
is easy to calculate that det (T2(t)) = t2 − 1, which validates
the expression in (52). Let us assume that the expression in
(52) is valid for any integer K ≥ 2, then the determinant of
TK+1(t) can be calculated as follows

det (TK+1(t))

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
t− 1

t

⎡
⎢⎢⎢⎢⎢⎣

t2

t−1 0 0 · · · 0

0 t+ 1 1 · · · 1
0 1 t+ 1 · · · 1
...

...
...

. . .
...

0 1 1 · · · t+ 1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(K+1)×(K+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
t− 1

t

)K+1
t2

t− 1
det (TK(t+ 1))

=

(
t− 1

t

)K+1
t2

t− 1
tK−1(t+K)

= (t− 1)(K+1)−1 [t+ (K + 1)− 1] ,

in which the first equality results from the diagonalizing the
matrix TK+1(t) such that all off-diagonal entries in the first
row and in the first column are zeros. The above derivations
show that the expression in (52) is also valid for K + 1. By
induction, we have the result in Lemma 1. �

Theorem 2: When the distance between the transmit an-
tenna array and the receive antenna array goes to infinity,
the capacity of the airborne MIMO communication system
converges to its minimum, i.e.

C̃airborne → log2

(
1 +Mr

Pλ2

N0d2

)
, (d → ∞). (53)

Proof: We prove the theorem first for the case when Mt ≤
Mr. In this case, when the distance d between the transceiver
antenna arrays goes to infinity, then (21) implies that for any k
and l, 1 ≤ k �= l ≤ Mt, the term (l−k)(n−1)stsr cosφ sin θt sin θr

λd
goes to zero, i.e,

ej2π
(l−k)(n−1)stsr cos φ sin θt sin θr

λd → 1.

Thus, gk,l in (21) converges to the following

gk,l → Mr
λ2

d2
e−j2π

rk,1−rl,1
λ , as d → ∞. (54)

So, when d → ∞, we have

det

[
IMt +

P

MtN0
HHH

]
→ det

[
IMt +

Mr

Mt

Pλ2

N0d2
1Mt

]
,

where 1Mt is an all-one matrix of size Mt × Mt. Let γ
�
=

Mr

Mt

Pλ2

N0d2 , according to Lemma 1, we have

det

[
IMt +

P

MtN0
HHH

]
→ det

[
γ TMt

(
1 +

1

γ

)]

= γMt

(
1

γ

)Mt−1 (
1

γ
+Mt

)
= 1 + γMt.

Thus, from (10), the airborne MIMO capacity converges to
log2 (1 + γMt) = log2

(
1 +Mr

Pλ2

N0d2

)
which is the lower

bound of the airborne MIMO capacity shown in (28).
When Mt > Mr, we can rewrite the airborne MIMO

capacity as

Cairborne = log2

[
det

(
IMr +

P

MtN0
HHH

)]
, (55)

and similarly denote HHH
�
= {gk,l : 1 ≤ k, l ≤ Mr}, where

each element of the matrix can be specified as

gk,l =

Mt∑
n=1

h∗
n,khn,l

≈ λ2

d2
e−j2π

r1,k−r1,l
λ

×
Mt∑
n=1

ej2π
(l−k)(n−1)stsr cos φ sin θt sin θr

λd . (56)

When the distance d goes to infinity, then for any k and l,
1 ≤ k �= l ≤ Mr, we have

gk,l → Mt
λ2

d2
e−j2π

r1,k−r1,l
λ , as d → ∞. (57)

In this case, let γ
�
= Pλ2

N0d2 , according to Lemma 1, we have

det

[
IMr +

P

MtN0
HHH

]
→ det

[
γ TMr

(
1 +

1

γ

)]

= γMr

(
1

γ

)Mr−1 (
1

γ
+Mr

)
= 1 + γMr.

