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Abstract—In this paper, a general space–frequency (SF) block
code structure is proposed that can guarantee full-rate (one
channel symbol per subcarrier) and full-diversity transmission
in multiple-input multiple-output–orthogonal frequency-division
multiplexing (MIMO-OFDM) systems. The proposed method can
be used to construct SF codes for an arbitrary number of transmit
antennas, any memoryless modulation and arbitrary power-delay
profiles. Moreover, assuming that the power-delay profile is known
at the transmitter, we devise an interleaving method to maximize
the overall performance of the code. We show that the diversity
product can be decomposed as the product of the “intrinsic” diver-
sity product, which depends only on the used signal constellation
and the code design, and the “extrinsic” diversity product, which
depends only on the applied interleaving method and the power
delay profile of the channel. Based on this decomposition, we pro-
pose an interleaving strategy to maximize the “extrinsic” diversity
product. Extensive simulation results show that the proposed SF
codes outperform the previously existing codes by about 3–5 dB,
and that the proposed interleaving method results in about 1–3-dB
performance improvement compared to random interleaving.

Index Terms—Frequency-selective fading channels, full diver-
sity, multiple-input multiple-output–orthogonal frequency-divi-
sion multiplexing (MIMO-OFDM) systems, permutation, space–
frequency (SF) coding.

I. INTRODUCTION

THE idea of using multiple transmit and receive antennas
in wireless communication systems to accommodate high

data rates has attracted considerable attention recently. It has
been shown that multiple-input multiple-output (MIMO) sys-
tems offer considerable performance improvement over single-
antenna systems. This performance improvement has been char-
acterized by the achievable diversity order, which describes the
available degrees of freedom present in the MIMO channel.
In order to take advantage of the spatial and temporal diver-
sity, a large number of space–time (ST) coding and modulation
methods have been proposed, for example, [1]–[18].

In case of frequency-selective MIMO channels, there is an
additional source of diversity, frequency diversity, due to the
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existence of multiple propagation paths between each transmit
and receive antenna pair. By combining the orthogonal fre-
quency-division multiplexing (OFDM) modulation [19], [20]
with MIMO systems, space–frequency (SF) codes have been
proposed1 to exploit the spatial and frequency diversity present
in frequency-selective MIMO channels [21]–[29]. The strategy
of SF coding is to distribute the channel symbols over different
transmit antennas and OFDM tones within one OFDM block.
If longer decoding delay and higher decoding complexity are
allowable, one may consider coding over several OFDM block
periods, resulting in space–time–frequency codes [30], [31].

The first SF coding scheme was proposed in [21], in which
previously existing ST codes were used by replacing the time
domain with the frequency domain. The resulting SF codes
could achieve only spatial diversity and were not guaranteed
to achieve full (spatial and frequency) diversity. Later, similar
schemes were described in [22]–[25]. The performance criteria
for SF-coded MIMO-OFDM systems were derived in [26],
[27]. The maximum achievable diversity order was found to be
the product of the number of transmit antennas, the number of
receive antennas, and the number of delay paths. The authors
of [27] showed that, in general, existing ST codes cannot
exploit the frequency diversity available in the frequency-se-
lective MIMO channels, and it was suggested that a completely
new code design procedure will have to be developed for
MIMO-OFDM systems. Later in [28], they provided a con-
struction method for a class of SF codes by multiplying a part
of the discrete Fourier transform (DFT) matrix with the input
symbol vectors. The obtained SF codes achieve full spatial
and frequency diversity at the expense of bandwidth efficiency.
Moreover, this approach relied on the assumption that all of
the path delays are located exactly at the sampling instances of
the receiver, and the power is distributed uniformly across the
paths. Recently, in [29], a systematic design method to obtain
full-diversity SF codes was proposed for arbitrary power delay
profiles and any number of transmit antennas. It was shown that
any ST code (block or trellis) achieving full (spatial) diversity
in quasi-static flat-fading environment can be used to construct
full-diversity SF codes via a simple mapping. The resulting SF
codes provide higher data rates than the approach described
in [28], but they still cannot achieve full rate (one channel
symbol per subcarrier) transmission. Therefore, it is of interest
to devise new SF code design methods that can guarantee both
performance (full diversity) and high data rate (full symbol
rate).

1Another coding approach is to consider ST coding directly for single-carrier
frequency-selective MIMO systems (see [32], [33], and the references therein).
In this paper, we follow the SF coding approach for MIMO-OFDM systems.
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In MIMO-OFDM systems, the DFT operation introduces cor-
relation into the channel frequency response at different subcar-
riers, even if the individual delay paths are independent of each
other [34], [35]. A natural idea to decrease the correlation of the
channel frequency response is to interleave, or permute, the sub-
carriers. If the power delay profile of the channel is not known
a priori, random interleaving may offer desirable performance.
Assuming that the delay paths are equally spaced and fall onto
the sampling instances of the receiver, an optimum subcarrier
grouping method was proposed in [36]. However, the proposed
grouping method was not guaranteed to be optimum for arbi-
trary power delay profiles.

