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Abstract—An 8 × 8 two-symbol decodable quasi-orthogonal
space-time block code (QO-STBC) is presented which can be
transmitted across either 8 or 4 antennas with full rate and the
same full diversity order. For the 8-transmit-antenna system, a
new expression is developed to identify rotation angles that max-
imize the diversity (eigenvalue) product. In addition, it is shown
that the previously proposed sum-eigenvalue maximization cri-
terion for the design of rotation angles is not relevant/applicable
and an alternative minimum eigenvalue maximization criterion
is suggested. Finally, new optimal rotation angles are obtained by
working directly with a pairwise-error-probability (PEP) upper-
bound expression. For 4-transmit-antenna systems and correlated
channel fading conditions, the PEP-upper-bound is modified ac-
cordingly to take into account the channel correlation. Using the
new PEP-upper-bound we obtain rotation angles that maximize
the diversity product and find, contrary to previous results,
that the optimized angles are independent of the correlation
coefficient. Simulation studies initiated herein demonstrate the
advantage of using the proposed codeword across 4 transmit
antennas when compared with other 4×4 QO-STBC transmission
schemes. For 8 transmit antennas, the studies compare the three
selected rotation angle optimization criteria (diversity product,
minimum eigenvalue, PEP-upper-bound).

Index Terms—Constellation rotation, diversity product, MIMO
systems, pairwise-error-probability (PEP), quasi-orthogonal
space-time block codes (QO-STBC), sum or minimum eigenvalue
maximization.

I. INTRODUCTION

ORTHOGONAL space-time block codes (O-STBC) [1]-
[3] achieve full transmit diversity and allow single-

complex-symbol (or equivalently two real symbols) maximum
likelihood (ML) decoding. The drawback of O-STBCs is that
full-rate codewords do not exist for more than two transmit
antennas. For the case of four transmit antennas, the rate
limitation of O-STBCs was overcome by quasi-orthogonal
(QO) STBCs at the expense of diversity loss [4]-[6]. Full-
rate full-diversity quasi-orthogonal codewords for 4-transmit-
antennas were then presented in [7]-[9] by retaining the code
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structure of [4], [5] and modifying the constellation of some
of the symbols. ML decoding of the QO-STBCs in [7]-[9] re-
quires joint detection of two complex symbols (or equivalently
four real symbols). Interleaving real and imaginary parts of
different symbols enables single-complex-symbol decoding of
full-rank, full-diversity QO-STBCs for the 4-transmit-antenna
case [10], [11], at the expense of some performance loss in
comparison with joint two-symbol detection [7].

The codewords in [1]-[11] partition the symbols into or-
thogonal sets and ML detection requires only joint decoding
of the symbols in each orthogonal set individually. Since the
complexity of the ML decoder increases exponentially with the
number of symbols in each orthogonal set, a trade-off between
rate/diversity and decoding requirements is taking shape, es-
pecially for large number of transmit antennas. In [12], QO-
STBCs for 8 transmit antennas that attain full diversity and
full rate were presented that require, however, joint detection
of four complex symbols (or equivalently eight real symbols).
Reduction in complexity was achieved for the 8-antenna case
through the process of interleaving the real and imaginary
parts of different symbols [13], [14]; the codewords can be
partitioned into four orthogonal sets and hence require joint
two-complex-symbol decoding only. In [15], [16], codes that
partition the symbols into four semi-orthogonal groups are
proposed.

In this paper we present an alternative two-symbol-
decodable, full rate 8 × 8 QO-STBC form that can be ap-
plied across either 8-transmit or 4-transmit-antenna systems
with the same full diversity order (making the 4-antenna
option most appealing). The proposed QO-STBC employs
constellation rotation (CR) and symbol-interleaving similar
to [13], [14], however, the 8×8 codeword can be divided into
two 4 × 4 codewords. We initially concentrate our efforts on
the codeword for the 8-transmit-antenna system and evaluate
conditions on the rotation angles necessary for the codeword to
achieve full diversity order. Since several rotation angle pairs
may exist that maximize the diversity order, we investigate
different criteria for rotation angle selection to further improve
error-rate performance. Common choice for rotation angle op-
timization of QO-STBCs is the maximization of the diversity
product which in turn leads to minimization of the pairwise-
error-probability (PEP)-upper-bound at (asymptotically) high
signal-to-noise ratios (SNR) [17]. However, for space-time
codes with large diversity order and/or large number of
transmit antennas, diversity product maximization may not
provide satisfactory PEP-bound minimization and error-rate
performance over operable SNRs [18]. Contrary to the popular
choice of diversity product maximization, we pursue other
means of optimizing the rotation angles to improve system
performance. Within the class of two-symbol decodable, full
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rate 8 × 8 QO-STBCs we examine four different rotation
angle optimization criteria: (i) We find a new expression for
the rotation angles that maximize the diversity product of the
suggested codeword. (ii) We show that sum-eigenvalue maxi-
mization as proposed in [18] is irrelevant/non-applicable to the
8-transmit-antenna QO-STBCs. (iii) We suggest, instead, and
solve minimum-eigenvalue maximization. (iv) Finally, we use
directly the PEP-upper-bound to obtain new true PEP-upper-
bound optimal rotation angles.