Therefore, for Mt > Mr, the airborne MIMO capacity
converges to log2 (1 + γMr) = log2

(
1 +Mr

Pλ2

N0d2

)
, which

is again the minimum capacity in (53). �
Theorem 2 implies that when the distance between the

transceiver antenna arrays goes to infinity, the resulting ca-
pacity is the same as the capacity of a system with Mr

receive antennas and only one transmit antenna, i.e. long
distances between transmit and receive antenna arrays make
the receiver perceive a transmitter of one virtual transmit
antenna. Equivalently, this can be viewed as a system with
single input (i.e. one transmit antenna) and single output with
a directional array of Mr antennas at the receiver side (i.e. one
receiver output port). Moreover, we note that the condition in
(53) of Theorem 2 for reaching minimum capacity is sufficient,
but not necessary. The airborne MIMO communication system
also reach its minimum capacity in other scenarios as shown
in the following two examples.
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• Example 1: When φ = π
2 , i.e. the transmit antenna

array and the receive antenna array are perpendicular,
the airborne MIMO communication system reaches its
minimum capacity. In this case, for any k and l, 1 ≤
k �= l ≤ Mt, gk,l in (21) is

gk,l = Mr
λ2

d2
e−j2π

rk,1−rl,1
λ .

Thus,

Cairborne = log2 det

[
IMt +

P

MtN0
HHH

]
= log2 det

[
γ TMt

(
1 +

1

γ

)]
,

where matrix TMt(·) is defined in Lemma 1 and γ =
Mr

Mt

Pλ2

N0d2 . Applying the determinant expression of Lemma
1, we obtain

Cairborne = log2

(
1 +Mr

Pλ2

N0d2

)
,

which is the minimum airborne MIMO capacity. We note
that when φ = π

2 , the capacity of the airborne MIMO
system reaches its minimum capacity regardless of the
values of the angles θt and θr.

• Example 2: When θt = 0 or θr = 0, i.e. the trans-
mit antenna array points to the center of the receive
antenna array or vice versa, the airborne MIMO com-
munication system also reaches the minimum capacity.
In this case, for any k and l, 1 ≤ k �= l ≤ Mt,

gk,l in (21) is gk,l = Mr
λ2

d2 e
−j2π

rk,1−rl,1
λ . Thus, fol-

lowing the same discussion as in Example 1, we have
Cairborne = log2

(
1 +Mr

Pλ2

N0d2

)
, which is the minimum

airborne MIMO capacity. We note that when θt = 0,
the capacity of the airborne MIMO system reaches its
minimum capacity regardless of the value of the angle
θr. Similarly, when θr = 0, the capacity is the same for
any angle θt.

IV. NUMERICAL RESULTS AND COMPARISONS

In this section, we provide numerical studies to illustrate
the capacity of airborne MIMO communication systems with
different transceiver antenna array alignments and different
antenna element separations. We assume that the airborne
MIMO communication system operates at a 10GHz band (i.e.
λ = 0.03m). The transmit antenna separation st is within 0
and st,max and the receive antenna separation sr is within 0
and sr,max, where st,max = sr,max = 1m in the numerical
studies. We consider three different alignments of transmit
and receive antenna arrays: (i) θt = π

2 , θr = π
2 , φ = 0; (ii)

θt = π
3 , θr = π

3 , φ = π
8 ; and (iii) θt = π

6 , θr = π
6 , φ = π

4 .
To obtain better insight from the comparisons, we normalize
the effect of path loss. That is, for any given distance d
between the transmit and receive antenna arrays, we adjust
the transmission power P such that the average SNR at each
receive antenna is fixed at 10dB, i.e. SNRn = 10dB.

In our studies, we also include the capacity of conventional
near-ground MIMO communications with rich scattering and
reflection environment where dynamic channels are typically
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Fig. 5. Capacity of airborne MIMO communications, Mt = Mr = 2.

characterized as Rayleigh fading [1], [18], [20]. Assuming that
the channels are independent complex Gaussian random vari-
ables with zero-mean and unit-variance, the average capacity
of a Rayleigh fading MIMO communication system with Mt

transmit antennas and Mr receive antennas is given by [20]–
[23]

CRayleigh = Mt log2

[
1 + ρ

Mr

Mt
−F(ρ)

]
+Mr log2 [1 + ρ−F(ρ)]

− Mt

ρ ln 2
F(ρ), (58)

where

F(ρ) =
1 + ρMt+Mr

Mt
−

√
1 + 2ρMt+Mr

Mt
+ ρ2 (Mt−Mr)2

M2
t

2
(59)

and ρ is the average SNR at each receive antenna. When
Mt = Mr, the function in (59) is reduced to F(ρ) =
1+2ρ−√