In this paper, we consider the problem of systematic SF block
code design for MIMO-OFDM systems. We propose an SF code
design approach that offers full symbol rate and guarantees full
diversity for an arbitrary number of transmit antennas, any mem-
oryless modulation method, and arbitrary power delay profiles.
First, we describe a general SF code structure and show that
the combination of this code structure and the algebraically ro-
tated signal constellations [37]–[42] or the diagonal ST signal
constellations [8] can guarantee full-rate full-diversity transmis-
sion. Second, assuming that the statistics of the channel (the
power delay profile) is known at the transmitter, we devise a
permutation (or interleaving) method to maximize the overall
performance of the code. We show that the diversity product
can be decomposed as the product of the “intrinsic” and the “ex-
trinsic” diversity products. The “intrinsic” diversity product de-
pends only on the used signal constellations and the SF code de-
sign, while the “extrinsic” diversity product depends only on the
applied permutation and the power delay profile of the channel.
We also obtain some upper bounds on the “extrinsic” diversity
product for any permutation and any power delay profile. Based
on this decomposition, we propose a permutation strategy and
determine the optimum permutation to maximize the “extrinsic”
diversity product.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and briefly review the SF
code design criteria. In Section III, we describe the general
code structure, and discuss two approaches to obtain full-rate
full-diversity SF codes. In Section IV, we investigate the effect
of permutations on the proposed SF codes, and determine
the optimum permutation for different power delay profiles.
The simulation results are presented in Section V, and some
conclusions are drawn in Section VI.

II. CHANNEL MODEL AND SF CODE DESIGN CRITERIA

We consider an SF-coded MIMO-OFDM system with
transmit antennas, receive antennas, and subcarriers. The
MIMO channel is assumed to be constant over each OFDM
block period. The frequency-selective fading channels between
different transmit and receive antenna pairs are assumed to have

independent paths and the same power delay profile. The
channel impulse response from transmit antenna to receive an-
tenna is modeled as

(2.1)

where is the delay of the th path, and is the com-
plex amplitude of the th path. The ’s are modeled as
zero-mean, complex Gaussian random variables with variances

, where stands for the expectation. The
powers of the paths are normalized such that .
From (2.1), the frequency response of the channel is given by

(2.2)

where is the imaginary unit. We assume that the
MIMO channel is spatially uncorrelated, i.e., the channel taps

are independent for different indices .
The input bit stream is divided into bit long segments, and

each segment is mapped onto an SF codeword. Each SF code-
word can be represented as an matrix

...
...

. . .
...

(2.3)

where denotes the channel symbol transmitted over the
th subcarrier by transmit antenna . The SF code is assumed

to satisfy the energy constraint , where
is the Frobenius norm2 of . The OFDM transmitter applies an

-point inverse fast Fourier transform (IFFT) to each column of
the matrix , and after appending the cyclic prefix, the OFDM
symbol corresponding to the th column of

is transmitted by transmit antenna . Note that all of the
OFDM symbols are transmitted simultaneously from different
transmit antennas.

At the receiver, after matched filtering, removing the cyclic
prefix, and applying the fast Fourier transform (FFT), the re-
ceived signal at the th subcarrier at receive antenna is given
by

(2.4)

where

(2.5)

is the channel frequency response at the th subcarrier between
the transmit antenna and the receive antenna ,
is the subcarrier separation in the frequency domain, and is
the OFDM symbol period. We assume that the channel state in-
formation is known at the receiver, but not at the trans-
mitter. In (2.4), denotes the additive complex Gaussian
noise with zero mean and unit variance at the th subcarrier
at receive antenna . The noise samples are assumed to
be uncorrelated for different ’s and ’s. The factor in
(2.4) ensures that is the average signal-to-noise ratio (SNR) at

2The Frobenius norm of C is defined as

kCk = tr(C C) = tr(CC ) = jc (n)j :
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each receive antenna, independently of the number of transmit
antennas.

The channel frequency response vector between transmit an-
tenna and receive antenna will be denoted by

(2.6)

Using the notation , can be decomposed as

(2.7)

where

...
...

. . .
...

which is related to the delay distribution, and

which is related to the power distribution of the channel impulse
response. In general, is not a unitary matrix. If all of the
delay paths fall at the sampling instances of the receiver, is
part of the DFT matrix, which is unitary. From (2.7), the corre-
lation matrix of the channel frequency response vector between
transmit antenna and receive antenna can be calculated as

(2.8)

where the superscript stands for the complex conjugate and
transpose of a matrix. The third equality follows from the as-
sumption that the path gains are independent for different
paths. Note that the correlation matrix is independent of the
transmit and receive antenna indices and .

For two distinct SF codewords and , we use the notation

(2.9)

Then, assuming spatially uncorrelated MIMO channel, the pair-
wise error probability between and can be upper-bounded
as [29], [13], [14]

(2.10)
where is the rank of , are the nonzero
eigenvalues of , and denotes the Hadamard product.3

Based on the upper bound (2.10), two SF code design criteria
were proposed in [29].