The rest of the paper deals with codeword design and
rotation angle optimization for the 4-transmit-antenna system.
For the 4-transmit-antenna system we allow the channel coeffi-
cients of the first 4×4 codeword block to be correlated with the
channel coefficients of the next 4×4 codeword block. We show
that as long as the correlation is less than 100%, a diversity
order of 8 is achieved using only 4 antennas. Using the PEP-
upper-bound results for fast fading time-correlated channels
in [19], we re-evaluate the PEP-upper-bound to incorporate
the channel correlation. We then optimize the rotation angles
using the four criteria discussed above for the 8-transmit-
antenna case. We find that the rotation angles that maximize
the diversity product for the uncorrelated 8-transmit-antenna
system also maximize the diversity product for the correlated
4-transmit-antenna system. Arguably, this may be somewhat
surprising because it did not seem possible in the past to make
diversity product rotation angle optimization independent of
the correlation coefficient [19]. For the other three crite-
ria, we show that sum-eigenvalue maximization as proposed
in [18] is again irrelevant/non-applicable to the 4-transmit-
antenna case, while the remaining two criteria (minimum-
eigenvalue minimization and PEP-upper-bound minimization)
yield complicated, rather intractable optimization equations as
they become dependent on the correlation coefficient.

The paper is organized as follows. In Section II we present
the (8×8) code structure for 8 and 4-transmit-antenna systems
and describe pertinent ML decoding details. In Section III we
examine the diversity order of the codeword for 8 transmit
antennas; rotation-angle design criteria are analyzed in Section
IV. Section V deals with codeword transmission, diversity
order, and rotation angle optimization for the 4-transmit-
antenna case. Section VI presents simulation results in support
of our theoretical developments. A few concluding remarks are
drawn in Section VII.

II. CODE STRUCTURE AND TRANSCEIVER MODEL

Let Nt be the number of transmit antennas, Nr the
number of receive antennas, and T the number of time slots
over which the code is transmitted. We denote the number
of transmitted symbols by K . The eight symbols ak, k =
1, . . . , K = 8, to be transmitted are formed by mapping
the incoming bits onto known constellations, e.g. quadrature-
amplitude-modulated (QAM), while their corresponding con-
stellation rotated version āk, k = 1, . . . , K = 8, is created
by

ām = (amR + iamI)eiφ, m = 1, 2, 5, 6,

ān = (anR + ianI)eiθ, n = 3, 4, 7, 8, (1)

where akR and akI denote the real and imaginary part of the
symbol ak, respectively, and φ, θ, are the rotation angles to

be optimized. The symbols āk are interleaved to form xk, k =
1, . . . , K = 8,

x1 = ā1R + iā5I , x2 = ā2R + iā6I ,
x3 = ā3R + iā7I , x4 = ā4R + iā8I ,
x5 = ā5R + iā1I , x6 = ā6R + iā2I ,
x7 = ā7R + iā3I , x8 = ā8R + iā4I .

(2)

We form/define two symbol matrices X1 and X2 as shown
below

X1 =

⎡⎢⎢⎣
x1 x2 x3 x4

−x∗
2 x∗

1 −x∗
4 x∗

3

x3 x4 x1 x2

−x∗
4 x∗

3 −x∗
2 x∗

1

⎤⎥⎥⎦ ,

X2 =

⎡⎢⎢⎣
x5 x6 x7 x8

−x∗
6 x∗

5 −x∗
8 x∗

7

x7 x8 x5 x6

−x∗
8 x∗

7 −x∗
6 x∗

5

⎤⎥⎥⎦ .

(3)

Consider now availability of either Nt = 8 or Nt = 4 transmit
antennas. Below, we describe our transceiver model for each
case.

Case of eight transmit antennas: We suggest the code-
word

X =
[

X1 04×4

04×4 X2

]
. (4)

The (T = 8) × Nr received signal matrix Y is given by

Y =

√
ρ2A

Nt
XH + N (5)

where ρ2A is the received signal energy at each receive
antenna, H is the 8 × Nr channel matrix and N is the
8 ×Nr noise matrix. The elements of H and N are modeled
as independent and identically distributed complex Gaussian
random variables of zero mean and unit variance without
loss of generality; ρ =

√
2 satisfies the energy constraint

E{‖X‖2
F} = TNt (E{·} is the expectation operator and ‖·‖2

F

denotes Frobenius norm of a matrix). From an implementation
point of view, reduction of the large peak-to-average-power
ratio (PAPR) created by the zeros during transmission of (4)
can be achieved by multiplying X by an 8 × 8 normalized
Hadamard matrix before transmission. This effect is reversed
at the receiver by multiplying the received signal matrix by
the transpose of the Hadamard matrix. The net transceiver
model still maintains the form in (4) and (5) by virtue of the
orthogonality of the Hadamard matrix.

Case of four transmit antennas: Assume now that we
have available only Nt = 4 antennas. We transmit X1 in the
first four time slots and X2 in the next four time slots. The
4 × Nr received signal matrices Y1 and Y2 are given by

Y1 =
√

ρ2
A

Nt
X1H1 +N1, Y2 =

√
ρ2

A

Nt
X2H2 +N2. (6)

Similar to the 8-transmit-antenna case, the elements of the
4 × Nr matrices, H1, H2, N1 and N2 are modeled as
identically distributed complex Gaussian random variables
(with zero mean and unit variance); ρ2A is the received signal
energy at each receive antenna; ρ = 1 satisfies the energy
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constraint E{‖X1‖2
F } = E{‖X2‖2

F} = TNt. Individually
within a matrix, the entries are taken to be independent from
each other; N1 as a whole is independent of N2, H1 and
H2 are independent from N1 and N2, but H1 and H2 are
characterized as potentially correlated with each other via a
correlation coefficient p. To express the correlation between
the elements of the two channel matrices we define the
extended channel matrix He

�
=
[
HT

1 HT
2

]T
and obtain

E{hejhH
el} =

⎧⎨⎩
[

I4 pI4

pI4 I4

]
, j = l,

08, otherwise,
1 ≤ j, l ≤ Nr

(7)
where hej , j = 1, . . . , Nr, are the columns of He and p
is the correlation coefficient. In similar fashion to He, the
extended noise matrix may be defined as Ne

�
=
[
NT

1 NT
2

]T
.

