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On Orthogonal Space-Time Block Codes and
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Abstract— We present a necessary and sufficient condition
for any orthogonal space-time block code (STBC) to allow
transceiver signal linearization (as in the well-known case of
the Alamouti scheme). Then, we show that all square orthogonal
STBC’s that satisfy the condition have rate that goes to zero
linearly with the number of transmit antennas. Hence, multiple-
antenna systems with orthogonal STBC’s and satisfactory rate
are possible only if we abandon the linearization property or
utilize non-square codes (except for the 2 × 2 Alamouti code).

Index Terms— Diversity, MIMO systems, multiple antenna,
orthogonal designs, space-time block codes (STBC).

I. INTRODUCTION

ORTHOGONAL space-time block codes (STBC’s) have
received considerable attention in recent open-loop

multiple-input-multiple-output (MIMO) wireless communica-
tion literature (for example [1]-[11] and references therein)
because they allow low complexity maximum-likelihood de-
coding and guarantee full diversity. An orthogonal STBC is
characterized by a code matrix Gp×n where p denotes time
delay or block length and n represents the number of transmit
antennas. The entries of G are linear combinations of k data
symbols or their conjugate, s1, s2, · · · , sk, s∗1, s

∗
2, · · · , s∗k, that

belong to an arbitrary signal constellation. The columns of G
are orthogonal to each other and

GHG = (|s1|2 + |s2|2 + · · · + |sk|2)In (1)

where AH denotes the complex conjugate transpose of matrix
A, and In is the size-n identity matrix. The code rate of G
is defined as R = k/p (i.e., each codeword with block length
p carries k information symbols).

To motivate the developments in this manuscript, consider
as an example a communication system with two transmit
and one receive antennas that utilizes the Alamouti orthogonal
STBC [1]. If y1 and y2 denote the received signals at time slot
1 and time slot 2, respectively, then the received signal vector
[y1 y2]T can be expressed as follows:[

y1

y2

]
= G2(s1, s2)

[
h1

h2

]
+

[
n1

n2

]
(2)

where G2(s1, s2)
�
=

[
s1 s2

−s∗2 s∗1

]
is the Alamouti orthogonal

STBC, h1 and h2 denote the channel coefficients from the two
transmit antennas to the receive antenna, and n1, n2 represent
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additive complex Gaussian noise pertinent to time slot 1 and
2, respectively. Due to the special structure of G2(s1, s2), the
received signal in (2) can be rewritten as [7], [9], [10][

y1

y∗
2

]
=

[
h1 h2

h∗
2 −h∗

1

] [
s1

s2

]
+

[
n1

n∗
2

]
. (3)

It is interesting to note that in (3) the Alamouti STBC structure

is embedded in the channel matrix
[

h1 h2

h∗
2 −h∗

1

]
, while the

two data symbols appear as the elements of a 2 × 1 data
input vector and the received signal at time slot 2, y2, appears
conjugated. The linearized received signal expression in (3)
is appealing as it is backward compatible with existing signal
processing techniques and standards [8] and allows, for ex-
ample, the design of low complexity interference suppressing
filters [9], [10] and channel equalizers [11].

A question, then, that arises naturally is whether a similar
linearized transceiver signal model (as the one in (3) for the
Alamouti scheme) exists for other or all orthogonal STBC’s.
In this letter, we address exactly this question. In particular,
we state and prove a necessary and sufficient condition for
an orthogonal STBC to admit a linearized transceiver signal
model of the type shown in (3). We then prove that the rate of
square orthogonal STBC’s Gn that satisfy the above condition
goes to zero linearly in the size parameter n. As a result, to
obtain high-rate orthogonal STBC’s that exhibit the desired
linearized signal property, we have to consider non-square
orthogonal STBC’s, for example the ones proposed in [2],
[6].

II. ORTHOGONAL STBC’S WITH

LINEARIZED SIGNAL DESCRIPTION

In this section, we first show a necessary and sufficient con-
dition for orthogonal STBC’s to have a linearized transceiver
signal model. Then, we examine the maximum possible rate
of square orthogonal STBC’s under which they can have this
desired property.