3Suppose that A = fa g and B = fb g are two matrices of size m� n.
The Hadamard product of A and B is defined as

A �B =

a b � � � a b

� � � � � � � � �

a b � � � a b

:

• Diversity (rank) criterion: The minimum rank of
over all pairs of distinct codewords and should be as
large as possible.

• Product criterion: The minimum value of the product
over all pairs of distinct codewords and

should also be maximized.
If the minimum rank of is for any pair of distinct

codewords and , we say that the SF code achieves a diversity
order of . According to a rank inequality on Hadamard
products ([50, p. 307]), we know that

Since the rank of is at most , the rank of is at most ,
and the rank of is at most , the maximum achievable di-
versity (or full diversity) is at most [26],
[27], [29], [30]. Clearly, in order to achieve a diversity order of

, the number of nonzero rows of cannot be less
than for any pair of distinct SF codewords and . If an SF
code achieves full diversity, the diversity product, which is the
normalized coding advantage, is given by [29], [8], [9]

(2.11)

where are the nonzero eigenvalues of for
any pair of distinct SF codewords and .

III. FULL-RATE AND FULL-DIVERSITY CODE DESIGN

In this section, we describe a systematic method to obtain
full-rate SF codes achieving full diversity. Specifically, we will
design a class of SF codes that can achieve a diversity order of

for any fixed integer .

A. Code Structure

We consider a coding strategy where each SF codeword is
a concatenation of some matrices

(3.1)

where , and each matrix ,
is of size by . The zero padding in (3.1) is used if the
number of subcarriers is not an integer multiple of . Each
matrix has the same structure given by

(3.2)

where is a block diagonal matrix,

and all are complex symbols and will
be specified later. The energy constraint is

. For a fixed , the symbols in are designed jointly, but
the design of and , , is independent of each
other. The symbol rate of the code is , ignoring the
cyclic prefix. If is a multiple of , the symbol rate is . If
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not, the rate is less than , but since usually is much greater
than , the symbol rate is very close to .

Now we derive sufficient conditions for the previouslu de-
scribed SF codes to achieve a diversity order of . Sup-
pose that and are two distinct SF codewords which are
constructed from and , respec-
tively. We would like to determine the rank of , where is
defined in (2.9) and is the correlation matrix defined in (2.8).
For two distinct codewords and , there exists at least one
index such that . We may further
assume that for any since the rank of
does not decrease if for some ([50, Corollary
3.1.3, p. 149]).

From (2.8), we know that the correlation matrix
is a Toeplitz matrix. The entries of are given

by

(3.3)

Under the assumption that for any , we observe
that the nonzero eigenvalues of are the same as those of

, where
is also a Toeplitz matrix whose entries are

(3.4)

Note that is independent of the index , i.e., it is indepen-
dent of the position of in . Suppose that

and have symbols and
, respectively. Then, the difference matrix be-

tween and is

(3.5)

where

is the identity matrix of size , is an all one
matrix of size , and stands for the tensor product. Thus,
we have

(3.6)

In the preceding derivation, the second equality follows from
the identities

and

([50, p. 251]), and the last equality follows from a property of
the Hadamard product ([50, p. 304]). If all of the eigenvalues of

are nonzero, the product of
the eigenvalues is

(3.7)

where and is specified in (3.4). Similar
to the correlation matrix in (2.8), can also be expressed as

(3.8)

where

...
...

. . .
...

Clearly, with , is nonsingular. There-
fore, from (3.7) we observe that if , the de-
terminant of is nonzero. This
implies that the SF code achieves a diversity order of .

The assumption that for any is also suf-
ficient to calculate the diversity product. If the rank of
is and for some , the product of the
nonzero eigenvalues of cannot be less than that with the
assumption that for any ([50, Corollary 3.1.3,
p. 149]). Specifically, the diversity product can be calculated as
in (3.9) at the top of the following page, and

(3.10)

is termed as the “intrinsic” diversity product of the SF code.
The “intrinsic” diversity product does not depend on the
power delay profile of the channel. Thus, we have the following
theorem.

Theorem 3.1: For any SF code constructed by (3.1) and (3.2),
if for any pair of distinct sets of symbols

and , the SF
code achieves a diversity order of , and the diversity
product is

(3.11)

where is defined in (3.8), and is the “intrinsic” diversity
product defined in (3.10).
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(3.9)

From Theorem 3.1, we observe that depends only
on the power delay profile of the channel, and the “intrinsic”
diversity product depends only on

which is called the minimum product distance of the set of sym-
bols [37], [38]. Therefore, given the
code structure (3.2), it is desirable to design the set of symbols
such that the minimum product distance is as large as possible.

B. Maximizing the “Intrinsic” Diversity Product :
Two Approaches

The problem of maximizing the minimum product distance
of a set of signal points has arisen previously as the problem
of constructing signal constellations for Rayleigh-fading chan-
nels [39], [40], [42]. In this subsection, we will discuss two ap-
proaches to design the set of variables .
For simplicity, we will use the notation .