Combining Y1 and Y2 in (6) into a single equation we have

Ye = ρ

√
A

Nt
XHe + Ne (8)

where Ye = [YT
1 YT

2 ]T and X is defined in (4). It is
important to note that (6) represents a system with time-
correlated channel coefficients while (8) represents a system
in which the channel coefficients are correlated across space
(channel coefficients of the four actual antennas correlated
with the channel coefficients of the four virtual antennas). This
distinction is important when obtaining the PEP-upper-bound
for the 4-transmit-antenna system later in the presentation.

We now proceed with the description of the ML detector
for both cases. Let A represent the symbol constellation and
Z denote the set of |A|K symbol vector points (| · | denotes
cardinality of a set) in the complex K-dimensional space. If
f(·) represents the one-to-one mapping of the symbol vector
a ∈ AK into X, for the 8-antenna case the ML estimate of
the symbol vector assuming perfect channel state information
at the receiver is

aML = argmin
â ∈ AK , X̂=f(â)

‖Y − ρ

√
A

Nt
X̂H‖2

F

= argmin
â ∈ AK , X̂=f(â)

Nr∑
j=1

{
Aρ2

Nt
hH

j X̂HX̂hj

−2ρ

√
A

Nt
Re
{
yH

j X̂hj

}}
(9)

where yj , hj , j = 1, . . . , Nr, are the columns of Y and H
respectively. Expanding X̂HX̂ we have

X̂HX̂ =

⎡⎢⎢⎣
aI2 bI2

bI2 aI2
0

0
cI2 dI2

dI2 cI2

⎤⎥⎥⎦ (10)

where

a
�
=

∑K
k=1 |x̂k|2,

b
�
=

∑K/2
k=1 2Re{x̂∗

kx̂k+K/2},
c

�
=

∑2K
k=K+1 |x̂k|2,

d
�
=

∑K+K/2
k=K+1 2Re{x̂∗

kx̂k+K/2}, K = 4.

(11)

Substituting (1) and (2) in (11) we obtain

a = ˆ̄a2
1R + ˆ̄a2

2R + ˆ̄a2
3R + ˆ̄a2

4R + ˆ̄a2
5I + ˆ̄a2

6I + ˆ̄a2
7I + ˆ̄a2

8I ,
b = 2ˆ̄a1Rˆ̄a3R + 2ˆ̄a2Rˆ̄a4R + 2ˆ̄a5I ˆ̄a7I + 2ˆ̄a6I ˆ̄a8I ,

c = ˆ̄a2
5R + ˆ̄a2

6R + ˆ̄a2
7R + ˆ̄a2

8R + ˆ̄a2
1I + ˆ̄a2

2I + ˆ̄a2
3I + ˆ̄a2

4I ,
d = 2ˆ̄a5Rˆ̄a7R + 2ˆ̄a6Rˆ̄a8R + 2ˆ̄a1I ˆ̄a3I + 2ˆ̄a2I ˆ̄a4I .

(12)
From (12) we observe that inter-symbol-interference occurs
among the following symbol pairs (ˆ̄a1, ˆ̄a3), (ˆ̄a2, ˆ̄a4),
(ˆ̄a5, ˆ̄a7), and (ˆ̄a6, ˆ̄a8). In (9), since multiplying X̂HX̂
by hH

j and hj does not create any additional cross-
terms between the symbols ˆ̄ak, ML-decoding of the sym-
bol vector a can be reduced to jointly decoding the
symbol pairs

{
(ˆ̄a1, ˆ̄a3), (ˆ̄a2, ˆ̄a4), (ˆ̄a5, ˆ̄a7), (ˆ̄a6, ˆ̄a8)

}
indepen-

dently. Since ˆ̄ak is obtained by rotating the constella-
tion of âk, k = 1, . . . , 8, decoding the symbols pairs
{(â1, â3), (â2, â4), (â5, â7), (â6, â8)} independently is ML-
optimum. For the 4-transmit-antenna case we replace H by
He and Y by Ye in (9) to obtain a similar result. Since both
Y1 and Y2 are required for optimal decoding, the proposed
algorithm decodes every eight slots as opposed to four slots
for conventional 4-transmit-antenna schemes.

As a concluding remark, we can show that our suggested
code structure in (4) for the 8-transmit-antenna case is equiv-
alent to the one in [13]. However, we do favor the code in (4)
for two reasons: (i) Its simplicity in code construction enables
our theoretical analysis on rotation angle optimization and, (ii)
unlike the codewords in [13], [14], the codeword in (4) may
be applied to a 4-transmit-antenna system across eight time-
slots without omitting any symbols. Having shown already
that the code supports ML-optimal two-symbol decoding, we
now evaluate its diversity order and seek the rotation angles
that improve error-rate performance.