A. Necessary and Sufficient Condition

Without loss of generality, we consider a communication
system with n transmit and one receive antennas coded with
an orthogonal STBC Gp×n of rate k/n. Then, the received
signal vector is given as follows:⎡

⎢⎣ y1

...
yp

⎤
⎥⎦ = Gp×n(s1, · · · , sk)

⎡
⎢⎣ h1

...
hn

⎤
⎥⎦ +

⎡
⎢⎣ n1

...
np

⎤
⎥⎦ (4)

where yi is the received signal at time slot i, i = 1, 2, · · · , p,
hj is the channel coefficient from the jth, j = 1, 2, · · · , n,
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transmit antenna to the receive antenna, and ni represents ad-
ditive Gaussian noise pertinent to time slot i, i = 1, 2, · · · , p.
A linearized description of the transceiver signal in (4), if it
exists, will have the form⎡

⎢⎣ ỹ1

...
ỹp

⎤
⎥⎦ = H

⎡
⎢⎣ s1

...
sk

⎤
⎥⎦ +

⎡
⎢⎣ ñ1

...
ñp

⎤
⎥⎦ (5)

where ỹi is either yi or y∗
i , i = 1, 2, · · · , p, H is a p × k

matrix whose entries are complex linear combinations of hj

and h∗
j , j = 1, 2, · · · , n, and ñi represents the equivalent noise

effect pertinent to time slot i, i = 1, 2, · · · , p.
For a given set of data symbols s1, s2, · · · , sk, we ob-

serve that if every row of the STBC code matrix Gp×n

contains data symbols that are either all conjugated or all
non-conjugated, then the transceiver signal model in (4)
has an equivalent linearized form as in (5). In fact, if
the elements of the ith, i = 1, 2, · · · , p, row of Gp×n

are all non-conjugated, then the received signal yi can
be written as yi =

∑k
ν=1

∑n
j=1 αν,j(i)hjsν + ni where

αν,j(i) are complex coefficients. Then, the ith row of H
can be expressed as [

∑n
j=1 α1,j(i)hj , · · · ,

∑n
j=1 αk,j(i)hj ]

and the corresponding elements of the equivalent received
signal and noise are ỹi = yi and ñi = ni. If the ele-
ments of the ith row of Gp×n are all conjugated, then the
corresponding received signal yi can be written as yi =∑k

ν=1

∑n
j=1 αν,j(i)hjs

∗
ν + ni. The ith row of H can now

be expressed as [
∑n

j=1 α∗
1,j(i)h

∗
j , · · · ,

∑n
j=1 α∗

k,j(i)h
∗
j ], while

the elements of the equivalent received signal and noise are
ỹi = y∗

i and ñi = n∗
i . On the other hand, if one row, say

the ith row, of a STBC contains at least one conjugated data
symbol and at least one data symbol that is non-conjugated,
then the corresponding received signal yi has the form

yi =
k∑

ν=1

n∑
j=1

αν,j(i)hjsν +
k∑

ν=1

n∑
j=1

βν,j(i)hjs
∗
ν + ni (6)

where αν,j(i) and βν,j(i) are complex coefficients and at least
one of αν,j(i) and one of βν,j(i) are nonzero. By (6), ỹi

involves both sν and s∗ν regardless of whether ỹi = yi or
ỹi = y∗

i which makes the model in (5) invalid. Therefore,
reformulation of (4) to (5) is possible if and only if every
row of the STBC has all its elements either conjugated or
non-conjugated. An example of an orthogonal STBC that,
unfortunately, does not allow a linearized transceiver signal
model is the well-known 4 × 4 design [3]–[5], [7]

G4(s1, s2, s3) =

⎡
⎢⎢⎣

s1 s2 s3 0
−s∗2 s∗1 0 s3

−s∗3 0 s∗1 −s2

0 −s∗3 s∗2 s1

⎤
⎥⎥⎦ . (7)

B. Square Orthogonal STBC’s

For convenience, we will use in our presentation the follow-
ing terminology. For a given set of data symbols s1, s2, · · · , sk,
we will call conjugate a row of an orthogonal STBC whose
data symbols are all conjugated. Similarly, the elements of a
non-conjugate row are all non-conjugated. In the following,
we consider the class of all square orthogonal STBC’s Gn of

size n × n (p = n) that satisfy the necessary and sufficient
condition for the linearized transceiver signal model in (5).
We will show that the maximum possible rate for such codes
goes to zero linearly with the size parameter n. Specifically,
we will prove that the maximum rate of Gn is 2/n if n is
even and 1/n if n is odd.