One approach to designing the signal points
is to apply a transform over a -dimen-

sional signal set. Specifically, assume that is a set of signal
points (a constellation such as quadrature amplitude modulation
(QAM), pulse amplitude modulation (PAM), and so on). For
any signal vector , let

(3.12)

where is a matrix. For a given signal constellation
, the transform should be optimized such that the min-

imum product distance of the set of vectors is as large as pos-
sible. Both Hadamard transforms and Vandermonde matrices
have been proposed for constructing [39], [40], [42]. The
results have been used recently to design ST block codes with
full diversity [41], [42]. Note that the transforms based
on Vandermonde matrices result in larger minimum product
distance than those based on Hadamard transforms. Here we
summarize only some best known transforms based on
Vandermonde matrices. A Vandermonde matrix with variables

is a matrix

...
...

. . .
...

(3.13)
First, two classes of optimum transforms were proposed
in [39] as follows.

i) If , the optimum transform
for a signal constellation from
both and are integers is given by

(3.14)

where are the roots of the polynomial
over field both and

are rational numbers , and they can be determined as

(3.15)

ii) If , the optimum transform for a
signal constellation from

both and are integers

is given by

(3.16)

where are the roots of the polynomial
over field both and are

rational numbers , and they can be specified as

(3.17)

The signal constellations from such as QAM and PAM
constellations are of practical interest. In case of ,
the optimum transforms (3.14) and (3.15) were also described
in [40]. Moreover, in [40], some transforms (not optimum)
were proposed in the case when is not a power of two. If

, a class of transforms for
signal constellations from was given in [40] as

, where

(3.18)

Recently, in [42], some optimum transforms were intro-
duced for the case of not being a power of two. Specifi-
cally, if is not a power of two, but for some
with , where is the Euler function,4 the op-
timum transform for a signal constellation from
can be expressed as [42] , where

(3.19)

For example, when is the corresponding is
respectively. In these cases,

4'(J) denotes the number of integers m (1 � m < J) such that m is
relatively prime to J , i.e., gcd(m; J) = 1.
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. In case of some odd , for example ,
and so on, an experimental result was given in [42] as

(3.20)

where are the roots of polynomial
over the field , and they can be calculated as

(3.21)

In (3.20), the factor is equal to for the energy
normalization. Note that although the transforms given in (3.18)
and (3.21) are not optimum, they do provide large minimum
product distance. For more details, we refer the reader to [39],
[40], [42].

The other approach to designing the signal set is to exploit
the structure of the diagonal ST block codes. Suppose that the
spectral efficiency of the SF code is bits per second per hertz
(bits/s/Hz). We may consider designing the set of
variables directly under the energy constraint .
We can take advantage of the results from [8], in which diagonal
ST block codes were constructed as follows:

(3.22)
where , and

. The parameters need to be
optimized such that the metric

(3.23)
is maximized. Then, we can design a set of variables

as follows. For any , let

(3.24)

As a consequence, the minimum product distance of the set of
the resulting signal vectors is determined by the metric in
(3.23). The optimum parameters can be
obtained via computer search. For example [8]

IV. MAXIMIZING THE CODING ADVANTAGE BY PERMUTATIONS

In the previous section, we obtained a class of SF codes with
full rate and full diversity assuming that the transmitter has no
a priori knowledge about the channel. In this case, the perfor-
mance of the SF codes can be improved by random interleaving,
as it can reduce the correlation between adjacent subcarriers.
However, if the power delay profile of the channel is available
at the transmitter side, further improvement can be achieved by
developing a permutation (or interleaving) method that explic-
itly takes the power delay profile into account. This possibility
will be explored in this section.

In [36], an optimum subcarrier grouping method was pro-
posed under the assumption that the path delays are equally
spaced and fall onto the sampling instances of the receiver, i.e.,

for . Here we will consider the
optimum permutation for any arbitrary power delay profile.

A. Diversity Product of the SF Codes With Permutations

Suppose that the path delays and powers
are available at the transmitter. Our objective

is to develop an optimum permutation (or interleaving) method
for the SF codes defined by (3.1) and (3.2) such that the resulting
coding advantage is maximized. By permuting the rows of a
SF codeword , we obtain an interleaved codeword . We
know that for two distinct SF codewords and constructed
from and , respectively, there
exists at least one index such that .
In order to determine the minimum rank of

, we may further assume that for any
for the same reason as stated in the previous section.

Suppose that and consist of symbols
and , respectively,

with for all . For simplicity, we use
the notation for . After
row permutation, we assume that the th row
of is located at the th row
of , i.e., the th row of will be transmitted at
the th subcarrier. Then, all the th,

and , entries of
are nonzero, and the other entries are zero. Thus, all the en-
tries of are zeros except the

th entries for and
. For convenience, we define the matrices ,

, such that the th
entry of is the th entry of

. Since the correlation matrix is
a Toeplitz matrix (see (3.3)), the th, , entry of

can be expressed as

(4.1)

where and . Note that
the nonzero eigenvalues of are
determined by the matrices . It is shown
in Appendix A that the product of the nonzero eigenvalues of

, , can be calculated
as

(4.2)

From (4.1), for each , the matrix
can be decomposed as follows:

(4.3)
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where

...
...