III. DIVERSITY ORDER CALCULATION: EIGHT TRANSMIT

ANTENNAS

The probability of receiving the codeword X̃ when X �=
X̃ is transmitted is upper bounded by [17]

Pr(X → X̃) ≤ 1
2

(
R∏

i=1

{
1

1 + ρ2Aλi

4Nt

})Nr

(13)

where R is the rank of (X − X̃) and λi, i = 1, . . . , R, are
the eigenvalues of (X − X̃)H(X − X̃). The minimum value
of R obtained over all codeword pairs is called the diversity
order of the system [17] and dictates the slope of the error-
rate curves at asymptotically high SNR values. To evaluate the
diversity order of the codeword in (4), we seek the eigenvalues

of (X − X̃)H(X − X̃). Set ΔX
�
= X − X̃ and Δxk

�
= xk −

x̃k, k = 1, . . . , 8; then,

ΔXHΔX =

⎡⎢⎢⎣
ΔaI2 ΔbI2

ΔbI2 ΔaI2
0

0
ΔcI2 ΔdI2

ΔdI2 ΔcI2

⎤⎥⎥⎦ (14)
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where

Δa
�
=

∑K
k=1 |Δxk|2,

Δb
�
=

∑K/2
k=1 2Re{Δx∗

kΔxk+K/2},
Δc

�
=

∑2K
k=K+1 |Δxk|2,

Δd
�
=

∑K+K/2
k=K+1 2Re{Δx∗

kΔxk+K/2}, K = 4.

(15)

The block diagonal nature of ΔXHΔX in (14) allows us
to calculate its eigenvalues as {(Δa − Δb) , (Δa + Δb),
(Δc − Δd), (Δc + Δd)} which exist with multiplicity of
two. Expanding and simplifying, the eigenvalues are as shown
below:

{ (Δā1R − Δā3R)2 + (Δā2R − Δā4R)2 + (Δā5I − Δā7I)2

+ (Δā6I − Δā8I)2,
(Δā1R + Δā3R)2 + (Δā2R + Δā4R)2 + (Δā5I + Δā7I)2

+ (Δā6I + Δā8I)2,
(Δā5R − Δā7R)2 + (Δā6R − Δā8R)2 + (Δā1I − Δā3I)2

+ (Δā2I − Δā4I)2,
(Δā5R + Δā7R)2 + (Δā6R + Δā8R)2 + (Δā1I + Δā3I)2

+ (Δā2I + Δā4I)2 } .
(16)

As each eigenvalue is a summation of squares, without loss
of generality suppose Δā1R, Δā1I , Δā3R, Δā3I �= 0, the set
of minimum eigenvalues over all possible codewords pairs is{

(Δā1R − Δā3R)2, (Δā1R + Δā3R)2, (Δā1I − Δā3I)2,
(Δā1I + Δā3I)2

}
(17)

and represents the worst case scenario for the upper bound
in (13). As long as all eigenvalues in (17) are non-zero, the
codeword X achieves the maximum diversity order of 8.

We now attempt to identify conditions on the rotation
angles that have to be satisfied to allow the codeword X to
achieve full diversity order. It is easily observed that all the
eigenvalues in (17) are non-zero if and only if the product
of the eigenvalues in (17) is non-zero, which in turn is the
square root of the minimum value of the determinant of the
ΔXHΔX. We have,

min det(ΔXHΔX)

=
[
(Δā1R − Δā3R)4(Δā1R + Δā3R)4

(Δā1I − Δā3I)4(Δā1I + Δā3I)4
]

=
[
(Δā2

1R − Δā2
3R)(Δā2

1I − Δā2
3I)
]4

=

⎡⎢⎢⎣
[
(Δa1Rcos(φ) − Δa1Isin(φ))2

−(Δa3Rcos(θ) − Δa3Isin(θ))2
]

× [(Δa1Rsin(φ) + Δa1Icos(φ))2

−(Δa3Rsin(θ) + Δa3Icos(θ))2
]
⎤⎥⎥⎦

4

. (18)

For fixed φ, θ, we categorize (18) into five cases depending
on the values of Δa1R, Δa3R, Δa1I , Δa3I . Note that we
cannot have Δa1R = Δa3R = Δa1I = Δa3I = 0.

1) Only one non-zero value (for example Δa3R =
Δa1I = Δa3I = 0, Δa1R �= 0):

min det(ΔXHΔX) = [(Δa1Rcos(φ))2(Δa1Rsin(φ))2]4.
(19)

If any of cos(φ), sin(φ), cos(θ), sin(θ) is zero, full diversity
order is not achieved.

2) Two non-zero values both from same symbol
(for example Δa3R = Δa3I = 0, Δa1R, Δa1I �= 0):

min det(ΔXHΔX) =
[(

(Δa1Rcos(φ) − Δa1Isin(φ))2
)

.
(
(Δa1Rsin(φ) + Δa1Icos(φ))2

)]4
.

(20)
Let A denote the constellation of the symbols

ak, k = 1, . . . , K , and Aφ, Aθ denote the constellations of
symbols formed by rotating A by φ and θ, respectively. If
any two symbols chosen from Aφ or Aθ have the same real
part or the same imaginary part, full diversity order cannot
be achieved.

3) Two non-zero values both either real or imaginary
(for example Δa1I = Δa3I = 0, Δa1R, Δa3R �= 0):

min det(ΔXHΔX) =
([

(Δa1Rcos(φ))2 − (Δa3Rcos(θ))2
]

.
[
(Δa1Rsin(φ))2 − (Δa3Rsin(θ))2

])4
.