1+4ρ
2 and the corresponding ergodic Rayleigh fading

MIMO capacity is

CRayleigh = Mt log2
1 + 2ρ+

√
1 + 4ρ

2

−Mt

ln 2

(
1 +

1−√
1 + 4ρ

2ρ

)
≈ Mt log2 (1 + ρ)− Mt

ln 2
, (60)

in which the capacity approximation is tight for enough
high SNR ρ. Apparently, the ergodic Rayleigh fading MIMO
capacity is less than the maximum airborne MIMO capacity
which is Cairborne = Mt log2(1 + ρ) in this case. The
difference between the Rayleigh fading MIMO capacity and
the maximum airborne MIMO capacity increases with the
number of antennas, which can be observed in the figures
5–7 for systems with Mt = Mr = 2, 3 and 4, respectively.

In Figs. 5–7, we plot the capacity of the airborne MIMO
communication systems for Mt = Mr = 2, 3 and 4,
respectively, with the transceiver antenna array alignments
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(i)-(iii). We compare the exact capacity (solid lines) with
the capacity upper bound in (29) (dashed line) and the
capacity lower bound in (53) (dotted dashed line). From
the figures, we observe that for different alignments of the
transmit and receive antenna arrays, the airborne MIMO
capacity may reach its upper bound when the distance d is
relatively small and it converges to its lower bound when
the distance becomes large (→ ∞), which is consistent
with the analytical result in Theorem 2. We also observe
that the airborne MIMO capacity periodically reaches its
lower bound even for small distance d with the fixed an-
tenna parameters. However, based on Theorem 2, we can
adjust the antenna element separation such as st = sr =√

λd
cosφ sin θt sin θr max(Mt,Mr)

to achieve the best possible ca-
pacity value. In the numerical studies, we set the antenna sep-
aration as st = min

(√
λd

cosφ sin θt sin θr max(Mt,Mr)
, st,max

)
and sr = min

(√
λd

cosφ sin θt sin θr max(Mt,Mr)
, sr,max

)
to take

into account airborne aircraft space limitation. We can see
that with the proper selection of antenna element separation,
the airborne MIMO capacity can achieve its maximum value
(solid line with ‘·’) when the distance d is within a certain
range which is determined by the antenna separation lim-
its st,max and sr,max. Furthermore, when we compare the
airborne MIMO capacity with the ergodic MIMO capacity
with Rayleigh fading (shown by dotted lines with ‘·’), we
can see that the airborne MIMO capacity may exceed the
ergodic Rayleigh fading MIMO capacity when the distance
d is within a certain range, while it is below the ergodic
Rayleigh fading MIMO capacity when the distance is large.
For comparison purposes, the airborne SISO capacity (dotted
lines with ‘+’) is also included in the figures. We see that
the airborne SISO capacity is below the lower bound of the
airborne MIMO capacity in each figure, which means that the
airborne MIMO architecture guarantees larger capacity than
its SISO counterpart.

V. CONCLUSIONS

In this paper, we analyzed the capacity of airborne MIMO
wireless communication systems with arbitrary linear antenna
array alignment. With a general three-dimensional model and
a second-order Taylor expansion, we developed an asymptot-
ically tight approximation for the airborne MIMO capacity,
which enables us to determine an upper bound and a lower
bound of the capacity. Then, we derived a necessary and
sufficient condition for the airborne MIMO communication
system to achieve the capacity upper bound. The necessary
and sufficient condition allows us to properly select the system
parameters of the airborne MIMO communication system in
order to achieve the best possible capacity. It turns out that
the optimal antenna separation condition proposed in [15],
[16], [17] is sufficient, but not necessary. Finally, we discussed
airborne MIMO communication scenarios that reach the ca-
pacity lower bound. Extensive numerical studies validated
our theoretical developments. When the distance between
the transmit and receive antenna arrays is within a certain
range, we are able to design airborne MIMO communication
systems such that their capacity exceeds the average capacity
of conventional MIMO communications over Rayleigh fad-
ing channels. When the distance is large, the capacity of
an airborne MIMO communication system converges to its
minimum value which is still larger than its SISO counterpart.
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