. . .
...

(4.4)

As a consequence, the determinant of is given by

(4.5)

Substituting (4.5) into (4.2), the expression for the product of
the nonzero eigenvalues of takes
the form

(4.6)

Therefore, the diversity product of the permuted SF code can be
calculated as

(4.7)

where is the “intrinsic” diversity product defined in (3.10),
and , the “extrinsic” diversity product, is defined by

(4.8)

The “extrinsic” diversity product depends only on the per-
mutation and the power delay profile of the channel. The per-
mutation does not effect the “intrinsic” diversity product .

From (4.4), for each , can be written
as

(4.9)

where is given in (4.10) at the bottom of the page. Thus,
. We observe that the deter-

minant of depends only on the relative positions of
the permuted rows with respect to the position , not
on their absolute positions.

In the following theorem, we summarize the above results,
and obtain upper bounds on the “extrinsic” diversity product
for arbitrary permutations.

Theorem 4.1: For any subcarrier permutation, the diversity
product of the resulting SF code is

(4.11)

where and are the “intrinsic” and “extrinsic” diversity
products defined in (3.10) and (4.8), respectively. Moreover, the
“extrinsic” diversity product is upper-bounded as

i) ; and more precisely,
ii) if we sort the power profile in a nonin-

creasing order as , then

(4.12)

where equality holds when . As a consequence,

(4.13)

The proof of Theorem 4.1 can be found in Appendix B.
We observe from Theorem 4.1 ii) that the “extrinsic” diversity
product depends on the power delay profile in two ways.
First, it depends on the power distribution through the square
root of the geometric average of the largest path powers,
i.e., . In case of , the best performance is
expected if the power distribution is uniform (i.e., )
since the sum of the path powers is unity. Second, the “extrinsic”
diversity product also depends on the delay distribution
and the applied subcarrier permutation. On the other hand, the
“intrinsic” diversity product, , is not affected by the power
delay profile or the permutation method. It only depends on the
signal constellation and the SF code design via the achieved
minimum product distance.

B. Maximizing the “Extrinsic” Diversity Product

By carefully choosing the applied permutation method, the
overall performance of the SF code can be improved by in-
creasing the value of the “extrinsic” diversity product . To-
ward this end, we consider a specific permutation strategy.

We decompose any integer as

(4.14)

where , , and denotes the largest
integer not greater than . For a fixed integer , we
further decompose in (4.14) as

(4.15)

where and .
We permute the rows of the SF codeword constructed

from (3.1) and (3.2) in such a way that the th
row of is moved to the th row, where

(4.16)

where come from (4.14) and (4.15). We call the integer
as the separation factor. The separation factor should be

chosen such that for any , or

...
...

. . .
...

(4.10)
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Fig. 1. An illustration of the permutation with � = 2 and separation factor
� = 3.

equivalently, . Moreover, in order to guarantee that
the mapping (4.16) is one-to-one over the set
(i.e., it defines a permutation), must be a factor of . The
role of the permutation specified in (4.16) is to separate two
neighboring rows of by subcarriers. An example of this
permutation method is depicted in Fig. 1.

The following result characterizes the extrinsic diversity
product of the SF code that is permuted with the above de-
scribed method. The proof can be found in Appendix C.

Theorem 4.2: For the permutation specified in (4.16) with
a separation factor , the “extrinsic” diversity product of the
permuted SF code is

(4.17)

where

...
...

. . .
...

(4.18)
Moreover, if , the “extrinsic” diversity product can be
calculated as

(4.19)

The permutation (4.16) is determined by the separation factor
. Our objective is to find a separation factor that maximizes

the “extrinsic” diversity product

(4.20)

If , the optimum separation factor can be expressed
as

(4.21)
which is independent of the path powers. The optimum sepa-
ration factor can be easily found via low-complexity computer
search. However, in some cases, closed-form solutions can also
be obtained.

• If , the “extrinsic” diversity product is

(4.22)

TABLE I
TYPICAL URBAN (TU) SIX-RAY POWER DELAY PROFILE

TABLE II
HILLY TERRAIN (HT) SIX-RAY POWER DELAY PROFILE

Suppose that the system has subcarriers, and
the total bandwidth is 1 MHz. Then, the OFDM
block duration is 128 s without the cyclic prefix.
If 5 s, then and .
If 20 s, then and .
In general, if microseconds, where is
an nonnegative integer and is an odd integer,

. In all of these cases, the “extrinsic” diversity
product is , which achieves the upper bound
(4.13) of Theorem 4.1.

• Assume that , and
is an integer multiple of , where is a constant

and not necessarily an integer. If or
, the optimum separation factor is

(4.23)

and the corresponding “extrinsic” diversity product is
(see Appendix D for the proof).

In particular, in case of ,
. In both cases, the “extrinsic” diversity products

achieve the upper bounds of Theorem 4.1. Note that if
for , , and is an

integer multiple of , the permutation with the optimum
separation factor is similar to the optimum
subcarrier grouping method proposed in [36], which is
not optimal for arbitrary power delay profiles.