(21)
If θ = φ, full diversity order cannot be achieved.

4) Two non-zero values, one from real part of one sym-
bol and other from imaginary part of another symbol
(for example Δa1I = Δa3R = 0, Δa1R, Δa3I �= 0):

min det(ΔXHΔX) =
([

(Δa1Rcos(φ))2 − (Δa3Isin(θ))2
]

.
[
(Δa1Rsin(φ))2 − (Δa3Icos(θ))

2
])4

.
(22)

If θ = φ ± π/2, full diversity order cannot be achieved.

5) All values are non-zero (that is
Δa1I , Δa3I , Δa1R, Δa3R �= 0):
If the square distance between the real parts of any two
symbols from Aφ is equal to the square distance between the
real parts of any two symbols from Aθ or the square distance
between the imaginary parts of any two symbols from Aφ

is equal to the square distance between the imaginary parts
of any two symbols from Aθ , full diversity order is not
achieved.

For a given constellation, several pairs of φ, θ may exist
that satisfy the exclusion conditions listed above. In the next
section, we investigate four different criteria for rotation angle
optimization.

IV. ROTATION ANGLE OPTIMIZATION: EIGHT TRANSMIT

ANTENNAS

We now consider four different criteria to optimize the
rotation angles and for each criterion, we show how φ, θ can
be obtained for the codeword in (4) using (17). For ease in
reference, our findings (values of φ, θ for each criterion) are
summarized in Table I.

A. Diversity product maximization

At high SNR values assuming full transmit diversity order
and Nr = 1, (13) can be approximated by

Pr(X → X̃) ≤ 1
2

(
Nt∏
i=1

λi

)−1(
− A

4Nt

)−Nt

. (23)

Worst-case minimization of the bound in (23) is equivalent
to maximization of the minimum product of the eigenvalues
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(determinant of ΔXHΔX) over all possible codeword pairs,
which in turn is commonly represented by the diversity
product ζ,

ζ =
1

2
√

Nt

minX�=X̃

∣∣det
[
ΔXΔXH

]∣∣1/(2T )
. (24)

Diversity product maximization was used as the rotation angle
design criterion in [13], [14]. For the codeword in (4), the
minimum determinant of ΔXHΔX over all codeword pairs
is

min det(ΔXHΔX) =
[
(Δa1Rcos(φ) − Δa1Isin(φ))2

−(Δa3Rcos(θ) − Δa3Isin(θ))2
]4

× [(Δa1Rsin(φ) + Δa1Icos(φ))2

−(Δa3Rsin(θ) + Δa3Icos(θ))2
]4
(25)

in which parameters φ and θ should be chosen to maximize
(25). We evaluate and conclude (see Table I) that the codeword
in (4) (and the codewords in [13], [14]) achieve diversity
product of 0.1747 with 4-QAM constellation and 0.1071 with
the non-rectangular 8-QAM constellation for the 8-transmit-
antenna case.

B. Minimum sum-of-eigenvalues maximization

In [18], it was proposed that for high diversity order systems
(number of transmit antennas greater than four) the minimum
trace of ΔXHΔX is to be maximized over all codeword pairs.
From our expression (16), we observe that

min (Tr(ΔXHΔX))
= 2[(Δā1R − Δā3R)2 + (Δā1R + Δā3R)2

+(Δā1I − Δā3I)2 + (Δā1I + Δā3I)2]
= 4[Δā2

1R + Δā2
3R + Δā2

1I + Δā2
3I ]

= 4[Δa2
1R + Δa2

3R + Δa2
1I + Δa2

3I ] (26)

which is independent of φ, θ. Hence, for the proposed code-
word and that of [13], [14], the sum-of-eigenvalues criterion
in [18] is not relevant.

C. Minimum eigenvalue maximization

If r < Nt eigenvalues of ΔXHΔX are significantly less
than 1, then even for large SNR values, 1 + Aλi

4Nt
� 1 and (13)

is approximated by

Pr(X → X̃) ≤ 1
2

(
Nt−r∏
i=1

λi

)−1(
− A

4Nt

)−(Nt−r)

. (27)

The system seems to lose diversity; for the codeword in (4)
and the proposed codewords in [13], [14] the occurrence of the
eigenvalues in pairs causes loss of diversity in steps of two. In
such circumstances, it appears reasonable to consider rotation
angle choices that maximize the minimum possible eigenvalue
over all pairs of codewords. For our code structure in (4), the
rotation angles that maximize the minimum eigenvalue are

(φ, θ) = argmax
φ,θ

min
{
(Δā1R − Δā3R)2,

(Δā1R + Δā3R)2, (Δā1I − Δā3I)2, (Δā1I + Δā3I)2
}

.
(28)

The solution is listed in Table I.

D. PEP-bound Minimization

We now show that for all STBCs that employ CR and have
no more than two unique eigenvalues of equal multiplicity
of ΔXHΔX over all possible codeword pairs, maximization
of the diversity product is equivalent to minimization of the
upper bound on PEP for all SNRs. Minimization of the bound
in (13) is equivalent to maximizing

∏R
i=1

{
1 + Aλi

4Nt

}
. If λ1

and λ2 represent the 2 unique eigenvalues of ΔXHΔX, then

argmax
∏R

i=1

(
1 + Aλi

4Nt

)
= argmax

[(
1 + Aλ1

4Nt

)(
1 + Aλ2

4Nt

)]q
= argmax

[
1 + A

4Nt
(λ1 + λ2) + A2

16N2
t
(λ1λ2)

]q

(29)

where q denotes the multiplicity of the eigenvalues. Since
q(λ1 + λ2) = tr(ΔXHΔX) = ‖ΔX‖2

F is independent of
rotation angles1 we need to maximize only the product of the
eigenvalues to minimize the bound in (13). In the case of a
single unique eigenvalue (as in O-STBCs for example), the
STBC is independent of the rotation angle.