For any square orthogonal STBC Gn, (1) implies that
Gn is invertible if sν , ν = 1, 2, · · · , k, are all non-zero,
and moreover GH

n =
∑k

ν=1 |sν |2G−1
n . Thus, GnGH

n =∑k
ν=1 |sν |2GnG−1

n =
∑k

ν=1 |sν |2In, i.e. the rows of Gn are
also orthogonal to each other. Let’s rewrite Gn as

Gn =

⎡
⎢⎢⎣

sE1 + s∗F1

sE2 + s∗F2

· · ·
sEn + s∗Fn

⎤
⎥⎥⎦

n×n

(8)

where Ei and Fi are k × n complex matrices, s
�
=

[s1 s2 · · · sk], and s∗
�
= [s∗1 s∗2 · · · s∗k]. Since the rows of Gn

are orthogonal to each other, we have

(sEi + s∗Fi)(sEj + s∗Fj)H = 0, 1 ≤ i �= j ≤ n, (9)

(sEi + s∗Fi)(sEi + s∗Fi)H =
k∑

ν=1

|sν |2, 1 ≤ i ≤ n. (10)

Case1 : n = 2n0, n0 > 1
Since each row of Gn is either conjugate or non-conjugate,
there are at least n0 conjugate rows or at least n0 non-
conjugate rows.

(i) Assume first that there are at least n0 rows of Gn that
are non-conjugate. Since row permutation does not change
the orthogonality of Gn, without loss of generality say that
the first n0 rows of Gn are non-conjugate, i.e. Fi = 0k×n,
1 ≤ i ≤ n0. Then, (9) and (10) imply that sEiEH

j sH = 0 for
1 ≤ i �= j ≤ n0 and sEiEH

i sH =
∑k

ν=1 |sν |2 for 1 ≤ i ≤ n0.
Since s = [s1 s2 · · · sk] is supposed to be an arbitrary vector
of k complex symbols, we have

EiEH
j = 0k×k, 1 ≤ i �= j ≤ n0, (11)

EiEH
i = Ik, 1 ≤ i ≤ n0. (12)

If we define EH �
=

[
EH

1 EH
2 · · · EH

n0−1

]
, then by (11) and

(12) we have

EEH =

⎡
⎣ E1EH

1 · · · E1EH
n0−1

· · · · · · · · ·
En0−1EH

1 · · · En0−1EH
n0−1

⎤
⎦ = I(n0−1)k

which implies that

rank(E) = (n0 − 1)k. (13)

Moreover, since EEH
n0

=

⎡
⎢⎣ E1EH

n0
...

En0−1EH
n0

⎤
⎥⎦ = 0(n0−1)k×k, we

have
rank(EEH

n0
) = 0. (14)

On the other hand, the rank of the product of the two matrices
E and EH

n0
satisfies [12]:

rank(E) + rank(EH
n0

) − n ≤ rank(EEH
n0

). (15)
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Substituting the exact rank values of (13) and (14) into (15),
we are able to obtain the relationship (n0 − 1)k + k − n ≤ 0
or, equivalently, n ≥ n0k. Therefore, in this case, the rate of
Gn is upper bounded by

R =
k

n
≤ k

n0k
=

2
n

. (16)

(ii) Assume next that Gn has at least n0 conjugate rows.
Without loss of generality, say that the first n0 rows of G
are conjugate, i.e. Ei = 0k×n for 1 ≤ i ≤ n0. Arguing as
in (i) above with Fi in place of Ei, we can reach the same
conclusion as in (16).
Case2 : n = 2n0 + 1, n0 ≥ 1
If n is odd, then at least n0 +1 rows of Gn are non-conjugate
or at least n0 + 1 rows are conjugate.