We now determine the optimum separation factors for two
commonly used multipath fading models. The COST 207
six-ray power delay profiles for typical urban (TU) and hilly
terrain (HT) environment [48] are described in Tables I and II,
respectively. We consider two different bandwidths: a) BW
1 MHz, and b) BW 4 MHz. Suppose that the OFDM has

subcarriers. The plots of the “extrinsic” diversity
product as the function of the separation factor for the TU
and HT channel models are shown in Figs. 2 and 3, respectively.
In each figure, the curves of the “extrinsic” diversity product
are depicted for different values. Note that for
a fixed , the separation factor cannot be
greater than .

Let us focus on the case. For the TU channel model
with BW 1 MHz (Fig. 2(a)), the maximum “extrinsic” di-
versity product is . The corresponding separation
factor is However, to ensure one-to-one mapping,
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Fig. 2. Extrinsic diversity product � versus separation factor � for different � (2 � � � 6), TU channel model. (a) BW = 1 MHz. (b) BW = 4 MHz.
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Fig. 3. Extrinsic diversity product � versus separation factor � for different � (2 � � � 6), HT channel model. (a) BW = 1 MHz. (b) BW = 4 MHz.
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we choose , which results in an “extrinsic” diversity
product . For the TU channel model with BW
4 MHz (Fig. 2(b)), the maximum “extrinsic” diversity product
is which approaches the upper bound stated in
Theorem 4.1. The corresponding separation factor is .
Similarly, we choose to generate a permutation. The
resulting “extrinsic” diversity product is , which
is a slight performance loss compared to the maximum value

. Finally, in case of the six-ray HT channel model
with BW 1 MHz (Fig. 3(a)), the maximum “extrinsic” di-
versity product is . The corresponding separation
factor is , which is desirable. For the HT channel
model with BW 4 MHz (Fig. 3(b)), the maximum “extrinsic”
diversity product is , and the corresponding sep-
aration factor is . To ensure one-to-one mapping, we
choose , which results in an “extrinsic” diversity product

.

V. SIMULATION RESULTS

To illustrate the preceding analytical results, we performed
some computer simulations. The MIMO-OFDM system had

transmit antennas, receive antenna, and
subcarriers. The simulated full-rate full-diversity SF

codes were constructed according to (3.1) and (3.2) with ,
yielding the code block structure

(5.1)

The symbols were obtained as

(5.2)

where were chosen from a binary phase-shift
keying (BPSK) constellation or a quaternary
phase-shift keyong (QPSK) constellation ,

is the Vandermonde matrix defined in (3.13), and
. This code targets a frequency diversity order of

, thus, it achieves full diversity only if the number of
delay paths is .

We simulated the proposed SF codes with three permuta-
tion schemes: no permutation, random permutation, and the pro-
posed optimum permutation. The random permutation was gen-
erated by the Takeshita–Constello method [43], which is given
by

(5.3)

We present average bit-error rate (BER) curves as functions
of the average SNR. In all simulation results, the curves with
squares (“ ”), pluses (“ ”), and stars (“ ”) show the perfor-
mance of the proposed full-rate full-diversity SF codes without
permutation, with the random permutation (5.3) and with the
proposed optimum permutation, respectively.

A. Code Performance With Different Permutation Schemes

The first set of experiments were conducted to compare the
performance of the proposed full-rate full-diversity SF codes
using different permutation schemes. We simulated the pro-
posed code (5.1) with the channel symbols chosen
from BPSK constellation. The symbol rate of this code is , and
its spectral efficiency is 1 bit/s/Hz, ignoring the cyclic prefix.

First, we assumed a simple two-ray, equal-power delay pro-
file, with a delay microseconds between the two rays. We sim-
ulated two cases: a) 5 s, and b) 20 s with OFDM
bandwidth BW 1 MHz. From the BER curves, shown in
Fig. 4(a) and (b), we observe that the performance of the pro-
posed SF code with the random permutation is better than that
without permutation. In case of 5 s, the performance im-
provement is more significant. With the optimum permutation,
the performance is further improved. In case of 5 s, there
is a 3-dB gain between the optimum permutation ( )
and the random permutation at a BER of . In case of
20 s, the performance improvement of the optimum permuta-
tion over the random permutation is about 2 dB at
a BER of . If no permutation is used, the performance of
the code in the 5 s case ( ) is worse than
that in the 20 s case ( ). However, if we
apply the proposed optimum permutation, the performance of
the SF code in both the 5 s case and
the 20 s case is approximately the
same. This confirms that by careful interleaver design, the per-
formance of the SF codes can be significantly improved. More-
over, the consistency between the theoretical diversity product
values and the simulation results suggest that the “extrinsic” di-
versity product is a good indicator of the code performance.

We also simulated the code (5.1) with the TU and HT channel
models. We considered two situations: a) BW 1 MHz, and
b) BW 4 MHz. Fig. 5 provides the performance results of
the code with different permutations for the TU channel model.
From Fig. 5(a) and (b), we observe that in both cases, the code
with random permutation has a significant improvement over
the nonpermuted code. Using the proposed permutation with a
separation factor , there is an additional gain of 1.5 and
1 dB at a BER of in case of BW 1 MHz and BW
4 MHz, respectively.