While the case of two unique eigenvalues of equal multiplic-
ity applies to the 4×4 QO-STBCs proposed in [7], [10], [11]
and their choice of rotation angle is PEP-bound optimal,
for the 8 × 8 codewords four unique eigenvalues exist and
maximizing the eigenvalue (diversity) product over all possible
codeword pairs does not necessarily minimize the maximum
bound in (13).

We now directly find the rotation angles that minimize the
maximum (worst case) PEP-upper-bound. Substitution of (17)
in (13) gives us the worst case scenario for all codeword pairs.
We need to optimize φ, θ such that

(φ, θ) = argmax
φ,θ

∏4
i=1

[(
1 + Aλi

4Nt

)]2
(30)

where λi ∈ {
(Δā1R − Δā3R)2, (Δā1R + Δā3R)2,

(Δā1I − Δā3I)2, (Δā1I + Δā3I)2
}

, i = 1, 2, 3, 4. Suitable
values for A can be chosen such that Aλi > 1 for all
i = 1, 2, 3, 4. The optimized angles are listed in Table I.

V. DIVERSITY ORDER CALCULATION AND ROTATION

ANGLE OPTIMIZATION: FOUR TRANSMIT ANTENNAS

In this section, we aim to extend the results that we
have obtained for the 8-transmit-antenna case to the correlated
4-transmit-antenna system. For clarity in presentation we
would like to reiterate our transmission scheme for 4-transmit-
antennas. We transmit X1 in the first four time-slots and then
X2 in the next four time slots. Upon reception of both Y1

and Y2, the ML estimate of the transmitted signal vector a is
obtained by joint two symbol decoding as described in Section
II. We now aim to show that this transmission scheme has a
diversity order of 8.

To proceed we need to reevaluate the PEP-upper-bound in
(13) due to the correlation that exists between elements of H1

and H2. The new PEP-upper-bound can be obtained either
by considering the time-correlated channel model in (6) or

1Constellation rotation or interleaving does not change the transmitted
energy of the STBC codeword.
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TABLE I
OPTIMAL ANGLES

QAM Criterion (φ, θ) Diversity Product Min. Eigenvalue

4 Diversity Product (37.9, 21.4) 0.1747 0.0093
4 Min. Eigenvalue (30.9, 13.3) 0.1623 0.0524
4 Max. PEP Bound (28.5, 40) 0.1352 0.0112
8 Diversity Product

(
tan−1(2)/2, tan−1(1/2)/2

)
0.1071 2.35 × 10−4

8 Min. Eigenvalue (3, tan−1(2)) 0.0732 0.0022
8 Max. PEP Bound (7.2, 25.1) 0.0792 2.7 × 10−4

the space-correlated channel model in (8). We begin with the
time-correlated model in (6).

Defining Xt
�
= [XT

1 XT
2 ]T and ΔXt

�
= Xt − X̃t where

Xt �= X̃t, the PEP for a time-correlated fast fading channel
(channel coefficients changing every time slot) is upper-
bounded by [19]

Pr(Xt → X̃t) ≤
(

2rtNr − 1
rtNr

)( rt∏
i=1

Λti

)−Nr (
A

Nt

)−rtNr

(31)
where rt is the rank of the matrix (ΔXtΔXH

t ) ◦ Rt (◦
is the Hadamard product operator), Λti, i = 1, . . . , rt, are
the non-zero eigenvalues of (ΔXtΔXH

t ) ◦Rt, and Rt is the
time-correlated channel matrix to be evaluated. Conforming
with the signal model in [19], with T = 4 and Nr = 1 the

received signal vector ye1
�
= [yT

1 yT
2 ]T (y1 and y2 are the

first columns of Y1, Y2 in (6)) is

ye1 =
√

A

Nt
[D1, . . . ,DNt ]ht + nt (32)

where Di = diag{xti} are the 2T × 2T matrices created
by the columns of Xt, xti, i = 1, 2, · · · , Nt. The 2T × 1
noise vector nt satisfies E{ntnH

t } = I2T . The 2TNt × 1
channel vector is ht = [hT

t1, . . . , hT
tNt

]T where hti is
the vector corresponding to the ith, i = 1, . . . , Nt, trans-
mit antenna. If hei,j , i = 1, . . . , 2Nt, j = 1, . . . , Nr,
represent the elements of He = [HT

1 HT
2 ]T , then hti =[

hei,1 hei,1 hei,1 hei,1 hei+Nt,1 hei+Nt,1 hei+Nt,1 hei+Nt,1

]T
.

The time-correlated channel matrix Rt can now be defined
as

Rt
�
= E{htihH

ti } =
[

14 p14

p14 14

]
, i = 1, . . . , Nt, (33)

where 14 is a 4 × 4 all-one matrix. Having evaluated Rt, we
calculate

(ΔXtΔXH
t ) ◦ Rt

=
[

ΔX1ΔXH
1 pΔX1ΔXH

2

pΔX2ΔXH
1 ΔX2ΔXH

2

]
=
[

ΔX1 04

04 ΔX2

]
.