(i) Without loss of generality, assume that the first n0 + 1
rows of Gn are non-conjugate, i.e. Fi = 0k×n, 1 ≤ i ≤ n0+1.
Then, we have

EiEH
j = 0k×k, 1 ≤ i �= j ≤ n0 + 1, (17)

EiEH
i = Ik, 1 ≤ i ≤ n0 + 1. (18)

If we define EH �
=

[
EH

1 EH
2 · · · EH

n0

]
, we can show that

rank(E) = n0k and rank(EEH
n0+1) = 0. Since rank(E) +

rank(EH
n0+1)−n ≤ rank(EEH

n0+1), we have n0k+k−n ≤ 0,
i.e. n ≥ (n0 + 1)k. But n = 2n0 + 1 which implies k < 2.
Therefore, the rate of Gn is

R =
k

n
≤ 1

n
. (19)

(ii) Consider now the case where at least n0 + 1 rows of
Gn are conjugate and, without loss of generality, assume that
the first n0 + 1 rows of Gn are conjugate, i.e. Ei = 0k×n,
1 ≤ i ≤ n0 +1. If we replace Ei by Fi in (i) above, we reach
(19) again.

We have just proved the following theorem.
Theorem 1: For any square orthogonal STBC Gn, if each

row of Gn is either conjugate or non-conjugate, then the
maximum possible rate of Gn is 2/n if n is even and 1/n
if n is odd. �

We note that, if n = 2n0 (even), we can reach the rate
upper bound 2/n in a straightforward manner. We can create
a block diagonal version of the code G2(s1, s2) by Gn =
In0⊗G2(s1, s2) where ⊗ denotes tensor product. On the other
hand, if n = 2n0 + 1 (odd), we may consider Gn = s1In as
an example a code with rate 1/n.

As a concluding remark, we note that Theorem 1 implies
that to obtain high-rate orthogonal STBC’s for more than
two transmit antennas that admit the desired linearized signal
model as in (5), one has to resort to non-square codes. The
non-square orthogonal STBC’s proposed in [2] do satisfy
the necessary and sufficient condition for linearized signal
discription and maintain code rate 1/2 for any number of
transmit antennas. Recently, in [6], a systematic design method
for non-square orthogonal STBC’s was presented with rate
(n0 +1)/(2n0) if the number of transmit antennas is n = 2n0

or n = 2n0 − 1, which has been conjectured to be optimal.

For example, for n = 4 transmit antennas, G8×4 below [6]

G8×4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 s2 s3 0
−s∗2 s∗1 0 s∗4
−s∗3 0 s∗1 s∗5

0 −s∗3 s∗2 s∗6
0 −s4 −s5 s1

s4 0 −s6 s2

s5 s6 0 s3

−s∗6 s∗5 −s∗4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

is a non-square orthogonal STBC of rate 3/4 where each row
of the code is either conjugate or non-conjugate. In contrast
to the well-known code G4 in (7) of the same rate, G8×4 in
(20) allows linearized signal description.

III. CONCLUSION AND DISCUSSION

We considered the class of orthogonal STBC’s (that offer
full diversity with low-complexity maximum-likelihood de-
coding) and presented a necessary and sufficient condition un-
der which an orthogonal STBC enables linearized transceiver
signal description. We then proved that square, in particular,
orthogonal STBC’s for n transmit antennas that satisfy the
linearization condition have rate upper-bounded by 2/n and
1/n for n even and odd, respectively. Hence, regretfully, large
n (n = 3, 4, · · ·) high-rate orthogonal STBC’s that admit
transceiver signal linerization are possible only within the
class of non-square orthogonal designs. Fortunately, such non-
square orthogonal designs already exist in the literature: the
fixed 1/2 rate codes in [2] and the higher rate (conjectured
optimal) codes in [6].
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