Fig. 6 depicts the simulation results for the HT channel
model. We can see that in the BW 1 MHz case, the per-
formance gain of the permuted codes is larger than in the
BW 4 MHz case. In both cases, the code with the proposed
permutation ( ) outperforms the code with the random
permutation. There is a 1.5-dB performance improvement at a
BER of in case of BW 1 MHz, and a 1-dB improve-
ment in case of BW 4 MHz.

B. Comparison With Existing SF Codes

We also compared the performance of the proposed full-rate
full-diversity SF codes with that of the full-diversity SF codes
described in [29]. We simulated the proposed code (5.1) with
symbols chosen from a QPSK constellation. The
symbol rate of the code is , and the spectral efficiency is
2 bits/s/Hz, ignoring the cyclic prefix. The full-diversity SF
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Fig. 4. Performance of the proposed SF code with different permutations, two-ray channel model. (a) Two rays at 0 and 5 �s. (b) Two rays at 0 and 20 �s.
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Fig. 5. Performance of the proposed SF code with different permutations, TU channel model. (a) BW = 1 MHz. (b) BW = 4 MHz.
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Fig. 6. Performance of the proposed SF code with different permutations, HT channel model. (a) BW = 1 MHz. (b) BW = 4 MHz.
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code [29] is a repetition of the Alamouti scheme [3] two times
as follows:

(5.4)

where the channel symbols and were chosen from
16-QAM in order to maintain the same spectral efficiency. In
all figures, the curves with diamonds (“ ”) and circles (“ ”)
show the performance of the SF code from orthogonal design
(5.4) without permutation and with the random permutation
(5.3), respectively.

First, we used the two-ray, equal-power profile, with a)
5 s, and b) 20 s. The total bandwidth was BW 1 MHz.
From the BER curve of the 5 s case, depicted in Fig. 7(a),
we observe that without permutation, the proposed SF code out-
performs the SF code from orthogonal design by about 3 dB at
a BER of . With the random permutation (5.3), the pro-
posed code outperforms the code from orthogonal design by
about 2 dB at a BER of . With the optimum permuta-
tion ( ), the proposed code has an additional gain of
3 dB at a BER of . Compared to the code from orthogonal
design with the random permutation, the proposed code with
the optimum permutation has a total gain of 5 dB at a BER of

. Fig. 7(b) shows the performance of the SF codes in the
20 s case. It can be seen that without permutation, the

proposed code outperforms the code (5.4) by about 2 dB at a
BER of . With the random permutation (5.3), the perfor-
mance of the proposed code is better than that of the code (5.4)
by about 2 dB at a BER of . With the optimum permuta-
tion ( ), an additional improvement of 2 dB at a BER
of is achieved by the proposed code.

We also simulated the two SF codes using the TU and HT
channel models. We considered two situations: a) BW 1 MHz,
and b) BW 4 MHz. Fig. 8 depicts the simulation results for the
TU channel model. In case of BW 1 MHz, from Fig. 8(a), we
can see that without permutation, the proposed SF code outper-
forms the SF code (5.4) by about 2 dB at a BER of . With
the random permutation (5.3), the performance of the proposed
code is better than that of the code from orthogonal design by
about 2.5 dB at a BER of . With the proposed permutation
( ), an additional improvement of 1 dB at a BER of
is achieved by the proposed SF code. In case of BW 4 MHz,
from Fig. 8(b), we observe that without permutation, the perfor-
mance of the proposed code is better than that of the code from
orthogonal design by about 3 dB at a BER of . With the
random permutation, the proposed SF code outperforms the SF
code (5.4) by about 2 dB at a BER of . With the proposed
permutation ( ), there is an additional gain of about 1 dB at
a BER of . Compared to the SF code from orthogonal de-
sign with the random permutation, the proposed SF code with
the proposed permutation has a total gain of 3 dB at a BER of

.
Fig. 9 provides the simulation results for the HT channel

model. In case of BW 1 MHz, from Fig. 9(a), we observe that
without permutation, the proposed SF code outperforms the SF
code (5.4) by about 3 dB at a BER of . With the random per-

mutation (5.3), the performance of the proposed code is better
than that of the code (5.4) by about 2 dB at a BER of . With
the proposed permutation ( ), an additional improvement
of more than 1 dB is observed for the proposed SF code at a
BER of . In case of BW 4 MHz, Fig. 9(b) shows that
without permutation, the performance of the proposed code is
better than that of the code (5.4) by about 1.5 dB at a BER of

. With the random permutation, the proposed SF code out-
performs the SF code from orthogonal design by about 2 dB at
a BER of . With the proposed permutation ( ), there
is an additional gain of about 1 dB at a BER of . Compared
to the SF code from orthogonal design with the random permu-
tation, the proposed SF code with the proposed permutation has
a total gain of 3 dB at a BER of .