[
I4 pI4

pI4 I4

]
.

[
ΔXH

1 04

04 ΔXH
2

]
= ΔXRsΔXH

(34)

with Rs
�
= E{hejhH

el} =
[

14 p14

p14 14

]
for j = l from (7).

Since eig(RsΔXHΔX) = eig(ΔXRsΔXH) [20], expand-
ing RsΔXHΔX we have

RsΔXHΔX =

⎡⎢⎣ ΔaI2 ΔbI2
ΔbI2 ΔaI2

pΔcI2 pΔdI2
pΔdI2 pΔcI2

pΔaI2 pΔbI2
pΔbI2 pΔaI2

ΔcI2 ΔdI2
ΔdI2 ΔcI2

⎤⎥⎦ .

(35)
This concludes the analysis work for the PEP-upper-bound

for the time-correlated model in (31).
When we consider the space-correlated model in (8) we

obtain the PEP-upper-bound as

Pr(X → X̃) ≤ 1
2

(
rt∏

i=1

{
1

1 + AΛti

4Nt

})Nr

(36)

where rt and Λti have the same definition as before.
The rank rt is the diversity order of the transmission scheme

for the 4-transmit-antenna case and from (35) we observe
that a maximum value of 8 is attainable provided the matrix
RsΔXHΔX is full-rank. Due to the loss of the block diagonal
structure (cf. (35)), individual eigenvalues of RsΔXHΔX do
not yield simplified expressions as was the case for the 8-
transmit-antenna system. However, the product and sum of
the eigenvalues can still be evaluated.

A. Diversity product maximization

We have
Nt∏
i=1

Λti = det(RsΔXHΔX) = det(Rs)det(ΔXHΔX)

(37)
and the diversity product for the 4-transmit-antenna case is
given by

ζ =
1

2
√

Nt

minX�=X̃

∣∣det
[
ΔXΔXH

]
det[Rs]

∣∣1/(2T )

=
(1 − p2)2/T

2
√

Nt

minX�=X̃

∣∣det
[
ΔXΔXH

]∣∣1/(2T )
.(38)

We conclude that the rotation angles φ, θ that maximize
the diversity product for the uncorrelated 8-transmit-antenna
case also maximize the diversity product for the correlated
4-transmit-antenna case (is independent of the correlation
coefficient value). Since there exist angles φ, θ for which
(38) is non-zero (several examples are listed in Table I),
RsΔXHΔX is full rank and the transmission scheme for 4-
transmit-antennas achieves the maximum diversity order2 of
8. This might seem, arguably, surprising in the context of the

2However, due to the correlation between the corresponding elements of
H1 and H2, the codeword X experiences a loss in diversity product by a
factor of (1 − p2)2/T (cf. (38)).
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findings in [19] where for fast fading time-correlated channels
optimal diversity-product rotation angles are a function of
the correlation coefficient p. We can also observe that when
p = 1, the diversity product in (38) becomes zero and the
maximum achievable rank of RsΔXHΔX is 4 (Δa = Δc
and Δb = Δd) which is intuitively satisfying and expected as
X2 experiences the same fading as X1.

B. Minimum sum-of-eigenvalues maximization

Substituting from (12), we have∑Nt

i=1 Λti = Tr(RsΔXHΔX) = 2(Δa + Δc)
= 2

∑8
i=i Δā2

iR + Δā2
iI = 2

∑8
i=i Δa2

iR + Δa2
iI

(39)
which is independent of the rotation angles φ, θ. Hence, once
again, maximization of the minimum sum of eigenvalues
(criterion suggested in [18]) is irrelevant to this system.
Obtaining φ, θ under the other two criteria proposed in Sec-
tion IV (minimum eigenvalue maximization and direct PEP-
bound minimization) requires knowledge of each individual
eigenvalue of RsΔXHΔX. Even though the eigenvalues can
be evaluated, they yield complicated expressions that are
functions of p.

As a concluding remark, a most important aspect of the
proposed transmission scheme for the 4-transmit-antenna case
is that it enables transmit diversity order of 8 with no addi-
tional physical hardware at the transmitter (4 antennas only)
and requires only joint two-symbol decoding at the receiver.
In the section below, we evaluate the error-rate performance
of the codeword X along with the various criteria for rotation
angle optimization proposed in Section IV.

VI. SIMULATION STUDIES

We present and discuss simulation studies for the 4 and
8-transmit-antenna cases with Nr = 1.

A. Four Transmit Antennas

To gauge the performance of the proposed 8×8 QO-STBC
transmitted by 4 antennas only, we compare its error rate
against the 4 × 4 QO-STBC codeword in [7]. To the best
of our knowledge, for a system with 4 transmit antennas the
code in [7] has the best error-rate performance of all QO-
STBCs that jointly decode two symbols or less. Since our
proposed codeword has diversity order of 8 and rate 1 over 8
time slots, we may compare against two different 4 × 4 QO-
STBC transmission schemes. In one scenario, we transmit the
4 × 4 QO-STBC codeword over the first four time slots and
then repeat the same codeword over the next four time slots to
maintain diversity order of 8 with, however, code rate 1/2 (4
symbols over 8 time slots). In the second scenario, we transmit
a 4× 4 QO-STBC codeword over the first four time slots and
then transmit a new 4× 4 QO-STBC codeword over the next
four time slots to maintain code rate of 1 (8 symbols over 8
time slots) with, however, diversity order 4.