VI. CONCLUSION

In this paper, we proposed a general SF code structure that can
guarantee full-rate and full-diversity transmission in MIMO-
OFDM systems for an arbitrary number of transmit antennas,
any memoryless modulation method and arbitrary power delay
profiles. In addition, assuming that the power delay profile of
the channel is available at the transmitter, we proposed an op-
timum interleaving scheme to further improve the performance.
Based on the theoretical diversity product values and the simu-
lation results, we can draw the following conclusions.

First, the proposed SF codes offer considerable performance
improvement over previously existing approaches. We observed
3–5-dB gain over the full-diversity SF codes constructed from
orthogonal design. Second, the applied interleaving method can
have a significant effect on the overall performance of the SF
code. Compared to the random permutation, the proposed op-
timum permutation resulted in 1–3-dB performance improve-
ment. Finally, the maximum-likelihood decoding complexity of
the proposed scheme increases exponentially with the number
of transmit antennas and the targeted frequency diversity order,
but sphere decoding methods [44]–[46] can be used to reduce
the complexity.

APPENDIX A
PROOF OF EQUATION (4.2)

By applying some row and column permutations to
, we move the th

row and column to the th row and column,
respectively, for and . The resulting
matrix is denoted as .

First, we show that is a block-diagonal matrix given
by

(A1)
We observe that after the row and column permutations, the

th entry of
is the th entry of for

, and . On the other hand, we recall
that all the entries of are zeros ex-
cept the th entry for and

. Thus, all the entries of are zeros except
the th entry for and
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Fig. 7. Comparison of the proposed SF code and the code from orthogonal design, two-ray channel model. (a) Two rays at 0 and 5 �s. (b) Two rays at 0 and 20 �s.
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Fig. 8. Comparison of the proposed SF code and the code from orthogonal design, TU channel model. (a) BW = 1 MHz. (b) BW = 4 MHz.
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Fig. 9. Comparison of the proposed SF code and the code from orthogonal design, HT channel model. (a) BW = 1 MHz. (b) BW = 4 MHz.
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. For a fixed , since the th
entry of is the same as the th entry
of , the th
entry of is the same as the th entry of . Therefore,
we have the expression of in (A1).

Since row and column permutations are unitary operations,
, the nonzero eigenvalues of

are the same as those of . Thus, according to
(A1), the product of the nonzero eigenvalues of

is

which is the result in (4.2).

APPENDIX B
PROOF OF THEOREM 4.1

For each , is nonnegative def-
inite, and all of its diagonal entries are . Thus,
according to Hadamard’s inequality ([49, p. 477]), the determi-
nant of is less than or equal to , so from (4.8), we
have , which is result i) of Theorem 4.1.

In order to prove the result in Theorem 4.1 ii), we define some
additional notation. We denote the eigenvalues of an non-
negative-definite matrix (in nondecreasing order) by

Similarly, the singular values of an matrix are denoted
by

For , we have

(B1)

where the inequality follows from Horn’s theorem on singular
values ([50, pp. 171–172]), and the last equality follows from
the fact that the singular values of are the square roots
of the eigenvalues of . The singular values of are

. If we sort the power profile
in a nonincreasing order as , we obtain

for , so

(B2)

Since for ,
from (4.8), (B1), and (B2), we have

which is the upper bound (4.12) in Theorem 4.1 ii). Finally,
since is nonnegative definite and all of the diagonal en-
tries of are , we have for any

by Hadamard’s inequality. Therefore,

which implies the upper bound (4.13) in Theorem 4.1 ii).

APPENDIX C
PROOF OF THEOREM 4.2

In order to obtain (4.17) in Theorem 4.2, it is sufficient to
show that

for each .
For , we know that

, where is defined in (4.10). According to
the permutation (4.16), the permuted locations ,

, can be expressed as

(C1)
for some . From (4.14), (4.15), and (4.16), we
have

(C2)

where and are two integers which do not depend on .
Combining (C1) and (C2), we obtain

(C3)
Substituting (C3) into (4.10), we conclude that , i.e.,

for each .
Furthermore, if , then in (4.18) is a Vandermonde

matrix with variables ([50, p. 400]), so
its determinant can be calculated as

(C4)
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Finally, from (4.17) and (C4), the “extrinsic” diversity product
can be further expressed as

which is the desired result (4.19).

APPENDIX D
PROOF OF EQUATION (4.21)

If , the “extrinsic” diversity product is given by

(D1)

With the assumption that for
, we observe that is a unitary matrix if

. If we use the notation , we
have

if
if

(D2)

It follows that if , , where is the
identity matrix. Substituting into (D1), we obtain

which achieves the upper bound (4.13) of Theorem 4.1. There-
fore, is an optimum separation factor.

If

from Theorem 4.2, the “extrinsic” diversity product is

(D3)

Similarly to the derivation in (D2), it can be shown that
if . Note that and may be different integers.

Thus, . Substituting this into (D3), we arrive
at , which achieves the upper bound of Theorem 4.1 i).
Therefore, is also an optimum separation factor for
this case.
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