The elements of the channel matrices, h1i,j in H1 and h2i,j

in H2, are correlated and generated as follows:

h1i,j ∼ CN (0, 1) and h2i,j = ph1i,j +
√

1 − p2 zi,j ,
i = 1, . . . , Nt, j = 1,

(40)
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Fig. 1. Block-error-rate versus SNR (4-transmit-antenna system).

where zi,j ∼ CN (0, 1) and p is the correlation coefficient
(CN stands for complex Gaussian distribution). In Fig. 1, we
plot the block-error-rate as a function of the received signal-to-
noise-ratio (SNR) for (i) our 4-antenna codeword transmission
scheme in (3), (ii) transmission rate 1/2, diversity order 8
transmission of the 4×4 QO-STBC of [7], and (iii) transmis-
sion rate 1, diversity order 4, 4 × 4 QO-STBC. We consider
three channel fading correlation scenarios, p = 0, p = 0.5, and
p = 0.8. For rate 1 codewords, we select the symbols from a 4-
QAM constellation, while for rate 1/2 codewords the symbols
are chosen from a 16-QAM constellation to maintain equal
spectral efficiency for all transmission schemes. The rotation
angles for our proposed codeword are {φ, θ} = {37.9, 21.4}
under diversity product minimization, while for the 4 × 4
QO-STBC codeword the rotation angle is π/4 as calculated
in [7]. Since the 4 × 4 QO-STBC has only two unique
eigenvalues, the angle of π/4 is also PEP-bound optimal
(not the case, however, for the proposed 4-transmit-antenna
transmission scheme). From Fig. 1, we observe a substantial
gain in performance achieved by transmitting the proposed
8 × 8 codeword over four antennas when compared with the
two other 4 × 4 QO-STBC schemes. The best achievable
performance from the 4 × 4 QO-STBC codeword of [7] is
the direct rate 1, diversity order 4 transmission, which the
proposed transmission scheme outperforms handily even in
the extreme scenario of 80% channel correlation. In fact, to
that respect it may be worth noting that our matrices X1 and
X2 may not need to be transmitted directly one after the other
in time. Separating the transmissions of the two codeword
blocks over several time-slot blocks (block interleaving) may
help reduce the effective coefficient value of p when allowed.

B. Eight Transmit Antennas

We now evaluate the performance of the 8 × 8 QO-STBC
in (4) under 8-element antenna transmission and minimum
eigenvalue CR optimization by (28), diversity product CR
optimization by (25), and the proposed direct maximum PEP-
bound CR optimization by (30). In Fig. 2, we plot the block-
error-rate versus SNR when the symbols are chosen from a
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Fig. 2. Block-error-rate versus SNR for 4-QAM constellation (8-transmit-
antenna system).

4-QAM constellation. For direct PEP-bound optimization of
φ, θ, we solve for A to obtain a received SNR of 20dB. We
observe that the rotation angles that maximize the diversity
product and the rotation angles that minimize the maximum
PEP bound provide the best results, with the latter having
indeed better performance. The exact angle values are shown
in Table I (along with the resulting diversity product and
minimum eigenvalue).

In Fig. 3, we repeat the studies of Fig. 2 for symbols
chosen from an 8-QAM non-rectangular constellation [8]. To
obtain the PEP-bound optimal φ, θ, values we solve for A that
corresponds to received SNR of 30dB. Again, all calculated
values are given in Table I. For reference purposes, we include
in our comparisons the 8× 8 single-symbol decodable STBC
in [10]. Since the code in [10] contains only two unique
eigenvalues the rotation angle of tan−1(1/2) is PEP-bound
optimal for that code; since its rate is 3/4, we select symbols
from a 16-QAM constellation to ensure equal spectral effi-
ciency for all codewords under comparison. Our PEP-bound
optimized codeword in (4) offers a gain of about 1 dB over
the single-symbol decodable STBC in [10]. The minimum
eigenvalue optimized version performs almost similarly well.
As argued in Section IV.C, due to decreased values of the
minimum eigenvalues as compared to the 4-QAM scenario,
the maximum diversity (eigenvalue) product optimized system
seems to lose diversity over the operable SNR range. Similar
performance loss was also observed in [13] when the rotation
angles were chosen to maximize the diversity product.

VII. CONCLUSIONS

We proposed an alternative representation of the 8×8 two-
symbol decodable quasi-orthogonal space-time block code
(QO-STBC) that can be used on both 8 and 4-transmit-antenna
systems. For the 8-transmit-antenna system, we derived three
different sets of rotation angle values: maximum diversity-
product optimal, maximum minimum-eigenvalue optimal, and
minimum maximum-pairwise-error-probability-bound (PEP)
optimal.
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Fig. 3. Block-error-rate versus SNR for non-rectangular 8-QAM constellation
and 16-QAM for the rate 3/4 code in [10] (8-transmit-antenna system).

Most importantly, the proposed codeword doubles the trans-
mit diversity order of a 4-transmit-antenna system. By obtain-
ing new expressions for the PEP-upper-bound for correlated
channels we were able to find rotation angles that maximize
the diversity product of 4-antenna transmission systems and
proved that the rotation angles are independent of the cor-
relation coefficient. As a by-product, we showed that for the
proposed codeword, maximization of the sum of eigenvalues is
an irrelevant/non-applicable criterion (for both 8 and 4-antenna
transmissions).
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